
Philipps-Universität Marburg

Fachbereich Mathematik und Informatik

Studiengang Informatik

Destroying Multicolored Paths and

Cycles in Edge-colored Graphs

Bachelorarbeit

zur Erlangung des akademischen Grades eines

Bachelor of Science

vorgelegt von

Nils Jakob Eckstein

am 06.07.2020

Matrikelnummer: 3025817

Betreuer: Prof. Dr. Christian Komusiewicz

Frank Sommer, M. Sc.

Niels Grüttemeier, M. Sc.

Zusammenfassung

Wir untersuchen die Berechnungskomplexität von c-Colored P` Deletion, c-

Colored C` Deletion und Colored Path Deletion. Bei diesen Problemen

will man in einem kanten-gefärbten Graphen durch höchstens k Kantenlöschungen

alle induzierten c-farbigen Pfade, beziehungsweise Zyklen einer bestimmten Länge

zerstören. Im Gegensatz zu den ersten beiden Problemen, ist beim dritten Prob-

lem die Anzahl c der Farben und die Länge der verbotenen Pfade, Teil der Eingabe.

Zunächst analysieren wir die klassische Komplexität und beweisen, dass c-Colored

P` Deletion und c-Colored C` Deletion für jede nicht-triviale Kombination

von c und ` NP-schwer sind. Anschließend analysieren wir die parametrisierte Kom-

plexität im Hinblick auf den natürlichen Parameter k und den dualen Parame-

ter m − k. Wir beweisen, dass c-Colored P` Deletion und c-Colored C`

Deletion parametrisiert mit k in FPT sind, während Colored Path Dele-

tion parametrisiert mit k W[2]-schwer ist. Außerdem geben wir unter der Vo-

raussetzung c ≥ 2 einen linearen Problemkern für c-Colored P` Deletion und

c-Colored C` Deletion parametrisiert mit m− k an.

I

Abstract

We study the computational complexity of c-Colored P` Deletion, c-Colored

C` Deletion and Colored Path Deletion. In these problems, one wants to

destroy all induced c-colored paths or respectively cycles of a specified length from

an edge-colored graph by deleting at most k edges. In contrast to the first two

problems, the number c of colors and the length of the forbidden paths is part

of the input in the third problem. First, we analyze the classical complexity and

prove that c-Colored P` Deletion and c-Colored C` Deletion are NP-hard

for each non-trivial combination of c and `. Second, we analyze the parameterized

complexity with regard to the natural parameter k and the dual parameter m− k.

We prove that c-Colored P` Deletion and c-Colored C` Deletion are fixed-

parameter tractable when parameterized by k, while Colored Path Deletion

is W[2]-hard when parameterized by k. Furthermore, we give a linear size problem

kernel for c-Colored P` Deletion and c-Colored C` Deletion for c ≥ 2 when

parameterized by m− k.

II

Contents

1 Introduction 1

1.1 Related Work . 2

1.2 Our Results . 3

2 Preliminaries 5

2.1 Graphs . 5

2.2 Computational Complexity . 6

2.3 Parameterized Complexity . 9

3 Classical Complexity 12

3.1 c-colored P` Deletion . 12

3.2 c-colored C` Deletion . 23

4 Parameterized Complexity 26

5 Conclusion 32

6 Bibliography 34

III

1 Introduction

Graphs provide a natural framework to model the interactions and relations between

objects. Therefore, they play a central role in computer science. To get an under-

standing about the structure and properties of the modeled systems and to be able

to categorize these systems one can classify graphs by different graph properties.

Many interesting graph properties can be characterized by forbidden subgraphs,

that is, a graph has property Π if and only if it does not contain a subgraph from

some (possibly infinite) set F of graphs. For example, a graph is called a tree if it

does not contain a cycle, and a graph is called a cograph if it does not contain an

induced P4, that is, a path of four vertices. Hence, trees are characterized by an

infinite set of forbidden subgraphs, while cographs are characterized by a finite set

of forbidden subgraphs.

A topic that arises naturally from this classification of graphs and has numerous

applications are graph modification problems. In these problems, that have been

studied intensively, one wants to modify a given graph such that it fulfills some

graph property Π. And naturally, one often wants to apply the minimum number

of modifications. Graph modification problems can be classified depending on the

type of modification. A problem where only the edges of the graph are modified

is called an edge modification problem. Three well-studied classes of edge modifi-

cation problems are completion-problems, deletion-problems and editing-problems.

In a completion-problem, the graph is modified by inserting edges, in a deletion-

problem the graph is modified by deleting edges and in editing-problems both edge

insertions and edge deletions are allowed. These problems arise in applications like

data clustering [1], the analysis of social networks [2], numerical algebra [3] and

the reassembly of fragmented DNA sequences [4]. Besides these applications, edge

modification problems are an important topic in computer science: They are NP-

complete for a wide range of well studied graph properties Π [5, 6] and hence, they

can be used to prove NP-hardness results or to study algorithmic approaches to

NP-hard problems.

A standard graph can model a network of objects with one type of relation. But

many systems are too complex to be described by such a graph. In recent years,

multilayer networks are getting increasingly important to describe such complex sys-

tems with multiple types of relations [7, 8]. A generalized graph that can formally

describe such networks can be defined as an edge-colored (multi-)graph. In such a

(multi-)graph, each edge-color represents one type of relation between the vertices.

While edge modification problems are well-studied on uncolored graphs, there is not

much work on edge-colored graphs. At the same time, one can expect an increasing

number of applications for modification problems on these graphs with the increas-

1

ing importance of edge-colored graphs. Therefore, we analyze the computational

complexity of edge deletion problems on edge-colored graphs in this thesis.

For any set F of edge-colored graphs, a decision version of the edge deletion

problem on edge-colored graphs can be formulated as follows.

F Deletion

Input: An edge-colored graph G = (V,E = E1t . . .tEc) 1, an integer k.

Question: Can we delete at most k edges from G such that the remain-

ing graph has no induced subgraph that is isomorphic to any graph in F?

Vertex deletion problems are NP-complete for hereditary graph properties on

uncolored graphs [9], and there are similar results for edge-colored graphs [10]. A

graph property Π is called hereditary if for any graph G with property Π the dele-

tion of any vertex does not result in a graph violating Π. As far as we know, there

is no such general NP-completeness result for edge deletion problems and it is sus-

pected that the techniques leading to these results are not applicable to edge deletion

problems [11].

In this thesis we analyze the computational complexity of three variations of F
Deletion. The first problem we consider is the special case of F Deletion where

F is the set of all c-colored paths of ` vertices for a fixed c ∈ [`−1]. We refer to this

problem by c-Colored P` Deletion or cP`D. The second problem we consider is

the special case of F Deletion where F is the set of all c-colored cycles of ` vertices

for a fixed c ∈ [`]. We refer to this problem by c-Colored C` Deletion or cC`D.

The third problem we consider is a generalization of cP`D where the number c of

colors and the number ` of vertices of the forbidden subgraphs are part of the input.

We refer to this problem by Colored Path Deletion or CPD. In Section 3

we will analyze classical complexity and in Section 4 we will analyze parameterized

complexity.

1.1 Related Work

From a classical point of view, it is known for cP`D and cC`D that the uncolored

case is NP-hard for any ` ≥ 3 [12, 5]. In fact, it is known that H Deletion is

NP-complete for any graph H if and only if H has at least two edges [13]. There

are some results for edge-colored graphs, too. A recent result shows that 2P3D

is NP-hard in general [14]. However, there are some special cases of 2P3D, that

are polynomial-time solvable. For example, 2P3D is polynomial-time solvable if the

input is restricted to graphs where each subgraph that is a 2-colored paths containing

three vertices, is an induced subgraph [14]. Furthermore, the problem of destroying

1The t-operator symbolizes the disjoint union. Hence, Ei ∩ Ej = ∅ for i, j ∈ [c] and i 6= j.

2

not only induced, but also non-induced 2-colored paths containing three vertices is

polynomial time solvable on 2-colored graphs but NP-hard on 3-colored graphs [15].

As far as we know, there is not much work on CPD. However, it is easy to see that

CPD is NP-hard, since 2P3D is an NP-hard special case [14].

From a parameterized point of view, there is a very general result for edge mod-

ification problems. It is known that edge deletion problems are fixed-parameter

tractable for hereditary graph properties when parameterized by the natural param-

eter k [16]. This result implies that cP`D and cC`D are fixed-parameter tractable

when parameterized by k. After showing that a problem is fixed-parameter tractable,

the next question often is, whether or not it admits a polynomial kernelization.

The uncolored case is well studied. In general, 1P`D does not admit a polynomial

kernelization for any ` ≥ 5 and 1C`D does not admit a polynomial kernelization

for any ` ≥ 4 when parameterized by k, unless NP ⊆ coNP/poly [17]. However, if

the input graph has maximum degree at most d, there is a kernelization with at

most O(d2·`−1 · kp·(`−1)+1) vertices for 1P`D and 1C`D where p = log 2`−2
2`−3

(`− 1) [18].

For edge colored graphs there are some results, too. For 2P3D, there is a kernel-

ization comprising at most O(d · k2) vertices where d is the maximum degree of

the input graph, and there is a linear kernelization comprising O(2 · δ) edges when

parameterized by the dual parameter δ := m− k [14].

1.2 Our Results

First, we consider classical complexity of cP`D and cC`D in Section 3. We show

that cP`D is NP-hard for each ` ≥ 3 and each c ∈ [`− 1] and that cC`D is NP-hard

for each ` ≥ 3 and each c ∈ [`]. Since cP`D is trivially solvable if ` < 3 or c ≥ `,

and cC`D is not properly defined if ` < 3 and trivially solvable if c > `, this implies

that cP`D and cC`D are NP-hard for each non-trivial combination of c and `.

From a classical point of view, one aspect that makes the analysis of F Deletion

more complicated than the analysis of vertex deletion problems, is that the deletion

of an edge can lead to a new induced forbidden subgraph, while the deletion of a

vertex can not. Hence, we define the notion of non-cascading input graphs. For an

instance (G, k) of F Deletion, we call the input graph G non-cascading, if each

subgraph of G that is isomorphic to a graph in F is an induced subgraph. Recall

that 2P3D is polynomial-time solvable on non-cascading graphs [14]. We show that

cP`D is NP-hard on non-cascading graphs for each ` ≥ 4 and each c ∈ [2, `− 2] and

that cC`D is NP-hard on non-cascading graphs for each ` ≥ 3 and each c ∈ [`].

Second, we consider parameterized complexity of cP`D, cC`D and CPD with

regard to different parameters in Section 4. By giving a simple branching algorithm,

we show that cP`D and cC`D are fixed parameter tractable for any ` ≥ 1 and

3

any c ∈ [`− 1] or c ∈ [`] respectively when parameterized by k. We prove that

the simple branching algorithm can not be enhanced to a running time where the

exponential factor is independent of ` unless FPT=W[2], by showing that CPD

is W[2]-hard when parameterized by k even if c = 3. Then, we show that there

are polynomial size kernelizations for cP`D and cC`D when parameterized by k

if the input graph is non-cascading. Furthermore, we show that cP`D and cC`D

admits linear kernelizations with O(2 · δ) edges when parameterized by the dual

parameter δ := m− k if c ≥ 2.

4

2 Preliminaries

In this section, we define the basic concepts and notations that we use in this work.

By N we denote the set of all positive integers excluding zero. For two integers a ∈ N
and b ∈ N with a ≤ b, we define [a, b] := {a, . . . , b} and if a = 1 we write [b].

Furthermore, for any set Σ we define Σ∗ to be the set of all strings that can be build

by concatenation of letters from Σ.

