
Cluster Editing with Locally Bounded Modifications✩

Christian Komusiewicz∗, Johannes Uhlmann

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

Abstract

Given an undirected graph G = (V,E) and a nonnegative integer k, the NP-
hard Cluster Editing problem asks whether G can be transformed into a
disjoint union of cliques by modifying at most k edges. In this work, we study
how “local degree bounds” influence the complexity of Cluster Editing
and of the related Cluster Deletion problem which allows only edge dele-
tions. We show that even for graphs with constant maximum degree Clus-
ter Editing and Cluster Deletion are NP-hard and that this implies
NP-hardness even if every vertex is incident with only a constant number of
edge modifications. We further show that under some complexity-theoretic
assumptions both Cluster Editing and Cluster Deletion cannot be
solved within a running time that is subexponential in k, |V |, or |E|. Finally,
we present a problem kernelization for the combined parameter “number d of
clusters and maximum number t of modifications incident with a vertex” thus
showing that Cluster Editing and Cluster Deletion become easier in
case the number of clusters is upper-bounded.

✩An extended abstract containing some of the results from this work as well as fur-
ther fixed-parameter tractability results for Cluster Editing and Cluster Deletion
appeared under the title “Alternative Parameterizations for Cluster Editing” in the pro-
ceedings of the 37th International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM 2011) [18]. The results of this work are also contained in
the first author’s dissertation [17].

∗To whom correspondence should be addressed.
Email addresses: christian.komusiewicz@tu-berlin.de (Christian Komusiewicz),

johannes.uhlmann@campus.tu-berlin.de (Johannes Uhlmann)
URL: http://www.user.tu-berlin.de/ckomus/ (Christian Komusiewicz),

http://theinf1.informatik.uni-jena.de/~uhlmann/ (Johannes Uhlmann)

Preprint submitted to Discrete Applied Mathematics May 23, 2012

Keywords: graph modification problems, parameterized algorithmics,
exponential-time hypothesis, data reduction

1. Introduction

The NP-hard Cluster Editing problem is among the best-studied pa-
rameterized problems. It is usually defined as follows:

Cluster Editing
Input: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Can G be transformed by up to k edge modifications into
a cluster graph?

Herein, an edge modification is either the deletion or insertion of an edge and
a cluster graph is a graph where every connected component is a clique. The
cliques of a cluster graph are referred to as clusters. The NP-hard Cluster
Deletion problem, which is also studied in this work, is defined analogously
except that only edge deletions are allowed.

One way of attacking the NP-hardness of Cluster Editing are fixed-
parameter algorithms that run in time f(k) · poly(n) time where k is a
problem-specific parameter and n is the input size. Fixed-parameter algo-
rithms are thus fast in case k is small. So far, the proposed fixed-parameter
algorithms for Cluster Editing almost exclusively employ the parameter
number k of edge modifications [5, 3, 6, 8, 13, 14]. The focus on this param-
eterization is contrasted by the observation that k is often not really small
for real-world instances. For example in a protein similarity data set that
has been frequently used for evaluating Cluster Editing algorithms, the
instances with n ≥ 30, n being the number of vertices, have an average num-
ber k of edge modifications that is between 2n and 4n [5]. Hence, it would
be interesting to show fixed-parameter tractability for parameters that are
stronger than the parameter number k of edge modifications, that is, param-
eters that are always at most as large as k and that can be arbitrarily small
compared to k.

In this work, we consider a parameter that is naturally a stronger param-
eter than the number k of edge modifications. We call this parameter local
modification bound t. In the following, we refer to a set of edge deletions and
insertions as edge modification set.

2

Definition 1. Let G = (V,E) be an undirected graph, and let S be an edge
modification set for G. We say that S is locally t-bounded if for every
vertex v ∈ V it holds that

|{e ∈ S | v ∈ e}| ≤ t.

Informally, this means that a locally t-bounded edge modification set
performs at most t edge modifications on each vertex of the input graph.
Another intuitive way of looking at locally t-bounded edge modification sets
is to visualize the graph that has vertex set V and edge set S. If S is locally
t-bounded, then this graph has maximum degree t.

The local modification bound t relates to the overall number k of edge
modifications in the following way: First, any edge modification set S is
clearly locally |S|-bounded. Second, the local modification bound t can be ar-
bitrarily small compared to the overall number of edge modifications. Hence,
the local modification bound t is indeed a stronger parameter than the overall
number of edge modifications. We expect that in most practically relevant
instances the local modification bound t is much smaller than the overall
number of edge modifications. As we observe in Section 2, the local modifi-
cation bound is upper-bounded by the maximum degree ∆ of the input graph
which is the second parameter that we consider. Unfortunately, as we show
in this work, it turns out that Cluster Editing and Cluster Deletion
are NP-hard already for constant ∆ and also for constant t.

A further way to counter the fact that k is usually not that small would
be to present subexponential-time fixed-parameter algorithms for the pa-
rameter k; so far, all presented fixed-parameter algorithms for Cluster
Editing have running time 2Ω(k) · poly(|V |). We show, however, that under
the so-called exponential-time hypothesis, Cluster Editing and Cluster
Deletion cannot be solved within time that is subexponential in the num-
ber k of edge modifications or in the size of the input graph. Furthermore,
this result holds even if ∆ is a constant. To contrast these hardness results,
we show that parameterizing by the combined parameter “upper bound d on
the number of clusters and local modification bound t” yields fixed-parameter
tractability.

Related Work. The NP-hardness of Cluster Editing has been shown sev-
eral times [19, 22, 2]. The currently fastest fixed-parameter algorithm for
parameter k has running time O(1.62k + |E|) [3], and the currently smallest
problem kernel contains at most 2k vertices [8]. Other parameterizations

3

have played a marginal role so far. To the best of our knowledge, the only
other parameter that has been considered is the “cluster vertex deletion num-
ber” which is the number of vertices one needs to delete in order to obtain a
cluster graph. Cluster Editing and Cluster Deletion are both fixed-
parameter tractable with respect to the cluster vertex deletion number of the
input graph [18, 23]. However, the running times of the algorithms for this
parameter seem to be impractical so far.

A variant of Cluster Editing in which the number of clusters is fixed
(instead of upper-bounded as we consider in Section 4) has been previously
studied: For every d ≥ 2 it is NP-hard to decide whether the input graph can
be transformed by at most k edge modifications into a graph with exactly
d clusters [22]. Guo [14] showed that this variant of Cluster Editing ad-
mits a problem kernel consisting of at most (d + 2) · k + d vertices. Finally,
Fomin et al. [11] presented a randomized algorithm that solves Cluster

Editing with exactly d clusters in 2O(
√
dk) +poly(|V |) time. This algorithm

can also be used to solve Cluster Editing with at most d clusters in the
same running time.

While not as extensively studied as Cluster Editing, some results
have been obtained for Cluster Deletion as well: Cluster Deletion
is NP-hard in general and when one demands that the cluster graph has
exactly d ≥ 3 clusters but polynomial-time solvable when one demands that
the cluster graph has exactly two clusters [22]. Cluster Deletion can be
solved in O(1.415k + |V |3) time by a search tree algorithm [4].

