
Proc. 9th LATIN, 2010

Average Parameterization and Partial

Kernelization for Computing Medians

Nadja Betzler1⋆, Jiong Guo2⋆⋆, Christian Komusiewicz1⋆ ⋆ ⋆, and
Rolf Niedermeier1

1 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{nadja.betzler,c.komus,rolf.niedermeier}@uni-jena.de
2 Universität des Saarlandes,

Campus E 1.4, D-66123 Saarbrücken, Germany
jguo@mmci.uni-saarland.de

Abstract. We propose an effective polynomial-time preprocessing strat-
egy for intractable median problems. Developing a new methodological
framework, we show that if the input instances of generally intractable
problems exhibit a sufficiently high degree of similarity between each
other on average, then there are efficient exact solving algorithms. In
other words, we show that the median problems Swap Median Per-

mutation, Consensus Clustering, Kemeny Score, and Kemeny

Tie Score all are fixed-parameter tractable with respect to the pa-
rameter “average distance between input objects”. To this end, we de-
velop the new concept of “partial kernelization” and identify interesting
polynomial-time solvable special cases for the considered problems.

1 Introduction

In median problems one is given a set of objects and the task is to find a “consen-
sus object” that minimizes the sum of distances to the given input objects. Our
new approach to solve in general intractable (mostly NP-hard) median prob-
lems considers an average measure for the similarity between the input objects
by summing over all pairwise object distances divided by the number of these
pairs. Based on this, we develop an algorithmic framework for showing that if the
input objects are sufficiently “similar on average”, then there are provably ef-
fective data reduction rules. In terms of parameterized algorithmics [10, 12, 18],
this means that we show that the four median problems we study are fixed-
parameter tractable with respect to the parameter “average distance between
input objects”. To the best of our knowledge, this parameter has only been stud-
ied for the Kemeny Score problem [5, 20] by using exponential-time dynamic

⋆ Supported by the DFG, research project PAWS, NI 369/10.
⋆⋆ Supported by the Excellence Cluster on Multimodal Computing and Interac-

tion (MMCI). Main work was done while the author was with Friedrich-Schiller-
Universität Jena.

⋆ ⋆ ⋆ Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.

Proc. 9th LATIN, 2010

programming and search tree methods. This work complements these results
by polynomial-time preprocessing through data reduction. Marx [16] studies av-
erage parameterization for the Consensus Patterns problem. He also shows
fixed-parameter tractability; however in his case the parameter relates to the
solution quality whereas our parameters relate to the input structure.

Let us briefly discuss the naturalness of average parameterization for two
prominent median problems tackled in this paper. First, we show the fixed-
parameter tractability of the NP-hard Consensus Clustering problem (see,
e.g., [2, 6, 17]). Roughly speaking, the goal here is to find a median partition
for a given set of partitions all over the same base set; this is motivated by the
often occurring task to reconcile clustering information [4, 13, 17]. It is plausible
that this reconciliation is only meaningful when the given input partitions have
a sufficiently high degree of average similarity, because otherwise the median
partition found may be meaningless since it tries to fit the demands of strongly
opposing clustering proposals. Our algorithms are tailored for being efficient
when there is “enough” consensus in the input.1 Second, we also deal with the
computation of Kemeny rankings (also known as rank aggregation), an NP-hard
problem from the area of voting (see, e.g., [1, 2, 9, 11, 14]). As Conitzer and Sand-
holm [8] pointed out, one potential view of voting is that there exists a “correct”
outcome (ranking), and each voter’s vote corresponds to a noisy perception of
this correct outcome (see [7, 9] for practical studies in this direction). Studying
an average parameterization with respect to the pairwise distance between in-
put votes reflects the view on voting proposed by Conitzer and Sandholm [8].
We develop efficient algorithms for computing Kemeny rankings in case of a
reasonably small average distance between votes, again developing an effective
preprocessing technique.

