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Abstract

We do computational studies concerning the enumeration of isolated cliques in
graphs. Isolation, as recently introduced, measures the degree of connectedness of
the cliques to the rest of the graph. Isolation helps both in getting faster algorithms
than for the enumeration of maximal general cliques and in filtering out cliques
with special semantics. We compare three isolation concepts and their combination
with two enumeration modi for maximal cliques (“isolated maximal” vs “maximal
isolated”). All studied concepts exhibit the fixed-parameter tractability of the enu-
meration task with respect to the parameter “degree of isolation”. We provide a first
systematic experimental study of the corresponding enumeration algorithms, using
synthetic graphs (in the Gn,m,p model), financial networks, and a music artist simi-
larity network (proposing the enumeration of isolated cliques as a useful instrument
in analyzing financial and social networks).
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1 Introduction

We study the enumeration of maximal cliques of an undirected graph G =
(V, E), that is, the enumeration of all vertex subsets V ′ ⊆ V such that the
induced subgraph G[V ′] is complete and there is no V ′′ ) V ′ such that the
induced subgraph G[V ′′] is also complete. Unfortunately, already finding one
maximum-cardinality clique is a notoriously hard computational problem, be-
ing NP-hard [10] as well as W[1]-hard [8] and hard to approximate [11]. By
way of contrast, finding cliques is very important in many practical applica-
tions and has been subject of the second DIMACS implementation challenge
in 1996. Recent papers describe applications in computational finance [2, 3]
and computational biochemistry and genomics [5, 7]. Moreover, clique finding
also plays a role in classical computer science fields such as the analysis of web
graphs for instance to identify web communities [9] or “link farms” (for the
purpose of spam deletion and analysis) [20].

Enumerating all maximal cliques needs exponential time. For instance, a recent
paper by Tomita et al. [21] proved a worst-case time complexity of Θ(3n/3)
for an n-vertex graph, arguing for its optimality due to the fact that there are
example graphs having 3n/3 maximal cliques [18]. Ito et al. [14] (also see the
journal version [13]) proposed to restrict the search to certain types of cliques,
that is, specifically isolated cliques. A clique V ′ of k vertices is called c-isolated
in a graph G if there are less than c·k edges leaving the induced subgraph G[V ′]
in G. This concept is interesting for two reasons. First, since one does not
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search for all maximal cliques anymore, faster enumeration algorithms are
possible. Second, isolated cliques may be an intrinsically relevant concept,
because these cliques can represent structures with particularly interesting
properties that are detected in this way.

In a companion paper [16], we extended Ito et al.’s [14, 13] studies by dis-
tinguishing three natural isolation concepts instead of only one. Moreover,
whereas Ito et al. considered the task to enumerate all maximal cliques that
are isolated (“isolated maximal”), in our follow-up work [16] we studied the
task to enumerate cliques that are maximal additionally with respect to the
property of being isolated (“maximal isolated”). For the first time, here we sys-
tematically compare all different combination possibilities, after all leading to
five different fixed-parameter algorithms (see [19] for more on fixed-parameter
algorithms) with respect to the parameter c for enumerating c-isolated cliques.
A typical running time of these algorithms looks like O(2c · c5 · |E|).

The main focus of our work is on computational experiments to explore the
practical utility of the new clique enumeration algorithms based on isolation.
Before doing that, we provide a systematic comparison of all five enumera-
tion algorithms for isolated cliques. In particular, we can improve a previous
running time of O(4c ·c4 ·|E|) [13] to O(2c ·c5 ·|E|) for one of the mentioned enu-
meration algorithms. Our experiments are based on synthetic (Gn,m,p graphs)
as well as real-world data (financial networks, music artist similarity network).
With the help of the corresponding empirical investigations we can spot subtle
but important (practical) differences between the various isolation concepts
and enumeration tasks. The main conclusion substantiated by our findings is
that the consideration of isolated cliques pays off because one may

• achieve faster algorithms for relevant special cases of clique enumeration in
comparison with the famous Bron-Kerbosch algorithm and its variants [4,
15, 21, 6], and
• isolation concepts help filtering out semantically particularly interesting

maximal cliques that may have remained undiscovered when enumerating
all maximal cliques.

In conclusion, we believe that with our study (and the corresponding, freely
available open source code) we contribute a practically useful tool for clique-
based network analysis in all fields of applications.

Our work is organized as follows. In the next section, we overview and com-
pare known theoretical results and present a small improvement concerning
the running time of one of the studied fixed-parameter algorithms. Then, in
Section 3, we discuss relevant issues concerning the implementation of the al-
gorithms experimented with in Section 4. There, we first present results for
synthetic data—emphasizing efficiency issues—and then we present results for
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real-world data—emphasizing semantic issues. In Section 5, we draw some con-
clusions for future work and briefly summarize our findings and their potential
impact on clique-based network analysis.

2 Isolation Concepts and Maximality Definitions

In this section, we survey the different isolation concepts and the resulting enu-
meration algorithms. Furthermore, for two particular enumeration algorithms,
we present an improved upper bound on the worst-case running time.