Our Results. Table 1 summarizes our findings which are as follows. We
present a reduction from 3-SAT to Cluster Editing which yields sev-
eral hardness results.1 First, we can infer that Cluster Editing is NP-
hard even on input graphs with maximum degree six. Second, we can
infer that Cluster Editing is NP-hard even when every solution is lo-
cally 4-bounded. Hence, the local modification bound itself is not a suit-
able parameter for Cluster Editing. Finally, the reduction from 3-SAT
shows that Cluster Editing does not admit an algorithm with running
time 2o(k) · poly(|V |) time unless the exponential-time hypothesis fails. Our
result on the nonexistence of such a subexponential-time algorithm for the
parameter k negatively answers a recent conjecture by Cao and Chen [7].

1Previous NP-hardness results were obtained for example by reductions from 3-
Dimensional Matching [19] or Exact Cover by 3-Sets [22].

4

Table 1: Summary of our results for Cluster Editing and Cluster
Deletion and the parameters maximum degree ∆, local modification
bound t, number k of edge modifications, and the combined parameter (d, t)
where d is an upper bound on the number of clusters in the cluster graph.
The results for parameter k hold unless the exponential-time hypothesis fails.

Parameter Cluster Editing Cluster Deletion

∆ NP-hard for ∆ ≥ 6 NP-hard for ∆ ≥ 4, ∈ P for ∆ ≤ 3
t NP-hard for t ≥ 4 NP-hard for t ≥ 2
k No 2o(k) · poly(|V |) algorithm No 2o(k) · poly(|V |) algorithm

(d, t) 4dt-vertex kernel 2dt-vertex kernel

Independently to our work, Fomin et al. [11] also showed that Cluster
Editing does not admit a subexponential-time algorithm for parameter k.

For Cluster Deletion, we can show hardness for even more restricted
cases by observing close connections to Partition Into Triangles. We
show that Cluster Deletion is NP-hard even when the input graph has
maximum degree four, and that it is NP-hard even when every solution is lo-
cally 2-bounded. Again, we also observe that our results imply thatCluster
Deletion does not admit an algorithm with running time 2o(k) · poly(|V |)
unless the exponential-time hypothesis fails. We also show that Cluster
Deletion is polynomial-time solvable on graphs with maximum degree
three, thus achieving a dichotomy with respect to the maximum degree of
the input graph.

We complement the negative results forCluster Editing andCluster
Deletion by showing that both problems are fixed-parameter tractable with
respect to the combined parameter (d, t), where d is an upper bound on the
number of clusters in the cluster graph and t is the local modification bound.
More precisely, we consider a constrained version of both problems that might
be of independent interest. Our algorithms for these problems are based on
simple data reduction rules that produce in O(|V |3) time a problem kernel
consisting of at most 4dt vertices (in the case of Cluster Editing) and 2dt
vertices (in the case of Cluster Deletion).

Preliminaries. We only consider simple undirected graphs G = (V,E). Un-
less stated otherwise, we use n := |V | to denote the number of vertices of
a graph and m := |E| to denote the number of edges. For a vertex v, we

5

denote with N(v) := {u ∈ V | {u, v} ∈ E} the neighborhood of v. The closed
neighborhood is defined as N [v] := N(v)∪{v}. We call an edge modification
set of size at most k that produces a cluster graph a solution.

We briefly recall the relevant notions of parameterized algorithmics; for
an introduction to the field refer to the monographs of Downey and Fellows
[9], Flum and Grohe [10], and Niedermeier [21]. Parameterized problems con-
sist of two dimensions. One dimension is the input instance I (as in classical
complexity theory), and the other one is a parameter k. A parameterized
problem L is fixed-parameter tractable if there is an algorithm that decides
in f(k) · poly(|I|) time whether (I, k) ∈ L, where f is a computable function
depending only on k. A parameterized problem L admits a problem kernel
if there is a polynomial-time transformation of any instance (I, k) to an in-
stance (I ′, k′) such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L, |I ′| ≤ g(k), and k′ ≤ k.
The function g(k), which depends only on k, is called the size of the problem
kernel. A data reduction algorithm that yields a problem kernel is called
kernelization. Kernelizations are often represented by a set of data reduction
rules. A data reduction rule is a reduction from an instance of (I, k) of a
parameterized problem L to an instance (I ′, k′) of L. We say that a data
reduction rule is correct if (I, k) ∈ L if and only if (I ′, k′) ∈ L. We say that a
data reduction rule has been exhaustively applied if any further application
of this rule does not modify the instance. An instance is called reduced with
respect to a set of data reduction rules if each data reduction rule in the set
has been exhaustively applied.

The exponential-time hypothesis states that x-SAT, x ≥ 3, cannot be
solved within a running time of 2o(n) or 2o(m), where n is the number of
variables and m is the number of clauses in the input x-CNF formula. This
approach for showing super-polynomial lower bounds for running times goes
back to work of Impagliazzo et al. [15]; some aspects and applications of the
exponential-time hypothesis are discussed in surveys by Lokshtanov et al.
[20] and Woeginger [26]. In this context, algorithms with running time 2o(p)

for some parameter p are called subexponential-time algorithms.

2. Constant Maximum Degree and Constant Local Modification

Bound

We show that Cluster Editing is NP-hard even when restricted to
graphs with maximum degree six. To the best of our knowledge the previous
NP-hardness proofs require an unbounded degree [19, 2, 22]. As an imme-

6

diate consequence of our NP-hardness proof, Cluster Editing is NP-hard
even for a constant local modification bound. The following structural lemma
will be used in our proof of NP-hardness.

Lemma 1. Let G = (V,E) be an undirected graph. There is a minimum-
cardinality solution S producing a cluster graph G′ such that for all ver-
tices u, v ∈ V with |N(u) ∩ N(v)| ≤ 1 and {u, v} 6∈ E it holds that u and v
are in different clusters of G′.

Proof. Assume that there is a minimum-cardinality solution S that yields a
cluster graph G′ such that there is a pair of vertices u, v ∈ V with |N(u) ∩
N(v)| ≤ 1 and {u, v} 6∈ E that are in the same cluster K of G′. We show
that one can construct from S a solution S ′ with |S ′| ≤ |S| that yields a
cluster graph G′′ in which either u or v is a singleton cluster.

Let X := N(u) ∩ N(v) be the common neighborhood of u and v in G,
let Kv := K ∩ N(v) \X , and let Ku := K ∩ N(u) \X . Note that |X| ≤ 1.
Without loss of generality, assume that |Kv| ≥ |Ku|. Then, u is in G adjacent
to at most ⌊(|K|−1)/2⌋ vertices in K since |Ku| ≤ ⌊(|K|−3)/2⌋ and since u
has in G at most one further neighbor in K (because |X| ≤ 1). Therefore,
cutting u from K yields a solution S ′ with |S ′| ≤ |S| since this operation
“undoes” at least ⌈(|K| − 1)/2⌉ edge insertions and causes at most ⌊(|K| −
1)/2⌋ additional edge deletions.

Exhaustively applying the modification above for each such pair of ver-
tices results in a minimum-cardinality solution with the desired property.
Since each application of this modification produces at least one singleton
cluster, there can be at most n iterations of this procedure. Hence, a solu-
tion with the desired property does indeed exist.