Within our framework, two points deserve particular attention. First, the
identification of interesting polynomial-time solvable special cases of the under-
lying problems. Second, a novel concept of kernelization based on polynomial-
time data reduction that does not yield problem kernels in the classical sense of
parameterized algorithmics but only “partial problem kernels”. Roughly speak-
ing, in (at least) “two-dimensional” problems as we study here (for instance, one
“dimension” being the size of the base set and the other being the number of
input subsets over this base set), this means that at least one dimension can be
reduced such that its size only depends on the parameter value. This somewhat
“weaker” concept of kernelization promises to be of wider practical use.

Due to the lack of space, most proofs are deferred to a full version of the
paper.

1 Indeed, a standard way of coping with too heterogeneous input partitions is to
cluster the partitions and then to use Consensus Clustering in each “cluster of
partitions”, where high average similarity is to be expected [13].

Proc. 9th LATIN, 2010

2 Framework and Swap Median Permutation

In this work, we are concerned with consensus problems. Roughly speaking, the
common feature of all these problems is that, given a number of combinatorial
objects (such as permutations, partitions etc.) over a base set U , to find a median

object over U that minimizes the sum of “distances” to all input objects.

The general outline of our framework reads as follows.

Step 1. Identify a polynomial-time solvable special case. This is done by defining
a “dirtiness” concept for elements from the base set U and proving that an
instance of the underlying consensus problem can easily be solved when the
input objects do not induce any dirty elements.
Step 2. Show that the number of dirty elements from U is upper-bounded by a
(typically polynomial) function only depending on the average distance between
the given combinatorial objects.
Step 3. Show that the number of non-dirty elements from U can be upper-
bounded by a (typically polynomial) function only depending on the number
of dirty elements (and, thus, also the average distance). This is achieved by
developing polynomial-time data reduction rules which shrink the number of
non-dirty elements (and thus U), generating an equivalent problem instance of
smaller size.
Step 4. Make use of the fact that the desired median combinatorial object can
be found in a running time only depending on the number of elements in U , and
not depending on the number of combinatorial objects.

When applicable, this framework yields fixed-parameter tractability with re-
spect to the parameter average distance. Note that a special feature of our frame-
work is that in Step 3 we actually perform some sort of partial kernelization2,
a concept that may be of general interest. To illustrate our framework for effi-
ciently solving “similar-on-average” median problems, we use the Swap Median

Permutation problem (SMP for short) as a running example.3 Herein, the com-
binatorial objects are permutations over the set {e1, . . . , em}, and the distance
between two permutations is the swap distance defined as follows: A swap op-
eration interchanges two elements of a permutation. For instance, swapping ei

and ej in the identity permutation e1· · · ei−1eiei+1· · · ej−1ejej+1· · · em leads
to e1· · · ei−1ejei+1· · · ej−1eiej+1· · · em. The minimum number of swaps needed
to transform a permutation π1 into a permutation π2 (or vice versa) is called the
swap distance between π1 and π2, denoted by d(π1, π2). Concerning notation,
we follow the recent paper of Popov [19]. The formal problem definition of SMP
reads as follows:

Input: A set of permutations {π1, π2, . . . , πn} over {e1, e2, . . . , em}.
Output: A median permutation π with minimum distance

∑n
i=1

d(π, πi).

2 The term “partial” refers to the fact that only the size of the base set is reduced,
but not the number of input objects.

3 We remark that the question of the NP-hardness of SMP seems unsettled, cf. [19].

Proc. 9th LATIN, 2010

Now, the average swap distance d for an input instance of SMP is defined
as d :=

(
∑

i6=j d(πi, πj)
)

/(n · (n − 1)). We present a first application of our
framework using SMP as the concrete running example. After that, in the next
two sections, we will provide our main results.

The computation of the swap distance between two permutations can be
carried out in O(nm) time [3] by exploiting the tight relation between swap
distances and permutation cycles of permutations. Given two permutations π1

and π2 of a set U , a permutation cycle of π1 with respect to π2 is a subset
of π1 whose elements, compared to π2, trade positions in a circular fashion. In
particular, an element e having the same position in both π1 and π2 builds a
cycle by itself. For example, with respect to permutation e1e2e3e4e5e6, permu-
tation e3e5e1e4e6e2 has three permutation cycles (e1, e3), (e4), and (e2, e5, e6).
With respect to π2, the cycle representation of π1 as a product of disjoint permu-
tation cycles is unique (up to the ordering of the cycles). The central observation
behind the swap distance computation made by Amir et al. [3] is as follows: The
swap distance between π1 and π2 is m − c(π1), where c(π1) is the number of
permutation cycles in π1 with respect to π2.

