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Abstract

Strong Triadic Closure (STC) was introduced by Sintos and
Tsaparas [24] to characterize the strength of relationships in social
networks. The strong triadic closure property states that if two in-
dividuals in a network each have a strong relationship with a third
individual, then they have to be connected in the network as well. In
the computational problem of STC, the goal is to label the edges in E
of a graph G = (V,E) either strong or weak, such that for every in-
duced P3 in G, which is a path consisting of three vertices, at least
one edge is labeled weak. Furthermore, it is required that the number
of weak edges is at most k. Strong Triadic Closure with Edge
Insertion (STC+) is an extension of STC. Here, the goal is to find
a set of additional weak edges and a labeling such that for every in-
duced P3 in G at least one edge is labeled weak or the missing edge is
inserted and the number of weak edges, including the inserted edges,
is at most k. In this work, we study the parameterized and classical
complexity of STC+ and prove that it is NP-hard. Furthermore, we
provide a 4k-vertex kernel and an FPT-algorithm for STC+. Clus-
ter Editing is a problem that is stated in terms of induced P3s as
well. To obtain more information about its relation to STC+, we
compare Subgraph-free Editing, the generalization of Cluster
Editing, with the generalization of STC+, that is Strong Sub-
graph Closure with Edge Insertion. Given the graphs G and H,
in both problems the goal is to “destroy” induced H-graphs in G by
at most k modifications, in Subgraph-free Editing by deleting and
adding edges, in Strong Subgraph Closure with Edge Inser-
tion by giving an additional edge set and a labeling. We compare the
two problems for graphs H on three or four vertices.

Zusammenfassung

Strong Triadic Closure (STC) wurde von Sintos and Tsaparas [24]
vorgestellt, um die Stärke von Beziehungen in sozialen Netzwerken
zu charakterisieren. Die Strong Triadic Closure Eigenschaft ist, dass
wenn zwei Individuen in einem Netzwerk beide eine starke Beziehung
zu einem dritten Individuum haben, dann müssen sie auch in dem Net-
zwerk verbunden sein. Im Berechnungsproblem STC ist das Ziel, die
Kanten in E eines Graphen G = (V,E) entweder stark oder schwach
zu markieren, so dass von jedem induzieren P3 in G, dies ist ein Pfad
bestehend aus drei Knoten, mindestens eine Kante schwach markiert
ist. Außerdem darf die Anzahl der schwach markierten Kanten höch-
stens k betragen. Strong Triadic Closure with Edge Insertion
(STC+) ist eine Erweiterung von STC mit dem Ziel, eine Menge von
zusätzlichen schwach markierten Kanten sowie einer Markierung der
Kanten in E zu finden, so das von jedem induzieren P3 mindestens
eine Kante schwach markiert ist, oder die die fehlende Kante einge-
fügt wurde. Zusätzlich darf die Anzahl der schwach markierten Kan-
ten, inklusive der eingefügten Kanten, höchstens k betragen. Wir un-
tersuchen die parametrisierte und klassische Komplexität von STC+
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und beweisen, dass es NP-hart ist. Weiterhin erarbeiten wir einen 4k-
Knoten Kern sowie einen FPT-Algorithmus für STC+. Cluster
Editing ist ein Problem, das auch auf induzierten P3s formuliert wer-
den kann. Um mehr über dessen Beziehung zu STC+ zu erfahren,
vergleichen wir dessen Verallgemeinerung, Subgraph-free Editing,
mit Strong Subgraph Closure with Edge Insertion, der Ver-
allgemeinerung von STC+. In beiden Problem ist das Ziel für zwei
Graphen G und H, induzierte H-Graphen in G zu “zerstören”. In
Subgraph-free Editing soll dies mit höchstens k Kantenlöschun-
gen und -einfügungen gemacht werden, in Strong Subgraph Clo-
sure with Edge Insertion mit einer Menge zusätzlichen schwach
markierten Kanten und einer Markierung der Kanten, so dass es höch-
stens k schwach markierte Kanten gibt. Wir vergleichen die beiden
Probleme für Graphen H bestehend aus drei und vier Knoten.
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1 Introduction

Online social networks have massively grown since their introduction. That
has revolutionized how social scientists study the structure of human rela-
tionships [2]. As individuals transfer their social relations and interactions
online, the internet evolved from a network of documents and data to ad-
ditionally a network of people. Social structures that have been previously
invisible are now recorded at large scale in online social networks like Face-
book [25].

Understanding the strength and nature of online relationships is key to
anyone that is interested in making use of these data [8, 9, 14, 29] and can
benefit sociology, advertisement and friendship suggestion algorithms, just
to state some examples [24].

Social networks are mathematically represented by a graph that consists
of vertices representing individuals and edges representing the relationships
between these individuals. These relationships are not all of the same na-
ture: Some people are close friends, others are just distant relatives or for-
gotten high school classmates. To distinguish between different kind of ties
in a network graph, labeling the edges either strong or weak is one option.
The principle of strong triadic closure is an important approach for this
problem [24], which goes back to Granovetter’s sociological work [11]. In-
formally, the strong triadic closure property is that if two persons both have
a strong relationship with a third person, they have to know each other at
least weakly. Sociologists first used the strong triadic closure principle when
analyzing human friendship, choices and came to the conclusion that friends
of friends tend to become friends themselves [16, 28]. The goal of Strong
Triadic Closure (STC), the computational problem associated to the
strong triadic closure principle, is to label the edges of a graph such that
the strong triadic closure property is satisfied and number of strong edges is
maximized (equivalently the number of weak edges is minimized). A labeling
for a graph G that satisfies the STC property is called an STC-labeling.

Consider a group of friends in the real world, which also connected online
in a social network. In the graph of the social network, they form a clique,
that is each pair of vertices are adjacent. We could label all edges between
these vertices strong and satisfy the strong triadic closure property in the
clique. But if one edge in the clique is missing, for example because two
persons did not connect already in the social network, we could not label
all other edges strong. In fact, if the clique is of size n, we would need to
label n − 2 edges weak. Inserting the missing edge would benefit the mini-
mization of weak edges. Therefore an extending computational problem of
STC was introduced: Strong Triadic Closure with Edge Insertion
(STC+) [24]. In this problem, given a graph G and an integer k ≥ 0, the
question is whether there exists a set of additional edges E′ and an STC-
labeling of the edges of G and E′ such that all edges in E′ are labeled weak
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and the number of weak edges is at most k.
Both STC and STC+ can be specified in terms of induced subgraphs

instead of “conflict triples”: In STC, for every induced P3, which is a path
over three vertices, at least one of the edges has to be labeled weak. In
STC+, for every induced P3 at least one edge has to be labeled weak or
the missing edge has to be inserted instead, turning the P3 into a clique
of size three. The following two computational problems, Cluster Dele-
tion (CD) and Cluster Editing (CE), are working on induced P3s as
well. In Cluster Deletion, the goal is to turn a graph into a cluster
graph, that is a graph consisting of one or more disjoint cliques, by deleting
a minimum number of edges. A graph G is a cluster graph if and only if
there is no induced P3 in G. It has been noticed that STC is closely related
to Cluster Deletion [18, 12]. In Cluster Editing, the goal is to turn a
graph into cluster graph with a minimum number of modifications, not only
by edge deletions, but by insertions as well.

In this work, we study the parameterized and classical computational
complexity of STC+, provide an approximation algorithm, a fixed-parameter
algorithm, a linear-vertex kernel for the parameter k and an exponential-
vertex kernel for the parameter ` := |E| − k. During our work the question
arose, whether STC+ and CE correspond. That is, for a graph G and an
integer k, there is an additional set of edges E′ and an STC-labeling of
the edges of G and E′, such that all edges in E′ are labeled weak and the
number of weak edges is at most k if and only if G can be turned into a
cluster graph by at most k edge modifications. To that end, we analyse the
relation of the generalizations of the two problems, Subgraph-free Edit-
ing and Strong Subgraph Closure with Edge Insertion for other
induced H-graphs beside P3s.

1.1 Known Results and Related Work

STC is NP-hard [24], even when restricted to graphs with maximum degree
four [18] or to split graphs [19]. In contrast, it is solvable in polynomial
time when the input graph is bipartite [24], subcubic [18], a proper interval
graph [19] or a cograph [18]. STC can be solved in O(1.28k +nm) time and
admits a 4k-vertex kernel [12, 24]. Furthermore, there is a fixed-parameter
algorithm for STC parameterized by ` := |E| − k, but the problem does not
admit a polynomial kernel with respect to `, unless NP ⊆ coNP/poly [12, 10].

Cluster Deletion is NP-hard [23], even when restricted to graphs
with maximum degree four [17] or to (2K2, 3K1)-free graphs [7]. Cluster
Editing is NP-hard even on graphs with maximum degree six [17], can be
solved in O(1.62k + n+m) time [1] and admits a 2k-vertex kernel [4].

There is a polynomial-time reduction from STC+ to 3-Hitting Set
leading to an O(log n)-approximation algorithm for STC+ [24].
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Golovach et al. [10] introduced the Strong F-Closure problem, whitch
is a generalization of STC. For a graph F , the goal of Strong F-Closure
is to find a labeling L = (SL,WL) of a graph G = (V,E) such that no induced
subgraph of G is isomorphic to F and consists only of strong edges and the
number of weak edges is at most k. They show that there is a polynomial
kernel for Strong F-Closure parameterized by k but does not admit a
polynomial kernel for the parameter ` := |E| − k.

During their work about STC, Sintos and Tsaparas introduce Multi-
STC as a generalization of STC, where edges of a graph can be labeled to
weak or to c different strong types and the question is whether there is a
Multi-STC-labeling for the graph such that there is no P3 labeled the same
kind of strong, with at most k edges labeled weak. It is harder than STC
since for all c ≥ 3 it is NP-hard even with k = 0 [3].

1.2 Our Results

First, we show that STC+, STC, CD and CE are corresponding on graphs
that are diamond - and C4-free. The problems are corresponding on diamond -
and C4-free graphs, if for every diamond - and C4-free graph G = (V,E) and
every integer k ≥ 0 there is a set of additional edges E′ and an STC-labeling
of the edges in E and E′ such that all edges in E′ are labeled weak and there
are at most k weak edges if and only if there is an STC-labeling of the edges
in E with at most k weak edges if and only if G can be turned into a cluster
graph by at most k edge deletions if and only if G can be turned into a
cluster graph by at most k edge modifications. With that correspondence,
we can prove the NP-hardness of STC+ even when restricted to diamond -
and C4-free graphs. Secondly, we give a 3-approximation algorithm for the
problem.

Then, we provide the first linear-vertex kernel for STC+ parameterized
by k. More precisely, we show that any instance of STC+ can be reduced
to an equivalent instance with at most 4k vertices in O(n2m) time. Further-
more, we study the parameterized complexity of STC+ for the parameter `.
We show that for a graph G = (V,E) and an integer k ≥ 0, searching for
a set of additional weak edges E′ and an STC-labeling of the edges in E
and E′ such that all edges in E′ are labeled weak and the number of weak
edges is at most k is equivalent to searching for such an additional edge set E′

and an STC-labeling of the edges in E and E′ such that all edges in E′ are
labeled weak and the number of strong edges is at least `. We provide an
O(` · 2`)-vertex kernel for STC+.

Moreover we propose a branching algorithm with branching size O(2.57k)
and show the existence of an FPT-algorithm running in 2.076k · nO(1) time.
This can be achieved by using a polynomial-time reduction from STC+
to 3-Hitting Set and using the algorithm of Wahlstöm solving 3-Hitting
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Set [27].
Finally, we study the correspondence of Strong Subgraph Closure

with Edge Insertion and Subgraph-free Editing on other inducedH-
graphs beside P3s to obtain more information for the question, whether
STC+ and CE correspond or not.
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2 Preliminaries

In this section, the basic notations and definitions for graphs that we use
during this work are introduced. Furthermore, we give the formal definitions
of the computational problems that we consider and a short summary of the
aspects of parameterized algorithms that are fundamental for our work. In
the end we provide an overview about approximation algorithms.