In the Cluster Editing instances produced by the reduction, any two
nonadjacent vertices have at most one vertex in common. Hence, the lemma
above implies that in every one of these instances there is an optimal solution
that only deletes edges.

For the NP-hardness proof we present a reduction from 3-SAT, which has
as input a boolean formula φ in conjunctive normal form with at most three
literals per clause (3-CNF) and asks whether there is an assignment to the
variables of φ that fulfills all clauses of φ.2 For simplicity, we assume that

2A similar reduction was previously used to show NP-hardness of the Transitivity
Editing problem which is defined on directed graphs [25].

7

aj

q4π(q,j)+1

q4π(q,j)+2

p4π(p,j) p4π(p,j)+1

r4π(r,j)

r4π(r,j)+1

Figure 1: Illustration of the clause gadget for a clause Cj = (xp ∨ xq ∨ xr).
Note that for each variable either the “+0/+1”-vertices (if it is nonnegated)
or the “+1/+2”-vertices (if it is negated) are adjacent to aj , but never the
“+3”-vertex.

every clause contains exactly three literals; this can be easily achieved by
adding a further variable x to each clause with two variables, and forcing x
to be false by a constant number of further clauses and variables.

The basic idea of the reduction is as follows. For each variable xi of a
given 3-CNF formula φ, we construct a variable cycle of length 4mi, wheremi

denotes the number of clauses that contain xi. It is easy to verify that only
deleting every second edge yields a minimum-cardinality edge modification
set for transforming an even-length cycle into a cluster graph. The corre-
sponding two possibilities are used to represent the two choices for the value
of xi. Moreover, for each clause Cj containing the variables xp, xq, and xr,
we connect the three corresponding variable cycles by a clause gadget. In
doing so, the goal is to ensure that if the solutions for the variable gadgets
correspond to an assignment that satisfies Cj, then one needs only four edge
modifications for the clause gadget and otherwise one needs at least five edge
modifications. Let m be the number of clauses in φ and observe that, since φ
is a 3-CNF formula, the overall number of vertices in the variable cycles
is 12m. Our construction guarantees that there is a satisfying assignment
for φ if and only if the constructed graph can be transformed into a cluster
graph by exactly 6m + 4m = 10m edge modifications, where 6m modifica-
tions are used for the variable cycles and 4m modifications are used for the
clause gadgets. The details follow.

Given a 3-CNF formula φ consisting of the clauses C0, . . . , Cm−1 over

8

the variables {x0, . . . , xn−1}, construct a Cluster Editing-instance (G =
(V,E), k) as follows.

For each variable xi, 0 ≤ i < n, G contains a variable cycle that consists
of the vertices V v

i := {i0, . . . , i4mi−1} and the edges Ev
i := {{ik, ik+1} | 0 ≤

k < 4mi} (for ease of presentation let i4mi
= i0). An edge {ix, ix+1} is even

if x is even, and odd otherwise. So far, the constructed graph consists of
a disjoint union of cycles and has 12m vertices and edges. Next, we add a
clause gadget to G for each clause of φ.

In the construction of the clause gadgets, we need for each clause C in the
variable cycles of C’s variables a fixed set of vertices that are “reserved” for C.
To this end, suppose that for each variable xi an arbitrary but fixed ordering
of the clauses that contain xi is given, and let π(i, j) ∈ {0, . . . , 4mi − 1}
denote the position of a clause Cj that contains xi in this ordering. We now
give the details of the construction of the clause gadgets. Let Cj be a clause
containing the variables xp, xq, and xr (either negated or nonnegated). We
construct a clause gadget connecting the variable cycles of xp, xq, and xr.
First, let aj be a new vertex that appears only in the clause gadget for
clause Cj. Let E

c
j denote the edge set of the clause gadget and let Ec

j contain
for each i ∈ {p, q, r} the edges {aj, i4π(i,j)} and {aj, i4π(i,j)+1} if xi occurs
nonnegated in Cj or the edges {aj, i4π(i,j)+1} and {aj , i4π(i,j)+2}, otherwise.
See Figure 1 for an illustration. Then, the construction of G = (V,E) is
completed by setting V :=

⋃n−1
i=0 V v

i ∪
⋃m−1

j=0 {aj} and E :=
⋃n−1

i=0 Ev
i ∪

⋃m−1
j=0 Ec

j .

Theorem 1. Cluster Editing is NP-hard even when restricted to graphs
with maximum vertex degree six.

Proof. Let φ be a 3-SAT formula and let G be constructed from φ as described
above. We show the correctness of the reduction by showing the following
claim.

φ is satisfiable ⇔ G can be transformed into a cluster graph by
at most k := 10m edge modifications

In the following, we use the characterization of cluster graphs as the graphs
that do not contain an induced P3, that is, an induced path on three vertices.
This well-known characterization of cluster graphs has been used repeatedly
in the literature.
⇒: Given a satisfying assignment β for φ we can transform G into a

cluster graph as follows. For each variable xi delete the odd edges of the

9

aj

q4π(q,j)+1

q4π(q,j)+2

p4π(p,j) p4π(p,j)+1

r4π(r,j)

r4π(r,j)+1

Figure 2: If all odd edges in the variable cycle of xp are deleted (observe
that xp occurs nonnegated in Cj , since aj is adjacent to p4π(p,j) and p4π(p,j)+1),
then all induced P3s that contain aj can be destroyed by four additional edge
deletions (marked by dotted lines).

variable cycle of xi if β(xi) = true and the even edges otherwise. Moreover,
for each clause Cj proceed as follows. Assume that Cj contains the vari-
ables xp, xq, and xr. Without loss of generality assume that the literal that
corresponds to xp is true. All induced P3s that contain aj can be destroyed
by the deletion of the four edges with one endpoint being aj and the other
endpoints from V v

q ∪ V v
r (see Figure 2). For the variable cycles, we perform

altogether
∑

0≤i<n 4mi/2 = 6m edge modifications, and for each clause gad-
get four edges are deleted. Hence, 10m edge modifications are performed
overall. By construction, every induced P3 contains either three vertices of
the same variable cycle or at least one of the aj ’s. Hence, all induced P3s are
destroyed and the resulting graph is a cluster graph.
⇐: Let S denote an optimal solution for G with |S| ≤ k := 10m. To

show that φ is satisfiable, we need some observations about the structure
of G and S.

First, we show that 10m is a lower bound on any solution for G, that
is, |S| ≥ 10m and thus |S| = 10m. By the construction of G, for every non-
adjacent pair of vertices u, v in G, it holds that |N(u)∩N(v)| ≤ 1. Therefore,
we can assume, by Lemma 1, that S performs only edge deletions (since no
nonadjacent vertices end up in the same cluster). Furthermore, note that
for each variable xi the variable cycle contains 4mi/2 edge-disjoint induced
P3s with all three vertices on the cycle and that deleting either all even or
all odd edges are the only two optimal ways to destroy these induced P3s.