2.1 Graphs

We study the computational complexity of problems defined on undirected graphs.

An undirected graph G = (V,E) is a pair of sets. Usually G is considered as a set of

vertices V that is connected by edges E. Conventionally, we define n := |V | to be

the number of vertices, m := |E| to be the number of edges, and by |G| := n+m

we denote the size of G. Each edge connects exactly two vertices. If {u, v} ∈ E,

we say that the vertices u and v are adjacent and we say the edge {u, v} is incident

with the vertices u and v. We only consider simple graphs. A graph G is called

simple, if no vertex is adjacent to itself. Hence, if G is simple, then {v, v} /∈ E for

each v ∈ V . For a given graph G, we denote its vertex set by V (G) and its edge set

by E(G). In contrast to a graph, the edges of a multigraph are a multiset. Hence,

in a multigraph two vertices can have multiple edges between them.

The problems studied here are defined on edge-colored graphs. In an edge-colored

graph, the edge set is partitioned into c ∈ N disjoint, non-empty subsets E1, . . . , Ec.

We call such a graph c-colored, and if c = 1 we call the graph uncolored. For sake

of illustration we define E1 =: Eb as the set of blue edges, E2 =: Er as the set of red

edges, E3 =: Ey as the set of yellow edges, E4 =: Eg as the set of green edges and

draw them in the figures accordingly. For a given graph G we denote the set of all

edges with color α ∈ [c] by Eα(G).

For two sets of vertices V ′ ⊆ V (G) and V ′′ ⊆ V (G) we denote the set of

edges between V ′ and V ′′ by EG(V ′, V ′′) := {{u, v} ∈ E | u ∈ V ′ and v ∈ V ′′} and

if V ′ = V ′′ we write EG(V ′). We call G′ = (V ′, E ′) a subgraph of G if V ′ ⊆ V (G)

and E ′ ⊆ EG(V ′). If E ′ = EG(V ′) we call it the induced subgraph and write G[V ′].

For a subset of edges E ′ ⊆ E(G) we denote the graph formed by deleting the edges

from E ′ in G by G− E ′ := (V,E \ E ′). For a vertex v ∈ V (G), we denote the open

neighborhood of v in G by NG(v) := {u ∈ V (G) | {u, v} ∈ E(G)}. We denote the

degree of v in G by degG(v) := |NG(v)|.
We say that a vertex set V ′ ⊆ V (G) is a vertex cover for G if at least one of u

and v is in V ′ for each edge {u, v} ∈ E(G). We say that a vertex set V ′ ⊆ V (G) is

an independent set if {u, v} /∈ E(G) for each pair of vertices u, v ∈ V ′. A graph G

5

is called tripartite if V (G) can be partitioned into 3 (possibly empty) independent

sets.

Next, we will define some special graphs that we consider in this thesis. A

graph G is called a path if it is possible to uniquely index its vertices with numbers

from [n], in such a way that there is an edge {vi, vj} ∈ E(G) if and only if i+ 1 = j.

A path with one additional edge {vn, v1} is called a cycle. We denote a path (cycle)

consisting of ` vertices by P` (C`). The length of a path (cycle) G is defined as

the number of edges |E(G)|. For any graph G, the 2-subdivision of G is the graph

we get from inserting two new vertices on every edge, that is, from replacing each

edge {u, v} ∈ E(G) by a P4 with vertices {u, x, y, v}. A graph G is a 2-subdivision

graph, if it is the 2-subdivision of any graph H.

For a graph G that contains a cycle as a subgraph, the girth of G is defined as the

length of a shortest cycle in G, and for acyclic graphs the girth is infinite. For two

edge-colored graphs G and F , we say that G is isomorphic to F , and write G ∼= F

if there is a bijective function ϕ : V (G)→ V (F) such that {u, v} ∈ E(G) is an edge

with color c if and only if {ϕ(u), ϕ(v)} ∈ E(F) is an edge with color c. Further-

more, we say that G is F -free if G[V ′] � F for each vertex set V ′ ∈ V (G). For any

set F of graphs, we say that a graph G is F -free if G is F -free for each F ∈ F .

We say that an edge set S ⊆ E(G) is a solution for an instance (G, k) of F
Deletion if |S| ≤ k and G− S is F -free. We say that F is d-edge-bounded for

some integer d, if |E(F)| ≤ d for each F ∈ F . Furthermore, we say that F is

polynomially enumerable on G, if we can enumerate vertex sets V ′ ⊆ V (G) such

that G[V ′] ∼= F for some F ∈ F in a running time that is polynomial in |G|. For

further reading on graphs and graph-classes we refer the reader to some standard

monographs [19, 20, 21] and the Information System on Graph Classes and their

Inclusions (ISGCI) [22]

2.2 Computational Complexity

One of the most central questions in computer science is whether a given problem

is efficiently computable, that is, whether one can find an algorithm that is able

to compute an answer for every instance of the problem in an acceptable running

time. Before we investigate this question, we have to define the term problem. In

this thesis we consider so-called decision problems. A decision problem can for-

mally be described as a function f : {0, 1}∗ → {0, 1}. Hereby {0, 1}∗ denotes the

set of all binary strings. For example, F Deletion can be defined as a func-

tion LF : {0, 1}∗ → {0, 1} that gets a binary input string x ∈ {0, 1}∗ encoding an

edge-colored graph G and an integer k such that

6

LF(x) :=

1 if it is possible to make G F -free by deleting at most k edges.

0 otherwise.

We call a problem instance x ∈ {0, 1}∗ of a decision problem L a yes-instance

if L(x) = 1. Otherwise, we call x a no-instance.

Next, we have to formalize the vague notion of ”acceptable running time”. The

running time of an algorithm is the number of basic steps it performs. By defini-

tion, it depends on the machine model used for the computation. We will briefly

describe some relevant machine models and refer to a standard monograph for fur-

ther reading [23]. From a practical point of view, the machine model of the greatest

importance is the commonly used random-access machine (RAM) model. In theo-

retical computer science though, one often prefers the model of Deterministic Turing

Machines (DTM). A DTM M can be defined as a tuple (Γ, Q, δ) with

• A finite set Γ of symbols, called alphabet of M .

• A finite set Q of states.

• A transition function δ : Q× Γk → Q× Γk−1 × {L, S,R}k where k ≥ 2 is the

number of tapes of M .

Initially, one tape contains the input instance x ∈ Γ∗ and all other tapes are empty.

Then, M carries out the computation according to the transition function δ. The

input instance is accepted if M reaches a designated halting state qhalt ∈ Q.

Another machine model that is of great theoretical importance, is the Nondeter-

ministic Turing Machine (NTM). In contrast to an DTM, an NTM has two transition

functions δ0, δ1 and chooses one of them in each computational step. An NTM M

accepts an input instance if there is a sequence of choices between the two transition

functions such that M reaches the halting state qhalt ∈ Q.

For interesting algorithms the running time depends on the instance. In this

thesis, we consider so-called worst-case running times. For an algorithm A the worst-

case running time can be defined as a function t : N → N such that A performs at

most t(|x|) basic steps for each instance x. Note that the worst-case running time

only depends on the size of an instance. Since this notion of running time can result

in very complicated functions, we specify the worst case running time in O-notation.

For two functions f, g : N→ N we say that f ∈ O(g) if there exists a constant c such

that f(n) ≤ c ·g(n) for each sufficiently large n. We say that a problem is polynomial

time solvable if there is an algorithm that is able to compute an answer for every

instance x of the problem in O(poly(|x|)) time where poly(|x|) is a polynomial. For

each machine model there is a set of problems, that are polynomial time solvable.

Conventionally, we denote the set of all problems that are polynomial time solvable

7

on a DTM by P and we denote the set of all problems that are polynomial time

solvable on a NTM by NP. It is known that a problem is polynomial time solvable

on the RAM model if and only if it is polynomial time solvable on the DTM model.

Hence, it does not make a difference whether we use DTMs or RAMs for analyzing

the question whether or not a problem is polynomial time solvable.

The question whether or not P = NP is one of the most important open problems

in computer science. By definition, we know that P ⊆ NP and it is reasonably to

believe that this containment is proper. One reason to believe this is that there

are so-called NP-complete problems. These problems are known to be in NP but

there is no known polynomial time DTM algorithm despite an immense amount of

research. To understand the notion of NP-completeness, one first has to understand

the concept of polynomial time reducibility. We say that a problem L is polynomial

time reducible to another problem L′ and write L ≤p L′ if there is a polynomial

time computable function g : {0, 1}∗ → {0, 1}∗ such that L(x) = 1 if and only

if L′(g(x)) = 1 for every x ∈ {0, 1}∗. A problem L′ is called NP-hard if L ≤p L′

for each problem L ∈ NP. A problem L′ is called NP-complete if L′ is NP-hard

and L′ ∈ NP. If there was a polynomial time algorithm A for an NP-complete

problems L′, one could efficiently solve every problem L ∈ NP by reducing L to L′

in polynomial time and then using A to solve the instance. Hence, the NP-complete

problems are considered the hardest problems in NP.

Cook and Levin independently proved that the SAT problem is NP-complete [24,

25]. It can be formulated as follows.

SAT

Input: A boolean formula Φ over a set X = {x1, . . . , xη} of variables.

Question: Is there an assignment A : X → {true, false} that satis-

fies Φ?

There are numerous variants of SAT. We will use a special case of SAT called

(3,B2)-SAT to prove the NP-hardness in Theorem 3.2. In (3,B2)-SAT Φ is a

boolean formula in conjunctive normal form. This means that Φ is a conjunction of

clauses C = {c1, . . . , cµ}. Furthermore, in (3,B2)-SAT each clause cj ∈ C contains

exactly three literals and for each variable xi ∈ X each literal xi and ¬xi occurs

exactly twice in Φ. It is known that (3,B2)-SAT is NP-complete [26].

One year after Cook had proven the NP-completeness of SAT, Karp proved NP-

completeness for 20 further problems by polynomial time reduction [27]. We will

use two of these problems in this thesis. The first one is commonly referred to as

Vertex Cover and can be defined as follows.

Vertex Cover (VC)

Input: A graph G = (V,E) and a positive integer k.

8

Question: Is there a vertex cover of size at most k for G?

The second problem is a generalization of VC to hypergraphs. A hypergraph has

a finite vertex set X = {x1, . . . , xη}, called universe and a collection C = {C1, . . . , Cµ}
of hyper-edges. Each hyper-edge Cj ∈ C is a subset of the universe. A hitting set for

a hypergraph (X , C) is a subset H ⊆ X such that H contains at least one element

from each hyper-edge Cj ∈ C. The VC-generalization to hypergraphs is commonly

referred to as Hitting Set and can be defined as follows.

Hitting Set (HS)

Instance: A hypergraph (X , C) and a positive integer k.

Question: Is there a hitting set of size at most k for (X , C)?

We may assume that each Cj is non-empty and that each xi ∈ X occurs in at

least one subset Cj ∈ C. If |Ci| ≤ d for each subset Ci ∈ C and some d ∈ N, we call

the problem d-Hitting Set (d-HS). We will use HS and d-HS in Section 4.

Furthermore, we will use the following NP-complete graph problem, that is

closely related to VC.

Independent Set (IS)

Input: A graph G = (V,E) and a positive integer k.

Question: Does G contain an independent set of size at least k?

For any graph G, a vertex subset V ′ ⊆ V (G) is a maximum independent set if

and only if V (G) \ V ′ is a minimum vertex cover and, hence, (G, k) is a yes-instance

for IS if and only if (G, n − k) is a yes-instance for VC [28]. We will use this to

prove the NP-hardness of VC on a special class of input graphs (see Lemma 3.9).