2.1 Comparison of the Isolation Concepts and Enumeration Tasks

Ito et al. [13, 14] introduced the concept of c-isolation—which, in the light
of the following, is called average-c-isolation (avg-c-isolation for short) in this
work—as follows: Let G = (V, E) be an undirected graph and c be a positive
integer. A vertex set S ⊆ V of size k is called avg-c-isolated if it has less than c·
k outgoing edges, where an outgoing edge is an edge between a vertex in S

and a vertex in V \S. Note that for reasons of simplicity we consider c to be a
nonnegative integer. In follow up-work [16], we further introduced the concepts
of min-c-isolation and max-c-isolation as follows. A vertex set S ⊆ V is min-c-
isolated if there is at least one vertex in S with less than c neighbors in V \S.
A vertex set S ⊆ V is max-c-isolated if every vertex v ∈ S has less than c

neighbors in V \S. Figure 1 illustrates the three concepts in case of S inducing
a clique. Clearly, max-c-isolatedness implies avg-c-isolatedness implies min-c-
isolatedness, but not vice versa. Max-c-isolation is useful when we want to
exclude high-degree vertices from the enumerated sets. This can result in the
enumeration of smaller cliques than in the other two cases. For notational
simplification we will mostly use the terms min-isolation, avg-isolation, and
max-isolation.

In addition to these three isolation concepts, we distinguish between two dif-
ferent enumeration tasks. In the first enumeration setting (as described by Ito
and Iwama [13]), we want to output maximal cliques that are also isolated.

Definition 1 Let G be a graph and I be an isolation concept. A vertex set S

is called I-isolated maximal clique if S is a maximal clique and I-isolated.

In contrast, we also proposed to enumerate cliques that are maximal with
respect to the clique property and the isolation condition [16].

Definition 2 Let G be a graph and I be an isolation concept. A vertex set S ⊆
V is called maximal I-isolated clique if S is an I-isolated clique, and no
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Fig. 1. Examples of isolated cliques. Solid lines are edges between members of
a considered clique; dashed lines are outgoing edges. (a) A maximal 4-vertex
clique, which is min-2-isolated, avg-7-isolated, and max-12-isolated. The clique is
not avg-6-isolated; however, two subsets form a maximal avg-6-isolated clique ((b)
and (c)). Moreover, it is not max-11-isolated, but one (unique) subset is (d).

superset S ′ ⊃ S is an I-isolated clique.

An example for the difference between these two definitions can be seen
in Figure 1: the clique in Figure 1a is an avg-12-isolated maximal clique, since
it is a maximal clique that is avg-12-isolated. The clique in Figure 1b is a
maximal avg-6-isolated clique, but not avg-6-isolated maximal, since it is not
a maximal clique. For all isolation conditions, the set of maximal isolated
cliques always contains the set of isolated maximal cliques. Note that for min-
isolation the two notions are identical: Since adding a vertex to a clique never
results in a violation of min-isolation, every maximal min-isolated clique is
also a min-isolated maximal clique. Altogether, we end up with five different
enumeration tasks.

2.2 Enumeration Algorithms

In the following, we describe the algorithms for all five enumeration tasks.
The overall structure of these algorithms is similar. First, we describe this
structure, followed by the pseudo-codes of the algorithms, which are presented
in tabular form in order to simplify comparisons between the algorithms.

We consider only undirected graphs G = (V, E). For v ∈ V, N(v) := {u ∈ V |
{u, v} ∈ E} and N [v] := N(v)∪{v}. Let c be the isolation factor, let n denote
the number of vertices in G, and m denote the number of edges in G. First
the vertices are sorted by their degree such that u < v ⇒ deg(u) ≤ deg(v).
The index of a vertex is its position in this sorted order. Let N+[v] := {u ∈
N [v] | u > v} ∪ {v} and N−(v) := {u ∈ N(v) | u < v}. In any isolated clique
(according to our respective definition of isolation), the vertex with the lowest
index is called the pivot of the clique [14]. Clearly, a pivot has less than c

outgoing edges. Since every isolated clique has a pivot, we can enumerate all
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Isolated Cliques(G = (V, E), c)
Sort vertices in G by degree
C ← ∅
for each v ∈ V : ⊲ Pivot procedure

C ← Trimming(G, v, c) ⊲ Data reduction

C′ ← Enumeration(G, v, c, C) ⊲ Enumerates isolated cliques

C ← C ∪ Screening(G, v, c, C′, C) ⊲ Removes non-maximal cliques

return C

Fig. 2. The main procedure of the isolated clique enumeration algorithms.

isolated cliques of a graph by enumerating all isolated cliques with pivot v for
all v ∈ V . The enumeration of maximal avg-isolated cliques with pivot v for
some v ∈ V is called the pivot procedure. It comprises three successive stages
(see also Figure 2):

2.2.1 Trimming Stage.

In this stage we perform a data reduction. That is, for a pivot v we build a
candidate vertex set C ⊆ N [v] that contains all isolated cliques with pivot v

by removing those vertices u ∈ N(v) from C that cannot belong to an isolated
clique with pivot v. Note that by the pivot definition we can always exclude
the vertices from N−(v). Hence, we initially set C = N+[v]. The actual data
reduction rules differ depending on the corresponding isolation concept. How-
ever, for this stage it is irrelevant whether we want to enumerate isolated
maximal or maximal isolated cliques. Therefore, there are three different al-
gorithms (outlined in Figure 3). More details are described in the following
paragraphs:

Min-Isolation. We remove vertices that have too few neighbors in the
candidate set. Including these vertices would result in a clique in which v has
at least c outgoing edges. Therefore, we check for each u ∈ C whether the
following condition—whose necessity can be easily seen—holds (see Figure 3).