10

Hence, G contains 6m edge-disjoint induced P3s such that all three vertices
of the induced P3 are in the same variable cycle. Clearly, at least 6m edge
deletions are needed for these induced P3s. For each clause Cj, 0 ≤ j < m,
at least four edge deletions are needed to destroy all induced P3s that con-
tain aj as a middle vertex. Observe that these four edge deletions are all
incident with aj , that is, they are from the clause gadget Ec

j , and thus they
do not contain edges from variable cycles. Hence, every solution has size at
least 10m and thus |S| = 10m.

Now, since at least 6m edges are deleted in the variable cycles, this means
that for each clause Cj exactly four edges incident with aj are deleted by S.
Consequently, for each variable cycle either all even or all odd edges are
deleted.

Consider the assignment β for φ that, for each xi, 0 ≤ i < n, sets β(xi) :=
true if all odd edges of V v

i are deleted and sets β(xi) := false if all even edges
of V v

i are deleted. We show that β is a satisfying assignment. Consider an
arbitrary clause Cj containing the variables xp, xq, and xr. Since in the final
cluster graph aj is not a middle vertex of a P3, it can have edges to at most
one variable, say xp, of Cj. Furthermore, since exactly four edge deletions are
incident with aj , both edges that are incident with the vertices of the variable
cycle of xp are not deleted by S. Without loss of generality, assume that xp

appears nonnegated in Cj. Then the two vertices of V v
p that are adjacent to aj

are p4π(p,j) and p4π(p,j)+1. Since S is a solution, the edge {p4π(p,j), p4π(p,j)+1}
is not deleted by S. Hence, all odd edges of V v

p are deleted, and therefore
the assignment β fulfills clause Cj.

We can use the presented reduction to obtain further hardness results
for Cluster Editing. Obviously, since the constructed graph has maxi-
mum degree six, every optimal solution is locally 6-bounded. This is due to
the fact that if a vertex v is incident with more than 6 edge modifications,
then one can obtain a better solution by undoing these edge modifications
and deleting all edges that are incident with v in G.

This observation can be strengthened even further by observing that, by
the construction of G, we either need more than 10m edge modifications or
that the maximum number of edge modifications per vertex is four. The
latter can be seen as follows. As described in the proof of Theorem 1, if
there is a solution of size at most 10m, then there is also a solution that only
performs edge deletions and that has the following further properties. It
performs 6m edge deletions in the variable cycles, and on each vertex in the

11

variable cycle at most one of the deleted edges is incident. Note that each of
the vertices in the variable cycle has at most one neighbor in a clause gadget.
Hence, for each vertex of the variable cycle at most two edge deletions are
performed on incident edges. Furthermore, for each clause gadget exactly
four edge deletions are performed. Hence, we can assume that there is a
solution that is locally 4-bounded.

Corollary 1. Cluster Editing is NP-hard even when the input is re-
stricted such that every yes-instance has a solution that is locally 4-bounded.

Our final hardness result for Cluster Editing can be drawn from the
observation that the solution size is ten times the number of clauses in the 3-
CNF formula. By our reduction, a subexponential-time algorithm for Clus-
ter Editing parameterized by k would imply an algorithm for solving 3-
SAT that has running time subexponential in the number m of clauses. The
same can be observed for the number |V | of vertices and the number |E| of
edges in the Cluster Editing instance. Hence, we arrive at the following.

Theorem 2. Cluster Editing cannot be solved in 2o(k) · poly(|V |) time,
in O(2o(|V |)) time, or in O(2o(|E|)) unless the exponential-time hypothesis fails.
This holds even when the input graph has maximum degree six.

ForCluster Deletion, we can obtain hardness for even more restricted
input graphs by observing close connections to Partition Into Triangles
on graphs with maximum degree four. As recently shown by van Rooij
et al. [24], Partition Into Triangles is NP-hard even when the input
graph G = (V,E) is 4-regular. Moreover, NP-hardness persists even when for
each vertex v ∈ V the graph G[N [v]] is isomorphic to one of the three graphs
shown in Figure 3 [24]. In the following, we refer to such graphs as 4-regular
neighborhood-restricted graphs. The variant of Partition Into Triangles
that we use in our reduction is formalized as follows:

Restricted Partition Into Triangles (RPIT)
Input: An undirected 4-regular neighborhood restricted graph G =
(V,E).
Question: Can V be partitioned into |V |/3 sets such that each set
of the partition induces a triangle, that is, a complete graph on three
vertices, in G?

The following easy observation is useful for establishing the connection toClus-
ter Deletion.

12

v v v

Figure 3: The three different neighborhoods in a 4-regular neighborhood
restricted graph. None of these graphs contains a clique of order four.

Observation 1. Let G = (V,E) be a 4-regular neighborhood-restricted graph.
Then G does not contain any clique of order four or more.

The observation says that if we use a 4-regular neighborhood-restricted
graph as input graph for Cluster Deletion, then the largest clusters in
the resulting cluster graph are triangles. In the next lemma, we show that
the case in which every cluster is a triangle is optimal. Let n := |V | in what
follows.

Lemma 2. Let G = (V,E) be an instance of RPIT. Then, G is a yes-
instance of RPIT ⇔ (G, k := n) is a yes-instance of Cluster Deletion.

Proof. We show both directions separately.
⇒: Let G be a yes-instance of RPIT, and let G1, . . . , Gn/3 denote a set

of triangles into which the input graph can be partitioned. Note that each Gi

contains three edges and three vertices. Since G is 4-regular, it has 2n edges.
Hence, there are exactly n edges that are not contained in any Gi. Deleting
these edges from G yields a cluster graph, since each component is a triangle.
⇐: Let S ⊆ E be an edge set of size at most k := n such that delet-

ing S from G yields a cluster graph G′. By Observation 1, every cluster
contains at most three vertices. Each cluster on three vertices has exactly
three edges and clusters with one or two vertices have less edges than ver-
tices. Consequently, G′ has at most n edges. Since |S| ≤ n and |E| = 2 ·n, G′

has exactly n edges. Hence, every cluster is a triangle. Consequently, the
clusters are a set of vertex-disjoint triangles, and I is thus a yes-instance
of RPIT.

The above lemma directly implies a polynomial-time reduction fromRPIT
toCluster Deletion on 4-regular neighborhood-restricted graphs: all that
needs to be done is to set k := n. Our main result that can be obtained by
using this reduction is as follows.

Theorem 3. Cluster Deletion is NP-hard even on 4-regular graphs.

13

Note that since the input graph of the Cluster Deletion instance is
4-regular, and since every cluster must be a triangle every solution is locally
2-bounded.

Corollary 2. Cluster Deletion is NP-hard even when the input is re-
stricted such that every solution is locally 2-bounded.

Finally, we can also obtain lower bounds for the running time of Clus-
ter Deletion with respect to parameter k. RPIT does not admit a
subexponential-time algorithm [24]. Since we can reduce RPIT to Clus-
ter Deletion instances on the same graph with k = n, we arrive at the
following.

Theorem 4. Cluster Deletion cannot be solved in 2o(k) ·poly(|V |) time,
in O(2o(|V |)) time, or in O(2o(|E|)) unless the exponential-time hypothesis fails.
This holds even when the input graph is 4-regular.