2.1 Graph Theory

All graphs considered in this work are simple and undirected. A graph
consists of vertices and edges, each connecting exactly two vertices. We let
G = (V,E) denote a graph where V = {v1, . . . , vn} is the set of vertices and
E = {e1, . . . , em} is the set of edges. In an undirected graph an edge e ∈ E
connecting the two vertices u, v ∈ V is a set consisting of those vertices, that
is, e = {u, v}. The number of vertices and edges is denoted by n := |V |
and m := |E|. For a set of vertices V ,

(
V
2

)
:= {{u, v} : u, v ∈ V } denotes the

set of all possible edges consisting of those vertices.
For every vertex v ∈ V , the open neighborhood in the graph G, denoted

by NG(v), is the set of vertices which are adjacent to v. Formally it is
defined as NG(v) := {u ∈ V : {u, v} ∈ E}. The degree of a vertex v is
the size of its open neighborhood and is defined as d(v) := |NG(v)|. The
closed neighborhood of v in G, denoted by NG[v], is the open neighborhood
of v plus v. Hence NG[v] := NG(v) ∪ {v}. The set of vertices in G which
have a distance of exactly two to v is denoted by N2

G(v) and is defined
as N2

G(v) :=
⋃
u∈NG(v)NG(u) \NG[v].

For a subset S ⊆ V of the vertices of G, by NG(S) we denote the open
neighborhood of S which is defined as NG(S) :=

⋃
v∈S NG(v) \ S. The

closed neighborhood of S is defined as NG[S] := NG(S) ∪ S. The set of
vertices in G which have a distance of exactly two to some vertex in S
and at least two to every vertex of S is denoted by N2

G(S) and defined
as N2

G(S) :=
⋃
u∈NG(S)NG(u) \NG[S].

For any two vertex sets V1, V2 ⊆ V , let EG(V1, V2) := {{v1, v2} ∈ E :
v1 ∈ V1 ∧ v2 ∈ V2} denote the set of edges which connect vertices of V1
and V2 in G. Furthermore, for any vertex set V ′ ⊆ V we denote the set of
edges between vertices in V ′ by EG(V ′) := EG(V ′, V ′). In all of the above
notations, the subscript G may be omitted if the referred graph is clear from
the context.

For a graph G = (V,E), we denote the set of vertices of G by V (G) and
the set of edges by E(G). A graph H is a subgraph of G if V (H) ⊆ V (G)
and E(H) ⊆ E(G). For a subset S ⊆ V (G) of the vertices in G the induced
subgraph of G by S is denoted by G[S] and defined as G[S] := (S,EG(S)).

For any vertex set V ′ ⊆ V let G−V ′ denote G[V \V ′] which is the graph
obtained by removing all vertices of V ′ and their incident edges from G. For
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an edge set E′ ⊆ E let G−E′ denote the graph G′ = (V,E \E′) that results
from removing the edges E′ from G. Furthermore, let G + E′ denote the
graph G′ = (V,E ∪ E′) that results from adding the edges E′ to the graph.

A graph G = (V,E) is complete if for every pair of vertices vi, vj ∈ V ,
i 6= j, it holds that {vi, vj} ∈ E, that is, all vertices in V are pairwise
adjacent. A clique in G is a subset of vertices K ⊆ V such that G[K]
is complete. G is a cluster graph if every vertex v ∈ V lies in exactly
one maximum clique. Equivalently, G is a cluster graph if there exists no
induced P3 in G. A vertex set I ⊆ V is an independent set in G if for each
vertices u, v ∈ I it holds that {u, v} /∈ E, that is, no two vertices of I are
adjacent.

For a vertex set X ⊆ V in a graph G = (V,E), having a certain property,
for example being a clique or an independent set, we say that X is maximal
under that property if there is no v ∈ V \X such thatX∪{v} has the property
as well. Furthermore, we say that X is a maximum clique (independent set)
in G if there is no other clique (independent set) Y ⊆ V in G with |Y | > |X|.

A 2-partition of a set (of vertices or edges) X, is a grouping of the el-
ements of X into two subsets P1, P2 of X such that each element of X is
included in exactly one of these subsets. A cut C = (V1, V2) of a graph G =
(V,E) is a 2-partition of the vertices in V . The cut-set EC := EG(V1, V2)
is the set of edges having each one endpoint in V1 and the other in V2. A
matching M ⊆ E in a graph G = (V,E) is a set of pairwise disjoint edges.

A graph G = (VG, EG) is isomorphic to a graph H = (VH , EH) if and
only if there is a bijective function f : VG → VH such that for any two
vertices u, v ∈ VG there exists the edge {u, v} ∈ EG if and only if there
exists the edge {f(u), f(v)} ∈ EH . We say that G is H-free if it does not
contain an induced subgraph that is isomorphic to H. The complement
graph G = (V,E−1) of G is obtained by inverting the edges: for every non-
existing edge in G, there is an edge in G and vice versa. Thus, the edges of
the complement graph are defined as E−1 :=

(
V
2

)
\ E.

2.2 Problem Definitions

Definition 1. A labeling L = (SL,WL) of an undirected graph G = (V,E)
is a 2-partition of the edge set E. The edges in SL are called strong and the
edges in WL are called weak.

Definition 2. A labeling L = (SL,WL) is an STC-labeling of a graph G
if there exists no pair of strong edges {u, v} ∈ SL and {v, w} ∈ SL such
that {u,w} /∈ E.

For any vertices u, v ∈ V of a graph G = (V,E) we call v a weak neighbor
of u under a labeling L = (SL,WL) if {u, v} ∈ WL and a strong neighbor
if {u, v} ∈ SL. An STC-labeling L = (SL,WL) for a graph G is optimal if
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the number |WL| of weak edges is minimal. That is, there exists no other
STC-labeling L′ = (S′L,W

′
L) such that |W ′L| < |WL|.

Now we define the computational problems described informally in the
previous chapter.

Strong Triadic Closure (STC)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an STC-labeling L = (SL,WL) of G such that

|WL| ≤ k?

Strong Triadic Closure with Edge Insertion (STC+)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an additional edge set E′ ⊆

(
V
2

)
\E such that there

exists an STC-labeling L = (SL,WL) of G′ = (V,E ∪E′)
with E′ ⊆WL and |WL| ≤ k?

For an STC+ instance (G, k) we call (L,E′) a solution if it satisfies the
conditions described in the problem definition. A solution (L,E′) is optimal
if there is no other solution (L∗ = (SL∗ ,WL∗), E

∗) with |WL∗ | < |WL|. For a
graph G = (V,E) and a labeling L = (SL,WL) we say that a tuple (u, v, w)
of vertices of V is a strong P3 if the induced subgraph G[{u, v, w}] is a P3

consisting of the edges {u, v} ∈ SL and {v, w} ∈ SL.
Cluster Deletion and Cluster Editing are defined as follows.

Cluster Deletion (CD)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Can we transform G into a cluster graph by at most k

edge deletions?

Cluster Editing (CE)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Can we transform G into a cluster graph by deleting and

adding at most k edges?

2.3 Parameterized Algorithms

In parameterized algorithms one analyzes discrete combinatorial problems
that are conventionally NP-hard. If a problem is NP-hard, then an algo-
rithm solving it is of exponential running time unless P = NP. The function
expressing the running time of a parameterized algorithm depends not only
on the input size, but on one or more problem-specific parameters as well.
It is hoped that these parameters take only relatively “small” values, mak-
ing the exponential growth of running time affordable. An algorithm whose
running time is expressed by a function f(k) ·nc for a constant c and a com-
putable function f : N → N is called an fixed-parameter tractable (FPT)-
algorithm [5]. For every fixed parameter value, an FPT-algorithm yields an
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answer in polynomial time [22].
Formally we define a parameterized problem and fixed-parameter tractabil-

ity as follows:

Definition 3. [5] A parameterized problem is a language Q ⊆ Σ∗×N, where
Σ is a finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the
parameter.

For a parameterized problem Q we call an instance (I, k) a yes-instance
if (I, k) ∈ Q and a no-instance otherwise.

A parameterized problem defines as above is often called a decision prob-
lem. In the optimization problem of a parameterized problem Q, the goal
for an instance x is to find a solution for the instance that is of minimum
(or maximum) size. It is easy to see that given an algorithm for a decision
problem of a parameterized problem Q that not only returns yes or no for an
instance (x, k) but a feasible solution of size k, one can obtain an algorithm
for the optimization problem of Q by performing a linear or any other kind
of search on 1 ≤ k ≤ X for some upper bound X of k. The other way
round, given an optimization algorithm and an integer k, one can compare
the output of the optimization algorithm to k to solve the decision problem.

Definition 4. [5] A parameterized problem Q is fixed-parameter tractable
(FPT) if it can be determined in f(k) · nO(1) time whether (x, k) ∈ Q
or (x, k) /∈ Q, where f is a computable function only depending on k.

A polynomial-time reduction is a good tool for cases where it is hard find
an FPT-algorithm for a parameterized problem with a desired running time.

Definition 5. [15] A polynomial-time reduction from a parameterized prob-
lem A to another parameterized problem B is an algorithm that, given an
instance (x, k) of A, outputs an instance (x′, k′) of B such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,
2. k′ ≤ g(k) for some computable function g, and
3. the algorithm runs in polynomial time in |I|+ k.

It is easy to see that if there is a polynomial-time reduction algorithm
that given an instance (x, k) of A, outputs an instance (x′, k′) of B and if
there is an algorithm for B running in time f(|x′| + k′) for some computa-
tion function f , then A can be solved in f(|x′| + k′) plus the running time
of the algorithm. Thus, if B can be solved in polynomial time, than A can
be solved in polynomial time as well. Conversely, if A is NP-hard, then B is
NP-hard too.
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One of the most important techniques in designing fixed-parameter algo-
rithms is kernelization [5]. In practice, many input instances of computa-
tionally hard problems contain some parts that are relatively easy to handle
and other parts that form the “hard part” of the input. So before starting an
algorithm that is quite cost-intensive to solve the problem, one may apply a
data reduction algorithm that runs in polynomial time and shrinks the input
data as much as possible [22].

We say that two instances I and I ′ of a parameterized problem Q are
equivalent when it holds that (I, k) ∈ Q if and only if (I ′, k′) ∈ Q. Now we
give a formal definition that captures the idea of kernelization.

Definition 6. A data reduction rule, or simply, reduction rule, for a pa-
rameterized problem Q is a function φ : Σ∗ × N → Σ∗ × N such that φ
maps an instance (I, k) of Q to an equivalent instance (I ′, k′) of Q and φ is
computable in time polynomial in |I|+ k.

To formalize the requirement that the output instance has to be relatively
small, we apply the main principle of parameterized complexity: measuring
the complexity in terms of the parameter. Thus, the size of a kernelization
algorithm A is the function sizeA : N → N ∪ ∞ defined as sizeA(k) :=
sup{|I ′|+ k′ : (I ′, k′) = A(I, k), I ∈ Σ∗} .

Definition 7. [5] A kernelization algorithm, or simply a kernel, for a param-
eterized problem Q is an algorithm A that takes as input an instance (I, k)
of Q and returns an equivalent instance (I ′, k′) of Q. Moreover, it is required
that sizeA(k) ≤ g(k) for some computable function g : N→ N.

Reformulating the size requirement of this definition, we get the following:
There exists a computable function g(·) such that for each output (I ′, k′) =
A(I, k) of a kernelization algorithm A, it has to hold that |I ′| + k′ ≤ g(k).
If an upper bound of g(·) is a polynomial (linear) function of the parameter
k, we say that Q admits a polynomial (linear) kernel. The output of a
kernelization algorithm is often called a kernel as well [5].

2.4 Approximation algorithms

Approximation algorithms are a separate way of dealing with algorithmically
hard problems, next to parameterized algorithms [20].