Min-(1): u has at least |C| − c adjacent vertices in C.

Avg-Isolation. We first remove vertices with very high degree, since in-
cluding them results in a violation of the isolation condition. This exclusion
enables us to achieve a linear worst-case running time. Furthermore, we re-
move vertices that have too few neighbors in the candidate set. The following
conditions are checked, for details on the correctness and running time we
refer to the work of Ito and Iwama [13].

6



Trimming(G, v, c)
C ← N+[v]
c′ ← c− |N [v] \ C| − 1 ⊲ Number of vertices that can still be deleted

while c′ ≥ 0:
for each u ∈ C: ⊲ Removal of high degree vertices

Min-isolation: Avg-isolation: Max-isolation:
if u violates Avg-(1): if u violates Max-(1):

C ← C \ {v} C ← C \ {v}
c′ ← c′ − 1 c′ ← c′ − 1

for each u ∈ C:
Min-isolation: Avg-isolation: Max-isolation:
if u violates Min-(1): if u violates Avg-(2),(3),(4): if u violates Max-(2):

C ← C \ {v} C ← C \ {v} C ← C \ {v}
c′ ← c′ − 1 c′ ← c′ − 1 c′ ← c′ − 1

if c′ ≥ 0 then return C else return ∅

Fig. 3. Pseudo-code of the trimming stage of the pivot procedure. The removal of
high-degree vertices can only be performed for avg- and max-isolation. In order to
achieve linear running-time for these two concepts, all high-degree vertices have to
be removed before scanning the adjacency lists of the vertices.

Avg-(1): deg(u) < (c + 1) · |C| − 1.
Avg-(2): u has fewer than c · |C| outgoing edges.
Avg-(3): u has at least |C| − c adjacent vertices in C.
Avg-(4): Cu has less than c · (c + 1) · |Cu| outgoing edges, where Cu := {x ∈

C | x < u} ∪ {u}.

Max-Isolation. As for avg-isolation, we remove vertices that have a very
high degree compared to v. However, because of the stronger isolation con-
dition, the degree of the vertices is even more restricted compared to avg-
isolation. For details on the correctness of the following conditions we refer
to [16].

Max-(1): deg(u) < |C|+ c− 1.
Max-(2): u has at least |C| − c adjacent vertices in C.

For all three isolation concepts, we return the candidate set C if we have
removed at most c− 1 vertices during the trimming stage. Otherwise, there is
no isolated clique with pivot c and we thus return the empty set.

2.2.2 Enumeration Stage.

This stage enumerates the isolated cliques with pivot v. The pseudo-code of
this stage is shown in Figure 4. Clearly, the candidate set C is a superset of
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Enumeration(G, v, c, C)

G′ ← G[C]
c′ ← c− |N [v] \ C| − 1 ⊲ Number of vertices that can still be deleted

S ← MinimalVertexCovers(G′, c′)
for each S ∈ S:
Isolated Maximal:
if C \ S is isolated:
C ← C ∪ {C \ S} ⊲ C \ S is maximal clique in G[C]

Maximal Isolated:
Avg-isolation: Max-isolation:
C ← C ∪ IsoSubsets(G, C \ S, c) C ′ ← C \ S

while C ′ is not max-c-isolated
u← max-degree vertex of C

C ′ ← C ′ \ {u}
if |C \ C ′| ≤ c′ : C ← C ∪ {C ′}

return C

Fig. 4. Pseudo-code of the enumeration stage of the pivot procedure. Input of the
enumeration stage is the pivot v, the isolation factor c and the candidate set C.

all isolated cliques with pivot v. We enumerate the cliques by enumerating
minimal vertex covers in the complement graph G[C]. This is done because
there are efficient algorithms for the enumeration of small minimal vertex
covers. From each minimal vertex cover we obtain a clique that is maximal
in G[C]. By definition, the pivot has less than c outgoing edges from any
isolated clique. Therefore, the size of the enumerated minimal vertex covers can
be at most c′ := c−1−|N [v]\C|, where N [v]\C is the set of vertices that were
already removed during the trimming stage. If an enumerated clique is isolated,
then we add it to the set of cliques that is checked in the screening stage. If
it is not isolated, the actual algorithm depends on the isolation concept and
enumeration task:

Isolated maximal cliques. We can discard non-isolated cliques, since we
are only interested in maximal cliques. Hence, no subsets of the enumerated
cliques have to be considered.

Maximal isolated cliques. We have to consider subsets of the enumer-
ated non-isolated cliques. For max-isolation the situation is easy—we have to
remove any vertex that has at least c outgoing edges from C. Either we end
up with an isolated clique, or we have removed too many vertices from C and
can thus discard C altogether. For avg-isolation, however, it is not clear, which
vertex has to be removed, but it is possible to show that only subsets of the
set of vertices with the c highest degrees in C [16] may be removed. This is
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Screening(G, v, c, C′, C)
for each C ′ ∈ C′:
Isolated Maximal:
Min-isolation: Max/Avg-isolation:
for each u ∈ N−(v) : for each u ∈ N [v] \ C ′ :
if C ′ ⊆ N(u) : C′ ← C′ \ {C ′} if C ′ ⊆ N(u) : C′ ← C′ \ {C ′}