3. Cluster Deletion on graphs with maximum degree three

In the following, we present a polynomial-time algorithm for Cluster
Deletion in case the input graph has maximum degree three. Hence, we
obtain the following dichotomy: Cluster Deletion is polynomial-time
solvable on graphs with maximum degree three, and NP-hard, otherwise.
The main idea of the presented algorithm is as follows. The algorithm starts
by exhaustively applying two data reduction rules. One rule deals with all
isolated cliques in the input graph and, as we show, hence with all clusters
of size four in the cluster graph. The other rule deals with a certain type of
triangles. We then show that after these reduction rules have been exhaus-
tively applied, we can reduce our instance to a weighted version of Cluster
Deletion whose input graph is triangle-free. Finally, we show that this
instance can be solved by computing a maximum-weight matching.

Next, we present the two reduction rules in detail. The aim of the first
reduction rule is to deal with all clusters of size four in the final cluster graph.
Suppose that the cluster graph contains such a cluster. Then, since the
input graph G has maximum degree three, this cluster must be a connected
component of G and thus an isolated clique of G. Hence, we can remove all
vertices that are part of these clusters in O(n) time with the following trivial
reduction rule.

14

Reduction Rule 1. Remove from G all connected components that are
cliques.

Clearly, Reduction Rule 1 is correct and can be exhaustively applied
in O(n) time. We now present the second data reduction rule.

Reduction Rule 2. If G contains three vertices u, v, and w such that

• {u, v, w} induces a triangle in G, and

• there is no vertex x ∈ V \ {u, v, w} that has at least two neighbors
in {u, v, w},

then delete all edges between {u, v, w} and V \ {u, v, w}, decrease k by the
number of performed edge deletions, and remove {u, v, w} from G.

Lemma 3. Reduction Rule 2 is correct and can be exhaustively performed in
O(n) time.

Proof. We first prove the correctness of the rule, and then bound its running
time. To show the correctness of the rule, we show that there is an optimal
solution that yields a cluster graph in which {u, v, w} is a cluster. Let S ⊆ E
be an optimal solution, let G′ := (V,E \ S) be the resulting cluster graph,
and assume that {u, v, w} does not form a cluster of G′. Then, either three
or two edges between u, v, and w are deleted (if only one edge is deleted
then u, v, and w induce a P3). In the first case, we can obtain a solution S ′

by undoing all three edge deletions between u, v, and w and instead deleting
the at most three edges between {u, v, w} and V \{u, v, w}. Clearly |S ′| ≤ |S|.
In the second case, suppose that {u, v} is not deleted by S. Then, {u, v} is
a cluster of G′. We can obtain a solution S ′ from S by undoing the deletion
of {u, w} and {v, w} and instead deleting at most one edge between w and V \
{u, v, w}. Since |S ′| < |S|, S is not an optimal solution, a contradiction.

The running time can be seen as follows. First, we can label in O(n)
time the edges of all triangles to which Reduction Rule 2 applies by checking
for each vertex v ∈ V whether N [v] contains a triangle that fulfills the
condition of the rule. Then, we can delete in O(n) time all unlabeled edges
that have a common endpoint with a labeled edge, since these are precisely
the “outgoing” edges of a triangle that fulfills the condition of the rule.
After the deletion of these edges, the rule has been exhaustively applied
since the application of the rule does not create “new” triangles to which

15

the rule can be applied. This can be seen as follows. Observe that the
endpoints of an edge e that is deleted by Reduction Rule 2 do not have
any common neighbors, since one of e’s endpoints is in a triangle in which
no two vertices have a common neighbor outside the triangle and G has
maximum degree three. Now suppose that the deletion of an edge e produces
a triangle T = {u, v, w} to which Reduction Rule 2 applies. Clearly, e must
be incident with one vertex from T . Hence, assume without loss of generality
that e = {u, x}. Since the triangle T did not fulfill the condition of the rule
before the deletion of {u, x}, the vertex x must have another neighbor in T ,
say w. This contradicts the observation that the endpoints of a deleted
edge do not have any common neighbors. Hence, Reduction Rule 2 can be
exhaustively applied in one pass which can be performed in O(n) time.

A graph with maximum degree three to which neither Reduction Rule 1
nor Reduction Rule 2 applies has the following property: for each trian-
gle {u, v, w} there is at least one other vertex x that has two neighbors,
say u and v, in the triangle. In other words, every triangle has two vertices u
and v that have two common neighbors. Since the graph has maximum de-
gree three and since they are adjacent, it holds that N [u] = N [v]. Note that
since the graph does not contain cliques of size four after Reduction Rule 1
has been applied, there is also no further vertex y that is adjacent to two
vertices in {u, v, w}. Altogether this leads to the following observation.

Observation 2. Let G be a graph with maximum degree three that is reduced
with respect to Reduction Rules 1 and 2. Then, every triangle contains exactly
two degree-three vertices u and v with N [u] = N [v].

The above observation can be used in the following way: the vertices u
and v are part of exactly two triangles, and they can be in at most one of
those triangles in a cluster graph. Furthermore, the two vertices that are
neighbors of u and v are part of exactly one triangle since they have at most
one further neighbor. Hence, all triangles come in isolated pairs of which at
most one is a cluster of the cluster graph. We will show that in this case
two vertices in the intersection of two triangles end up in the same cluster.
We can therefore “get rid” of these triangles by reducing the problem to a
weighted version of Cluster Deletion by merging the two vertices. The
resulting instance of this weighted version is triangle-free which makes it
possible to compute an optimal solution by computing a maximum-weight
matching.

16

Lemma 4. Let (G, k) be an instance of Cluster Deletion such that G
has maximum degree three and (G, k) is reduced with respect to Reduction
Rules 1 and 2. Then, (G, k) can be solved in O(n1.5 · log2 n) time.

Proof. Let (G, k) be as described in the lemma. We describe a polynomial-
time algorithm for (G, k) that consists of two main steps. First, we re-
duce (G, k) to a triangle-free instance of the following edge-weighted version
of Cluster Deletion:

Weighted Cluster Deletion
Input: An undirected graph G = (V,E), an edge-weight func-
tion ω : E → N \ {0}, and an integer k ≥ 0.
Question: Is there an edge set S ⊆ E such that deleting S
from G results in a cluster graph and

∑
e∈S ω(e) ≤ k?

Afterwards, we show that triangle-free instances of Weighted Cluster
Deletion can be solved in polynomial time by computing a maximum-
weight matching.

The reduction fromCluster Deletion toWeighted Cluster Dele-
tion works as follows. First, we set ω(e) = 1 for each e ∈ E and thus obtain
an instance of Weighted Cluster Deletion. Clearly, this instance is
equivalent to the original instance. Then, we further apply the following
reduction rule to reduce this instance of Weighted Cluster Deletion
into a triangle-free instance of Weighted Cluster Deletion.3 As long
as G contains a triangle, do the following. Let u and v denote the degree-
three vertices of the triangle with N [u] = N [v] (by Observation 2 there is
exactly one such pair of vertices). Furthermore, let w and x denote the other
two neighbors of u and v. Then, remove u from G and set ω(v, w) := 2
and ω(v, x) := 2. Note that after u is removed from G, v has degree two and
is not contained in any triangle in G.