An approximation algorithm A of an optimization problem Q returns a
feasible solution whose size is approximating the size of an optimal solution,
for example within a guaranteed factor of the optimal size, and runs in
polynomial time [26].
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3 Complexity Analysis

Even though it was claimed that STC+ is NP-hard when it was intro-
duced [24], there is no proof showing it. Thus, in this chapter we establish
the NP-hardness of STC+. To that end, we show that the polynomial-time
reduction of 3-SAT to Cluster Editing shown in [17] is not only a reduc-
tion to CE, but to STC+ as well. In the reduction, a graph is constructed
as an input for CE, which has maximum vertex degree six and is C4- and
diamond -free. The graphs C4 and diamond are shown in Fig. 1.

Recall that two problems PA and PB correspond on C4- and diamond -free
graphs Π if for every graph G ∈ Π and every non-negative integer k it holds
that (G, k) is a yes-instance of PA if and only if (G, k) is a yes-instance of PB.

The following chain of lemmas provides the reduction from 3-SAT to
STC+.

• There is a polynomial-time reduction from 3-SAT to CE on a C4- and
diamond -free graph [17].

• On C4- and diamond -free graphs, CE and CD are corresponding. This
is left to show.

• On diamond -free graphs, CD and STC are corresponding [12].

• On C4- and diamond -free graphs, STC and STC+ are corresponding.
This is left to show.

First, let us show that the graph created in the reduction of 3-SAT to CE
is C4- and diamond -free. In the 3-SAT problem, the input is a boolean
formula φ in conjunctive normal form with at most three literals per clause
(3-CNF) and it is asked whether there is an assignment to the variables of φ
that satisfies all clauses of φ. Without loss of generality, the assumption is
made that every clause contains exactly three literals and each variable is
contained in at least two clauses.

Lemma 1. The graph G = (V,E) constructed in the reduction of 3-SAT to
Cluster Editing in [17] is C4- and diamond-free.

Proof. Given a 3-CNF formula φ with n variables {x0, . . . , xn−1} and m
clauses C0, . . . , Cm−1, the graph G is constructed as a Cluster Editing
instance as follows.

For each variable xi, 0 ≤ i < n, with mi being the count of clauses
containing xi, a variable cycle is added to G consisting of the vertices V v

i :=
{i0, . . . , i4mi−1} and the edges Evi := {{ik, ik+1} : 0 ≤ k ≤ 4mi − 2} ∪
{{i4mi−1, i0}}.
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Figure 1: a) shows a C4 and b) shows a diamond.

For each clause C, a fixed set of vertices needs to be “reserved” in the
corresponding variable cycles of the variables contained by C. To this end,
suppose that for each variable xi there is an arbitrary but fixed ordering
of the clauses that contain xi and let π(i, j) ∈ {0, . . . , 4mi − 1} denote the
position of a clause Cj that contains xi in this ordering. If two clauses Cj
and Cj′ contain the same variable xi such that Cj′ follows Cj in the ordering
of clauses containing xi, then π(i, j′) = π(i, j) + 4. Thus, for each clause Cj ,
the four vertices vπ(i,j), . . . , vπ(i,j)+3 are “reserved’.

For a clause Cj containing the variables xp, xq, and xr, the clause gad-
get that connects the three corresponding variable cycles is constructed by
adding a new vertex aj to the graph G. Let Ecj denote the edge set of the
clause gadget. It contains for each i ∈ {p, q, r} the edges {aj , i4π(i,j)} and
{aj , i4π(i,j)+1} if xi is contained non-negated in Cj or the edges {aj , i4π(i,j)+1}
and {aj , i4π(i,j)+2} otherwise. Now the construction of the graph G = (V,E)

is completed by setting V :=
⋃n−1
i=0 V

v
i ∪

⋃m−1
j=0 {aj} and E :=

⋃n−1
i=0 E

v
i ∪⋃m−1

j=0 Ecj .
By that construction G consists of the disjoint variable cycles and the

clause vertices connecting those cycles. For two arbitrary clause vertices ai
and aj it holds that they do not have a common neighbor since if they contain
a common variable x, then by the construction of the graph, they have
pairwise different neighbors in the variable cycle of x. Furthermore, for any
variable cycle (V v

i , E
v
i ) and a neighboring clause vertex aj being connected to

two vertices vp, vp+1 of the variable cycle, it holds that vp, vp+1 have only ai
as a common neighbor. As mentioned above, all variables are contained in
at least two clauses, so each variable cycle has at least eight vertices and
thus two vertices in a cycle have at most one common neighbor in the cycle.
That leaves a pair of a clause vertex and a vertex of a variable having two
common neighbors as the only possible existence of C4 or diamond. But if a
vertex aj is connected to two vertices p4π(p,j) and p4π(p,j)+1 for a variable p,
then there is no vertex in the variable cycle that is neighbor to both p4π(p,j)
and p4π(p,j)+1, since the vertices p4π(p,j) and p4π(p,j)+1 are adjacent.

Therefore, for two arbitrary vertices u and v in G it holds that |N(u) ∪
N(v)| ≤ 1 and thereby G is C4- and diamond -free.

Secondly, we show that CE and CD correspond on C4- and diamond -free
graphs.
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Lemma 2. Given a C4- and diamond-free graph G = (V,E) and an inte-
ger k > 0, then (G, k) is a yes-instance of CD if and only if (G, k) is a
yes-instance of CE.

Proof. (⇒) This implication is trivial: Any set of edges that are deleted of
a graph to turn it into a cluster graph is not only a solution for CD but
for CE as well.

(⇐) Let G = (V,E) be a C4- and diamond -free graph. It holds for
all nonadjacent vertices u, v ∈ V that |N(u) ∩ N(v)| ≤ 1, that is they
have at most one vertex w ∈ V as a common neighbor as otherwise with
another common neighbor x ∈ V , the graph G[{u, v, w, x}] would form a C4

or a diamond. Hence [17, Lemma 1] implies that there is an optimal CE
solution that only deletes edges and therefore that solution is one for CD as
well.

Now we show that STC and STC+ correspond on C4- and diamond -free
graphs as well.

Lemma 3. Given a C4- and diamond-free graph G = (V,E) and an inte-
ger k > 0, then (G, k) is a yes-instance of STC if and only if (G, k) is a
yes-instance of STC+.

Proof. (⇒) This implication is trivial. If (G, k) is a yes-instance of STC
then it is a yes-instance of STC+ as well.

(⇐) Given a C4- and diamond -free graph G = (V,E) and an STC+
solution (L = (SL,WL), E′) such that E′ ⊆ WL and L is an STC-labeling
for G′ = (V,E ∪ E′), we can build an STC-labeling L′ = (SL′ ,WL′) for G
as follows: At first, we set SL′ := SL and WL′ := WL \ E′. Then for each
edge e′ = {u,w} ∈ E′ there is at most on vertex v ∈ V such that (u, v, w) is
a strong P3 under L in G, since G is C4- and diamond -free. Therefore, we
add {u, v} to WL′ and remove {u, v} from SL′ . Afterwards, L′ is an STC-
labeling for G, since for every strong P3 (u, v, w) in G under L with {u,w} ∈
E′ we labeled on of the edges {u, v} or {v, w} weak. Furthermore, we have
that |WL′ | = |WL| ≤ k.

Lemma 1, Lemma 2, Lemma 3 and the fact that on C4- and diamond -free
graphs CD and STC correspond [12] imply the following.

Corollary 1. On C4- and diamond-free graphs the problems CE,CD,STC
and STC+ correspond.

This gives us the means to prove the main result of this section.

Theorem 1. STC+ is NP-hard even when restricted to graphs with maxi-
mum vertex degree six and to C4- and diamond-free graphs.
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Proof. Let φ be a 3-SAT formula. As analyzed in Lemma 1, there is a
polynomial-time reduction from 3-SAT to CE constructing a C4- and dia-
mond -free graph G = (V,E) such that φ is satisfiable if and only if G can be
transformed into a cluster graph by at most k := 10m edge modifications.
By Lemma 2, it follows that

(G, k) is a yes-instance of CE if and only if
(G, k) is a yes-instance of CD.

Moreover, G is diamond -free and Cluster Editing and STC correspond
on diamond -free graphs [12] and thus:

(G, k) is a yes-instance of CD if and only if
(G, k) is a yes-instance of STC.

Since G is C4- and diamond -free, Lemma 3 implies the following:

(G, k) is a yes-instance of STC if and only if
(G, k) is a yes-instance of STC+.

With these equivalences we finally get the following, which proves the cor-
rectness of the reduction from 3-SAT to STC+ and the NP-hardness of
STC+:

φ is satisfiable if and only if there is an
STC+ solution (L′, E′) for G with |WL′ |+ |E′| ≤ k := 10m.
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4 An Approximation Algorithm

With STC+ being NP-hard, the computational expense of solving instances
of the problem in given time might exceed the available resources. One way
of circumventing the presumed exponential running time of an algorithm
providing an optimal solution for an NP-hard problem is to use an approx-
imation algorithm running in polynomial time. In the following we provide
an 3-approximation algorithm for STC+ by relating to the polynomial-time
reduction of STC+ to 3-Hitting Set in the O(log(n))-approximation of
STC+ in [24]. The 3-Hitting Set problem is defined as follows:

3-Hitting Set (3HS)
Input: A universe of elements U and a collection of subsets of U ,

each of size three, S = {S1, . . . , Sn}.
Question: Is there a subset C ⊆ U of size at most k such that for

each Si ∈ S it holds that Si ∩ C 6= ∅, that is, each set of
S is hit by C?

Lemma 4. Let G = (V,E) be a graph and k a non-negative integer. There
is a 3HS instance (U, S, k) such that there is an STC+ solution (L =
(SL,WL), E′) for (G, k) if and only if there is a hitting set C for (U, S, k).

Proof. Let G = (V,E) be a graph and k a non-negative integer. One can
compute in polynomial time a universe of elements U and a collection of
subsets of U , S = {S1, . . . , Sn}, such that (G, k) is a yes-instance of STC+
if and only if (U, S, k) is a yes-instance of 3HS [24]. This can be done as
follows: The universe U consists of all vertex pairs {u, v} where u, v ∈ V .
For each P3 t = (u, v, w) in G, we create the set St = {{u, v},{v, w},{u,w}}.

Let C be a hitting set for the set S = {St : t is a P3 in G}, then let L =
(SL,WL) be a labeling of E with WL := {{u, v} ∈ C : {u, v} ∈ E} ∪ E′ and
SL := E \WL. Furthermore, let E′ := {{u, v} ∈ C : {u, v} /∈ E}. We have
that L = (SL,WL) is an STC-labeling for the graph G+ E′, since every P3

in G is either covered by a weak edge or is closed by an edge e′ ∈ E′.
Conversely, given a solution (L,E′) for the STC+ instance G, we can

define the hitting set C by adding all pairs of vertices {u, v} ∈ WL to it.
Since all P3s are covered by E′ ∪WL, C hits the set S = {St : t is a P3 in
G}.

Constructing the sets U and S can obviously be done in polynomial
time.

Proposition 1. There is a 3-approximation algorithm for the STC+ prob-
lem.

Proof. Given a graph G = (V,E) as input of the optimization version of
STC+ and let k be the size of an optimal STC+ solution for G. By
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Lemma 4, there is a 3HS instance (U, S) such that for each integer k ≥ 0 it
holds that there is an STC+ solution (L = (SL,WL), E′) for (G, k) if and
only if there is a hitting set C for (U, S, k). It is a well-known fact that there
is a 3-approximation for 3HS, but for sake of completeness, we shortly give
the details of the approximation:

If for the 3HS instance (U, S) the size of a minimum hitting set C is k,
we can find a solution of size at most 3k as follows: We greedily search for
a maximal matching M ⊆ S, that is a set of hyper edges such that for all
edges Mi,Mj ∈ M with i 6= j it holds that Mi ∩Mj = ∅. Since C has to
contain at least one element of each Mi ∈ M , the size of C is at least |M |.
Let X :=

⋃
Mi∈M Mi be the set of elements that are contained of the hyper

edges of M . We have that |X| = 3 · |M | ≤ 3 · |C| = 3k. Furthermore, we
have that X hits all edges of S as otherwise there would be an edge Si ∈ S
not being hit by X, implying that Si ∩ Sj = ∅ for all Sj ∈ M , being a
contradiction toM being a maximal matching. It follows that X is a hitting
set of S of size at most three times the size of an optimal solution.