For further reading we refer to the standard monographs [28, 23].

2.3 Parameterized Complexity

Despite an immense amount of research, there is no known algorithm that solves

an NP-hard problem in polynomial time on a DTM or RAM respectively. But

since many NP-hard problems have important applications, these problems have

to be solved anyway. There are different approaches to do so efficiently. In some

applications, one does not require an exact solution and an efficient algorithm that

approximates a solution does the job. In other applications, the input data has

special properties such that an NP-hard problem becomes efficiently solvable on

all relevant input instances. For example, VC is efficiently solvable if the input

graph is bipartite, since it is equivalent to computing a maximum matching in this

case [19]. On a simplified level this example captures a core idea of parameterized

complexity. Namely that the computational complexity of a problem may depend

9

on other properties of the instance besides its size. This idea leads to the definition

of parameterized problems and a more fine-grained complexity analysis.

Similar to a classic decision problem, a parameterized decision problem can be de-

fined as a function f : {0, 1}∗×{1}∗ → {0, 1}. An instance (x, κ) of a parameterized

decision problem contains a binary coded input x ∈ {0, 1}∗ and a parameter κ ∈ {1}∗

which is encoded in a unary alphabet. From each classical problem, we can define

numerous parameterized problems, since there are many different way to define a

parameter.

In this thesis, we study two common parameterizations for edge deletion prob-

lems. The natural parameter is the number k of edges that can be deleted, and the

dual parameter is m − k. We say that a parameterized problem is fixed-parameter

tractable if there is an algorithm A, a computable function g, and a constant c such

that the running time of A is at most g(κ) · |x|c and L(x, κ) = A(x, κ) for each

instance (x, κ). The class FPT is the set of all parameterized problems that are

fixed-parameter tractable. A notion that is equivalent to fixed-parameter tractabil-

ity, is the notion of kernelization. For a parameterized problem L, a kernelization

replaces an instance (x, κ) by a reduced instance or kernel (x′, κ′) such that:

I. κ′ ≤ κ

II. |x′| ≤ h(κ) for some function h depending only on κ

III. L(x, κ) = L(x′, κ′).

If the size of a kernel is polynomial in κ we call it a polynomial kernel.

Similar to the classical polynomial time reduction, we can define a parameter-

ized reduction. For two parameterized problems L and L′ we say that L can be

reduced to L′ by a parameterized reduction if there are functions f, g : N → N
and h : {0, 1}∗ × {1}∗ → {0, 1}∗, and a constant c such that for each instance (x, κ):

I. f(κ) = κ′,

II. h(x, κ) = x′,

III. L(x, κ) = L′(x′, κ′),

IV. h(x, κ) is computable in time g(κ) · |(x, κ)|c.

Observe that if L can be reduced to L′ by a parameterized reduction and L′ ∈ FPT,

then L ∈ FPT.

From a parameterized point of view, the class FPT corresponds to the classical

class P, since they are both the class of problems that are tractable according to the

10

respective definition of tractable problems. This poses the question about a param-

eterized class that corresponds to NP or more generally to any class of problems

that is probably not tractable.

The W-Hierarchy is a hierarchy of classes of parameterized problems. For

each t ∈ N it contains a class W[t]. A parameterized problem L′ is W[t]-hard if

each parameterized problem L ∈W[t] can be reduced to L′ by a parameterized re-

duction and L′ is called W[t]-complete if L′ is W[t]-hard and L′ ∈W[t]. For example

IS parameterized by the natural parameter k is W[1]-complete and HS parameter-

ized by the natural parameter k is W[2]-complete [29]. For a formal definition of the

W-Hierarchy, we refer to a standart monograph [30]. It is known that FPT ⊆W[1]

and W[t] ⊆ W[t+1]. And it is conjectured that these containments are proper.

Hence, no W[t]-hard problem is fixed-parameter tractable for any t. For further

reading we refer to the standard monographs [29, 30].

11

3 Classical Complexity

In this section, we will prove the NP-hardness of cP`D and cC`D. To do so, we will

give polynomial time reductions from some NP-hard problem. It is not hard to see

that the reductions we give can be computed in polynomial time and hence, we will

not further analyze the running time for the computations of the reduction.

3.1 c-colored P` Deletion

First, we consider cP`D and show that it is NP-hard even if the input graph has a

constant maximum degree and a large girth. But before we give the NP-hardness

results, we prove the following Lemma that we will need in the first proof.

Lemma 3.1. Let G = (V = {v1, . . . , vd·(`−1)}, E) be a path where any ` consecutive

vertices form a c-colored P`.

Then, S ⊆ E is an edge-deletion set of size d − 1 such that G − S is c-colored

P`-free if and only if S = {{vi, vi+1} | i mod(`− 1) = 0}.

Proof. Let S = {{vi, vi+1} | i mod(`− 1) = 0}. Since |V | = d · (`− 1) we conclude

that |S| = d − 1. We will show that G′ := G − S is P`-free and hence, G′ is c-

colored P`-free. Let V ′ ⊆ V such that the induced subgraph G[V ′] is a c-colored

P`. Since G is a path, V ′ = {vi, . . . , vi+`−1} for some i ∈ [(d − 1) · (` − 1)]. Since

|[i, i+ `− 2]| = `− 1 there is a î ∈ [i, i+ `− 2] such that î mod(`− 1) = 0. Thus, we

conclude that there is an edge e ∈ EG(V ′) such that e ∈ S. Hence, G′ is c-colored

P`-free.

Conversely, let S be an edge-deletion set of size d − 1 such that G − S is c-

colored P`-free. Let {vi, vi+1} be the j-th edge in S. We denote V1 := {v1, . . . , vi}
and V2 := {vi+1, . . . , vd·(`−1)}. Since {vi, vi+1} is the j-th edge in S, we know

that |S ∩ EG(V1)| = j − 1.

First, assume towards a contradiction that i ≥ j · (`− 1) + 1. Then,

|V1| = i ≥ j · (`− 1) + 1.

Since any ` consecutive vertices form a c-colored P`, we conclude that G[V1] contains

at least j edge-disjoint c-colored P`s. Since |S∩EG(V1)| = j−1, this is a contradiction

to the condition that G− S is c-colored P`-free. Thus, i ≤ j · (`− 1).

Next, assume towards a contradiction that i ≤ j · (`− 1)− 1. Then,

|V2| = d · (`− 1)− i

≥ (d− j) · (`− 1) + 1.

Since any ` consecutive vertices form a c-colored P`, we conclude that G[V2] contains

at least (d−j) edge-disjoint c-colored P`s. Hence, |S∩EG(V2)| ≥ (d−j). We conclude

12

that |S| ≥ d, since |S ∩ EG(V1)| = j − 1 and {vi, vi+1} ∈ S. This is a contradiction

to the condition that |S| = d− 1. Thus, i ≥ j · (`− 1).

Hence, we know that i = j ·(`−1). Thus, the j-th edge in S is {vj·(`−1), vj·(`−1)+1}
and therefor S = {{vi, vi+1} | i mod(`− 1) = 0}.

Now we will show that cP`D is NP-hard for ` ≥ 4 even if the input graph has

a some how simple structure. From this result we will be able to prove that cP`D

remains NP-hard on non-cascading input graphs if ` ≥ 4 and c ∈ [2, `− 2].

Theorem 3.2. cP`D is NP-hard for each ` ≥ 4 and each c ∈ [2, `− 2] even if the

maximum degree of G is three and the girth of G is greater than 2 · d · ` for any

constant d ≥ 1.

Proof. To show the NP-hardness of cP`D for ` ≥ 4 and c ∈ [2, `− 2] we give a

polynomial time reduction from the NP-complete (3,B2)-SAT problem [26].

Construction: Let Φ be a (3,B2)-SAT formula with clauses C = {c1, . . . , cµ}
and variables X = {x1, . . . , xη}. To construct an equivalent instance (G = (V,E), k)

of cP`D from Φ we use the following gadgets.

For each clause cj ∈ C we construct a clause gadget Cj as follows. The clause

gadget Cj consists of three vertex sets U1
j , U

2
j and U3

j of ` − 1 vertices each. For

each p ∈ [3], we denote the vertices in Up
j by up,1j , . . . , up,`−1j . For s ∈ [`− 2] we add

edges {up,sj , up,s+1
j }. If s < c we add an edge of color s. Else we add an edge of

color c. In other words {up,1j , up,2j } is blue, {up,2j , up,3j } is red and the color of the

next edges depends on c. Observe that G[Up
j] is a c-colored P`−1. We connect the

three P`−1s by identifying u1,1j = u2,1j = u3,1j =: uj (see Figure 1 for an example).

For each variable xi ∈ X we construct a variable gadget Xi as follows. First,

let z := d · (`− 1) + 1. Note that z is the minimum number of vertices on a path

that contains d edge disjoint P`s. The variable gadget Xi consists of four vertex sets

of z vertices T 1
i , T

2
i , F

1
i , F

2
i and a vertex set of ` − 4 vertices Wi := {w1

i , . . . , w
`−4
i }.

Note that Wi = ∅ for ` = 4. For q ∈ [2] the vertices in T qi are denoted by

tq,1i , . . . , tq,zi and the vertices in F q
i are denoted by f q,1i , . . . , f q,zi . For s ∈ [z − 1]

we add edges {tq,si , t
q,s+1
i } and {f q,si , f q,s+1

i }. If 0 < s mod(`−1) < c we add an edge

with color s mod(`−1) and else we add an edge with color c. So if s mod(`−1) = 1

we add an blue edge, if s mod(`− 1) = 2 we add a red edge and otherwise, the edge

color depends on c.

We connect T 1
i and T 2

i by identifying t1,1i = t2,1i =: ti and analogously we con-

nect F 1
i and F 2

i by identifying f 1,1
i = f 2,1

i =: fi. If ` = 4 we add a red edge {ti, fi}.
If ` > 4 we connect ti and fi by a (c−1)-colored path with vertices in {ti}∪Wi∪{fi}
that does not contain a blue edge (see Figure 2). Since |{ti}∪Wi∪{fi}| = `−2 ≥ c,

this path always has at least (c− 1) edges. Hence, we can always connect ti and fi

by a (c− 1)-colored path.

13

U1
j U2

j U3
j

uj

u1,2j u2,2j u3,2j

u1,3j u2,3j u3,3j

u1,`−1j u2,`−1j u3,`−1j

(a)

uj

u1,4j u2,4j u3,4j

(b)

uj

u1,4j u2,4j u3,4j

(c)

Figure 1: (a) General structure of a clause gadget Cj. The black dotted line repre-

sents a path containing ` − 3 vertices in total. (b) Clause gadget for ` = 5, c = 2.

(c) Clause gadget for ` = 5, c = 3.

Note that any ` consecutive vertices in G[T 1
i], G[T 2

i], G[F 1
i] and G[F 2

i] form

a c-colored P`. Hence, G[T 1
i], G[T 2

i], G[F 1
i] and G[F 2

i] are four paths, each con-

taining d edge disjoint c-colored P`s. And since {tq,2i , ti} ∈ Eb(G) and ti and fi

are connected by (c − 1)-colored P`−1 with no blue edge, the induced subgraphs

G[{tq,2i , ti, w
1
i , . . . , w

`−4
i , fi, f

q′,2
i }] are also c-colored P`s for q, q′ ∈ [2].

Then, we denote the following edge sets (see Figure 2b).

T bi := {{tq,si , t
q,s+1
i } ∈ E | s mod(`− 1) = 1, q ∈ [2]}.