First, according to Step 1, we need to define “dirty” elements. A dominat-

ing position of an element e is a position, such that e occurs at this position
in more than n/2 input permutations. An element is called dirty if it has no
dominating position; otherwise, it is called non-dirty. Lemma 1 not only shows
the polynomial-time solvability of the special case but also the correctness of a
data reduction rule used in Step 3.

Lemma 1. Every median permutation places the non-dirty elements according

to their dominating positions.

Lemma 2. SMP without dirty elements can be solved in O(nm) time.

Next, according to Step 2, we have to bound the number of dirty elements.

Lemma 3. Given an SMP-instance with average swap distance d, there are less

than 4d dirty elements.

According to Step 3, the number of non-dirty elements needs to be bounded.
To this end, we present the following data reduction rule.

Reduction Rule. In each of the input permutations, swap all non-dirty elements
to their dominating positions. Remove all non-dirty elements. Record the number
of the employed swap operations, which needs to be added to the distance of the
median permutation of the resulting instance.

Lemma 4. The above data reduction rule yields an equivalent SMP-instance

with at most 4d elements, and it can be executed in O(nm) time.

Finally, according to Step 4, it remains to observe that for the median per-
mutation we clearly have O((⌈4d⌉)!) possibilities. Hence, simply testing all of
them and taking a best one, we obtain the following theorem.

Theorem 1. Swap Median Permutation is fixed-parameter tractable with

respect to the parameter average swap distance.

Proc. 9th LATIN, 2010

3 Consensus Clustering

Our second application of the framework deals with the NP-hard Consensus

Clustering problem. It arises in attempts to reconcile clustering information.
The goal is to find a median partition for a given set of partitions, which all are
over the same base set. Due to its practical relevance, Consensus Clustering

has been intensively studied in terms of the usefulness of various heuristics and
accompanying experiments [4, 13]. The problem is defined as follows.

Input: A set C = {C1, . . . , Cn} of partitions over a base set S.
Output: A partition C of S with minimum distance

∑

Ci∈C d(C, Ci).

Consensus Clustering finds applications for example in the field of bioinfor-
matics. Bonizzoni et al. [6] showed that Consensus Clustering is APX-hard
even if the input consists of only three partitions. So far, the best approximation
factor achievable in polynomial time is 4/3 [2].

Following Goder and Filkov [13], we call two elements a, b ∈ S co-clustered

with respect to a partition C if a and b occur together in a subset of C and
anti-clustered if a and b occur in different subsets of C. Given a set C of par-
titions, we denote with co(a, b) the number of partitions in C in which a and b
are co-clustered and with anti(a, b) we denote the number of partitions in C in
which a and b are anti-clustered. Define the distance d(Ci, Cj) between two
input partitions Ci and Cj as the number of unordered pairs {a, b} of ele-
ments from the base set S such that a and b are co-clustered in one of Ci

and Cj and anti-clustered in the other. Thus, our parameter d denoting the
average distance of a given Consensus Clustering instance is defined as
d :=

(
∑

Ci,Cj∈C d(Ci, Cj)
)

/
(

n · (n − 1)
)

.
Our overall goal is to show that Consensus Clustering is fixed-parameter

tractable with respect to the average parameter d. To this end, we follow the
approach presented in Section 2. Recall that Step 1 was to identify a polynomial-
time solvable special case using a dirtiness concept.

Definition 1. A pair of elements a, b ∈ S is called a dirty pair a#b of a set C
of n partitions if co(a, b) ≥ n/3 and anti(a, b) ≥ n/3. Moreover, the predicate (ab)
is true iff co(a, b) > 2n/3, and the predicate a ↔ b is true iff anti(a, b) > 2n/3.

To show that an input instance of Consensus Clustering without dirty
pairs is polynomial-time solvable, we need the following.