The correctness of the reduction rule described above can be seen as
follows. Since N [u] = N [v] and by Observation 2, u and v are a so-called
critical clique, that is, a maximal vertex set in which all vertices have the
same closed neighborhood. Furthermore, all edges incident with u and v have

3The presented reduction rule is similar to previous approaches for Cluster Editing
that replace an unweighted instance by a weighted instance that works on the so-called
critical clique graph [5]. For the sake of completeness we include a short proof of correct-
ness.

17

weight one since u and v are still part of a triangle. Every optimal solution
puts u and v into the same cluster which can be seen as follows. Suppose
that there is an optimal solution S that puts u and v into different clusters.
Since S is optimal, there must be a vertex w such that one of u and v, say u
is in a cluster with w: otherwise, undoing the deletion of {u, v} yields a
better clustering. Then, by undoing the deletions of {u, v} and {v, w} and
deleting at most one other edge instead, we obtain a better solution. As a
consequence, if {u, w} is deleted by an optimal solution, then also {v, w} is
deleted by this solution. Hence, every optimal solution before the removal
of u one-to-one corresponds to an optimal solution after the removal of u
(and the subsequent increase of the edge weights).

After all triangles have been replaced by edges of weight two, we have
a triangle-free instance of Weighted Cluster Deletion. We now show
that this instance can be solved in polynomial time. The basis of this algo-
rithm is the following claim:

Let G = (V,E) be a triangle-free graph, let S ⊆ E be an edge
set, and let M := E \S. Then, (V,E \S) is a cluster graph⇔ M
is a matching.

This claim can be seen as follows. Since G is triangle-free, any cluster graph
that can be obtained by edge deletions has clusters of size at most two.
Hence, the edges of this cluster graph are a matching. The converse is also
true, since any two edges of a matching do not have an endpoint in common.
Therefore, the graph that contains these edges and all vertices of the input
graph is a cluster graph. Furthermore, since

∑

e∈S
ω(e) =

∑

e∈E
ω(e)−

∑

e∈M
ω(e)

for S ⊆ E and M := E \S, minimizing the sum of the weights of the deleted
edges is the same as maximizing the weight of the matching. Hence, we
can compute an optimal solution for the triangle-free Weighted Cluster
Deletion instance by computing a maximum-weight matching M of G.
This computation can be performed in O(

√
nm· log2 n) time [12]. The overall

running time is therefore O(n1.5 · log2 n) since the procedure of replacing the
triangles can be performed in O(n) time and m ≤ 2n.

Altogether, we arrive at the following.

18

Theorem 5. Cluster Deletion can be solved in O(n1.5 ·log2 n) time when
the input graph has maximum degree three.

Proof. Given an instance of maximum degree three, we first exhaustively ap-
ply Reduction Rule 2 inO(n) time. Then, we exhaustively apply Reduction Rule 1,
also in O(n) time. Note that the application of Reduction Rule 1 does not
produce any triangle to which Reduction Rule 2 applies. Hence, the instance
is reduced with respect to both reduction rules. Consequently, Lemma 4 can
be applied; the overall running time follows.

4. Parameterization by “Number of Clusters and Local Modifica-

tion Bound”

In the hardness results of Section 2, the number of clusters in the final
cluster graph is unbounded. A natural question thus is: how does the number
of clusters affect the computational complexity for instances that have a
fixed local modification bound t? We answer this question by showing that a
constrained version of Cluster Editing is fixed-parameter tractable with
respect to the combined parameter “number d of clusters in the target graph
and local modification bound t”. We choose the following formulation to
incorporate d and t into the problem:

(d, t)-Constrained-Cluster Editing:
Input: An undirected graph G = (V,E), a function τ : V →
{0, . . . , t}, and nonnegative integers d and k.
Question: Can G be transformed into a cluster graph G′ by
applying at most k edge modifications such that G′ has at most d
clusters and each vertex v ∈ V is incident with at most τ(v)
modified edges?

We use τ during our algorithm to keep track of the number of modifications
that each vertex has been incident with. We can initially set τ(v) := t for
each v ∈ V and directly obtain the constraints posed by the local modifi-
cation bound t. We refer to the corresponding problem in which only edge
deletions are allowed as (d, t)-Constrained-Cluster Deletion. Clearly,
Cluster Editing is the same as (n, n)-Constrained Cluster Editing
where τ(v) = n for each v ∈ V . To show the fixed-parameter tractabil-
ity of (d, t)-Constrained-Cluster Editing and (d, t)-Constrained-
Cluster Deletion with respect to the combined parameter (d, t), we

19

present a set of polynomial-time data reduction rules. Before doing so, we
discuss several aspects of the problem formulation and parameterization.

Concerning the problem formulation, in many application scenarios a rea-
sonable upper bound for the number of clusters d is given in advance. Fur-
thermore, the local modification bound t yields another measure of closeness
of the cluster graph to the input graph. In comparison to Cluster Edit-
ing, (d, t)-Constrained-Cluster Editing thus allows to further con-
strain the solution by adjusting the values of d and t. In certain application
scenarios this may help to obtain better clusterings. In this sense, (d, t)-
Constrained-Cluster Editing directly corresponds to a multi-criteria
optimization problem where there is a trade-off between finding solutions
that have small values of d, t, or k.

Concerning the parameterization, one can observe that for some instances k
is not bounded by a function in d and t. Consider for example a graph G =
(V,E) that consists of two cliques K1 and K2, each of order |V |/2. Fur-
thermore, let each v ∈ K1 have exactly one neighbor in K2 and vice versa.
An optimal solution for this graph is to delete all |V |/2 edges between K1

and K2. Hence, the parameter k is very large for this instance, whereas d = 2
and t = 1. In general, we can always assume t ≤ k. The general relation
between d and k is a bit more tricky. For example, in case G is connected, we
can assume d ≤ k + 1 since applying k edge modifications to G produces at
most k + 1 connected components. Furthermore, in case G does not contain
isolated cliques, we can assume d ≤ 2k, since at least one edge modification
is incident with each clique in the final cluster graph. In most application
scenarios, the connected components of the input graph are processed inde-
pendently from each other. Hence, we usually have d ≤ k + 1 for real-world
instances. In summary, the parameters d and t can be arbitrarily small com-
pared to k, are bounded from above by a linear function of k when G does
not contain isolated cliques, and are usually smaller than k for real-world
instances.

We now show that (d, t)-Constrained-Cluster Editing is fixed-pa-
rameter tractable with respect to (d, t). More precisely, we present four data
reduction rules for (d, t)-Constrained-Cluster Editing that produce
a problem kernel consisting of at most 4dt vertices. The first two rules
identify edge modifications that have to be performed by every solution, since
otherwise there would be vertices to which more than t edge modifications
are incident.

20

Reduction Rule 3. If G contains two adjacent vertices u, v ∈ V such
that |N(u) \N [v]| > 2t, then remove {u, v} from E and set τ(v)← τ(v)− 1,
τ(u)← τ(u)− 1, and k ← k − 1.

Reduction Rule 4. If G contains two nonadjacent vertices u, v ∈ V such
that |N(u) ∩ N(v)| > 2t, then add {u, v} to E and set τ(v) ← τ(v) − 1,
τ(u)← τ(u)− 1, and k ← k − 1.

Lemma 5. Reduction Rules 3 and 4 are correct and can be exhaustively
performed in O(n3) time.