F b
i := {{f q,si , f q,s+1

i } ∈ E | s mod(`− 1) = 1, q ∈ [2]}.

T ri := {{tq,si , t
q,s+1
i } ∈ E | s mod(`− 1) = 2, q ∈ [2]}.

F r
i := {{f q,si , f q,s+1

i } ∈ E | s mod(`− 1) = 2, q ∈ [2]}.

Note that |T ri | = |F r
i | = |T bi | = |F b

i | = 2 · d.

To connect the variable gadgets with the clause gadgets we identify vertices as

follows (see Figure 3). For p ∈ [3], q ∈ [2], any variable xi ∈ X and any clause cj ∈ C
we set

up,2j =

t
q,z
i if the literal xi has its q-th occurence as the p-th literal in cj

f q,zi if the literal ¬xi has its q-th occurence as the p-th literal in cj.

Note that for each clause gadget Cj and p ∈ [3] the vertex up,2j is identified with

exactly one vertex from a variable gadget and for each variable gadget Xi and q ∈ [2]

the vertices tq,zi and f q,zi are each identified with exactly one vertex from a clause

gadget, since each literal occurs exactly twice in Φ.

It is easy to see that the maximum degree of G is three. Furthermore, the girth

of G is greater or equal to 2 · d · `, since the smallest possible cycle in G contains

14

T 2
i

T 1
i

Wi

F 2
i

F 1
i

t1,zi t1,2i

t2,zi t2,2i

ti w1
i w`−4i fi

f 1,z
if 1,2

i

f 2,z
if 2,2

i

(a)

t1,9i t1,5i

t2,9i t2,5i

ti w1
i fi

f 1,5
i f 1,9

i

f 2,5
i f 2,9

i

(b)

t1,9i t1,5i

t2,9i t2,5i

ti w1
i fi

f 1,5
i f 1,9

i

f 2,5
i f 2,9

i

(c)

Figure 2: (a) The generalized structure of a variable gadget Xi. Note that Wi = ∅
if ` = 4. The black line represents an edge of color c. (b) An exemplary variable

gadget for ` = 5, c = 2, d = 2. The red edges that are in T ri or F r
i are represented

as solid lines, while the other red edges are represented as dotted lines. (c) An

exemplary variable gadget for ` = 5, c = 3, d = 2.

the vertices from T 1
i ∪ T 2

i ∪ {uj} or F 1
i ∪ F 2

i ∪ {uj} respectively. Such a cycle will

be constructed, when there is a clause cj = (xi ∨ xi ∨ . . .) or cj = (¬xi ∨ ¬xi ∨ . . .)
in Φ. We complete the construction by setting k = 4 · d · η + 2 · µ.

Intuition: Before we prove the correctness of the reduction, we informally de-

scribe its idea. Each variable gadget contains 4 · d edge disjoint c-colored P`s. So

we have to delete at least 4 · d edges per variable gadget. We can make a variable

gadget c-colored P`-free with 4 ·d edge deletions by deleting the edges in T ri and F b
i ,

or the edges in F r
i and T bi . The former models the assignment A(xi) = true, and

15

Cj

X3

X2

X1

uj

u1,2j = t2,41

u3,2j = t1,43

t1,41

t1 f1

f 2,4
1

f 1,4
1

f 2,4
2

f2 t2
t1,42

t2,42

t2,43

t3 f3
f 1,4
3

f 2,4
3

Figure 3: This figure shows a part of the constructed graph for ` = 4, d = 1. The left

side of the figure shows the clause gadget Cj for a clause cj = (x1 ∨ ¬x2 ∨ x3). The

right side of the figure shows the variable gadgets X1, X2 and X3. Note that x1 has

its second occurrence as a positive literal in cj, x2 has its first occurrence as a

negative literal in cj and x3 has its first occurrence as a positive literal in cj. The

clause gadgets where the variables have their other occurrences are not shown in the

figure.

the later models the assignment A(xi) = false. If we delete T ri and F b
i the ver-

tices f 1,z
i and f 2,z

i are part of a (c − 1)-colored P`−1 with no blue edges, while the

vertices t1,zi and t2,zi are part of a (c − 1)-colored P`−2. If we delete F r
i and T bi , it

is the other way around. We will be able to make a clause gadget c-colored P`-free

with two edge deletions if and only if there is at least one vertex up,2j that is not

part of a (c− 1)-colored P`−1 from the connected variable gadget. Thus, we will be

able to make the constructed graph c-colored P`-free with exactly k edge deletions

if and only if each clause is satisfied by at least one variable.

Before we give a proof for the correctness of the reduction, we formalize a part

of the intuition in the following Claim.

Claim 3.3. Let G′ := G − (F b
i ∪ T ri) and G′′ := G− (T bi ∪ F r

i) for any variable

gadget Xi. Then:

I. No blue edge eb ∈ EG′(Xi) that is part of a P` in G′.

16

II. No blue edge eb ∈ EG′′(Xi) that is part of a P` in G′′.

Proof. We only prove I , since the proof for II works analogously. Let eb ∈ EG′(Xi)

be a blue edge. Since F b
i ∩ E(G′) = ∅, we conclude that eb ∈ T bi . Hence, we know

that eb = {tq,si , t
q,s+1
i } for some s such that s mod(`−1) = 1 and q ∈ [2]. We consider

two cases.

(Case 1) s = 1. By definition of T ri we know that {tq,2i , tq,3i } ∈ T ri . We can conclude

that degG′(t
q,2
i) = 1, since T ri ∩ E(G′) = ∅ . Furthermore, since F b

i ∩ E(G′) = ∅,
we conclude that degG′(fi) = 1. Thus, the longest path in G′ containing eb is

the induced subgraph G′[{tq,2i , ti} ∪Wi ∪ {fi}]. By construction, it is easy to see

that |{tq,2i , ti} ∪Wi ∪ {fi}| = `− 1. Thus, eb is not part of a P` in G′.

(Case 2) s > 1. It is easy to see that

s mod(`− 1) = 1 ⇔ (s+ 1) mod(`− 1) = 2 (1)

⇔ (s+ 2− `) mod(`− 1) = 2 (2)

From equation (1) we conclude that {tq,s+1
i , tq,s+2

i } ∈ T ri and from equation (2)

we conclude that {tq,s+2−`
i , tq,s+3−`

i } ∈ T ri . Since T ri ∩ E(G′) = ∅, we can con-

clude that degG′(t
q,s+1
i) = 1 and degG′(t

q,s+3−`
i) = 1. Thus, the longest path in G′

containing eb is the induced subgraph G′[{tq,s+3−`
i , . . . , tq,s+1

i }]. It is easy to see

that |{tq,s+3−`
i , . . . , tq,s+1

i }| = `− 1. Thus, eb is not part of a P` in G′.

Hence, no blue edge from EG′(Xi) is part of a P` in G′. 4

Correctness : Now we will show the correctness of the reduction by proving that

there is a satisfying assignment for Φ if and only if (G, k) is a yes-instance of cP`D.

(⇒) Let A : X → {true, false} be a satisfying assignment for Φ. We will prove

that (G, k) is a yes-instance of cP`D by constructing an edge-deletion set S of size k

such that G− S is c-colored P`-free.

For each variable xi ∈ X we add 4 ·d edges to S. If A(x) = true, then we add T ri

and F b
i to S. If A(x) = false, then we add F r

i and T bi to S. Since A satisfies Φ,

there is at least one variable xi ∈ X such thatA(xi) satisfies cj for each clause cj ∈ C.
Let p ∈ [3] such that the p-th literal of cj satisfies cj. Let {α, β} := [3] \ {p}. We

add {uj, uα,2j } and {uj, uβ,2j } to S. Note that we added exactly two edges per clause.

Hence, |S| = 4 · d · η + 2 · µ = k.

Next, we show that G′ := G − S is c-colored P`-free. Since G is a c-colored

graph, it is sufficient to prove that no blue edge is part of a c-colored P` in G′. First,

let eb ∈ EG′(Xi) be a blue edge from any variable gadget Xi. Since either T ri , F
b
i ⊆ S

or F r
i , T

b
i ⊆ S, we can conclude from Claim 3.3 that eb is not part of a P` in G′.

Note that the proof for Claim 3.3 shows that eb can neither be part of a c-colored P`

with edges from Xi, nor be part of a c-colored P` with edges from a connected

17

clause gadget Cj. Next, let {uj, up,2j } ∈ E ′G(Cj) be the blue edge in G′ from any

clause gadget Cj. By construction of S we know that degG′(uj) = 1. This implies

that {uj, up,2j } is only part of a P`−1 in G′[Cj]. Hence, we can conclude that any

c-colored P` containing {uj, up,2j } has to contain edges from a variable gadget.

We know by construction that up,2j is identified with a vertex from a vari-

able gadget Xi such that A(xi) satisfies cj. Without loss of generality we as-

sume A(xi) = true. Then, up,2j is identified with a vertex tq,zi for some q ∈ [2]

and T ri , F
b
i ⊆ S. Assume towards a contradiction that there is a vertex set V ′ ⊆ V

such that {uj, up,2j } ⊆ V ′ and G′[V ′] is a c-colored P`. Since degG′(uj) = 1, we

conclude that {tq,z−`+2
i , . . . , tq,zi } ⊆ V ′. Since (z − `+ 2) mod(`− 1) = 2 we know

by definition of T ri that {tq,z−`+2
i , tq,z−`+3

i } ∈ T ri . And since T ri ⊆ S, we conclude

that {tq,z−`+2
i , tq,z−`+3

i } ∈ S. Hence, G′[V ′] is not a c-colored P` This is a contradic-

tion to the assumption. Hence, {uj, up,2j } is not part of a c-colored P` in G′. Thus,

no blue edge is part of a c-colored P` in G′. Hence, G′ is c-colored P`-free.

(⇐) Let S be an edge-deletion set with |S| ≤ k such that G − S is c-colored

P`-free. Before we define a satisfying assignment A : X → {true, false} for Φ, we

show two Claims. First, we show how many edges from each variable gadget and

clause gadget have to be in S.

Claim 3.4. |S∩EG(Xi)| = 4·d for any variable gadget Xi and |S∩EG(Cj)∩Eb| = 2

for any clause gadget Cj.

Proof. First, we will show that |S ∩ EG(Cj)| ≥ 2. Assume towards a contradic-

tion that |S ∩ EG(Cj)| < 2. First, consider the vertex sets V1 := U1
j ∪ {u

2,2
j }

and V2 := U1
j ∪ {u

3,2
j }. Note that G[V1] and G[V2] are two different c-colored P`s and

that V1 ∩ V2 = U1
j . Hence, we conclude that |S ∩U1

j | = 1. Next, consider the vertex

set V3 := U2
j ∪{u

3,2
j }. The induced subgraph G[V3] is a c-colored P` and V3∩U1

j = ∅.
This is a contradiction, since G− S is c-colored P`-free. Hence, |S ∩ EG(Cj)| ≥ 2.

By construction G[Xi] contains 4 · d edge disjoint c-colored P`s. Hence, we

know that |S ∩ EG(Xi)| ≥ 4 · d. Since |S| ≤ k = 4 · d · η + 2 · µ, we can conclude

that |S ∩ EG(Xi)| = 4 · d and |S ∩ EG(Cj)| = 2.