Lemma 5. Let {a, b, c} be a set of elements where a and c do not form a dirty

pair. Then, (ab) ∧ (bc) ⇒ (ac) and a ↔ b ∧ (bc) ⇒ a ↔ c.

Theorem 2. Consensus Clustering without dirty pairs is solvable in poly-

nomial time.

Proof. Let C be an optimal solution, that is, C is a partition of S with minimum
distance to the input partitions. It suffices to show that in C the following two
statements are true.

Proc. 9th LATIN, 2010

1. If (ab), then a and b are co-clustered in C.
2. If a ↔ b, then a and b are anti-clustered in C.

Clearly, since there are no dirty pairs, any pair a, b ∈ S must fulfill either (ab)
or a ↔ b. Hence, the two statements directly specify for each element from S in
which subset in C it will end up.

To prove the first statement, suppose that there is an optimal solution C
not fulfilling the claim. Then, there must exist two subsets Si and Sj in C with
a ∈ Si and b ∈ Sj . One can further partition both Si and Sj into each time
two subsets. More specifically, let S1

i := {x ∈ Si | (ax)} and S2
i := Si \ S1

i .
The sets S1

j and S2
j are defined analogously with respect to b. In this way, by

replacing Si and Sj with S1
i ∪S1

j , S2
i , and S2

j , one obtains a modified partition C′.

Consider any x ∈ S1
i and any y ∈ S2

i . Then, x ↔ y follows from (ax), a ↔ y,
and Lemma 5. The same is true with respect to S1

j and S2
j . Moreover, if x ∈ S1

i

and y ∈ S2
j , this means that (ax) and b ↔ y, implying by Lemma 5 and using

(ab) that x ↔ y. It remains to consider x ∈ S1
i and y ∈ S1

j . Then, again the
application of Lemma 5 yields (xy). Thus, C′ is a better partition than C is
because in C′ now (ab) holds for all elements a, b ∈ S1

i ∪ S1
j (without causing

any increased cost elsewhere). This contradicts the optimality of C, proving the
first statement. The second statement is proved analogously. ⊓⊔

As required by Step 2 of the framework in Section 2, the next lemma upper-
bounds the number of dirty pairs with the help of the average distance d.

Lemma 6. An input instance of Consensus Clustering with average dis-

tance d contains less than 9d/4 dirty pairs.

Step 3 of our framework now calls for a polynomial-time data reduction that
reduces the number of elements that do not appear in any dirty pair. We call
these elements non-dirty elements. To this end, we analyze the structure of an
input instance. The idea is to find subsets of S that contain many non-dirty
elements that are all pairwisely co-clustered in more than 2n/3 input partitions.
First, we partition the input base set S into two subsets S1, which contains the
non-dirty elements, and S2, which contains the elements that appear in dirty
pairs. In the following, we describe a partition of S1 into equivalence classes
according to the non-dirty pairs in S1. Moreover, these equivalence classes also
induce a partition of S2. First we describe the partition P1 = {S1

1 , . . . , Sl
1} of S1.

For each equivalence class Si
1 ∈ P1, we demand ∀a ∈ Si

1 ∀b ∈ Si
1 : (ab) and

∀a ∈ Si
1 ∀b ∈ S \ Si

1 : a ↔ b. Observe that, by Lemma 5, the partition P1 of S1

that fulfills these requirements is well-defined, since the predicate (ab) describes
a transitive relation over S1. Using P1, we define subsets Si

2 of S2. Each Si
2 is

defined as the set of elements a ∈ S2 that have at least one element b ∈ Si
1

such that (ab) holds. We also define one additional set S0
2 that contains all

elements a ∈ S2 such that there is no b ∈ S1 for which (ab) holds.
Finally, we obtain a set of subsets P = {S0, S1, . . . , Sl} of S by setting Si =

Si
1 ∪ Si

2 for 1 ≤ i ≤ l and S0 = S0
2 . The following lemma shows that P is indeed

a partition of S, and also gives some further structural property of P .