By Lemma 4, it follows that there is an STC+ solution (L = (SL,WL), E′)
for (G, 3k).
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5 Kernelization for Parameters k and `

In this section, we provide a 4k-vertex kernel for STC+ parameterized by k
and an O(` · 2`)-vertex kernel parameterized by `.

5.1 Data Reduction leading to a 4k-vertex Kernel

Based on the concept of critical cliques, we obtain a problem kernel for
STC+ consisting of at most 4k vertices in O(n2m) time. The data reduction
rules are inspired by the reduction rules used to obtain a 4k-vertex kernel
for Cluster Editing [13]. Critical cliques are defined as follows.

Definition 8. A critical clique in a graph G = (V,E) is a clique K where
the vertices of K all have the same neighbors in V \K, and K is maximal
under this property.

The basic idea behind introducing critical cliques is as follows. If there
is a solution (L = (WL, SL), E′) for G of size at most k, then there are
at most 2k vertices affected. A vertex being affected means that it is an
endpoint of an edge that is either labeled weak or added to the set E′. To
give an upper bound 4k for the number of vertices of V in G, we have to
find an upper bound 2k for the vertices being unaffected as well. To give
such an upper bound, we show that there exists an optimal solution such
that all vertices in the same critical clique have the same fate, meaning that
the edges to a neighbor of the critical clique are either all labeled weak or
all labeled strong. We provide data reduction rules such that an STC+
instance reduced by these rules has at most 2k unaffected vertices or is a
no-instance.

The first reduction rule is quite obvious:

Rule 1. Remove all isolated critical cliques.

Lemma 5. Rule 1 is safe and is exhaustively applied in O(n+m) time.

Proof. Let G = (V,E) be a graph and K a critical clique in G with N(K) =
∅. We show the following: There exists an optimal STC+ solution (L,E′)
for G with |WL| ≤ k if and only if there exists an STC+ solution (L∗, E∗)
for G−K with |WL∗ | ≤ k.

(⇒) Let (L,E′) be an STC+ solution for G with |WL| ≤ k. We create
a labeling L∗ := (SL∗ ,WL∗) by setting SL∗ := SL \ {{u, v} ∈ SL : u, v ∈ K},
WL∗ := WL \ {{u, v} ∈WL : u, v ∈ K}. Then (L∗, E′) is an STC+ solution
for G−K with |WL∗ | ≤ |WL| ≤ k.

(⇐) Now let (L∗, E∗) be an STC+ solution for G−K with |WL∗ | ≤ k.
We create a labeling L = (SL,WL) as follows: SL := SL∗ ∪ {{u, v} : u, v ∈
K} and WL := WL∗ . We have that (L,E∗) is an STC+ solution for G
with |WL| = |WL∗ | ≤ k, since there are no P3s containing vertices of the
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isolated clique K. Furthermore, there is no strong P3 (u, v, w) with u, v, w ∈
V \ K under the labeling L since there was no such strong P3 under the
labeling L∗.

Regarding the running time, note that finding and removing all isolated
cliques is clearly doable in O(n+m) time.

The following lemma provides that for each vertex in the neighborhood
of a critical clique the edges connecting this vertex to the critical clique are
all labeled the same.

Lemma 6. Let (G = (V,E), k) be an instance of STC+ and K a critical
clique of G. There exists an optimal solution (L = (WL, SL), E′) such that
for each v ∈ N(K) we have E({v},K) ⊆ SL or E({v},K) ⊆WL.

Proof. Let K be a critical clique in G and let (L = (WL, SL), E′) be an
optimal solution such that E({v},K) 6⊆ SL and E({v},K) 6⊆WL.

For each vertex u ∈ K, let Wu = {v ∈ V : {u, v} ∈ WL} and Su = {v ∈
NG(K) : {u, v} ∈ SL}. For each v ∈Wu it holds that v ∈ NG(K) ∪N2

G(K),
since if there would be a v ∈ Wu \ (NG(K) ∪N2

G(K)) there could not be a
P3 containing u and v, so the insertion of the edge {u, v} would contradict
(L,E′) being an optimal solution. Without loss of generality let u ∈ K
be such that |Wu| = minv∈K{|Wv|}. We create a new solution (L∗, E∗) by
taking the solution (L,E′) but for each u′ ∈ K \{u} and for each w ∈Wu we
set the edge {u′, w} to weak and add {u′, w} to E′ if w ∈ N2

G(K) and for each
w′ ∈ Su we set the edge {u′, w′} to strong. Assume towards a contradiction
that by these modifications we created a strong P3 (u′, w, v) or (w, u′, w′)
with u′ ∈ K \ {u}, w,w′ ∈ Su and v ∈ N2(K). Then (u,w, v) or (w, u,w′)
would be a strong P3 as well, which is a contradiction to (L = (WL, SL), E′)
being a solution. It follows that we did not create any strong P3 by building
(L∗, E∗). Since for each u′ ∈ K it holds that |Wu| ≤ |Wu′ | we have that
|WL∗ | ≤ |WL| and therefore (L∗, E∗) is an optimal solution.

Furthermore, we have that for each v ∈ N(K) it holds: E({v},K) ⊆ SL∗
or E({v},K) ⊆WL∗ .

With the previous lemma we have the means to show that if a critical
clique K is “big”, that is, if |K| ≥ |N(K)|, then we do not need to insert
edges between K and N2(K) as shown in the following.

Lemma 7. Let K be a critical clique in G with |K| ≥ |N(K)|, then there
exists an optimal solution (L,E′) such that for all edges {u, v} ∈ E′ it holds:
u /∈ K and v /∈ K and E({v},K) ⊆ SL or E({v},K) ⊆ WL for each
v ∈ N(K).

Proof. Let K be a critical clique in G = (V,E) with |K| ≥ |N(K)|. By
Lemma 6, there exists an optimal solution (L = (WL, SL), E′) such that
E({v},K) ⊆ SL or E({v},K) ⊆WL for each v ∈ N(K). Let G′ = G+ E′.
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Assume there exists a vertex set D ⊆ N2(K) such that EG′(K,D) ⊆ E′
with EG′(K,D) 6= ∅, that is, there exist weak edges having endpoints in K.
Clearly, these weak edges have the other endpoints in N2(K), as otherwise
they would not close any strong P3. This implies that there exist vertices u ∈
K and v ∈ N(K) such that for each w ∈ D we have that (u, v, w) is a P3

in G or (L,E′) was not an optimal solution. Lemma 6 and {u, v} ∈ SL imply
that E({v},K) ⊆ SL and therefore there are |D| · |K| many edges inserted
between K and D which we notate by F := {{u,w} : u ∈ K,w ∈ D} ⊆ E′.
We set E∗ := E′\F and define an STC-labeling L∗ := (SL∗ ,WL∗) as follows:
SL∗ := SL\EG(N(K), D) andWL∗ := (WL∪EG(N(K), D))\F . It is obvious
that L∗ is an STC-labeling for G+E∗ since setting the edges EG(N(K), D)
weak implies that EG(N(K), N2(K)) ⊆ WL∗ , so there could not exists a
strong P3 in G + E∗ under L∗. Furthermore, we have that we removed
|D| · |K| many edges from E′ and WL but only added |N(K)| · |D| to WL.
Since |N(K)| · |D| ≤ |K| · |D|, we have that |WL∗ | ≤ |WL| and therefore
(L∗, E∗) is an optimal solution as well, which has the property that no edges
of E∗ are between K and N2(K).

The second reduction rule is based on the idea of removing a critical
clique K such that the number of edges between its first and second neigh-
borhood is small and only few edges need to be inserted in the first neighbor-
hood to turn the N [K] into a complete graph. For a critical clique K and a
critical clique K ′ ⊆ N(K), the set of edges which are needed to completely
connect K ′ and N(K) is denoted by EfK′,N(K).

Rule 2. If there exists a critical clique K such that |K| ≥ |N(K)| and for
each critical clique K ′ ⊆ N(K) it holds that |K| · |K ′| ≥ |E(K ′, N2(K))| +
|EfK′,N(K)|, then remove N [K] from G and decrease k by |E(N(K), N2(K))|+
|
(
N [K]
2

)
| − |E(N [K])|.

Lemma 8. Rule 2 is safe and can be exhaustively applied in O(n2m) time.

Proof. LetK be a critical clique such that |K| ≥ |N(K)| and for each critical
clique K ′ ⊆ N(K) it holds that |K| · |K ′| ≥ |E(K ′, N2(K))| + |EfK′,N(K)|.
Let Gr = (Vr, Er) be the graph that results from removing N [K] from G. We
show that (G, k) has an STC+ solution (L = (SL,WL), E′) with |WL| ≤ k if
and only if (Gr, kr) with kr := k−(|E(N(K), N2(K))|+|

(
N [K]
2

)
|−|E(N [K])|)

has an STC+ solution (Lr = (SLr ,WLr), E′r) with |WLr | ≤ kr.
(⇒) By Lemma 7, there exists an optimal solution (L = (WL, SL), E′) for

(G, k) such that E(K,N2(K))∩E′ = ∅ and E({v},K) ⊆ SL or E({v},K) ⊆
WL for each v ∈ N(K). Let G′ = G+ E′.

Assume there exists a critical clique K ′ ⊆ N(K) such that there exists
a vertex set X ⊆ K ′ defined as X := {v ∈ K ′ : E(K, {v}) ⊆ WL} that
are weak neighbors of K in K ′. Let SK′,N2(K) := EG′(K

′, N2(K)) ∩ SL be
the set of strong edges between K ′ and N2(K). It holds that there is no
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vertex v ∈ K ′ \X that has a strong neighbor w ∈ N2(K), since there would
be a vertex u ∈ K such that (u, v, w) is a strong P3 in G′ under L which
would contradict that (L,E′) is a solution.

Let EfX,N(K) := {{u, v} : u ∈ X ∧ v ∈ N(K) \ K ′ ∧ E(K, {v}) ∈ SL ∧
{u, v} /∈ E} be the set of edges that would be needed to completely connectX
and the vertices of N(K) \K ′ that are strong neighbors of K.

We construct a new solution (L∗ = (SL∗ ,WL∗), E
∗) as follows: SL∗ :=

SL\SK′,N2(K)∪E(K,X) andWL∗ := WL\E(K,X)∪SK′,N2(K)∪E
f
X,N(K) and

E∗ := E′∪EfX,N(K). We have that (L∗, E∗) is a solution, since by labeling the

edges SK′,N2(K) weak and by inserting the edges EfX,N(K), the edges E(K,X)

cannot be part of any strong P3 in G + E∗ under L∗. Since K satisfies the
conditions of Rule 2, it holds that |K| · |K ′| ≥ |E(K ′, N2(K))|+ |EfK′,N(K)|.
Thus, we have the following.

|K| · |K ′| ≥ |E(K ′, N2(K))|+ |EfK′,N(K)|

⇔|K| · |K ′| · |X|
|K ′|

≥ |E(K ′, N2(K))| · |X|
|K ′|

+ |EfK′,N(K)| ·
|X|
|K ′|

∗⇔|K| · |X| ≥ |E(X,N2(K))|+ |EfX,N(K)|

⇔|E(K,X)| ≥ |E(X,N2(K))|+ |EfX,N(K)|

The inequation on the right hand side of the equivalence (∗) follows since X
is a subset of K ′ and |EfK′,N(K)| = |K ′| · |Y | for Y := {v ∈ N(K) \ K ′ :

E(K, {v}) ∈ SL ∧ E(K ′, v) = ∅} and |E(K ′, N2(K))| = |K ′| · |Z| for Z ⊆
N2(K) ∩ N(K ′). This implies WL∗ ≤ WL, thus (L∗, E∗) is an optimal
solution.