Maximal Isolated:
for each u ∈ N−(v) :
if C ′ ⊆ N(u) : C′ ← C′ \ {C ′}
else:
Avg-isolation: Max-isolation:
D ← (C \ C ′) ∩N∩(C ′) D ← (C \ C ′) ∩N∩(C ′)
D ←MaximalCliques(G[D]) for each i ≤ c− 1:
for each D ∈ D : Di ← {w ∈ D | deg(w) ≤ |C ′|+ c + i}
if D ∪ C ′ has isolated subset: D′ ←MaximumClique(Di)
C′ ← C′ \ {C ′} if |D′| ≥ i + 1 :

C′ ← C′ \ {C ′}
return C′

Fig. 5. Pseudo-code of the screening stage of the pivot procedure. Input of the
screening stage is the pivot v, the isolation factor c, the set C′ of cliques enumerated
in the enumeration stage, and the candidate set C.

performed in the IsoSubsets procedure, the details of this procedure can be
found in [16].

2.2.3 Screening Stage.

In this stage we remove non-maximal cliques from the set of cliques that were
enumerated during the enumeration stage. Basically, we check whether there
are vertices in the common neighborhood N∩(C ′) := (

⋂
u∈C′ N(u)) \ C ′ of an

enumerated clique C ′ such that adding these vertices yields an isolated clique.
The actual maximality tests depend on the isolation concept and enumeration
task. The algorithm of the screening stage is shown in Figure 5.

Isolated maximal. We have to check whether an enumerated clique C ′ is
a maximal clique in G. For min-isolation, we only need to consider vertices
in N−(v) since the enumerated cliques are maximal cliques in G[N+[v]]. For
each u ∈ N−(v) we thus check whether C ′ ⊆ N(u), and if so, then we discard
the clique C ′. For max-isolation and avg-isolation, we have to consider all
vertices in N [v]\C ′ because we have removed high-degree vertices prior to the
vertex cover enumeration. However, one of these vertices might be adjacent to
all vertices in C ′. Therefore, we check for each of the at most c deleted vertices
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from N [v] \ C whether it is adjacent to all vertices in C ′. 4

Maximal Isolated. Here, the maximality check is more complicated. First,
we check whether there is a vertex u that was removed during the trimming
stage such that there is a superset of C ′ that is an isolated clique and con-
tains u. Clearly, we cannot include any vertex u ∈ N+[v] \ C, where C is
the candidate set after the trimming stage: these vertices have been removed
since their inclusion in a clique with pivot v always leads to a violation of the
isolation condition. Therefore, we only need to consider vertices in N−(v) for
this maximality test.

For maximal isolated cliques we need to perform a second maximality test.
This is necessary, because in the enumeration stage it can happen that we enu-
merate two isolated cliques C ′ and C ′′ such that C ′ ( C ′′ (because we remove
vertices from maximal cliques in order to establish the isolation condition).
The corresponding maximality tests differ for avg-isolation and max-isolation.
In the following, we briefly describe the idea behind these tests.

Avg-isolation.We are looking for subsets D of C \C ′ such that adding D to C ′

yields an avg-isolated clique. This subset must be a clique and its vertices
must be adjacent to all vertices of C ′. We can find such a set by enumerating
all maximal cliques in (C \ C ′) ∩ N(C ′), and checking for each enumerated
clique D whether D ∪ C ′ has an isolated subset that is superset of C ′. This
can be performed by removing the vertex of highest degree from D ∪ C ′ as
long as the isolation condition is violated.

Max-isolation.We are looking for subsets D of C \C ′ such that adding D to C ′

yields a max-isolated clique. This subset must be a clique and its vertices must
be adjacent to all vertices of C ′. Suppose that the maximum degree of any
vertex in D is |C ′| + c + i, with i ≤ c − 1 (otherwise the isolation condition
would be violated). Then, we know that D must have size at least i + 1.
Otherwise, we would also violate the isolation condition. Hence, we check—
for each possible i—whether the subset of (C \C ′) ∩N(C ′) that contains the
vertices with degree at most |C ′|+ c + i contains a clique of size at least i + 1.

Finally, we output all cliques that have passed the respective maximality tests.
For min-isolation and the enumeration of maximal avg-isolated and maxi-
mal max-isolated cliques the presented algorithms have been previously de-
scribed [16]. For the enumeration of isolated maximal cliques, the described
algorithms are very similar to the algorithm of Ito and Iwama [13]. The only

4 Note that this test is not included in the original algorithm by Ito et al. [14].
However, it is necessary for the stated reasons. In Theorem 1 we will show that this
test can also be performed in linear overall running time.
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Isolated Maximal Maximal Isolated

Min-Isolation O(2c · c · n + m · n) [16]

Avg-Isolation O(2c · c5 ·m) O(2.89c · c2 ·m) [16]

Max-Isolation O(2c · c5 ·m) O(2.44c · c2 ·m) [16]

Table 1
Running times of the enumeration algorithms for the three isolation concepts and
the two different enumeration tasks.

difference lies in the maximality test of our screening stage. It is required to ex-
clude all non-maximal cliques, and—compared to the test of Ito and Iwama—
it even helps in improving the worst case running time from O(4c · c4 · m)
to O(2c · c5 ·m).

Theorem 1 All avg-c-isolated (max-c-isolated) maximal cliques can be enu-
merated in O(2c · c5 ·m) time.