Proc. 9th LATIN, 2010

Lemma 7. Let P = {S0, S1, . . . , Sl} be a set of subsets of S constructed as

described above. Then, P is a partition of S, and for each Si ∈ P it holds that

– ∀a ∈ Si ∀b ∈ S : (ab) ⇒ b ∈ Si and

– ∀a, b ∈ Si, 1 ≤ i ≤ l : (ab) ∨ a#b.

Informally, Lemma 7 says that inside any Si ∈ P we have only pairs that
are co-clustered in more than 2n/3 input partitions or dirty pairs; between two
subsets Si ∈ P and Sj ∈ P we have only dirty pairs or pairs that are anti-

clustered in more than 2n/3 input partitions. Clearly, the elements in Si
1 then

are co-clustered in more than 2n/3 partitions with all elements in Si and are
anti-clustered in more than 2n/3 partitions with all elements in S \ Si. This
means that an Si with too many elements in Si

1 is forced to become a set of
an optimal partition. With the subsequent data reduction rule, we remove these
sets from the input.

We introduce the following notation for subsets of S. For some set E ⊆ S,
we denote with dp(E) the dirty pairs among the elements of E, that is, for a
dirty pair a#b we have a#b ∈ dp(E) if a ∈ E and b ∈ E. Analogously, for two
sets E ⊆ S and F ⊆ S, we define dp(E, F) as the set of dirty pairs between E
and F , that is, for a dirty pair a#b we have a#b ∈ dp(E, F) if a ∈ E and b ∈ F
or vice versa.

Reduction Rule. Let P be a partition of S according to Lemma 7. If there
is some Si ∈ P such that |Si

1| > | dp(Si)| + | dp(Si, S \ Si)|, then output Si

as one of the sets of the solution and remove the elements of Si from all input
partitions.

Lemma 8. The above reduction rule is correct.

In the following theorem, we combine Steps 3 and 4 of our framework: we show
that exhaustively applying the reduction rule yields an equivalent instance whose
number of elements is less than 9d, and that this implies the fixed-parameter
tractability of Consensus Clustering.

Theorem 3. Consensus Clustering is fixed-parameter tractable with respect

to the average distance d between the input partitions. Each instance of Con-

sensus Clustering can be reduced in polynomial time to an equivalent instance

with less than 9d elements in the base set.

4 Kemeny Rankings

In the third application of our framework, we investigate the problem of finding a
“consensus ranking”, that is, a so-called Kemeny ranking [11]. We first consider
the NP-hard Kemeny Score problem and, second, the somewhat harder to
attack generalization Kemeny Tie Score.

Proc. 9th LATIN, 2010

Kemeny Score. Kemeny’s voting scheme can be described as follows. An elec-

tion (V, C) consists of a set V of n votes and a set C of m candidates. A vote

is a preference list of the candidates, that is, a permutation on C. For instance,
in the case of three candidates a, b, c, the order c > b > a would mean that
candidate c is the best-liked and candidate a is the least-liked for this voter.
A “Kemeny consensus” is a preference list that is “closest” with respect to the
so-called Kendall-Tau distance to the preference lists of the voters. For each
pair of votes v, w, the Kendall-Tau distance (KT-distance for short) between v
and w, also known as the inversion distance between two permutations, is defined
as dist(v, w) =

∑

{a,b}⊆C dv,w(a, b), where the sum is taken over all unordered

pairs {a, b} of candidates, and dv,w(a, b) is 0 if v and w rank a and b in the same
order, and 1 otherwise. The score of a preference list l with respect to an elec-
tion (V, C) is defined as

∑

v∈V dist(l, v). A preference list l with the minimum
score is called a Kemeny consensus of (V, C) and its score

∑

v∈V dist(l, v) is the
Kemeny score of (V, C). The Kemeny Score problem is defined as follows:

Input: An election (V, C).
Output: A Kemeny consensus l with minimum score

∑

v∈V dist(l, v).

Kemeny Score is NP-complete even when restricted to instances with only
four votes [11]. The Kemeny score can be approximated to a factor of 8/5 by a de-
terministic algorithm [21] and to a factor of 11/7 by a randomized algorithm [2].
Recently, a polynomial-time approximation scheme (PTAS) for Kemeny Score

has been developed [15]. However, its running time is impractical.