Second, we will show that this implies that |S ∩ EG(Cj) ∩ Eb| = 2. Assume to-

wards a contradiction that |S ∩ EG(Cj) ∩ Eb| < 2. Without loss of generality we

can assume that {uj, u1,2j }, {uj, u
2,2
j } /∈ S. Let V1 := U1

j ∪ {u
2,2
j }, V2 := U2

j ∪ {u
1,2
j }

and V3 := U3
j ∪ {u

1,2
j }. The induced subgraphs G[V1], G[V2] and G[V3] are three c-

colored P`s. This is a contradiction, since S ∩ (EG(Vα) ∩ EG(Vβ)) = ∅ for α, β ∈ [3]

with α 6= β and |S ∩ EG(Cj)| = 2. Hence, |S ∩ EG(Cj) ∩ Eb| = 2. 4

In the next Claim, we show more specifically which edges from a variable gad-

get Xi have to be in S.

18

Claim 3.5. For each variable gadget Xi we have S ∩ EG(T 1
i ∪ T 2

i) = T bi

or S ∩ EG(F 1
i ∪ F 2

i) = F b
i .

Proof. First, we show that EG({ti, t1,2i , t2,2i }) ⊆ S or EG({fi, f 1,2
i , f 2,2

i }) ⊆ S. Con-

sider the four vertex sets in X̃i := {T 1
i , T

2
i , F

1
i , F

2
i }. By construction, for each

set A ∈ X̃i the induced subgraph G[A] contains d edge disjoint c-colored P`s, and

for each A,B ∈ X̃i with A 6= B we know that EG(A) ∩ EG(B) = ∅. From Claim 3.4

we know that |S ∩ EG(Xi)| = 4 · d. Hence, we conclude that |S ∩ EG(A)| = d. Fur-

thermore, we know by construction that EG(A) ∩ EG(Wi ∪ {ti, fi}) = ∅. Hence, we

conclude that S ∩ EG(Wi ∪ {ti, fi}) = ∅. This implies that EG({ti, t1,2i , t2,2i }) ⊆ S

or EG({fi, f 1,2
i , f 2,2

i }) ⊆ S, since the induced subgraphs G[Wi ∪ {ti, fi, tq,2i , f q
′,2
i }] are

c-colored P`s for each q, q′ ∈ [2].

Without loss of generality we assume EG({ti, t1,2i , t2,2i }) ⊆ S. We can conclude

that |S ∩ (T 1
i \ {ti})| = d− 1 = |S ∩ (T 2

i \ {ti})|, since |S ∩ T 1
i | = d = |S ∩ T 2

i |, as

we showed above. Furthermore, the induced subgraphs G[T 1
i \ {ti}] and G[T 2

i \ {ti}]
are paths of d · (` − 1) vertices such that any ` consecutive vertices form a c-

colored P`. Thus, from Lemma 3.1 we conclude T bi ⊆ S. Since |T bi | = 2 · d and

the induced subgraph G[F 1
i ∪ F 2

i] contains 2 · d edge disjoint c-colored P`s, we con-

clude that S ∩ EG(T 1
i ∪ T 2

i) = T bi from Claim 3.4. Thus, S ∩ EG(T 1
i ∪ T 2

i) = T bi

or S ∩ EG(F 1
i ∪ F 2

i) = F b
i . 4

Now, we will show how to construct an equivalent solution S ′ such that ei-

ther S ′ ∩ EG(Xi) = F b
i ∪ T ri or S ′ ∩ EG(Xi) = T bi ∪ F r

i for each variable gadget Xi.

If S ∩ EG(T 1
i ∪ T 2

i) = T bi , then we can conclude that S ∩ EG(Xi) = T bi ∪ F such

that F ⊆ EG(F 1
i ∪ F 2

i) from Claim 3.5. We will show that S ′ := (S \ F) ∪ F r
i is

an equivalent solution. Since |T bi | = 2 · d, we can conclude that |F | = 2 · d from

Claim 3.4. Hence, it is easy to see that |S ′| = |S|. Now, we show that G′ := G− S ′

is c-colored P`-free. Since G is constructed from a (3,B2)-SAT formula, we know

that for each clause gadget Cj and each p ∈ [3], the vertex up,2j is identified with

exactly one vertex from a variable gadget. Furthermore, we know that the three

edges {uj, up,2j } are the only blue edges in EG(Cj) and that G is a c-colored graph.

Hence, it is sufficient to show that for any variable gadget Xi there is no blue

edge eb ∈ EG′(Xi) that is part of a c-colored P` in G′ and for each clause gadget

with up,2j = tq,zi or up,2j = f q,zi for some p ∈ [3], q ∈ [2], the blue edge {uj, up,2j } is

not part of a c-colored P` in G′. Since S ′ ∩ EG(Xi) = F b
i ∪ T ri , it follows by Claim

3.3 that no blue edge from EG′(Xi) is part of a c-colored P` in G′. Let Cj be a

clause gadget such that up,2j = tq,zi or up,2j = f q,zi for some p ∈ [3], q ∈ [2]. From

Claim 3.4 we conclude that S ′ contains exactly two blue edges from EG(Cj). Hence,

degG′(uj) = 1. We consider two cases.

19

(Case 1) up,2j = tq,zi for some p ∈ [3], q ∈ [2]. We will show that {uj, up,2j } ∈ S ′. As-

sume towards a contradiction that {uj, up,2j } /∈ S ′. Since S ′ ∩ EG(Cj) = S ∩ EG(Cj),

we conclude that {uj, up,2j } /∈ S. And since S ∩ EG(T 1
i ∪ T 2

i) = T bi , we conclude that

the induced subgraph G[{uj, tq,zi , . . . , tq,z−`+2
i }]− S is a c-colored P`. This is a con-

tradiction, since G−S is c-colored P` free. Hence, {uj, up,2j } ∈ S ′ and thus, {uj, up,2j }
is not part of a c-colored P` in G′.

(Case 2) up,2j = f q,zi for some p ∈ [3], q ∈ [2]. Since it is obvious that {uj, up,2j }
is not part of a c-colored P` in G′ if {uj, up,2j } ∈ S ′, we only consider the case

in which {uj, up,2j } /∈ S ′. Since (z − `+ 2) mod(`− 1) = 2, we know by definition

of F r
i that {f q,z−`+2

i , f q,z−`+3
i } ∈ F r

i . This implies that degG′(f
q,z−`+3
i) = 1, since

F r
i ⊆ S ′. Hence, we can conclude that the longest path in G′ that contains {uj, up,2j }

is the induced subgraph G′[V ′ := {uj, f q,zi , . . . , f q,z−`+3
i }]. It is not hard to see

that |V ′| = `− 1. Thus, {uj, up,2j } is not part of a c-colored P` in G′.

Hence, no blue edge is part of a c-colored P` in G′ and therefor, S ′ is a solution

such that S ′ ∩ EG(Xi) = T bi ∪ F r
i .

If S ∩ EG(T 1
i ∪ T 2

i) 6= T bi , then we conclude that S ∩ EG(F 1
i ∪ F 2

i) = F b
i from

Claim 3.5. Hence, S ∩ EG(Xi) = F b
i ∪ T such that T ⊆ EG(T 1

i ∪ T 2
i). With an

analogous argument, we can show that S ′ := (S \ T) ∪ T ri is an equivalent solu-

tion. Thus, we have shown how to construct a solution S ′ from S such that ei-

ther S ′ ∩ EG(Xi) = F b
i ∪ T ri or S ′ ∩ EG(Xi) = T bi ∪ F r

i

Now we can define a satisfying assignment A : X → {true, false} for Φ as:

A(xi) :=

true if S ′ ∩ EG(Xi) = F b
i ∪ T ri

false if S ′ ∩ EG(Xi) = T bi ∪ F r
i .

It remains to show that A satisfies Φ. Let cj ∈ C. We know that there is

exactly one p ∈ [3] such that {uj, up,2j } /∈ S. Let xi ∈ X be the variable that

occurs as the p-th literal in cj. If the p-th literal in cj is a positive literal, we know

that the vertex up,2j is identified with the vertex tq,zi from the variable gadget Xi

for q ∈ [2]. Since S ′ is a solution and {uj, up,2j } /∈ S ′, we conclude that T ri ⊆ S ′.

Hence, S ′ ∩ EG(Xi) = F b
i ∪ T ri . Thus, A(xi) = true and therefore A(xi) satisfies

cj. If the p-th literal in cj is a negative literal, the argument works analogously. So

each clause cj is satisfied by the assignment A and therefore Φ is satisfied by A.

If the girth of a graph G is greater than ` it is not hard to see, that each subgraph

that is isomorphic to a c-colored P` is an induced subgraph. Hence, we can conclude

the following.

Corollary 3.6. cP`D is NP-hard for each ` ≥ 4 and c ∈ [2, `− 2] on non-cascading

graphs.

Next, we consider the case c = `− 1. We will prove that (`− 1)P`D is NP-hard.

20

Theorem 3.7. (` − 1)P`D is NP-hard for any ` ≥ 4 even if the maximum degree

of G is 16.

Proof. We prove this Theorem by giving a polynomial time reduction from the NP-

hard 2P3D Problem [14].

Construction: Let (G, k) be an instance of 2P3D. We will show how to con-

struct an equivalent instance (H, k) of (` − 1)P`D for any ` ≥ 4. We use the

instance (G, k) and add vertices and edges with new colors. Hence, V (G) ⊆ V (H)

and E(G) ⊆ E(H). For each vertex v ∈ V (G) we add degG(v)·(`−3) new vertices vji

for i ∈ [degG(v)] and j ∈ [`− 3] to V (H). Recall that yellow is the third color. We

add yellow edges {v, v1i } for each i ∈ [degG(v)]. And for each j ∈ [`− 4] we add an

edge {vji , v
j+1
i } with color j + 3. Note that for each i ∈ [degG(v)] the induced sub-

graph H[{v, v1i , . . . , v`−3i }] is an (`− 3)-colored P`−2. Hence, each vertex v ∈ V (G) is

part of degG(v) edge disjoint (`−3)-colored P`−2 in H (see Figure 4). The budget k

remains the same.

By construction, we know that degH(v) = 2 · degG(v) for each v ∈ V (G), and

that degH(vji) ∈ [2] for the new vertices vji ∈ V (H) \ V (G). Since 2P3D is NP-hard

even if the maximum degree of G is eigth [14], the correctness of the reduction will

imply the NP-hardness even if the maximum degree of H is 16.

Correctness : We will now prove the correctness of the reduction by showing

that (G, k) is a yes-instance of 2P3D if and only if (H, k) is a yes-instance

of (`− 1)P`D.

(⇒) Let S be an edge-deletion set of size at most k such thatG−S is 2-colored P3-

free. Since H is a (`− 1)-colored graph, each (`− 1)-colored P` in H has to include

exactly one red edge and exactly one blue edge. By construction, we know that an

edge e ∈ E(H) is red or blue if and only if e ∈ E(G). Since v1i is the only vertex

from {v1i , . . . , v`−3i } that is adjacent to a vertex from V (G) for each i ∈ [degG(v)],

we conclude that each (`−1)-colored P` in H has to include an induced 2-colored P3

from G. Since G− S is 2-colored P3-free, H − S is (`− 1)-colored P`-free. Thus, S

is a solution for (H, k).

(⇐) Let S be an edge-deletion set of size at most k such that H − S is (`− 1)-

colored P`-free.

First, we will show how to construct an equivalent solution S ′ with |S ′| ≤ |S|
such that S ′ only contains blue, red and yellow edges. Note that this is only neces-

sary if ` > 4. Let {vji , v
j+1
i } ∈ S be an edge with color c > 3. Let V ′ ⊆ V (H) be

a vertex set such that vji , v
j+1
i ∈ V ′ and H[V ′] is an (` − 1)-colored P`. Since H is

an (` − 1)-colored graph, each (` − 1)-colored P` has to include a red edge and

a blue edge. By construction, the only vertices, to which blue and red edges

can be incident, are the vertices from V (G). Hence, we conclude that v ∈ V ′.