We can apply that procedure for every critical clique K ′ ⊆ N(K) and
obtain an optimal solution (L̃ = (SL̃,WL̃), Ẽ) such that for each critical
clique K ′ ⊆ N(K) it holds that E(K,K ′) ⊆ SL̃, E(K ′, N2(K)) ⊆ WL̃

and EfK′,N(K) ⊆ Ẽ.
We define an STC+ solution (Lr = (SLr ,WLr), E′r) for (Gr, kr) by defin-

ing the labeling Lr with SLr := SL̃\{{u, v} ∈ SL̃ : u, v ∈ N [K]} andWLr :=
WL̃ \ {{u, v} ∈ WL̃ : u ∈ N [K] ∨ v ∈ N [K]}. Furthermore, we set E′r :=

Ẽ \ {{u, v} ∈ Ẽ : u, v ∈ N [K]}. It holds that (Lr, E
′
r) is an STC+ solution

for Gr, since if there would be a strong P3 (u, v, w) in Gr + E′r under Lr,
it would hold that u, v, w ∈ V \ N [K], and since all edges in G[V \ N [K]]
are labeled the same in Lr and L̃, (u, v, w) would be a strong P3 in G + Ẽ
under L̃ as well, which is a contradiction to (L̃, Ẽ) being an STC+ solution
for (G, k). Furthermore, we have that |WLr | = |WL̃|− (|E(N(K), N2(K))|+
|
(
N [K]
2

)
|−|E(N [K])|) ≤ k−(|E(N(K), N2(K))|+|

(
N [K]
2

)
|−|E(N [K])|) = kr.

(⇐) Now let (Lr = (SLr ,WLr), E′r) be an STC+ solution for (Gr, kr).
We define a labeling L = (SL,WL) by setting SL := SLr∪(

(
N [K]
2

)
\EfK′,N(K) ⊆

19



Ẽ) and WL := WLr ∪E
f
K′,N(K) ∪E(N(K), N2(K)). The additional edge set

is E′ := E′r∪E
f
K′,N(K). We have that L is an STC+-labeling for G+E′, since

for every induced P3 (u, v, w) in G with u, v, w ∈ Er it holds that (u, v, w)
is not a strong P3 under Lr in Gr and therefore not strong under L in G.
Furthermore, by the insertion of EfK′,N(K) we have that G(N [K]) is com-
plete in G + E′ and therefore cannot contain an induced P3. Moreover,
since E(N(K), N2(K)) ⊆ WL, there cannot be a strong P3 in G + E′

under L with vertices in N [K] and in E \ N [K]. Furthermore, we have
that |WL| = |WLr | + |E(N(K), N2(K))| + |

(
N [K]
2

)
| − |E(N [K])| ≤ kr +

|E(N(K), N2(K))| + |
(
N [K]
2

)
| − |E(N [K])| = k. Thus, (L,E′) is an STC+

solution for (G, k).
Concerning the running time: For a fixed critical clique K, we can

compute for all critical cliques K ′ ⊆ N(K) the sizes of the two sets of
edges E(K ′, N2(K)) and EfK′,N(K) in O(m) time. To decide, whether Rule 2
can be applied, one iterates over all critical cliques K and computes the
sets E(K ′, N2(K)) and EfK′,N(K) for all critical cliquesK

′ ∈ N(K). Thereby,
the applicability of Rule 2 can be decided in O(n ·m) time. Clearly, Rule 2
can be applied inO(n+m) time. This gives us a running time ofO(n2m).

If there is an instance to which none of the two above reduction rules
applies, we call it reduced with respect to these rules. On that base we
can achieve a problem kernel for STC+ with at most 4k vertices. The
proof of the following theorem works mostly analogously to the one showing
a 4k vertex kernel for Cluster Editing [13].

Lemma 9. If a graph G = (V,E) that is reduced with respect to Rules 1 and
2 has more than 4k vertices, then (G, k) is a no-instance of STC+.

Proof. Let (G, k) be a yes-instance of the STC+ problem reduced by Rule 1
and Rule 2 and let (L,E′) be an optimal solution. We partition V into two
sets: V1, the set of vertices which are endpoints of edges of WL and V2 =
V \ V1. Recall, that the vertices v ∈ V1 are called affected and v ∈ V2
unaffected. Clearly |V1| ≤ 2k, as |V1| > 2k ⇔ |WL| > k would contradict
(L,E′) being a solution. It remains to show that |V2| ≤ 2k. The basic idea of
the proof is the following: We show that in a critical clique either all vertices
are affected or all vertices are unaffected. Then we can conclude that the
number of vertices in an unaffected critical clique K is limited by the number
of weak edges incident with vertices in N(K). Since we can show that there
is an assignment of unaffected vertices to weak edges such that there are
at most two unaffected vertices assigned to a weak edge and there are at
most k weak edges in any yes-instance, it follows that there are at most 2k
unaffected vertices.

First, let us make following observation:
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Observation 1. For each critical clique K ⊆ V it holds that K ⊆ V1 or
K ⊆ V2, that is, either all vertices of K are affected or all vertices are
unaffected.

Proof. Let v ∈ V be an unaffected vertex and let K be the critical clique
containing v, that is for each vertex w ∈ N(K) the edge {v, w} is labeled
strong. Lemma 6 implies E(K,w) ⊆ SL. Thus we have E(K,N(K)) ⊆ SL
and thereby all vertices of K are unaffected.

The vertices of each K ′ ∈ N(K)∪N2(K)\K are affected, since all edges
between K and N(K) are strong and no edges between K and N2(K) were
added to E′, all edges of E(N(K), N2(K)) have to be labeled weak. Further-
more, if there is a critical clique Ki ⊆ N(K) that has no edges to N2(K),
then there is another critical clique Kj ⊆ N(K) such that E(Ki,Kj)∩E = ∅
since otherwise Ki ⊆ K. Thereby, the vertices of Ki are endpoints of edges
in E′. ♦

Let K1, . . . ,Kl be the unaffected critical cliques. Let K1 = {Ki : |Ki| <
|N(Ki)| : 1 ≤ i ≤ l} be the set of unaffected critical cliques having less
vertices than their neighborhood and let K2 = {K1, . . . ,Kl} \ K1 be the
set of unaffected critical cliques having at least as many vertices as their
neighborhood.

Let Ki ∈ K1. Since the instance is reduced with respect to Rule 1, Ki

is not isolated. As analyzed in Observation 1, each critical clique K ′ ∈
N(Ki) ∪N2(Ki) \Ki is affected. That is, each vertex in K ′ is an endpoint
of an edge inserted between vertices of N(K), of a weak edge between N(K)
andN2(K), or both. This implies that |N(Ki)| ≤ 2|E′i|+|EWi |, with E′i being
the edges of E′ added between the vertices in N(Ki) and EWi being the edges
between N(Ki) and N2(Ki) that are labeled weak. Since |Ki| < |N(Ki)| it
holds that |Ki| < 2|E′i|+ |EWi |.

Now let beKi ∈ K2. Since we cannot apply Rule 2 and |Ki| ≥ |N(Ki)|, it
holds that there exists K ′ ∈ N(Ki) such that |Ki| · |K ′| < |E(K ′, N2(Ki))|+
|EfK′,N(Ki)

|. Since Ki is unaffected, all edges of E(K ′, N2(Ki)) are labeled

weak and the edges EfK′,N(Ki)
have to be added to E′. Recall that EfK′,N(K)

is the set of edges needed to completely connect K ′ and N(Ki). It follows
that

|Ki| <
|EK′,N2(Ki)|+ |E

f
K′,N(Ki)

|
|K ′|

≤ |EK′,N2(Ki)|+ |E
f
K′,N(Ki)

|

≤ |E′i|+ |EWi |.
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The two inequalities above that provide upper bounds for the number of
vertices in each Ki ∈ K1 ∪ K2 = V2 leads to the following.

|V2| =
l∑

i=1

Ki

*
≤

l∑
i=1

(2|E′i|+ |EWi |)

∗∗
≤ 2|E′|+

l∑
i=1

(|EWi |)

∗∗∗
≤ 2|E′|+ 2|EW |
≤ 2|WL| ≤ 2k

Here, EW denotes the edges of E that are labeled weak. Inequality (*) follows
from the analysis in the above two cases. Note that any two unaffected
critical cliques Ki and Kj are not neighbored. Since they are not the same
critical cliques, without loss of generality there exists a vertex v ∈ N(Ki) \
N(Kj) which would imply the existence of a strong P3 (v, u, w) in G + E′

under L for any u ∈ Ki and w ∈ Kj . Furthermore, for two unaffected
critical cliques Ki and Kj it holds that N(Ki) ∪ N(Kj) = ∅, as otherwise
for a vertex v ∈ N(Ki) ∪ N(Kj), u ∈ Ki and w ∈ Kj there would be
the strong P3 (u, v, w). Thus, the sets E′i and E′j are disjoint, implying
inequality (**). In the worst case an edge e = {u, v} ∈ WL is counted
two times, as there can be u ∈ N(Ki) and v ∈ N(Kj) for two unaffected
critical cliques Ki, Kj . The edge e cannot be counted more than two times,
since if it is counted by the unaffected critical cliques Ki, Kj , Ks, then
without loss of generality we may assume u ∈ N(Ki) and u ∈ N(Ks),
which would imply that there are v ∈ Ki and w ∈ Ks such that (v, u, w)
is a strong P3. This provides the safeness of inequality (***). It follows
that |V | = |V1|+ |V2| ≤ 4k.

Theorem 2. STC+ admits a 4k-vertex kernel that can be computed in
O(n2m) time.

Proof. By Lemma 9, any yes-instance of STC+ that is reduced with respect
to Rule 1 and Rule 2 has at most 4k vertices. Since the reduction rules
take O(n + m) and O(n2m) time to exhaustively apply, we have an overall
running time of O(n2m).

5.2 Data Reduction Leading to an O(` · 2`)-Vertex Kernel

The parameter ` := |E| − k is the dual parameter of k for STC+. That is,
given a graph G = (V,E) and an integer k, looking for an additional edge
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set E′ and an STC-labeling L = (SL,WL) for the graphG+E′ with E′ ⊆WL

and |WL| ≤ k is equivalent to looking for an additional edge set and labeling
such that |SL| − |E′| ≥ `. This is made clear by the following equivalences
with WG

L being the edges of E labeled weak.

|SL| − |E′| ≥ `⇔ |SL| − |E′| ≥ |E| − k ⇔ (|SL| − |E|)− |E′| ≥ −k
⇔ −|WG

L | − |E′| ≥ −k ⇔ |WG
L |+ |E′| ≤ k ⇔ |WL| ≤ k

Looking for an STC+ solution such that the number of strong edges is
at least `, which is done for STC, would not be appropriate, since one could
simply label all edges of a graph strong and insert weak for every strong P3

to maximize the number of strong edges.
We show that STC+ admits an O(` ·2`)-vertex kernel for the parameter-

ization by ` := |E|−k which works mostly analogously to the O(` ·2`)-vertex
kernel for STC [12].

Let G = (V,E) be a graph and k a non-negative integer. First, we find
a maximum matching M ⊆ E of G in O(

√
n ·m) time [21]. If |M | ≥ `, then

we already have an additional edge set E′ = ∅ and an STC-labeling L =
(M,E \M) for G+E′ with |M | − |E′| ≥ `. Therefore, we can subsequently
assume that the size of a maximum matching in G is smaller than `. The
basic idea of the kernelization is to show that there are superfluous vertices
in the independent set that is left by removing the edges of M and their
endpoints from G. To that end we partition the vertex set V of G into the
sets VM , I1 and I2 as follows:

• VM := {v ∈ V : v is an endpoint of an edge e ∈M}

• I2 := {v ∈ V \ VM : ∃{u,w} ∈M : u and w are both neighbors of v}

• I1 := V \ (VM ∪ I2)

Furthermore, we say that two vertices u, v ∈ I1 are in the same family F
if N(u) = N(v). Given a family F , we refer to the neighborhood of the
vertices in F by N(F ).

First, we show that the number of vertices in I2 is upper-bounded by `:

Observation 2. |I2| < `.