For an election (V, C), the average KT-distance d, the parameter of this work,
is defined as d :=

(
∑

u,v∈V,u6=v dist(u, v)
)

/(n(n − 1)). The Kemeny Score

problem is known to be in FPT with respect to the parameter d [5, 20]. There is
a branching algorithm for Kemeny Score which runs in (5.823)d · poly(n, m)
time [20]. We extend these results by showing that the approach presented in
Section 2 can be applied to Kemeny Score.

To identify a polynomial-time solvable special case as described in Step 1
of our framework, it is crucial to develop a concept of dirtiness. For Kemeny

Score this is realized as follows. Let (V, C) denote an election. An (unordered)
pair of candidates {a, b} ⊆ C with neither a > b nor a < b in more than 2/3 of
the votes is called a dirty pair and a and b are called dirty candidates. All other
pairs of candidates are called non-dirty pairs, and candidates that appear only in
non-dirty pairs are called non-dirty candidates. Note that with this definition a
non-dirty pair can also be formed by two dirty candidates. Let D denote the set
of dirty candidates and nd denote the number of dirty pairs in (V, C). For two
candidates a, b, we write a >2/3 b if a > b in more than 2/3 of the votes. Further,
we say that a and b are ordered according to the 2/3-majority in a preference
list l if a >2/3 b and a > b in l. To show the following results, it will be useful
to decompose the Kemeny score of a preference list into “partial scores”. More
precisely, for a preference list l and a candidate pair {a, b}, the partial score of l
with respect to {a, b} is sl({a, b}) :=

∑

v∈V dv,l(a, b). The partial score of l with
respect to a subset P of candidate pairs is sl(P) :=

∑

p∈P sl(p).

Proc. 9th LATIN, 2010

Theorem 4. Kemeny Score without dirty pairs is solvable in polynomial time.

Proof. For an input instance (V, C) of Kemeny Score without dirty pairs, we
show that the preference list “induced” by the 2/3-majority of the candidate
pairs is optimal.

First, we show by contradiction that there is a preference list l2/3 where for
all candidate pairs {a, b} with a, b ∈ C and a >2/3 b, one has a > b. Assume
that such a preference list does not exist. Then, there must be three candi-
dates a, b, c ∈ C that violate transitivity, that is, a >2/3 b, b >2/3 c, and c >2/3 a.
Since a >2/3 b and b >2/3 c, there must be at least n/3 votes with a > b > c.
Since a and c do not form a dirty pair, it follows that a >2/3 c, a contradiction.

Second, we show by contradiction that l2/3 is optimal. Assume that there is
a Kemeny consensus l with a non-empty set P of candidate pairs that are not or-
dered according to the 2/3-majority; that is, P := {{c, c′} | c > c′ in l and c′ >2/3

c}. All candidate pairs that are not in P are ordered equally in l and l2/3. Thus,
the partial score with respect to them is the same for l and l2/3. For every can-
didate pair {c, c′} ∈ P , the partial score sl({c, c

′}) is more than 2n/3 and the
partial score sl2/3

({c, c′}) is less than n/3. Thus, the score of l2/3 is smaller than
the score of l, a contradiction to the optimality of l. ⊓⊔

Following Step 2 of our framework, the next lemma shows how the number
of dirty pairs and, thus, also the number of dirty candidates, is upper-bounded
by a function linear in the average KT-distance d.

Lemma 9. Given an instance of Kemeny Score with average KT-distance d,
there are at most 9d/2 dirty pairs.

The following three lemmas establish the basis for a polynomial-time data
reduction rule as required in Step 3 of our framework. The basic idea is to
consider the order that is induced by the 2/3-majorities of the non-dirty pairs and
then to show that a dirty candidate can only “influence” the order of candidates
that are not “too far away” from it in this order. Then, it is safe to remove
non-dirty candidates that can be influenced by no dirty candidate.

Lemma 10. For an election containing nd dirty pairs, in every Kemeny consen-

sus at most nd non-dirty pairs are not ordered according to their 2/3-majorities.