21

x y

w

u v

(a)

x y

w

u v

y12 yc−22

y11 yc−21

w1
4 wc−24

w1
3 wc−23

v11 vc−21

x12xc−22

x11xc−21

w1
2wc−22

w1
1wc−21

u11uc−21

(b)

Figure 4: (a) A 2-colored Graph G. (b) The graph H with the new vertices and

edges. The black dotted lines each represent a (`− 4)-colored path containing `− 3

with no blue, red or yellow edges.

Thus, S ′ := (S \ {vji , vij+1}) ∪ {{v, v1i }} is an equivalent solution that only includes

blue, red and yellow edges.

Second, we will show how to construct an equivalent solution S ′′ from S ′ that

only contains blue and red edges. Recall that EH({v}, {v1i | i ∈ [degG(v)]}) denotes

the set of all yellow edges that are incident to a vertex v ∈ V (G). Let {v, v1i } ∈ S ′

be a yellow edge. We have to consider two cases.

(Case1) EH({v}, {v1i | i ∈ [degG(v)]}) ⊆ S ′. Since G is a (` − 1)-colored graph,

we know by construction that each (` − 1)-colored P` that contains the vertex v,

has to contain a red or blue edge that is incident to v. Thus, we can construct an

equivalent solution by swapping the degG(v) yellow edges that are incident to v with

the degG(v) blue or red edges that are incident to v.

We set S ′′ := (S ′ \ EH({v}, {v1i | i ∈ [degG(v)]})) ∪ EG({v}, NG(v)). Since there

are no red or blue edges inH−S ′′ that are incident to v, we conclude that v is not part

of a (`−1)-colored P` in H−S ′′ and therefor no edge in EH({v}, {v1i | i ∈ [degG(v)]})
is part of a (` − 1)-colored P` in H − S ′′. Hence, S ′′ is an equivalent solution with

no yellow edges.

(Case 2) EH({v}, {v1i | i ∈ [degG(v)]}) * S ′. Then, for some α ∈ [degG(v)] there is

a yellow edge {v, v1α} /∈ S ′. Let {v, v1β} ∈ S ′ such that β 6= α. Since S ′ is a solution

and H[{v, v1α, . . . , vc−2α }] ∼= H[{v, v1β, . . . , vc−2β }], we conclude that S ′ \ {v, v1β} is a

solution. Hence, we set S ′′ := (S ′\EH({v}, {v1i | i ∈ [degG(v)]} and get an equivalent

solution with no yellow edges.

Thus, S ′′ only contains red and blue edges. It remains to show that S ′′ is a

solution for (G, k). Assume towards a contradiction that there is an induced 2-

colored P3 in G − S ′′. Without loss of generality, this implies that there is an

22

edge set {{u, v}{v, w}} ⊆ (E(G) \ S ′′) so that {u, v} is a blue edge, {v, w} is a red

edge and {u,w} /∈ (E(G) \ S ′′). Since S ′′ only contains blue or red edges, we can

conclude that there is a vertex set Uα := {u, u1α, . . . , u`−3α } such that H[Uα] − S ′′

is an induced (` − 3)-colored P`−2 with no blue or red edges. Hence, we conclude

that H[Uα∪{v, w}] is an induced (`−1)-colored P`. This is a contradiction, since S ′′

is an solution for (H, k). Hence, G− S ′′ is 2-colored P3-free. Thus, S ′′ is a solution

for (G, k).

Since 2P3D is NP-hard [14] and 1P`D is NP-hard [12], we can conclude the

following from Theorem 3.2 and Theorem 3.7.

Corollary 3.8. cP`D is NP-hard for each ` ≥ 3 and each c ∈ [`− 1].

3.2 c-colored C` Deletion

Next, we analyze the computational complexity of cC`D. The problem is known to

be NP-hard for any ` ≥ 3 and c = 1 [5]. We will show that cC`D is NP-hard for

any ` ≥ 3 and any c ∈ [`]. But before we consider cC`D, we establish an NP-hardness

result for VC on C3-free and tripartite graphs that we will use in our reduction.

Lemma 3.9. VC is NP-hard even if G is C3-free and tripartite.

Proof. The IS problem is NP-hard on 2-subdivision graphs [31]. Since (G, k) is a

yes-instance of IS if and only if (G, n− k) is a yes-instance of VC [28], we conclude

that VC is NP-hard on 2-subdivision graphs. Since each 2-subdivision graph is C3-

free and tripartite, VC is NP-hard on C3-free and tripartite graphs.

Now we can show the NP-hardness of cC`D for c = `. With this result we will

be able to prove the NP-hardness for all c ∈ [`].

Theorem 3.10. `C`D is NP-hard for any ` ≥ 3 even if the girth of G is ` and

every C` in G is `-colored.

Proof. We give a polynomial time reduction from the NP-hard VC problem on C3-

free and tripartite graphs (see Lemma 3.9). Note that this reduction is very similar

to the one given by Yannakakis [5] to prove the NP-hardness for c = 1.

Let (H, k) be an instance of VC such that H is tripartite and C3-free. Before

we describe how to construct an equivalent instance (G, k) of `C`D, we define two

functions to color the vertices and edges of H. Since H is tripartite, there is a

function ϕ : V (H)→ [3] such that ϕ(u) 6= ϕ(v) for each edge {u, v} ∈ E(H). Hence,

there is exactly one γ ∈ [3] \ {ϕ(u), ϕ(v)}. Thus, ψ : E(H)→ [3] with ψ({u, v}) = γ

is a well defined function.

23

(a)

α

(b)

α

(c)

Figure 5: (a) A tripartite, C3-free graph H. (b) The graph constructed on input (a)

if ` = 3. (c) The graph constructed on input (a) if ` = 4.

Construction: Now we show how to construct (G, k). If ` = 3, then we assign

the color ψ({u, v}) to each edge {u, v} ∈ E(H). If ` > 3, then we subdivide each

edge {u, v} ∈ E(H) with vertices W uv := {wuv1 , . . . , wuv`−3}. We then color the

edges as follows. We assign color ψ({u, v}) to the edge {u,wuv1 } and color ` to the

edge {wuv`−3, v}. For i ∈ {1, . . . , `−4}, the edges {wuvi , wuvi+1} are assigned color i+ 3.

Hence, the induced subgraph G[{u, v} ∪ W uv] is an (` − 2)-colored P`−1 with all

colors except ϕ(u) and ϕ(v). Then, we add a vertex α. To complete the reduction

we add an edge {v, α} with color ϕ(v) for each v ∈ V (H). The budget k remains

the same.

Before we show the correctness of the reduction we prove the following Claim

about the structure of G.

Claim 3.11. The girth of G is ` and every C` in G is `-colored.

Proof. Obviously (G, k) is a trivial yes-instance if the girth of G is greater than `.

Since H is C3-free and every edges in E(H) corresponds to a induced P`−1 in G, we

conclude that the girth of G[V \{α}] is greater than `. Furthermore, we know by con-

struction that for each edge {u, v} ∈ E(H) the induced subgraph G[{α, u, v} ∪W uv]

is an `-colored C`, since u and v are connected by an (` − 2)-colored P`−1 with all

colors except ϕ(u) and ϕ(v), the edge {u, α} has color ϕ(u) and the edge {v, α}
has color ϕ(v). Hence, we conclude that the girth of G is ` and every C` in G

is `-colored. 4

Correctness : To show the correctness of the reduction, we prove that (H, k) is a

yes-instance of VC if and only if (G, k) is a yes-instance of `C`D.

(⇒) Let V ′ ⊆ V (H) be a vertex cover of size at most k. Consider the edge-

deletion set S := {{v, α} | v ∈ V ′}. Since |V ′| = |S|, we know that |S| ≤ k. To

show that G′ = G − S is C`-free, it is sufficient to show that α is not part of a C`

in G′. Let {α, v} ∈ E(G′). By construction we know that v ∈ V (H) and v /∈ V ′.

24

Assume towards a contradiction that {v, α} is part of a C`. Then, there is an

edge {u, α} ∈ E(G′) such that u 6= v and u is connected to v by an induced P`−1.

This implies that u ∈ V (H) and u /∈ V ′. Since u, v ∈ V (H) and u is connected

to v by induced P`−1 in G, we can conclude that {u, v} ∈ E(H). But that is a

contradiction, since V ′ is a vertex cover of H and v, u /∈ V ′. Hence, G′ is C`-free.

(⇐) Let S be an edge-deletion set of size at most k such that G′ := G − S is

`-colored C`-free. Let E ′ := {{u, v} ∈ E(G) | u, v 6= α} be the set of edges from G

that are not incident with α. We observe that each edge e ∈ E ′ is part of at most one

C` in G. Since α is part of every C` in G, we know that there is a vertex β ∈ V (G)

such that S ′ = (S \ {e})∪ {{α, β}} is an equivalent solution. Since β is adjacent to

α, we can conclude that β ∈ V (H).

To finish the proof, we show that V ′ := {β | {α, β} ∈ S ′} is a vertex cover

for H. Let {v1, v2} ∈ E(H) be an edge from H. Assume towards a contradiction

that v1, v2 /∈ V ′. This implies that {α, v1}, {α, v2} /∈ S ′. By construction, we know

that v1 and v2 are connected by an induced P`−1 that consists of edges from E ′ and

contains all colors except ϕ(v1) and ϕ(v2). Since {α, v1} has color ϕ(v1), {α, v2} has

color ϕ(v2) and S ′ ∩ E ′ = ∅, we conclude that v1 and v2 are part of a `-colored C`

in G′. That is a contradiction, since G′ is `-colored C`-free. So v1 ∈ V ′ or v2 ∈ V ′.
Hence, V ′ is a vertex cover for H.

Now we will use this result to prove the NP-hardness of cC`D for all c ∈ [`− 1].

Lemma 3.12. cC`D is NP-hard for each c ∈ [`− 1] even if the girth of G is ` and

each C` in G is c-colored.

Proof. We give a polynomial time reduction from `C`D on graphs where each C`

is `-colored.

Construction: Let (H, k) be an instance of `C`D where the girth of H is `

and each C` in H is `-colored. To construct an equivalent instance (G, k) of cC`D

we recolor the edges. For each α ∈ [c − 1] we set Eα(G) := Eα(H). Next, we

set Ec(G) := Ec(H) ∪ . . . ∪ E`(H). Note that the vertex set and the budget k re-

mains the same. Since we do not add new edges, the girth remains the same, and

since each C` in H is `-colored, we know by construction that each C` in G is c-

colored.

Correctness : Since every C` in H is `-colored, for each vertex set V ′ ⊆ V (H)

the induced subgraph H[V ′] is an `-colored C` if and only if the induced sub-

graph G[V ′] is a c-colored C`. Hence, (H, k) is a yes-instance of `C`D if and only

if (G, k) is a yes-instance of cC`D.

It is not hard to see that each subgraph in G that is isomorphic to some c-colored

C` is an induced subgraph if G has a girth of `. Hence, we finish our analysis of

NP-hardness by concluding the following from Theorem 3.10 and Lemma 3.12.

25

Corollary 3.13. cC`D is NP-hard for each ` ≥ 3 and each c ∈ [`] even if the girth

of G is ` and each C` in G is c-colored. Hence, cC`D is NP-hard on non-cascading

graphs.

4 Parameterized Complexity

After proving the NP-hardness, we will now consider the parameterized complexity

of cP`D and cC`D parameterized by the natural parameter k and the dual param-

eter δ := m − k. Furthermore, we analyze the parameterized complexity of CPD.