Proof. Let (G = (V,E), d, t, k) be an input instance of (d, t)-Constrained-
Cluster Editing. We show the correctness of each rule and then bound
the running time of exhaustively applying both rules.

Let u and v be as described in Reduction Rule 3. We show that every
locally t-bounded solution deletes the edge {u, v}. Suppose that there is a
locally t-bounded solution S that does not delete {u, v}, let G′ be the cluster
graph that results from applying S to G, and let K be the cluster of G′ such
that u, v ∈ K. Clearly, |K ∩N(u) \N [v]| ≤ t since at most t inserted edges
are incident with v. Then, however, more than t deleted edges are incident
with u. This contradicts that S is a solution.

Let u and v be as described in Reduction Rule 4. We show that every
solution adds the edge {u, v}. Suppose that there is some solution S that does
not add {u, v}, let G′ be the cluster graph that results from applying S to G,
and let K be the cluster of G′ such that u ∈ K and v 6∈ K. Since at most t
deleted edges are incident with u, we have |N(u) ∩ N(v) ∩ K| > t. Then,
however more than t deleted edges are incident with v. This contradicts
that S is a solution.

To achieve a running time of O(n3) we proceed as follows. First, we
initialize for each pair of vertices u, v ∈ V three counters, one counter
that counts |N(u) ∩ N(v)|, one counting |N(u) \ N [v]|, and one count-
ing |N(v) \ N [u]|. For each such pair, this is doable in O(n) time when an
adjacency matrix has been constructed in advance. Hence, the overall time
for initializing the counters for all possible vertex pairs is O(n3). All counters
that warrant an application of either Reduction Rule 3 or Reduction Rule 4
are stored in a list. We call these counters active. Next, we apply the re-
duction rules. Overall, since k ≤ n2 the rules can be applied at most n2

times. As long as the list of active counters is nonempty, we perform the
appropriate rule for the first active counter of the list. It remains to update

21

all counters according to the edge modification applied by the rule. Suppose
Reduction Rule 4 applies to u and v, that is, {u, v} is added. Then, we have
to update the counters for each pair containing v or u. For v, this can be
done in O(n) time, by checking for each w 6= v, whether u must be added
toN(v)∩N(w) or added toN(v)\N [w] or removed fromN(w)\N [v] (for each
counter this can be done in O(1) time by using the constructed adjacency
matrix). For each updated counter, we also check in O(1) time whether it
needs to be added to/removed from the list of active counters. The case that
Reduction Rule 3 applies to u and v can be shown analogously. Overall, we
need O(n3) time to initialize the counters and O(n3) time for the exhaustive
application of the rules.

The following reduction rule simply checks whether the instance con-
tains vertices to which already more than t modifications have been applied.
Clearly, in this case the instance is a no-instance.

Reduction Rule 5. If there is a vertex v ∈ V with τ(v) < 0, then output
“no”.

The final reduction rule identifies isolated cliques that cannot be merged
or split, and whose removal thus does not destroy solutions of (d, t)-Constrained-
Cluster Editing.

Reduction Rule 6. If there is an isolated clique K in G such that |K| > 2t,
then remove K from G and set d := d− 1.

Lemma 6. Reduction Rule 6 is correct and can be exhaustively performed
in O(m) time.

Proof. The running time of the rule is obvious; for the correctness we show
that K is a cluster of any cluster graph that can be obtained by a locally
t-bounded solution.

Since |K| > 2t, there is at least one vertex that is adjacent to at least t
vertices ofK in any cluster graph that can be obtained by a locally t-bounded
solution. Hence, there is a cluster K ′ of size at least t + 1 that contains
only vertices from K. Since every vertex from K that is not part of K ′ is
incident with at least t + 1 edge deletions, we have K ⊆ K ′. Furthermore,
we have K ′ = K since adding a vertex v ∈ V \ K to K causes at least 2k
edge insertions that are incident with v.

We now show that applying Reduction Rules 3–6 yields a problem kernel.

22

Theorem 6. (d, t)-Constrained-Cluster Editing admits a 4dt-vertex
problem kernel which can be found in O(n3) time. It is thus fixed-parameter
tractable with respect to the parameter (d, t).

Proof. We first show the problem kernel size and then bound the running
time of the kernelization.

Let (G = (V,E), d, t, k) be an input instance of (d, t)-Constrained-
Cluster Editing and let G be reduced with respect to Reduction Rules 3–
6. We show the following:

(G, d, t, k) is a yes-instance ⇒ G has at most 4dt vertices.

Let S be a solution of the input instance and let G′ be the cluster graph that
results from applying S to G. We show that every cluster Ki of G

′ has at
most 4t vertices. Assume toward a contradiction that there is some Ki in G′

with |Ki| > 4t. Since G is reduced with respect to Reduction Rule 6, there
must be either an edge {u, v} in G such that u ∈ Ki and v ∈ V \ Ki or a
pair of vertices u, v ∈ Ki such that {u, v} is not an edge in G.
Case 1: u ∈ Ki, v ∈ V \ Ki and {u, v} ∈ E. Since at most t − 1 edge
insertions are incident with u, it has in G at least 3t + 1 neighbors in Ki.
Furthermore, since at most t edge deletions are incident with v, it has in G
at most t neighbors in Ki. Hence, there are at least 2t + 1 vertices in Ki

that are neighbors of u but not neighbors of v. Therefore, Reduction Rule 3
applies in G, a contradiction to the fact that G is reduced with respect to
this rule.
Case 2: u, v ∈ Ki and {u, v} 6∈ E. Both u and v are in G adjacent to at
least |Ki| − (t − 1) vertices of Ki \ {u, v}. Since |Ki| > 4t they thus have
in G at least 2t+1 common neighbors. Therefore, Reduction Rule 4 applies
in G, a contradiction to the fact that G is reduced with respect to this rule.

We have shown that |Ki| ≤ 4t for each cluster Ki of G
′. Since G′ has at

most d clusters, the overall bound on the number of vertices follows.
It remains to bound the running time of of obtaining an instance that is

reduced with respect to Reduction Rules 3–6. By Lemma 5, the exhaustive
application of Reduction Rules 3 and 4 runs in O(n3) time. After these
two rules have been exhaustively applied, Reduction Rules 5 and 6 can be
exhaustively applied in O(m) time. Finally, observe that applying Reduction
Rules 5 and 6 does not lead to an instance to which Reduction Rules 3 and 4
can be applied again.

23

The data reduction rules can be adapted to the case that only edge dele-
tions are allowed. Indeed, we can show a 2dt-vertex problem kernel for (d, t)-
Constrained-Cluster Deletion by replacing 2t by t in Reduction Rule 3
(note that Reduction Rule 4 is not suitable for Cluster Deletion since
it adds an edge). More precisely, we have the following two reduction rules
specifically for Cluster Deletion.

Reduction Rule 7. If G contains two adjacent vertices u, v ∈ V such
that |N(u) \N [v]| > t, then remove {u, v} from E and set τ(v) := τ(v)− 1,
τ(u) := τ(u)− 1, and k := k − 1.

Lemma 7. Reduction Rule 7 is correct and can be exhaustively applied in
O(n3) time.