Proof. Assume there is an edge {u, v} ∈M such that there are two vertices w
and w′ that both have u and v as neighbors. Then we have that M ′ :=
M∪{{w, u}, {w′, v}}\{{u, v}} is a matching as well and it holds that |M ′| >
|M |, which is a contradiction to M being a maximum matching. Thus,
since |M | < ` and each edge in M has at most one neighbor in I2, it holds
that |I2| < `.
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Now we give a reduction rule to remove superfluous vertices from the
graph. This rule decreases the parameter k, but it reduces it by the amount
of edges that are removed from the graph and therefore the parameter ` does
not change.

Rule 3. For each family F of vertices in I1 do the following: If |N(F )| < |F |,
remove |F |−|N(F )| vertices from F and decrease k by (|F |−|N(F )|)·|N(F )|.

To prove the safeness of the rule above, we use the concept of weak
cuts [12], which is defined as follows.

Definition 9. Let L = (SL,WL) be an STC-labeling for the graph G =
(V,E). A weak cut under L is a cut C of the graph G such that EC ⊆WL.

In [12], the following crucial proposition was shown:

Proposition 2. Let L = (SL,WL) be an STC-labeling for the graph G =
(V,E). If there is a weak cut C = (V1, V2) with the cut set EC , then there is
an STC-labeling L′ = (SL′ ,WL′) for G′ = (V,E\EC) such that |SL′ | = |SL|.

Note that since Proposition 2 works for a graph and an STC-labeling,
we only use it on a graph that is obtained after inserting the additional edge
set in STC+. Now we have the means to prove the correctness of Rule 3.

Proposition 3. Rule 3 is safe.

Proof. Let G∗ = (V ∗, E∗) be the instance resulting from an application of
Rule 3 to an instance (G, k) for a graph G = (V,E). Furthermore, let Er be
the edges we removed during the reduction in Rule 3. We show that there
is an STC+ solution (L∗, E∗) for G∗ +E∗ with |SL∗ | − |E∗| ≥ ` if and only
if there is an STC+ solution (L,E′) for G+ E′ with |SL| − |E′| ≥ `.

(⇒) Let (L′ = (SL′ ,WL′ , E
′′) be an optimal STC+ solution for G∗

with |SL′ | − |E′′| ≥ `. We define the labeling L = (SL,WL) with SL := SL′

and WL := WL′ ∪ Er. The labeling L is an STC-labeling for G + E′′ since
we added only weak edges to the graph G∗ and thereby could not create any
strong P3s. Furthermore, |SL| − |E′′| = |SL′ | − |E′′| ≥ `.

(⇐) Let (L = (SL,WL), E′) be an optimal STC+ solution forG with |SL|−
|E′| ≥ `. Assume there is a family of vertices F = {u1, . . . , u|F |} and
N(F ) := {v1, . . . , v|N(F )|} with |N(F )| < |F | and there are more than |N(F )|
vertices {u1, . . . , up} in F having a strong neighbor in N(F ). Let vr be such
a vertex and let Es ⊆ SL be the set of strong edges and E+ ⊆ E′ be
the set of additional edges incident with vr. It holds that |Es| ≤ |N(F )|
and |E+| ≥ r − 1 ≥ |N(F )|. By labeling all edges in Es weak, vr has no
strong neighbors and therefore we can remove all edges E+. This implies
that (L∗, E∗) with SL∗ := SL \Es, WL∗ := WL ∪Es \E+ and E∗ := E′ \E+

is an optimal STC+ solution for G as well with |WL∗ | ≤ |WL|. We can
repeat this procedure leading to an optimal STC+ solution (L̃, Ẽ) such that
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for each family F with |N(F )| < |F |, there are |F | − |N(F )| vertices in F
having only weak neighbors under the labeling L̃. Let X := {v ∈ V :
v has only weak neighbors under L̃}. We have that (V \ X,X) is a weak
cut C for G+ Ẽ and therefore Proposition 2 implies that there is an STC-
labeling L′ for G′ = (V,E \ EC ∪ Ẽ) such that |SL′ | = |SL|. Since |EC | =
(|F | − |N(F )|) · |N(F )| = |Er|, it holds |WL′ | = |WL| − |Er| ≤ k. Therefore,
(L′, Ẽ) is an optimal STC+ solution for G′ so we conclude that there is an
optimal STC+ solution (L′′, E′′) with |SL′′ | − |E′′| = |SL′ | − |E′| ≥ `.

Theorem 3. STC+ admits a kernel with O(` ·2`) vertices that can be com-
puted in O(

√
nm).

Proof. Let (G, k) be an STC+ instance reduced with respect to Rule 3.
As argued above, the number of vertices VM that are endpoints of some
edge e ∈ M , is less than 2 · |M | = 2` since any instance with |M | ≥ ` is a
yes-instance. By Observation 2, it holds that |I2| < `. Hence, it remains to
show the upper bound of |I1|.

First, note that every edge {u,w} ∈ M has at most one endpoint with
neighbors in I1 [12, Observation 1]. Furthermore, there are no edges be-
tween I1 and I2, since I1 ∪ I2 is an independent set. Since |M | < `, there
are less than ` vertices in VM that are adjacent to vertices of I1. Therefore,
there are less than 2` different families F of vertices in I1. Since the graph G
is reduced, each family is of size at most `. This implies that there are less
than ` · 2` vertices in I1 which leads to the upper bound of O(` · 2`) vertices
for G.

Concerning the running time regard the following: A maximum matching
can be found in O(

√
nm) time [21] and executing Rule 3 exhaustively can

be done in linear time.
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6 Fixed-Parameter Algorithms for the Parameter-
ization by k

In the analysis of data reduction rules leading to a linear vertex problem ker-
nel, the main idea was to “cut away the trivial parts” of the input instance,
leaving behind the problem kernel, the hard part, which presumably cannot
be solved in polynomial time. Thus, we cannot avoid using some exponen-
tial time methods to obtain an optimal solution. Depth-bounded search trees
are one of the most common approaches in parameterized algorithms that
originates in the general idea of backtracking [5]. It is a standard way of
performing a systematic exhaustive search in the huge search space related
to a computationally hard problem [22].

The basic idea behind a systematic search using a depth-bounded search
tree algorithm is to find in polynomial time a “small subset” of the input
instance such that at least one element of this subset is part of an optimal
solution [22]. The algorithm then branches into a number of subproblems
that are obtained by the possibilities of adding some elements of the subset to
the solution [5]. This strategy is recursively applied, until no more branching
is possible. If we found a feasible solution in the branch we can output it,
otherwise the algorithm backtracks to a previous state.

A branching algorithm is a good tool to provide an FPT-algorithm for a
parameterized problem. During the branching, in each step the parameter
is reduced by some integer at least one, thus, the number of branches is
limited by an exponential function depending on k, but each branch can be
processed in time polynomial in |V |.

Formally, in a branching step for an instance I of a computational prob-
lem, we generate from I simpler instances I1, . . . , Ir (r ≥ 2) of the same
problem such that.

I is a yes-instance if and only if ∃i ∈ {1, . . . , r} : Ii is a yes-instance.

If for an instance with the parameter k a branching algorithm calls itself
recursively with decreased parameters k−d1, k−d2, . . . , k−dp, then (d1, . . . , dp)
is called the branching vector of this recursion [5].

In Section 6.1 we provide a basic bounded search tree algorithm leading
to a search tree of sizeO(3k) and in Section 6.2 we give more complex branch-
ing strategies improving the worst-case size of the search tree to O(2.57k).
In Section 6.3 we provide a fixed-parameter algorithm by reducing STC+
to 3HS and use an algorithm for 3HS having the worst case running time
of 2.076k · nO(1) [27].
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6.1 Basic Branching Strategy

The fundamental idea of the following branching algorithm is to recursively
find a P3 (u, v, w) in the input graph G = (V,E) and branch on the subcases
to solve this conflict by labeling one of the edges {u, v} or {v, w} weak or
adding the weak edge {u,w} to the additional edge set.

In the following we describe a recursive algorithm for STC+. Since the
algorithm calls itself recursively, we need to deal with an additional edge set
and a labeling as further input. Given as input a graph G = (V,E) and
a non-negative integer k′, the algorithm outputs an additional edge set E′

and an STC-labeling L = (SL,WL) for G′ = (V,E ∪ E′) with E′ ⊆ WL

and |WL| ≤ k′, or returns false if no such solution (L,E′) exists. Note that
for an STC+ instance (G, k) the first call of the algorithm is done with
the following input: k′ := k, E′ = ∅ and the labeling L = (SL,WL) with
SL = E andWL = ∅. Obviously, (L,E′) is most likely not an STC+ solution
for (G, k), but is step by step turned into one during the branching algorithm.

Input: A graph G = (V,E), an integer k′ ≥ 0, an additional edge set E′ ⊆(
V
2

)
\ E and a labeling L = (SL,WL).

• If L is already an STC-labeling for G + E′, then we are done and
output (L,E′) as a solution.

• Otherwise, if k ≤ 0, then it is not possible to find a solution in this
branch of the search tree: return to the parent in the search tree.

• Otherwise, find a strong P3 (u, v, w) in G + E′. Recursively call the
branching algorithm on the following three subcases consisting of the
input G, k′ ≥ 0, E′′ and L′ = (SL′ ,WL′) as specified below:

(B1) WL′ = WL∪{{u, v}}, SL′ = SL\{{u, v}}, E′′ = E′ and k′ = k−1.

(B2) WL′ = WL∪{{v, w}}, SL′ = SL\{{v, w}}, E′′ = E′ and k′ = k−1.

(B3) WL′ = WL ∪ {{u,w}}, SL′ = SL, E′′ = E′ ∪ {{u,w}} and k′ =
k − 1.

Theorem 4. STC+ can be solved in O(3k · k + n2m) time.

Proof. The recursive algorithm described above is checking in its exhaus-
tively search every combination of labeling edges of P3s and adding addi-
tional edges that might be a solution of the input graph and thus is correct.

Regarding the running time, we make the following observations. The
preprocessing before starting the algorithm, to obtain a problem kernel of
the input instance respecting the reduction rules Rule 1 and Rule 2 can be
done in O(n2m) time (Lemma 9). In the algorithm there are three branching
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cases and in each one the parameter is reduced by one, thereby the branching
vector is (1, 1, 1). Thus, the size of the search tree build by the algorithm
is bounded by 3k [6]. The computational overhead related to every node
of the search tree is O(k). Before starting the search tree algorithm, we
can set up a linked list of all P3s, this clearly can be done in O(mn) time
which is dominated by the O(n2m) term. In each vertex of the search tree
we need to update the list of P3, after labeling an edge weak or adding a
new edge to E′. Since we applied the reduction rules of Section 5.1, we have
at most 4k vertices in the graph. It follows that by labeling an edge weak
or adding a new weak edge, there are at most 4k many strong P3 removed
and by using a double linked list, one can update it in O(k) time. That
can be achieved as follows: after labeling an edge {u, v} weak or adding
an edge {u, v} to E′, we can iterate over all O(k) many vertices w ∈ V
with w 6= u and w 6= v and update the status of that triple if it was a
strong P3 but now not any more. This update can be done in constant time
by using an array of size |V |3 = (4k)3 to store for each vertex triple a pointer
to the possible strong P3 in the list of P3s.

6.2 Refined Branching Strategy

In the following we improve the search tree algorithm described in Sec-
tion 6.1. The basic idea of finding vertices u, v, w ∈ V with such that (u, v, w)
is a strong P3 in G+E′, remains. Now, however, we are going to distinguish
into more specific cases and provide additional branching steps for every
possible situation. We branch on the case of u and w not sharing another
common neighbor but v and on the two cases that emerge when u and w
share another common neighbor x ∈ V . By that case distinction we can
improve the worst-case running time bound to O(2.57k · k + n2m).

We start with describing the three cases that can emerge when consider-
ing a strong P3 (u, v, w) in G+ E′.

(C1) u and w do not share a common neighbor x ∈ V with x 6= v.