PROOF. Ito and Iwama showed that the overall running time of the trim-
ming and enumeration stages of all calls to the pivot procedure is O(2c · c3 ·
m) [13]. Furthermore, they proved that the sum of edges that enter the enu-
meration stage of the algorithm is O(c3 ·m) [13, Lemma 3.13]. We will use this
to upper-bound the running time of our screening stage. For each enumerated
clique C, we have to test whether there is a vertex c ∈ N [v]\C that is adjacent
to all vertices of C. This can be done by scanning the adjacency lists of the
vertices in C. For avg-isolation and max-isolation, we can furthermore show
that at most 2c · c cliques are enumerated during one execution of the enumer-
ation stage [16]. Therefore, the overall running time for this maximality test
is

∑

v∈V

O(2c · c · c)
∑

u∈C

deg(u) = O(2c · c2 · c3 ·m). 2

Table 1 gives an overview of the theoretical worst-case running times of all
enumeration algorithms. For min-isolation we could not achieve a linear run-
ning time for fixed c since we cannot exclude high-degree vertices during the
trimming stage. For avg-isolation and max-isolation we have linear running
times for fixed c and both enumeration tasks. However, for the enumeration
of maximal isolated cliques, we have an inferior worst-case running time (with
respect to the isolation factor c) due to the fact that we have to perform a
more involved maximality test during the screening stage.
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3 Implementation Issues

We briefly describe some notable differences between the theoretical algo-
rithms from Section 2.2 and their actual implementations. 5 For avg-isolation
and max-isolation, they apply only to the (more complex) algorithms for max-
imal isolated cliques in contrast to isolated maximal cliques.
Min-isolation. In the trimming stage, we remove vertices that have lower in-
dex than the pivot (this differs from the description in [16]). This does not help
in achieving a better worst-case running time, but it speeds up the trimming
stage and prevents the algorithm from needlessly entering the enumeration
stage for vertices with at least c neighbors of lower index. In many instances
this provided a speed-up of factor 3 or more.
Avg-isolation. Since our experiments showed that the enumeration of avg-
isolated subsets of non-avg-isolated cliques was a bottleneck, we introduced
an additional test: We check whether we can obtain an avg-isolated set by
gradually removing the vertices of highest degree. If this is not the case, then
no subset of the clique is avg-isolated. Thus, we can avoid unnecessarily enu-
merating subsets of non-avg-isolated cliques. Furthermore, we perform this
test also before entering the enumeration stage, and only enter it when the
enumerated cliques have a chance of being c-isolated. Both tests provided a
speed-up of approximately two orders of magnitude in our experiments.
Max-isolation. The worst-case running time of O(2.44c ·c2 ·m) can be shown
using a maximum clique algorithm in the screening stage (for details see [16]).
Running time analysis showed that, unexpectedly, in practice the screening
stage was not the bottleneck of the enumeration algorithm. Therefore, in our
implementation we instead enumerate all cliques in the set of deleted vertices
to check whether an enumerated clique is maximal. This was sufficiently fast,
while keeping the implementation simpler.

As maximal clique enumeration algorithm (required for the screening stage of
avg-isolation and max-isolation), we used an improved variant of the standard
Bron-Kerbosch algorithm [4, 15, 6]. This algorithm was not a bottleneck, in
particular because of its good output-sensitivity (that is, it runs quickly if there
are only few maximal cliques); it has also recently been shown to have optimal
worst-case performance [21, 6]. We also use this algorithm as a comparison
point for the running times of our clique enumeration algorithms.

5 The program is written in Objective Caml and consists of
about 1600 lines of code. It is free software and available from
http://theinf1.informatik.uni-jena.de/c-isol/
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4 Experimental Results

Our investigations concentrate on random feature graphs that were created
according to the Gn,m,p model and on financial networks. All experiments
were run on an AMD Athlon 64 3700+ machine with 2.2GHz, 1M L2 cache,
and 3GB main memory running under the Debian GNU/Linux 4.0 operating
system with the Objective Caml 3.09.2 compiler. Note that for some instances
the enumeration did not terminate because the program exceeded the memory
limit of 3GB or the corresponding run timed out (after half an hour). This
causes some missing data points in the diagrams. In the diagrams, we use
“min-isolation” to denote the enumeration of “maximal min-isolated cliques”,
“max-isolation” stands for “maximal max-isolated cliques”, “avg-isolation” for
“maximal avg-isolated cliques”, “maxm-isolation” for “max-isolated maximal
cliques”, “avgm-isolation” for “avg-isolated maximal cliques”, and finally “bk”
stands for the enumeration of all maximal cliques using the Bron-Kerbosch
algorithm.

4.1 Synthetic Data

We generated random graphs using the Gn,m,p model (see Behrisch and Taraz
[1] and references therein). The underlying model is that cliques are defined
by features. More precisely, each of n vertices draws each of m features with
probability p, and two vertices are connected by an edge iff they have at least
one feature in common (note that here m does not denote the number of edges
as elsewhere). These graphs contain very many maximal cliques, and are tough
inputs for clique enumeration.

Note that our diagrams contain the data corresponding to all isolation con-
cepts and enumeration tasks. However, to better distinguish between the task
of enumerating all maximal isolated cliques and the task of enumerating all
isolated maximal cliques, we first report our findings corresponding to max-
imal isolated cliques, then report our findings concerning isolated maximal
cliques, and finally we compare the respective results.