We will show most theorems for the more general F Deletion problem where F
is a d-edge-bounded, finite set of graphs such that F is polynomial-enumerable on

each input graph G. To show that these results are applicable to cP`D and cC`D,

we first prove the following Lemma.

Lemma 4.1. I. Each set of c-colored P`s is (`− 1)-edge-bounded and each set of c-

colored C`s is `-edge-bounded.

II. If ` is constant, then the set of all c-colored P`s and the set of all c-colored C`s

are polynomial-enumerable on any graph G.

Proof. I. This is obvious by the definitions of P` and C`.

II. We can find all induced c-colored P`s in O(n` · `2) time by considering all vertex

sub sets of ` vertices. Thus, if ` is constant, then the set of all c-colored P`s and the

set of all c-colored C`s are polynomial-enumerable on any graph G.

To prove that cP`D and cC`D are fixed-parameter tractable when parameterized

by k we give a naive branching algorithm.

Theorem 4.2. Let F be a d-edge-bounded, finite set of graphs such that F is

polynomial-enumerable on G. Then, F Deletion can be decided in O(dk ·poly(|G|))
where poly(|G|) is a polynomial in the size of G when parameterized by k and, hence,

is fixed-parameter tractable.

Proof. We give the following naive branching algorithm to prove this Theorem.

First, we check if there is a vertex set V ′ ⊆ V (G) such that G[V ′] ∼= F for

some F ∈ F . Since F is polynomial-enumerable on G, this can be done in polyno-

mial time. If there is no such vertex set, then (G, k) is a yes-instance. Else, if k < 1,

then (G, k) is a no-instance. If k ≥ 1, then we branch into the cases (G−{e}, k− 1)

for each e ∈ EG(V ′).

The running time of this algorithm is O(dk ·poly(|G|)) where poly(|G|) is a poly-

nomial in the size of G, such that we can find a vertex set V ′ ⊆ V (G) with G[V ′] ∼= F

for some F ∈ F in O(poly(|G|)) time if such a vertex set exists.

26

Since the set of all c-colored P`s is (`− 1)-edge-bounded, the set of all c-colored

C`s is `-edge-bounded and we can find an induced c-colored P` or C` respectively

in O(n` · `2) time by considering each vertex sub set of ` vertices, we conclude the

following from Lemma 4.1 and Theorem 4.2.

Corollary 4.3. cP`D can be decided in O((`− 1)k · n` · `2) time and cC`D can be

decided in O(`k · n` · `2) time. Hence, cP`D and cC`D are fixed-parameter tractable

when parameterized by k, since ` is a constant.

Next, we give a W[2]-hardness result that implies that CPD is not fixed-parameter

tractable when parameterized by k, unless W[2]=FPT.

Theorem 4.4. CPD is W [2]-hard when parameterized by k even if c = 3.

Proof. We prove the W [2]-hardness by giving a parameterized reduction from

the W [2]-hard problem HS parameterized with k [29]. Let ((X , C), k) be an in-

stance of HS. Recall that C = {C1, . . . , Cµ} is a collection of µ subsets of a fi-

nite set X = {x1, . . . , xη}. We can assume that each Cj is non-empty and that

each xi ∈ X occurs in at least one subset Cj ∈ C.
Construction: To construct an equivalent instance (G, c, `, k) of CPD we first

set c = 3 and ` = 1 + 3 · η. Then, we construct the following gadgets.

For each xi ∈ X we construct an element gadget Wi as follows: We add two

vertices wi, w̃i to Wi and connect wi with w̃i by a blue edge. By W we denote the

set of all element gadgets.

Next, we construct a subset gadget Cj for each subset Cj ∈ C. We add a vertex vj,

and for each i ∈ [η] a vertex uji to Cj. Then, we add a yellow edge {vj, uj1}. If xi ∈ Cj,
then we connect the corresponding element gadget by adding a red edge {uji , wi}
and if i < η a red edge {w̃i, uji+1}. Else if xi /∈ Cj, then we add two vertices wji , w̃

j
i

to Cj, and we add red edges {uji , w
j
i }, {w

j
i , w̃

j
i } to G and if i < η we add a red

edge {w̃ji , u
j
i+1} to G. All edges that we have added so far are called unfixed edges.

Finally, we connect the subset gadgets as follows. Let Cp, Cq be subsets such

that xi ∈ Cp and xi ∈ Cq for an element xi ∈ X . We add red edges {upi , u
q
i}, {vp, u

q
i},

{vq, upi }, {u
p
1, u

q
i}, {u

q
1, u

p
i } and if i < η we add red edges {upi+1, u

q
i+1}, {vp, u

q
i+1},

{vq, upi+1}, {u
p
1, u

q
i+1}, {u

q
1, u

p
i+1} (see Figure 6). We call these edges fixed. Observe

that for any edge e ∈ E we call e a fixed edge if e connects two vertices from different

subset gadgets and otherwise, we call e an unfixed edge.

Intuition: Before we prove the correctness of the reduction, we describe its idea.

We connected the subset gadgets to element gadgets such that for each subset gad-

get Cj, the induced subgraph G[Cj ∪W] contains exactly one induced 3-colored P`.

We then connected the subset gadgets such that there is no induced 3-colored P`

in G that contains vertices from two different subset gadgets. So we can model a

27

C1 C2 C3 W

w1

w̃1

w2

w̃2

w3

w̃3

u11

u12

w1
2

w̃1
2

u13

w1
3

w̃1
3

u23

w2
3

w̃2
3

u31

w3
1

w̃3
1

u32

w3
2

w̃3
2

u33

v1 v2 v3

Figure 6: The constructed graph for C = {C1 = {1}, C2 = {1, 2}, C3 = {3}}
and X = [3]. The dotted lines represent fixed edges, while the solid lines repre-

sent unfixed edges. The filled vertices induce the 3-colored P10 in G[C1 ∪W].

hitting set for a collection C by deleting the edges from the corresponding element

gadgets.

Correctness : Before proving the correctness of the reduction, we show the fol-

lowing claims. First, we show that each 3-colored P` contains vertices of exactly one

subset gadget if we do not delete fixed edges.

Claim 4.5. Let S be an edge-deletion set that does not contain fixed edges. Fur-

thermore, let G′ := G− S and V ′ ⊆ V (G) such that the induced subgraph G′[V ′] is

a 3-colored P`. Then, V ′ contains vertices of at most one subset gadget Cj.

Proof. Since each 3-colored P` has to include a yellow edge, we conclude

that vp, up1 ∈ V ′ for some p ∈ [µ]. Assume towards a contradiction that V ′ contains a

vertex from a clause gadget Cq such that q 6= p. Without loss of generality there are

adjacent vertices α, β ∈ V ′ such that α ∈ Cp, β ∈ Cq and {α, β} ∈ E(G), since we

28

added the fixed edges. By construction, we know that {vp, β}, {up1, β} ∈ E \S since

{vp, β}, {up1, β} are fixed edges. This is a contradiction since the induced subgraph

G′[{vp, up1, β}] is a C3. 4

Next, we show the following claim about 3-colored P`s that are induced by one

subset gadget.

Claim 4.6. For each subset gadget Cj the induced subgraph G[Cj ∪ W] contains

exactly one 3-colored P`. This 3-colored P` contains a blue edge {wi, w̃i} if and only

if xi ∈ Cj.

Proof. By construction, we know that G[Cj ∪W] contains at least one 3-colored P`,

and that {vj, uj1} is the only yellow edge in EG(Cj ∪W). Since degG[Cj∪W](v
j) = 1

and degG[Cj∪W](α) ≤ 2 for each α ∈ Cj ∪ W , we conclude that there is at most

one 3-colored P` in G[Cj ∪W].

By construction, this 3-colored P` contains a blue edge {wi, w̃i} if xi ∈ Cj. Oth-

erwise, if xi /∈ Cj, then the 3-colored P` contains a red edge {wji , w̃
j
i } and does not

contain the blue edge {wi, w̃i}. 4

Now we prove the correctness of the reduction by showing that (C, k) is a yes-

instance of HS if and only if (G, c, `, k) is a yes-instance of CPD.

(⇒) Let H ⊆ X be a hitting set of size at most k for (X , C). Consider the edge

set S := {{wi, w̃i} | xi ∈ H}. We will show that G′ := G − S is 3-colored P`-free.

Since S does not contain fixed edges, we know from Claim 4.5 that there is no

induced 3-colored P` in G′ that contains vertices from two different subset gadgets.

Hence, it remains to show that no subgraph G′[Cj∪W] contains an induced 3-colored

P` for any subset gadget Cj.

Let Cj be a subset gadget. By Claim 4.6 we know that there is exactly one

3-colored P` in the induced subgraph G[Cj ∪X] and that this 3-colored P` includes

exactly one blue edge from each element gadget Wi where xi ∈ Cj. Since H is a

hitting set for C, we conclude that S includes at least one blue edge from an element

gadget Wi that is part of the 3-colored P` in G[Cj ∪ W]. Hence, G′[Cj ∪ W] is

3-colored P`-free, which implies that G′ is 3-colored P`-free.

(⇐) Conversely, let S be an edge-deletion set of size at most k such that G−S is

3-colored P`-free. First, we show that S ′ := S \ {e ∈ S | e is fixed} is an equivalent

solution. Assume towards a contradiction that G′ := G − S ′ contains an induced

3-colored P`. Let V ′ ⊆ V (G) such that G′[V ′] is a 3-colored P`. Since S ′ does

not contain fixed edges, we know by Claim 4.5 that V ′ contains vertices of at most

one subset gadget Cj. Hence, G′[V ′] only contains unfixed edges. This implies

that G′[V ′] does not contain an edge from S. Hence, the induced subgraph G[V ′]

29

is a 3-colored P` in G′. This is a contradiction, since G − S is 3-colored P`-free.

Hence, S ′ is an equivalent solution.

Next, we will show how to construct another equivalent solution S ′′ ⊆ EG(W)

from S ′. Let {α, β} ∈ S ′ such that {α, β} /∈ EG(W). We will show that {α, β} is part

of at most one 3-colored P`. From Claim 4.5, we conclude that any 3-colored P`

including {α, β} only includes vertices from at most one subset gadget, since S ′

only contains unfixed edges. Hence, {α, β} can only be part of a 3-colored P` in an

induced subgraph G[Cj∪W] where α ∈ Cj or β ∈ Cj. From Claim 4.6 we know that

there is exactly one 3-colored P` in G[Cj ∪W]. Hence, {α, β} is part of at most one

3-colored P`. This 3-colored P` has to include a blue edge e ∈ EG(W), since G is 3-

colored and the edges in EG(W) are the only blue edges. Hence, (S \{{α, β}})∪{e}
is an equivalent solution. Thus, we can construct an equivalent solution S ′′ that

only contains edges from EG(W).

To finish the proof, we will show that the set H := {xi | {wi, w̃i} ∈ S ′′} is a

hitting set for C. Let Cj ∈ C. From Claim 4.6 we know that G[Cj ∪W] includes

a 3-colored P`. Hence, there is at least one edge from that 3-colored P` in every

solution. Since S ′′ is a solution that only contains edges {wi, w̃i} ∈ EG(W), we

conclude that there is at least one xi ∈ H such that xi ∈ Cj. Hence, H is a hitting

set for C.