(C2) u and w have a common neighbor x ∈ V with x 6= v and {x, v} ∈ E.
That is, u, v, w, x form a diamond.

(C3) u and w have a common neighbor x ∈ V with x 6= v and {x, v} /∈ E.
That is, u, v, w, x form a C4.

Dealing with the case (C1) one can easily see that branching into the
cases (B1) and (B2) suffices, since adding an additional edge to E′ closes
only one strong P3, but labeling one of the two edges weak closes at least one
strong P3. In the complexity analysis in Section 3, we already stated out that
in C4- and diamond -free graphs, there is an optimal STC+ solution without
any edge insertions. The following lemma is based on the same intuition.
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Lemma 10. Given a graph G = (V,E), an integer k ≥ 0, a labeling
LP = (SLP

,WLP
), an additional edge set E′P and vertices u, v, w ∈ V such

that (u, v, w) is a strong P3 in G+E′P under LP and u and w do not share a
common neighbor x ∈ V with x 6= v. Let (L∗ = (SL∗ ,WL∗), E

∗) be a solution
that is yielded by branching into the cases (B1) or (B2) such that |WL∗ | :=
min{|WLx | : (Lx = (SLx ,WLx), Ex) is a solution yielded by branching into
subcases (B1) and (B2)}. Then branching into the case (B3) cannot yield a
solution (L = (SL,WL), E′) with |WL| < |WL∗ | and thus can be omitted.

Proof. Consider the optimal solution (L = (SL,WL), E′) for the STC+ in-
stance (G, k) where {u,w} was added to E′. Assume that {u, v} ∈ SL
and {v, w} ∈ SL as otherwise (L,E′) was not optimal since (u, v, w) is the
only P3 in G having u and w as endpoints. Let L∗ = (S∗L,W

∗
L) with S∗L =

SL \{{u, v}} andW ∗L = WL∪{{u, v}}\{{u,w}} and let E∗ = E′ \{{u,w}}.
Since (u, v, w) is the only P3 having u and w as endpoints in G, we did not
create any strong P3 in G + E∗. Therefore, (L∗, E∗) is a solution as well
and |W ∗L| = |WL|.

Lemma 10 shows that in case (C1) a branching into the two cases (B1)
and (B2) is sufficient. Thus, since each case reduces the parameter by one,
we have a branching vector of (1, 1) with the branching number 2 for the
case (C1).

In case (C2) u and w have a common neighbor x ∈ V , with x 6= v
and {x, v} ∈ E and therefore {u, v, w, x} form a diamond which is presented
in Fig. 2. When branching into the case (B3), the edge {u,w} is added to E′

and there is no strong P3 left consisting of the vertices u, v, w, x. This is
branching case (D1) and is labeled by (2) in Fig. 2.

In both branching cases (B1) and (B2) the strong P3 (u, x, w) left, which
leads to the subcases labeled by (3) and (4). On these cases we can branch
again, respectively labeling one of the edges {u, x} and {x,w} weak, as la-
beled by (5), (6), (7) and (8). This leads to following branching for the
case (C2):

(D1) WL′ = WL ∪ {{u,w}}, E′′ = E′ ∪ {{u,w}} and k′ = k − 1.

(D2) WL′ = WL ∪ {{u, v}, {u, x}}, E′′ = E′ and k′ = k − 2.

(D3) WL′ = WL ∪ {{u, v}, {x,w}}, E′′ = E′ and k′ = k − 2.

(D4) WL′ = WL ∪ {{v, w}, {u, x}}, E′′ = E′ and k′ = k − 2.

(D5) WL′ = WL ∪ {{v, w}, {x,w}}, E′′ = E′ and k′ = k − 2.

This branching leads to a branching vector of (1, 2, 2, 2, 2) with the branch-
ing number 2.57 [6].
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Figure 2: The branching for case (C2). Dotted lines denote weak labeled
edges, dashed lines denote inserted weak edges.

In case (C3) u and w have a common neighbor x ∈ V with x 6= v
and {x, v} /∈ E and thereby form a C4 which is presented in Fig. 3. We leave
branching case (B1) as it is. This branching is (E1) and is labeled by (2). We
focus on refining the subcases emerging when branching into the cases (B2)
and (B3).

When branching into (B2) as shown in (3), the strong P3s (v, u, x)
and (u, x, w) are left. We branch into the subcase of labeling {u, x} weak,
shown by (5) where we close all strong P3s in G[{u, v, w, x}] and into the
subcase of not labeling {u, x} weak, shown by (6). In the second case we
need to label {x,w} weak and to add {v, x} to E′.

In the branching case (B3), as labeled by (4), the strong P3s (v, u, x)
and (v, w, x) are left. We branch into the subcase of adding {v, x} to E′,
shown by (7), which closes all strong P3s in G[{u, v, w, x}] and into the sub-
case of not adding {v, x} to E′, shown by (8). In the second case, labeling
only one of the edges {u, v} or {v, w} weak is no option since that would be
subcases of (B1) or (B2). That leads to the necessity of labeling both {u, x}
and {x,w} weak. Thus, we define the following branching:

(E1) WL′ = WL ∪ {{u, v}}, E′′ = E′ and k′ = k − 1.

(E2) WL′ = WL ∪ {{v, w}, {u, x}}, E′′ = E′ and k′ = k − 2.

(E3) WL′ = WL∪{{v, w}, {x,w}, {v, x}}, E′′ = E′∪{{v, x}} and k′ = k − 3.

(E4) WL′ = WL∪{{u,w}, {v, x}}, E′′ = E′∪{{u,w}, {v, x}} and k′ = k − 2.

(E5) WL′ = WL∪{{u, x}, {x,w}, {u,w}}, E′′ = E′∪{{u,w}} and k′ = k − 3.
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Figure 3: The branching for case (C2). Dotted lines denote weak labeled
edges, dashed lines denote inserted weak edges.

This branching leads to a branching vector of (1, 2, 2, 3, 3) with the branch-
ing number 2.27 [6].

In summary, the refined branching leads to a worst-case branching vector
of (1, 2, 2, 2, 2) yielding the branching number 2.57. Thus, we have a search
tree of size O(2.57k) for our refined branching algorithm. This leads to the
following theorem:

Theorem 5. STC+ can be solved in O(2.57k · k + n2m) time.

6.3 Improved Running Time by Reducing STC+ to 3-Hitting
Set

Using an FPT-algorithm for 3HS [27], we obtain the following theorem:

Theorem 6. STC+ can be solved in 2.076k · nO(1) time.

Proof. Given a graph G = (V,E) and a non-negative integer k. By Lemma 4,
there is a polynomial-time reduction from the STC+ instance (G, k) to
a 3HS instance (U, S, k), with the running time O(n3). This instance can be
solved in O(2.076k ·nO(1)) time [27]. Since the running time of the reduction
bounded by O(n3) is dominated by the term nO(1), the overall running time
to solve STC+ in that way is 2.076k · nO(1).
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7 On The Relation of Strong Subgraph Closure with
Edge Insertion and Subgraph-free Editing

During the research for STC+ we arrived at the presumption thatSTC+
may correspond to Cluster Editing. Recall that STC+ and CE cor-
respond if for every graph G = (V,E) and every integer k ≥ 0 it holds
that (G, k) is a yes-instance of STC+ if and only if (G, k) is a yes-instance of
CE. In this section we analyze, whether the generalizations of the two prob-
lems, Strong Subgraph closure with Edge Insertion and Subgraph-
free Editing, correspond for other H-graphs on three or four vertices,
besides P3.

We say that the two problems correspond for a certain graph H that
shall be “destroyed”, if for every graph G and every non-negative integer k
it holds that (G,H, k) is a yes-instance of SSC+ if and only if (G,H, k) is
a yes-instance of Subgraph-free Editing.

Before giving the formal definitions of the two problems, we need do
define when a graph G is H-free under a labeling.

Definition 10. Given the graphs G and H, an additional edge set E′ ⊆(
VG
2

)
\ EG and a labeling L, we say that G is H-free under L if there exists

no set of vertices X ⊆ VG such that (G+E′)[X] contains only strong edges
and is isomorphic to H.

In the following we formally define the two problems introduced above.

Strong Subgraph closure with Edge Insertion (SSC+)
Input: The undirected graphs G = (VG, EG), H = (VH , EH) and

a non-negative integer k ∈ N.
Question: Is there a labeling L = (SL,WL) and an additional edge

set E′ ⊆
(
V
2

)
\ E with E′ ⊆ WL and |WL| ≤ k such that

the graph G′ = (VG, EG ∪ E′) is H-free under L?

Given a SSC+ instance (G,H, k), a labeling L = (SL,WL) and an addi-
tion edge set E′ ⊆

(
V
2

)
\ E. We call (L,E′) a solution for (G,H, k) if the

graph G′ = (VG, EG ∪ E′) is H-free under L and |WL| ≤ k.

Subgraph-free editing (SE)
Input: The undirected graphs G = (VG, EG), H = (VH , EH) and

a non-negative integer k ∈ N.
Question: Can we transform G into an H-free graph with at most k

edge deletions and insertions?

Given an SE instance (G,H, k), an addition edge set E+ ⊆
(
V
2

)
\ E and

an edge set E− ⊆ E. We call (E+, E−) a solution for (G,H, k) if the
graph G′ = (VG, EG ∪ E+ \ E−) is H-free and |E+|+ |E−| ≤ k.
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K3 P3 K2 +K1 3K1 P4

diamond C4 paw clawK4

co-diamond 2K2 co-paw co-claw4K1

Figure 4: The small graphs H on three or four vertices.

The graphs on which we analyzed whether the two problems correspond
or not are the graphs Kr and rK1 for r ∈ N and all possible graphs on three
or four vertices, except P3 and K2 +K1, listed in Fig. 4. The graph Kr is a
clique of size r and the graph rK1 is an independent set of size r.

To simplify the proof of the crucial theorem in this section, showing the
correspondence between SSC+ and SE for certain H graphs, the following
three lemmas need to be provided:

Lemma 11. Let G and H be arbitrary graphs and k a non-negative inte-
ger. If (G,H, k) is a yes-instance of SE, then (G,H, k) is a yes-instance of
SSC+ as well.

Proof. Let G = (VG, EG) and H = (VH , EH) and let (E−, E+) be a solution
for the SE instance (G,H, k), with E− the set of edges being removed from
G and E+ the set of edges being added to G, to turn G into the H-free
graph G∗ = (VH , (EH ∪ E+) \ E−). We define the following sets of edges
as: E′ := E+, WL := E+ ∪ E− and SL := EG \ E−. We show that (L =

(SL,WL), E′) is a solution for the SSC+ instance (G,H, k). Assume towards
a contradiction that there exists a set of vertices X ⊆ VG such that for
the graph G′ = (VG, EG ∪ E′) the induced subgraph G′[X] contains only
strong edges under the labeling L and is isomorphic to H. Then for every
edge e ∈ G′[X] it holds that e /∈WL and by definition of the sets e /∈ E−∪E+

as well. Then G∗[X] is isomorphic to H which is a contradiction to (E−, E+)
being a solution for the SE instance (G,H, k). It follows that the SSC+
instance (G,H, k) is a yes-instance with the solution (L = (SL,WL), E′).

The following is a well-known fact, but for sake of completeness, we
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provide a short proof.

Lemma 12. Let G = (VG, EG) and H = (VH , EH) be arbitrary graphs. It
holds that G is H-free if and only if G is H-free.

Proof. (⇒) Let G be H-free. Assume that there exists a set of vertices X ⊆
VG such that the induced subgraph G[X] is isomorphic to H. Then G[X]
is the complement graph of G[X] and obviously isomorphic to H. This
contradicts G being H-free.

(⇐) Since the complement graph of G is G, this direction of the proof
works analogously to the other direction and therefore can be omitted.

The following lemma provides that if a graph G is H-free under a label-
ing L, then we can easily build another labeling L′ such that G is H-free
under L′.