4.1.1 Maximal Isolated Cliques

Our main finding is that enumerating min- and max-isolated cliques is feasi-
ble over a by far wider parameter range than enumerating general maximal
cliques or avg-isolated cliques, and that the isolation concepts can help keep-
ing the number of enumerated isolated cliques in check even in graphs that
contain excessively many maximal cliques. Furthermore, we observe a differ-
ence in output-sensitivity. Whereas min-isolation seems to be output-sensitive
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Fig. 6. Gn,m,p model with n = 200, m = 45, and p = 0.1. The average running time
for Bron-Kerbosch is 5.06 seconds.

in general and max-isolation in most instances, avg-isolation had high running
times sometimes even for relatively few enumerated cliques. Starting from a
base setting with c = 40, n = 200, m = 45, and p = 0.1, we examined the
effect of varying parameters. For each parameter setting we created five ran-
dom instances and measured the average running time as well as the average
number of enumerated cliques.

Figure 6a shows the number of cliques output for varying c. The average num-
ber of maximal cliques is about 93000. Starting from c ≈ 80, all maximal
cliques are enumerated using min-isolation. For avg- and max-isolation all
maximal cliques are found with c ≈ 150. In Figure 6b, we see that the run-
ning time of the min- and max-isolation concepts closely follows the number
of cliques output, that is, the algorithms are output-sensitive. This can not
be observed for avg-isolation because of its running time peaks for interme-
diary values of c. Notably, for all three isolation concepts almost all time is
spent in the enumeration stage. Therefore, the increased running time and
lack of output-sensitivity for avg-isolation stems from the enumeration of iso-
lated subsets of non-avg-isolated cliques, since this is where the enumeration
stages differ. Furthermore, this means that in practice the screening stage,
which dominates the overall worst-case running time, is not the bottleneck of
the algorithm. Compared to the Bron-Kerbosch algorithm, which enumerates
the whole set of maximal cliques, all three algorithms are about ten times
slower, but min- and max-isolation are significantly faster when the output is
restricted by a small c (see Figure 6b).

We next examine variation of the feature number m (Figure 7). More features
lead to an exponential growth of the number of maximal cliques (Figure 7a).
This growth only wears off when the graph becomes very dense (m = 85,
about 57 % of all possible edges present). In contrast, the number of min-40-
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Fig. 7. Gn,m,p model with c = 40, n = 200, and p = 0.1. The missing point for
avg-isolation is due to the memory limit of the test runs (3 GB).
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Fig. 8. Gn,m,p model with c = 40, m = 45, and p = 0.1.

isolated cliques reaches a plateau, and for the more stringent criteria, we even
notice a drop-off already for m ≥ 30. While for the Bron-Kerbosch algorithm
and min-isolation, we have running times mostly following the number of
generated cliques, for max- and avg-isolation, we have a maximum for m = 35
and m = 45, respectively. Again, almost all time is spent in the enumeration
stage.

Next, we consider varying n (Figure 8). Here, enumerating avg-isolated cliques
becomes infeasible for n ≈ 150, and the Bron-Kerbosch algorithm for n ≈
350. In contrast, running times for min- and max-isolation stay within a few
seconds. For max-isolation with high n, we get very few isolated cliques. This
is because, e.g., for n = 500, the expected size of a feature clique is 50, and
thus a vertex with a feature that is not part of a clique already produces an
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Fig. 9. Gn,m,p model with c = 40, n = 200, and m = 45.

expected number of 49 outgoing edges.

Finally, we consider varying p (Figure 9). For very small p, the feature cliques
are disjoint, and thus isolated. With growing p, we get overlap between the
feature cliques, and thus an exponential growth with respect to the number
of maximal cliques. Again, we observe a much reduced growth in the number
of min-isolated cliques, and a drop-off in the number of avg- and max-isolated
cliques, which can be explained by the increased interconnectedness of feature
cliques, which makes isolation less likely. Again, min- and max-isolated cliques
could be enumerated over a wider range of parameter values than avg-isolated
and maximal cliques. In particular, the algorithms for enumerating min- and
max-isolated cliques were output-sensitive while this was not the case for avg-
isolation.

4.1.2 Isolated Maximal Cliques

Our main finding is that enumerating max- and avg-isolated maximal cliques
is feasible over a wide parameter range. Since this enumeration type is more
stringent, it generally also leads to less enumerated cliques. A clear difference
to enumerating maximal isolated cliques is that actually there are very few
maximal cliques that are also max-isolated or avg-isolated, respectively—for
wide parameter ranges there are no cliques enumerated at all. In the following,
we again study the effect of varying parameters, analogously to Section 4.1.1.

First, we consider the variation of c (Figure 6). An important observation is
that there are no isolated maximal cliques for isolation factors below c ≈ 50.
Starting from c ≈ 110, all maximal cliques are enumerated using avg-isolation.
For max-isolation, this is the case above c ≈ 150. Note that for low isolation
factors there are less avg-isolated maximal cliques than maximal max-isolated

16



cliques, but above c ≈ 70 we have more avg-isolated maximal cliques than
maximal max-isolated cliques. For both max- and avg-isolation, most of the
time is spent in the enumeration stage. Notably, even for low isolation factors
with (almost) no isolated maximal cliques, the enumeration already needs
a considerable amount of time, and for isolation factors which yield more
cliques, the running time is already almost as high as the running time needed
for enumerating all maximal cliques. In this sense, enumerating max- and
avg-isolated maximal cliques is not output-sensitive, but the running times
are comparable with the running times of enumerating maximal min- and
max-isolated cliques.