In the following, we show that the bound on the number of “incorrectly”
ordered non-dirty pairs from Lemma 10 can be used to fix the relative order
of two candidates forming a non-dirty pair. For this, it will be useful to have
a concept of distance of candidates with respect to the order induced by the
2/3-majority. For (V, C) and a non-dirty pair {c, c′}, define dist(c, c′) := |{b ∈
C : b is non-dirty and c >2/3 b >2/3 c′}| if c >2/3 c′ and dist(c, c′) := |{b ∈ C :
b is non-dirty and c′ >2/3 b >2/3 c}| if c′ >2/3 c.

Lemma 11. Let (V, C) be an election and let {c, c′} be a non-dirty pair. If

dist(c, c′) ≥ nd, then in every Kemeny consensus c > c′ iff c >2/3 c′.

Proc. 9th LATIN, 2010

Finally, the next lemma enables us to fix the position in a Kemeny consensus
for a non-dirty candidate that has a large distance to all dirty candidates.

Lemma 12. If for a non-dirty candidate c it holds that dist(c, cd) > 2nd for all

dirty candidates cd ∈ D, then in every Kemeny consensus c is ordered according

to the 2/3-majority with respect to all candidates from C.

The correctness of the following data reduction rule follows directly from
Lemma 12. It is not hard to verify that it can be carried out in O(n · m2) time.

Reduction Rule. Let c be a non-dirty candidate. If for all cd ∈ D one has
dist(c, cd) > 2nd, then delete c and record the partial score with respect to all
candidate pairs that contain c and are ordered according to the 2/3-majority.
This score will be added to the Kemeny score of the resulting instance.

In the following, we show that after exhaustively applying the reduction rule,
the number of non-dirty candidates is bounded by a function of d.

Theorem 5. Each instance of Kemeny score with average KT-distance d can

be reduced in polynomial time to an equivalent instance with at most 9d+162 ·d2

candidates.

Kemeny Tie Score. A practically relevant extension of Kemeny Score is Ke-

meny Tie Score [1, 14]. Here, one additionally allows the voters to classify
sets of equally liked candidates, that is, a preference list is no longer defined as
a permutation of the candidates, but for two (or more) candidates a, b one can
have a = b. The term dvw(a, b) that denotes the contribution of the candidate
pair {a, b} to the KT-distance between two votes v and w is modified as fol-
lows [14]. One has dv,w(a, b) = 2 if a > b in v and b > a in w, dv,w(a, b) = 0 if a
and b are ordered in the same way in v and w, and dv,w(a, b) = 1, otherwise.
Note that in the literature there are different demands for the consensus itself.
For example, Hemaspaandra et al. [14] allow that the consensus list can contain
ties as well whereas Ailon [1] requires the consensus list to be a “full ranking”,
that is, a permutation of the candidates. We consider here the more general set-
ting used in [14]. Further, note that Kemeny Tie Score not only generalizes
Kemeny Score but also includes other interesting special cases like p-ratings
and top-m lists [1].

Previous approaches [5, 20] only provide fixed-parameter tractability with
respect to the average KT-distance for Kemeny Score. In contrast, the ques-
tion of fixed-parameter tractability of Kemeny Tie Score with respect to the
average KT-distance has been open so far. Here, we can answer this question
positively by showing that the new method for partial kernelization introduced
in Section 2 also applies to Kemeny Tie Score. This indicates that the new
method can be more powerful than the dynamic programming approach in [5].

For an instance with ties, we say a =2/3 b if a = b in more than 2n/3 votes.
Then, the concept of dirtiness is adapted such that a pair of candidates a, b is
dirty if neither a >2/3 b nor a =2/3 b nor a <2/3 b. Further, we use a ≥2/3 b to
denote (a >2/3 b) ∨ (a =2/3 b).

Proc. 9th LATIN, 2010

Theorem 6. Kemeny Tie Score without dirty pairs is solvable in polynomial

time.