We showed that CPD is probably not fixed-parameter tractable. But even if

a problem is fixed-parameter tractable, it is unclear whether or not it admits a

polynomial kernel. In uncolored graphs it is unlikely that one of the problems

sudied here admit a polynomial kernel. More specifically, there is no polynomial

kernel for 1P`D for any ` ≥ 5 and there is no polynomial kernel for 1C`D for

any ` ≥ 4, unless NP ⊆ coNP/poly [17]. We prove in the next theorem that there is

a polynomial kernel for cP`D and cC`D if the input graph is non-cascading.

Theorem 4.7. Let F be an d-edge-bounded set of graphs. If the input graph G is

non-cascading and F is polynomial-enumerable on G, then F Deletion admits a

polynomial-size kernel that can be computed in polynomial time when parameterized

by k.

Proof. We prove this by giving a parameterized reduction from F Deletion pa-

rameterized by k to d-HS parameterized by k.

Let (G, k) be an instance of F Deletion where G is a non-cascading graph.

We will show how to construct an equivalent instance (C, k) of d-HS. Note that

the parameter k stays the same. First, we set X := E(G). Then, we add a

hyper-edge Cj := EG(V ′) to C for each vertex set V ′ ⊆ V (G) where G[V ′] ∼= H

for some H ∈ F . Since F is polynomial-enumerable on G, this can be done in poly-

nomial time, and since F is d-edge-bounded, the size of the hyper-edges in C is also

30

bounded in d. Furthermore, we know that G is non-cascading. Hence, we conclude

that for any edge-deletion set S ⊆ E(G), the graph G− S is F -free if and only if S

is a hitting set for C. Thus, (G, k) is a yes-instance of F Deletion if and only

if (C, k) of d-HS.

Since d-HS is NP-complete [28] and F Deletion is NP-hard, we know that

there is a polynomial time reduction d-HS ≤p F Deletion. Furthermore, d-HS

parameterized by k admits a kernel comprising at most O(kd−1) vertices that can

be computed in polynomial time [32]. And since each edge in E(G) corresponds

to a vertex in X , we conclude that for non-cascading input graphs, F Deletion

admits a polynomial size kernel that can be computed in polynomial time when

parameterized by k.

From Lemma 4.1 and Theorem 4.7 we can conclude the following.

Corollary 4.8. If the input graph G is non-cascading, cP`D and cC`D admit poly-

nomial size kernels that can be computed in polynomial time when parameterized

by k.

We will finish this chapter by giving a linear size problem kernel for cP`D and

cC`D parameterized by the dual parameter δ := m−k. This kernel is a generalization

of a kernel for 2P3D [14].

Theorem 4.9. If G is a c-colored graph and c ≥ 2, then cP`D and cC`D admit a

kernel with O(2 · δ) edges which can be computed in O(m) time when parameterized

by δ.

Proof. We will show that instances with at least 2 · δ edges are trivial yes-instances.

Since the proof cC`D works analogously, we will only show the proof for cP`D. Let

(G, k) be an instance of cP`D with E(G) ≥ 2 · δ. Since each edge e ∈ E(G) is either

blue or not blue, we conclude that |Eb(G)| ≥ δ or |E(G) \ Eb(G)| ≥ δ. Without

loss of generality, we assume that |E(G) \ Eb(G)| ≥ δ. Since G is c-colored, each

c-colored P` in G has to include a blue edge. Hence, G−Eb(G) is c-colored P`-free.

And since |Eb(G)| = m− |E(G) \ Eb(G)| ≤ m− δ = k, we conclude that Eb(G) is a

solution for (G, k). Thus, (G, k) is a trivial yes instance if E(G) ≥ 2 · δ.

31

5 Conclusion

In Section 3, we gave NP-hardness proves for cP`D and cC`D and thereby proved

that these problems can not be solved efficiently for any ` ≥ 3 and any c ∈ [` − 1]

or respectively any c ∈ [`], unless P = NP. An interesting question for further

research is, if there is an interesting graph property Π such that cP`D or cC`D is

non-trivially polynomial time solvable on graphs satisfying Π. Since we consider

edge-colored graphs, these properties can either be defined on the entire structure of

the input graph or on the graphs that are induced by different colors. For example,

one could consider input graphs that does not contain an induce claw, that is, an

graph with exactly three edges that have exactly one common vertex, since the

graphs we construct in the proofs all contain induced claws. Another idea could be

considering c-colored graphs where each edge color induces a graph with maximum

degree two. Furthermore, an investigation about the structure and usefulness of

c-colored P`-free or respectively c-colored C`-free graphs would be interesting. One

could, for example, try to find graph modification problems that are NP-hard on

general c-colored graphs but become polynomial time solvable when the input graph

is restricted to c-colored P`-free or respectively c-colored C`-free graphs. Since the

problem whether or not one can destroy all cycles with at most k edge deletions is

known to be polynomial solvable on uncolored graphs, another interesting problem

for further research would be whether or not it is possible to destroy all c-colored

cycles with at most k edge deletions. And while we showed that cP`D is NP-hard on

non-cascading graphs for each ` ≥ 4 and each c ∈ [`−2], the question whether there is

a polynomial time algorithm for (`− 1)P` D on non-cascading graphs for any ` ≥ 4

remains open. Furthermore, we showed that cP`D is NP-hard on graphs with a

constant maximum degree, while our proof that cC`D is NP-hard does not give a

graph of constant maximum degree. Hence, it remains an open question whether or

not cC`D is NP-hard on graphs with constant maximum degree. Finally, it would be

interesting to analyze whether or not the corresponding completion-problems and

editing-problems are NP-hard.

In Section 4, we proved that cP`D and cC`D are fixed parameter tractable, while

CPD is W[2]-hard when parameterized by k even if c = 3. This suggests that there

is no algorithm for cP`D where the exponential factor is not dependent on `. It would

be interesting to analyze whether CPD is fixed-parameter tractable when param-

eterized by (`, k). We furthermore showed that cP`D and cC`D admit polynomial

size kernels if the input graph is non-cascading. It would be interesting, whether

or not one can achieve similar results without the restriction to non-cascading in-

put graphs. We finished the section by giving a kernel for cP`D and cC`D when

restricted to c-colored input graphs with c ≥ 2 comprising at most O(2 · δ) edges

32

when parameterized by the dual parameter δ. Again, it would be interesting to

analyze in what extend similar results can be achieved when the restrictions on the

input graph are relaxed.

Furthermore, there are some interesting questions that we could not consider

in this thesis. It would be interesting to analyze to what extend the results for

uncolored graphs [17, 18] can be generalized to edge-colored graphs. And finally,

while it makes no difference for the classical computational complexity whether we

define the problems on edge-colored graphs or on edge-colored multigraphs, it would

be interesting to analyze parameterized versions on multigraphs, since parameterized

complexity analysis is more fine-grained and edge-colored multigraphs are a more

general model for multilayer networks.

33

6 Bibliography

[1] Sebastian Böcker and Jan Baumbach. Cluster editing. In The Nature of Com-

putation. Logic, Algorithms, Applications - 9th Conference on Computability in

Europe, CiE 2013, Milan, Italy, July 1-5, 2013. Proceedings, volume 7921 of

Lecture Notes in Computer Science, pages 33–44. Springer, 2013.

[2] Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast

quasi-threshold editing. In Algorithms - ESA 2015 - 23rd Annual European

Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294

of Lecture Notes in Computer Science, pages 251–262. Springer, 2015.

[3] Donald J. Rose. A graph-theoretic study of the numerical solution of sparse

positive definite systems of linear equations. In Graph theory and computing,

pages 183–217. Elsevier, 1972.

[4] Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. On intervalizing

k-colored graphs for DNA physical mapping. Discrete Applied Mathematics,

71(1-3):55–77, 1996.

[5] Mihalis Yannakakis. Edge-deletion problems. SIAM Journal on Computing,

10(2):297–309, 1981.

[6] Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-completeness results

for edge modification problems. Discrete Applied Mathematics, 154(13):1824–

1844, 2006.

[7] Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino

Pedreschi. Foundations of multidimensional network analysis. In International

Conference on Advances in Social Networks Analysis and Mining, ASONAM

2011, Kaohsiung, Taiwan, 25-27 July 2011, pages 485–489. IEEE Computer

Society, 2011.

[8] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio,

Jesús Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang,

and Massimiliano Zanin. The structure and dynamics of multilayer networks.

Physics Reports, 544(1):1–122, 2014.

[9] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hered-

itary properties is NP-complete. Journal of Computer and System Sciences,

20(2):219–230, 1980.

34

[10] Robert Bredereck, Christian Komusiewicz, Stefan Kratsch, Hendrik Molter,

Rolf Niedermeier, and Manuel Sorge. Assessing the computational complex-

ity of multi-layer subgraph detection. In Algorithms and Complexity - 10th

International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Pro-

ceedings, volume 10236 of Lecture Notes in Computer Science, pages 128–139,

2017.

[11] Mihalis Yannakakis. Node- and edge-deletion NP-complete problems. In Pro-

ceedings of the 10th Annual ACM Symposium on Theory of Computing, May

1-3, 1978, San Diego, California, USA, pages 253–264. ACM, 1978.

[12] Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge

deletion problems. IEEE Transactions on Circuits and Systems, 35(3):354–362,

1988.

[13] N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on

the hardness of H-free edge modification problems. SIAM Journal on Discrete

Mathematics, 31(1):542–561, 2017.

[14] Niels Grüttemeier, Christian Komusiewicz, Jannik Schestag, and Frank Som-

mer. Destroying bicolored P3s by deleting few edges. In Computing with Fore-

sight and Industry - 15th Conference on Computability in Europe, CiE 2019,

Durham, UK, July 15-19, 2019, Proceedings, volume 11558 of Lecture Notes in

Computer Science, pages 193–204. Springer, 2019.

[15] Leizhen Cai and On Yin Leung. Alternating path and coloured clustering.

Computing Research Repository (CoRR), abs/1807.10531, 2018.

[16] Leizhen Cai. Fixed-parameter tractability of graph modification problems for

hereditary properties. Information Processing Letters, 58(4):171–176, 1996.

[17] Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification prob-

lems. Algorithmica, 71(3):731–757, 2015.

[18] N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. On polynomial kernel-

ization of H-free edge deletion. Algorithmica, 79(3):654–666, 2017.

[19] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall

Upper Saddle River, 2001.

[20] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in

mathematics. Springer, 2012.

35

[21] Béla Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Math-

ematics. Springer, 2002.

[22] H.N. de Ridder. Information system on graph classes and their inclusions, 2001.

https://graphclasses.org/index.html.

[23] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-

proach. Cambridge University Press, 2009.

[24] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-

ings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5,

1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[25] Leonid A. Levin. Universal sequential search problems. Problemy peredachi

informatsii, 9(3):115–116, 1973.

[26] Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness

of short symmetric instances of MAX-3SAT. Electronic Colloquium on Com-

putational Complexity (ECCC), (049), 2003.

[27] Richard M. Karp. Reducibility among combinatorial problems. In Complexity

of Computer Computations, The IBM Research Symposia Series, pages 85–103.

Plenum Press, New York, 1972.

[28] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[29] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.

[30] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized

Complexity. Texts in Computer Science. Springer, 2013.

[31] Svatopluk Poljak. A note on stable sets and colorings of graphs. Commenta-

tiones Mathematicae Universitatis Carolinae, 15(2):307–309, 1974.

[32] Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of

Computer and System Sciences, 76(7):524–531, 2010.

36

Declaration of Academic Integrity

Hereby, I declare that I have composed the presented thesis independently on my

own and without any other resources than the ones indicated. All thoughts taken

directly or indirectly from external sources are properly denoted as such. This thesis

has neither been previously submitted to another authority nor has it been published

yet.

Marburg, 06.07.2020

Jakob Eckstein

37