Next, we consider the variation of the feature number m (Figure 7). The
plateau and the drop-off described in Section 4.1.1 can be observed already
for very low values of m for avg-isolation, and for the even more restrictive
max-isolation, we observe an immediate drop-off. For max- and avg-isolation,
the running time is always below one second. However, for avg-isolation we do
not have output sensitivity—the maximum running time is observed when no
cliques are output. For avg-isolation and max-isolation the maximum running
time is around m = 45 and m = 25, respectively.

When varying n (Figure 8), the number of avg-isolated and max-isolated
cliques reaches a plateau for n ≈ 50, but drops off quickly for increasing n.
Above n ≈ 150, there are no more max- and avg-isolated maximal cliques,
for the same reason as for the other enumeration type. For both max- and
avg-isolated, the running time stays below one second.

Finally, we vary p (Figure 9). Again, we observe reduced growth of the number
of max-isolated and avg-isolated maximal cliques, followed by a clear drop-
off. Above p ≈ 0.1 there are no isolated maximal cliques left for both max-
and avg-isolation. The reason is again the increased interconnectedness of the
feature cliques. The running times for both max- and avg-isolation stay within
a few seconds.

4.1.3 Comparison

In the following, we compare the theoretical running times (see Table 1) with
the running times we observed in practice on the Gn,m,p graphs. For this,
we interpolate for each isolation concept and enumeration type the running
time function based on the data used for the diagram in Figure 6b, compute
the basis of the exponential function, and compare it with the theoretical
basis. In Table 2 we present the corresponding results. All the enumeration
algorithms seem to be faster in practice, and generally the faster concepts in
theory are also faster in practice. An exception are the max-isolated maxi-
mal cliques, which perform similarly as the maximal max-isolated cliques in
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Isolated Maximal Maximal Isolated

Min-Isolation 2c / 1.16c

Avg-Isolation 2c / 1.23c 2.89c / 1.70c

Max-Isolation 2c / 1.28c 2.44c / 1.27c

Table 2
Exponential part of the running times of the enumeration algorithms for the three
isolation concepts and the two different enumeration types. The first entry corre-
sponds to the theoretical worst-case result (as in Table 1), and the second entry to
the hypothesized exponential growth of the running times in practice. These prac-
tical running times are determined by the maximum gradient of the corresponding
running time function in logarithmic scale.

practice, but which should be faster when comparing the theoretical running
times. Min-isolation shows the best exponential running time behavior in prac-
tice, although it is not the fastest concept when looking at the total running
times. As expected, enumerating maximal avg-isolated cliques shows the worst
running time behavior.

In our comparison, min-isolation turns out to be the concept with the lowest
exponentially growing running time. For avg-isolation, comparing the concepts
of “maximal isolated” and “isolated maximal”, the former is clearly the faster
one in practice, while the latter is typically too slow for many applications. For
max-isolation, there is no significant difference between “maximal isolated”
and “isolated maximal”, thus in practice either of the two could be chosen.

4.2 Financial Networks

Many investigations concerning financial network analysis are based on mar-
ket graphs (see, e.g., [17]). We generated market graphs from publicly avail-
able stock data. 6 A market graph is constructed as follows. Financial instru-
ments (e.g., stocks or indices) are represented by vertices. For each pair of
vertices u, v there is an edge connecting them if the corresponding correlation
coefficient Cuv based on the price fluctuations of u and v in some prespec-
ified time range exceeds some prespecified threshold θ, where −1 ≤ θ ≤ 1.
Informally speaking, two instruments u and v have a positive correlation co-
efficient Cuv if they show similar daily fluctuations in the prespecified time
range, and they have a negative correlation coefficient if their daily fluctua-
tions behave oppositional. Details about the construction of market graphs
can be found, e.g., in [2].

Experimental Setup. We considered various market graphs based on the

6 We used the data from finance.yahoo.com.
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daily fluctuations of several thousands of financial instruments during 500
consecutive trading days. Basic properties of such graphs, like degree distribu-
tion, edge density, clustering coefficient, maximum clique size, and maximum
independent set size have been analyzed by Boginski et al. [2, 3].

The following diagrams rely on data from 2204 financial instruments beginning
at 12/02/2003 over 500 consecutive trading days. However, the experiments
were also executed on many other graphs (based on data from other start dates
and other threshold values) for which the following observations also hold true
(in the qualitative sense). We excluded trivial cliques from the output, that
is, cliques containing only one or two vertices, but the results also hold if the
output contains trivial cliques. Note that the graphs do not include financial
instruments whose values get below one dollar in the considered time period,
since such “penny stocks” often show strong daily fluctuations, which are addi-
tionally biased by the rounding of the available data. In the experiments with
fixed threshold, the threshold is set to θ = 0.5 as proposed by Boginski et al.
[3] in order to ensure that only significantly correlated stocks are adjacent.
Moreover, our experiments showed that for θ = 0.5 there is a good balance
between the number of isolated cliques in the graph and the edge density (for
low threshold levels, the graph gets too dense to contain many isolated cliques,
and for high threshold levels, the graph gets too sparse to contain interesting
cliques of significant size). For threshold θ = 0.5, the graph contains 2204
vertices and 64376 edges and approximately 70000 maximal cliques.