For Kemeny Tie Score we can bound the number of candidates by a function
only depending on the average KT-distance by proving lemmas analogous to
Lemmas 9-12. For this, it is crucial to adapt the distance function between two
candidates appropriately. More precisely, for two candidates a, b with a ≥2/3 b,
one defines dist(a, b) := |{c ∈ C : a ≥2/3 c ≥2/3 b and c is non-dirty}|.

Moreover, due to the definition of the KT-distance for the case with ties,
the bound on the number of non-dirty candidates is twice as high as in the case
without ties.

Theorem 7. Kemeny Tie Score is fixed-parameter tractable with respect to

the average KT-distance d. Each instance of Kemeny Tie Score with average

KT-distance d can be reduced in polynomial time to an equivalent instance with

at most O(d2) candidates.

5 Conclusion

In applications one can easily determine the average distance parameter of
the considered median problem and then decide whether the developed fixed-
parameter algorithm should replace the otherwise used algorithm. Other related
parameterizations which can not be computed “in advance” refer to distance
measures from the input rankings to the solution. Among these, our results di-
rectly extend to the parameter “maximum distance of the input rankings from
the solution” since this parameter is an upper bound for the average distance. In
contrast, the “average distance of the input rankings from the solution” is clearly
a lower bound for the “average distance between the input rankings”. Hence, it
is an interesting open question to investigate the parameterized complexity with
respect to this parameter.

References

[1] N. Ailon. Aggregation of partial rankings, p-ratings, and top-m lists. Algo-

rithmica, 2008. Available electronically.
[2] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent informa-

tion: ranking and clustering. Journal of the ACM, 55(5), 2008. Article 23
(October 2008), 27 pages.

[3] A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena,
and U. Vishne. Pattern matching with address errors: rearrangement dis-
tances. Journal of Computer and System Sciences, 75(6):359–370, 2009.

[4] M. Bertolacci and A. Wirth. Are approximation algorithms for consensus
clustering worthwhile? In Proc. 7th SDM, pages 437–442. SIAM, 2007.

[5] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond.
Fixed-parameter algorithms for Kemeny rankings. Theoretical Computer

Science, 410(45):4554–4570, 2009.

Proc. 9th LATIN, 2010

[6] P. Bonizzoni, G. D. Vedova, R. Dondi, and T. Jiang. On the approximation
of correlation clustering and consensus clustering. Journal of Computer and

System Sciences, 74(5):671–696, 2008.
[7] V. Conitzer. Computing Slater rankings using similarities among candi-

dates. In Proc. 21st AAAI, pages 613–619. AAAI Press, 2006.
[8] V. Conitzer and T. Sandholm. Common voting rules as maximum likelihood

estimators. In Proc. 21st UAI, pages 145–152. AUAI Press, 2005.
[9] V. Conitzer, A. Davenport, and J. Kalagnanam. Improved bounds for com-

puting Kemeny rankings. In Proc. 21st AAAI, pages 620–626. AAAI Press,
2006.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[11] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation meth-
ods for the Web. In Proc. 10th WWW, pages 613–622, 2001.

[12] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[13] A. Goder and V. Filkov. Consensus clustering algorithms: Comparison and

refinement. In Proc. 10th ALENEX, pages 109–117. SIAM, 2008.
[14] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny

elections. Theoretical Computer Science, 349:382–391, 2005.
[15] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proc.

39th STOC, pages 95–103. ACM, 2007.
[16] D. Marx. Closest substring problems with small distances. SIAM Journal

on Computing, 38(4):1382–1410, 2008.
[17] S. Monti, P. Tamayo, J. P. Mesirov, and T. R. Golub. Consensus clustering:

A resampling-based method for class discovery and visualization of gene
expression microarray data. Machine Learning, 52(1–2):91–118, 2003.

[18] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

[19] V. Y. Popov. Multiple genome rearrangement by swaps and by element
duplications. Theoretical Computer Science, 385(1-3):115–126, 2007.

[20] N. Simjour. Improved parameterized algorithms for the Kemeny aggregation
problem. In Proc. of 4th IWPEC, volume 5917 of LNCS, pages 312–323.
Springer, 2009.

[21] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Mathematics of Operations

Research, 34:594–620, 2009.

	Average Parameterization and Partial Kernelization for Computing Medians