Proof. The running time was already shown in the proof of Lemma 5. Hence,
we only show the correctness of the rule.

Every locally t-bounded solution deletes at most t edges incident with u.
Hence, in the cluster graph that results from applying such a solution, u has
at least one neighbor w 6∈ N [v]. Hence, the solution must also delete {u, v}.
Otherwise the graph is not a cluster graph.

The second rule deals with isolated clusters in G.

Reduction Rule 8. If there is an isolated clique K in G, then remove K
from G and set d := d− 1.

The correctness of the rule follows from the observation that this isolated
clique produces at least one cluster. Finally, we also apply Reduction Rule 5
in order to find vertices to which too many edge modifications have been
applied. Altogether, the exhaustive application of these rules yields a 2dt-
vertex problem kernel, as we show in the following.

Theorem 7. (d, t)-Constrained-Cluster Deletion admits a 2dt-vertex
problem kernel which can be found in O(n3) time. It is thus fixed-parameter
tractable with respect to the parameter (d, t).

Proof. The proof works in complete analogy to the proof of Theorem 6, the
only difference is that we can show that every cluster of the cluster graph
has at most 2t vertices instead of 4t vertices.

Let G be a graph that is reduced with respect to Rules 7, 8, and 5. We
show that each cluster of every cluster graph that can be obtained by a locally

24

t-bounded solution has size at most 2t. Assume toward a contradiction that
there is such a cluster graph that contains a cluster K that has more than 2t
vertices. Since G is reduced with respect to Reduction Rule 8, there must
be a pair of vertices u ∈ K and v ∈ V \ K such that {u, v} is an edge
in G. Since the solution is locally t-bounded, v has in G at most t neighbors
in K. Hence, u has in G more than t neighbors that are not neighbors
of v. Therefore, Reduction Rule 7 applies, a contradiction to the assumption
that G is reduced.

5. Concluding Remarks

The presented hardness and tractability results provide a more detailed
view on the computational complexity of Cluster Editing and Cluster
Deletion. Several open questions and research tasks concerning Cluster
Editing arise immediately from these results.

For instance concerning the NP-hardness of Cluster Editing for graphs
with bounded degree, achieving a complexity-dichotomy, as we now have
for Cluster Deletion, would be desirable. We conjecture that Cluster
Editing on graphs with maximum degree three is solvable in polynomial
time. For graphs with maximum degree four, we have no conjecture at the
moment. For graphs with maximum degree five, the NP-hardness appears
to follow from a recent result by Fomin et al. [11].

Concerning the parameter “local modification bound t” several questions
arise. For example, is Cluster Editing polynomial-time solvable when
the solution is locally 1-bounded? Another question is whether there are
other graph modification problems for which this parameter yields fixed-
parameter tractability? A good candidate seems to be the Feedback Arc
Set in Tournaments problem, which appears to be “easier” than Clus-
ter Editing.4 Concerning the combined parameter “number d of clusters
and local modification bound t”, developing a search tree algorithm would
complement our problem kernelization results. Moreover, experimental stud-
ies should be performed to analyze what typical values of d and t are in real-
world instances, and to determine whether adding our data reduction rules
provides a speed-up for some instances. Finally, further suitable parameteri-
zations of Cluster Editing should be explored. These could be structural

4For example, Feedback Arc Set in Tournaments can be solved in time that is
subexponential in the size of the solution [1, 16].

25

graph parameters but also parameters that are related to the solution such
as for example the parameter “number of edge deletions performed by the
solution”. This parameter could be considerably smaller than the parameter
number of edge modifications.

References

[1] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In Proceed-
ings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP ’09), Part 1, volume 5555 of Lecture Notes in
Computer Science, pages 49–58. Springer, 2009.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
Learning, 56(1–3):89–113, 2004.

[3] S. Böcker. A golden ratio parameterized algorithm for cluster editing.
Journal of Discrete Algorithms, 2012. To appear, electronically avail-
able.

[4] S. Böcker and P. Damaschke. Even faster parameterized cluster deletion
and cluster editing. Information Processing Letters, 111(14):717–721,
2011.

[5] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. Going weighted:
Parameterized algorithms for cluster editing. Theoretical Computer Sci-
ence, 410(52):5467–5480, 2009.

[6] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60(2):316–
334, 2011.

[7] Y. Cao and J. Chen. Cluster editing: Kernelization based on edge cuts.
In Proceedings of the 5th International Symposium on Parameterized
and Exact Computation (IPEC ’10), volume 6478 of Lecture Notes in
Computer Science, pages 60–71. Springer, 2010.

[8] J. Chen and J. Meng. A 2k kernel for the cluster editing problem.
Journal of Computer and System Sciences, 78(1):211–220, 2012.

[9] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

26

[10] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006.

[11] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger.
Subexponential fixed-parameter tractability of cluster editing. CoRR,
abs/1112.4419, 2011.

[12] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general
graph-matching problems. Journal of the ACM, 38(4):815–853, 1991.

[13] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data
clustering: Exact algorithms for clique generation. Theory of Computing
Systems, 38(4):373–392, 2005.

[14] J. Guo. A more effective linear kernelization for cluster editing. Theo-
retical Computer Science, 410(8–10):718–726, 2009.

[15] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63
(4):512–530, 2001.

[16] M. Karpinski and W. Schudy. Faster algorithms for feedback arc set
tournament, Kemeny rank aggregation and betweenness tournament.
In Proceedings of the 21st International Symposium on Algorithms and
Computation (ISAAC ’10), Part 1, volume 6506 of Lecture Notes in
Computer Science, pages 3–14, 2010.

[17] C. Komusiewicz. Parameterized Algorithmics for Network Analysis:
Clustering & Querying. PhD thesis, Technische Universität Berlin,
Berlin, Germany, 2011.

[18] C. Komusiewicz and J. Uhlmann. Alternative parameterizations for
cluster editing. In Proceedings of the 37th International Conference
on Current Trends in Theory and Practice of Computer Science (SOF-
SEM ’11), volume 6543 of Lecture Notes in Computer Science, pages
344–355. Springer, 2011.

[19] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree
clustering. Acta Informatica, 23(3):311–323, 1986.

27

[20] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31
in Oxford Lecture Series in Mathematics and Its Applications. Oxford
University Press, 2006.

[22] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification prob-
lems. Discrete Applied Mathematics, 144(1–2):173–182, 2004.

[23] J. Uhlmann. Multivariate Algorithmics in Biological Data Analysis. PhD
thesis, Technische Universität Berlin, Berlin, Germany, 2011.

[24] J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender.
Partition into triangles on bounded degree graphs. In Proceedings of the
37th Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM ’11), volume 6543 of Lecture Notes in Computer Sci-
ence, pages 558–569. Springer, 2011.

[25] M. Weller, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. On mak-
ing directed graphs transitive. Journal of Computer and System Sci-
ences, 78(2):559–574, 2012.

[26] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In
Combinatorial Optimization, volume 2570 of Lecture Notes in Computer
Science, pages 185–208. Springer, 2003.

28

	Introduction
	Constant Degree and Local Modification Bound
	Cluster Deletion on graphs with maximum degree three
	Number of Clusters and Local Modification Bound
	Concluding Remarks