Lemma 13. Let G = (VG, EG) and H = (VH , EH) be arbitrary graphs,
L = (SL,WL) be a labeling for G+E′ and let E′ ⊆

(
VG
2

)
\EG be an additional

set of edges with E′ ⊆ WL. It holds that G + E′ is H-free under a labeling
L = (SL,WL) if and only if G+E′′ is H-free under the labeling L′ = (S′L,W

′
L)

with E′′ = WL, W ′L = E′ and S′L =
(
VG
2

)
\ (EG ∪ E′).

Proof. (⇒) Let G + E′ be H-free under the labeling L. Assume towards a
contradiction that there exists a set of vertices X ⊆ V such that the induced
subgraph (G+E′′)[X] consists only of strong edges and is isomorphic to H
under the labeling L′ (recall that G+ E′′ := (V (G), E(G) ∪ E′′)). The fact
that (G+ E′′)[X] consists only of strong edges implies that (G+ E′′)[X] =
G[X]. By definition of the sets WL′ and E′′ it follows that (G + E′)[X]
consists only of strong edges and therefore (G + E′)[X] = G[X]. Thus,
we have that (G+ E′′)[X] = G[X]) = G[X] = (G + E′)[X]. In other
words, (G + E′′)[X] is the complement graph of (G + E′)[X]. It follows
that (G+E′′)[X] being isomorphic to H under L′ implies that (G+E′)[X]
is isomorphic to H under L. This contradicts G+E′ being H-free under L.

(⇐) Since the complement graph of G is G, this direction of the proof
works analogously to the other direction and therefore can be omitted.

Now we have the means to show the central theorem for this section.

Theorem 7. The problems SSC+ and SE

• do not correspond on H ∈ {P4, diamond, co-diamond, C4, 2K2, paw,
co-paw, claw, co-claw} and

• correspond on H ∈ {Kr, rK1} for r ∈ N.

Proof. For H ∈ {P4, co-diamond, C4, co-paw, claw}, Fig. 5 - Fig. 9 provide
examples that SSC+ and SE do not correspond.
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For H ∈ {diamond, 2K2, paw, co-claw}, we have that the graphs are
respectively the complement graphs of co-diamond, C4, co-paw and claw.
Lemma 12 and Lemma 13 imply that the complement graphs of the graphs
in Fig. 5 - Fig. 9 provide examples that SSC+ and SE do not correspond
on the graphs H ∈ {diamond, 2K2, paw, co-claw}.

It remains to show that the problems correspond on H ∈ {Kr, rK1}
for r ∈ N. Lemma 11 implies that every optimal solution of an SE in-
stance (G,H, k) provides a solution for the SSC+ instance of the same
input. Therefore it is sufficient to show that for every graph G and H ∈
{Kr, rK1 : r ∈ N} and a non-negative integer k it holds that the SSC+
instance (G,H, k) having a solution implies that the corresponding SE in-
stance has a solution as well.

Case 1: H = Kr. Let G be an arbitrary graph, k a non-negative in-
teger and let (L = (SL,WL), E′) be an optimal solution for the SSC+
instance (G,H, k) which implies that G+E′ under L does not contain a sub-
graph consisting only of strong edges and being isomorphic to H. First, note
that E′ is empty. That is because H is a Kr and thereby a complete graph,
every subraph G[{u1, . . . , ur}] of G for arbitrary vertices u1, . . . , ur ∈ V can
only be isomorphic to H if it is complete as well. Adding a weak edge to
the graph could never destroy any Kr subgraph and because of that, E′ = ∅
or (L = (SL,WL), E′) is not an optimal solution.

Let the following sets be defined as: E− := WL and E+ := E′ = ∅.
We have that (E−, E+) is a solution for the SE instance (G,H, k), since
for every subgraph X of G that is isomorphic to H, there is at least one
edge e ∈ E(X) labeled weak, which as well is in E− and thereby is removed
from G. Since E+ is empty, there are no edges added to the graph that could
create a Kr.

Case 2: H = rK1. Let G be an arbitrary graph, k a non-negative
integer and and (L = (SL,WL), E′) be an optimal solution for the SSC+
instance (G,H, k). By Lemma 13, there is a labeling L′ = (S′L,W

′
L) and a

set of additional weak edges E′′ such that G+ E′′ is H under L′. In case 1
we showed that this implies the existence of a solution (E−, E+) for the SE
instance (G,H, k) such that G−E−+E+ is H-free. The complement graph
of G− E− + E+ is G+ E− − E+ and by Lemma 12, it is H-free.

In Theorem 7 we did not consider the caseH = K2+K1. Since this graph
is the complement graph of a P3, by Lemma 12 and Lemma 13, it follows
that proving or disproving the correspondence of SSC+ and SE on K2 +K1

also settles the case H = P3. This is left as an open question for now.
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Figure 5: An example that SSC+ and SE do not correspond on H = P4.
Red edges are part of a P4, blue dashed edges are (weak) inserted edges and
blue dotted are weak labeled / deleted edges.

In Fig. 5, a) shows a graph G containing the P4s (1, 2, 4, 5), (1, 3, 5, 6),
(1, 2, 5, 6), (1, 3, 4, 6). For the SSC+ solution in b), adding the weak edge {1, 6}
and labeling all other edges strong provides an optimal solution of size 1. For
the SE in c), adding the edge {1, 6} would create the P4 (1, 6, 7, 8). There
are at least two edge modifications in SE required to solve all P4s.
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Figure 6: An example that SSC+ and SE do not correspond on H = C4.
Red edges are part of a C4, blue dashed edges are (weak) inserted edges and
blue dotted are weak labeled / deleted edges.

In Fig. 6, a) shows a graph G containing the C4s (3, 7, 4, 6), (3, 8, 4, 6),
(3, 7, 4, 5), (3, 8, 4, 5). For the SSC+ solution in b), adding the weak edge {3, 4}
and labeling all other edges strong provides an optimal solution of size 1. For
the SE in c), adding the edge {3, 4} would create the C4 (1, 3, 4, 2). There
are at least two edge modifications in SE required to solve all C4s.

a)

1

2

3

4

5

6

b)

1

2

3

4

5

6

c)

1

2

3

4

5

6

Figure 7: An example that SSC+ and SE do not correspond on
H = co-diamond. Red edges and vertices are part of a co-diamond, blue
dashed edges are (weak) inserted edges and blue dotted are weak labeled /
deleted edges.
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In Fig. 7, a) shows a graphG containing the co-diamonds (1, 2, 5, 6), (1, 3, 5, 6),
(3, 4, 5, 6), (2, 4, 5, 6). For the SSC+ solution in b), adding the weak edge {5, 6}
and labeling all other edges strong provides an optimal solution of size 1. For
the SE in c), adding the edge {5, 6} would create the co-diamonds (5, 6, 2, 3)
and (5, 6, 1, 4). There are at least three edge modifications in SE required
to solve all co-diamonds.
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Figure 8: An example that SSC+ and SE do not correspond onH = co-paw .
Red edges and vertices are part of a co-paw, blue dashed edges are (weak)
inserted edges and blue dotted are weak labeled / deleted edges.

In Fig. 8, a) shows a graph G containing the co-paws (2, 1, 3, 6), (2, 4, 3, 6),
(4, 3, 5, 6), (1, 3, 5, 6). For the SSC+ solution in b), adding the weak edge {3, 6}
and labeling all other edges strong provides an optimal solution of size 1.
For the SE in c), adding the edge {3, 6} would create the co-paw (5, 3, 6, 2).
There are at least two edge modifications in SE required to solve all co-paws.
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Figure 9: An example that SSC+ and SE do not correspond on H = claw .
Red edges are part of a claw, blue dashed edges are (weak) inserted edges
and blue dotted are weak labeled / deleted edges.

In Fig. 9, a) shows a graph G containing the claws (2, 1, 3, 4) and (3, 4, 5, 6).
For the SSC+ solution in b), adding the weak edge {3, 4} and labeling all
other edges strong provides an optimal solution of size 1. For the SE in c),
adding the edge {3, 4} would create the claw (7, 8, 3, 4). There are at least
two edge modifications in SE required to solve all claws.
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8 Conclusion and Outlook

Using a polynomial-time reduction of 3SAT to Cluster Editing and show-
ing the correspondence of CE, CD, STC and STC+ on C4- and diamond -
free graphs, we proved that STC+ is NP-hard, even when restricted re-
stricted to C4- and diamond -free graphs with maximum vertex degree six.

Furthermore, we provided a 3-approximation algorithm for STC+ by
using a polynomial-time reduction of STC+ to 3-Hitting Set.

Using the concept of critical cliques, we provided the first linear vertex
kernel for STC+. Furthermore we provided an O(` · 2`)-vertex kernel for
the parameterization by `.

To give an FPT-algorithm, we developed a basic branching algorithm
with the search tree size of O(3k) and refined the branching strategies lead-
ing to a search tree size of O(2.57k). Moreover we showed that there is a
fixed-parameter algorithm for STC+ running in 2.076k ·nO(1) time, by using
a polynomial-time reduction to 3HS.

During our work the question arose, whether STC+ and CE correspond.
This was considered for the first time, when we developed the 4k-vertex
kernel for STC+, where the basic idea is very similar to the one for the 4k-
vertex kernel of CE shown in [13]. Since we were not able to prove or disprove
the correspondence of STC+ and CE, we analyzed the correspondence of the
generalizations of the two problems, Strong Subgraph Closure with
Edge Insertion and Subgraph-free Editing, for other graphs H of
three or four vertices than P3s. We showed that SSC+ and SE correspond
for the subgraphs H ∈ {Kr, rK1} for r ∈ N, where the correspondence is
quite trivial. For H ∈ {P4, diamond, co-diamond, C4, 2K2, paw, co-paw,
claw, co-claw}, the problems do not correspond. Thus, for subgraphs on
three or four vertices only for the cases P3 and its complement K1 + K2 it
is left to show whether SSC+ and SC correspond or not.

For any graph G = (V,E) and a non-negative integer k, any CE solu-
tion (E+, E−) easily provides an STC+ solution (L = (SL,WL), E′) with
E′ := E+, WL := E+ ∪ E− and SL := E \ E−. Hence, the two problems
would correspond if there is an optimal STC+ solution that provides in
some way a CE solution. An STC+ solution would provide a CE solution
with E+ := E′ and E− := WL \ E′, if for all vertices u, v, w ∈ V it holds:

• If G[{u, v, w}] is a P3 in G, then if the missing edge is inserted, either
none of the other two edges is in WL, or both are in WL.

• If without loss of generality only u and v are adjacent, then:

– If {u, v} ∈ SL, either none of the two missing edges is in E′, or
both are in E′.

– If {u, v} ∈WL, then at most one of the two missing edges is in E′.
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• If G[{u, v, w}] is a K3, then at least two edges connecting the three
vertices are in WL, or all three are in SL.

• If G[{u, v, w}] is a 3K1, then at most one of the two missing edges is
in E′, or all three are in E′.

In Observation 1, we showed that in any optimal STC+ solution (L =
(SL,WL), E′) the unaffected vertices lie in critical cliques consisting only of
unaffected vertices. Therefore, any unaffected vertex cannot be part of a
vertex set that violates the conditions above. Thus, it remains to show that
there exists an optimal STC+ solution such that the affected vertices, which
are at most 2k many, are not part of a vertex set that violates the conditions
above.

A further task is the analysis of STC with Strong Edge Insertion,
where inserted edges are not labeled weak but strong, so they could be part
of a strong P3. For a graph G = (V,E) and an integer k ≥ 0, the task
is to find an additional edge set E′ and an STC-labeling of G + E′ such
that E′ ⊆ SL and |WL| + |E′| ≤ k. If STC+ and CE correspond in the
way as discussed above, then STC with Strong Edge Insertion and
STC+ should also correspond, since then there would be an optimal STC+
solution to every graph G such that the inserted edges are not part of any
induced P3.

Furthermore, one could define and analyze for Multi-STC, introduced
by Sintos and Tsaparas [24] and analyzed by Bulteau et. al. [3], an extending
problem, Multi-STC with Edge Insertion.
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