Boginski et al. [2, 3] suggested the use of clique analysis for classifying stocks,
based on the property that cliques represent sets of “similar” financial in-
struments. However, they do not provide any method to find cliques of good
quality. Therefore, we measured the average performance of the enumerated
cliques. The average price of a financial instrument at some given trading day t

is the mean price of the instrument at day t and the 10 trading days before
and after t. Average prices are used to balance stronger daily fluctuations of
financial instruments. The performance in the time interval [t1, t2] (t1 < t2)
of a financial instrument is the average price at day t2 divided by the average
price at day t1. The performance of a clique is the mean performance of its
vertices. The average performance of a set of cliques is the mean performance
of the cliques. We always measure the performance in the time period the
market graph is based on. We first study our enumeration concept of enumer-
ating all maximal isolated cliques, then report our findings concerning isolated
maximal cliques, and finally we compare the respective results.

4.2.1 Maximal Isolated Cliques

Basic Results. As for the Gn,m,p graphs, we found enumerating min- and
max-isolated cliques to be feasible over a wide range of parameters, while the
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Fig. 10. Average clique performance in a market graph based on 500 consecutive
trading days beginning at 12/02/2003. Note that the performance of the NASDAQ
in the considered time period is 1.01.

Bron-Kerbosch algorithm and the avg-isolation algorithm are sometimes too
slow. For all three isolation concepts and for c ≤ 10 the running time is around
a second. For intermediate isolation factors we observe a peak in the running
time of max- and avg-isolation.

The number of enumerated isolated cliques ranges from a few hundred for very
low isolation factors up to all maximal cliques (≈ 70000) for high isolation
factors, where there are generally much more min-isolated cliques than max-
and avg-isolated cliques (up to one order of magnitude). For low isolation
factors, max- and avg-isolated cliques have size at most 10, whereas there
are already min-1-isolated cliques of size ≈ 50. For high isolation factors, the
enumerated cliques have maximum size ≈ 80.

Clique Performance. We can observe (Figure 10a) that the performance
of the enumerated min-, max-, and avg-isolated cliques is better for lower to
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intermediate isolation factors and generally exceeds the performance of all
maximal cliques. For higher isolation factors, the min-isolated cliques show a
performance which is similar to the average performance of all vertices in the
graph. Most notably, max-isolated cliques have especially high performance
for intermediate isolation levels; we can observe a peak of the performance
for max-isolation around c = 10. Avg-isolation seems to perform similarly as
max-isolation, but we usually observe running time or memory consumption
problems for intermediate isolation levels. For very high isolation factors, all
three isolation concepts generate all maximal cliques and therefore obviously
yield the same average performance. In general, the described effects depend
on the underlying graph and the performance of the overall market and are
more or less pronounced. Note that in our example (Figure 10a), max- and
avg-isolation perform worse than min-isolation for very low isolation factors,
however, this was not the case in other graphs (based on other time periods).
The average performance of all financial instruments in the considered time
period is approximately 1.19. Surprisingly, the maximal cliques have an aver-
age performance of about 0.99. This is caused by financial instruments with a
particularly bad performance that are included in many maximal cliques, but
not in isolated cliques.

When varying the threshold value θ, Figure 10c shows that the enumerated
cliques perform generally better for higher threshold levels. The performance
of the min-isolated cliques is comparable to the performance of all maximal
cliques for the chosen isolation c = 40, whereas max-isolation performs better
in general. Note that this only holds true for low isolation factors c ≤ 100,
since for higher isolation factors the performance of all three isolation concepts
gets closer to the performance of all maximal cliques.

4.2.2 Isolated Maximal Cliques

Basic Results. All max- and avg-isolated cliques can be enumerated over a
wide range of parameters, where the running times are always below the run-
ning time for enumerating min-isolated cliques. The peak in the running time,
as it was observed for enumerating all maximal max-isolated cliques, cannot
be observed. Among all isolation concepts and enumeration tasks, enumer-
ating max-isolated maximal cliques has the best running time but also the
fewest cliques. In contrast to the Gn,m,p graphs, the running time closely fol-
lows the number of enumerated isolated maximal cliques for both max- and
avg-isolation, thus the algorithms are output-sensitive for the finance graph.

Clique Performance. We can observe in Figure 10b that the performance
is also generally better for lower to intermediate isolation factors, and it also
exceeds the performance of all maximal cliques. When varying the threshold
value, Figure 10c shows that among all isolation concepts and enumeration
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types, the avg-isolated maximal cliques seem to perform best for intermediate
threshold levels, and max-isolated maximal cliques perform slightly worse than
maximal max-isolated cliques. Generally, the performance of the enumerated
cliques increases with increasing threshold. Compared to all maximal cliques,
all sorts of isolated cliques (with respect to all isolation concepts and enumer-
ation types) perform better. For very low threshold levels the performance of
the min-isolated cliques becomes better than the performance of other iso-
lation concepts. Note that our algorithm could not enumerate all maximal
cliques for low threshold levels in reasonable time, because the graph becomes
too dense.

Summarizing, when using a low isolation factor, then min-isolation seems to
be a good choice in order to get cliques with a good performance, whereas for
intermediate isolation factors it seems that the other isolation concepts and
enumeration types seem to be better. There appears to be no big difference
between the two enumeration types—both yielding better performing cliques
compared to all maximal cliques for intermediate isolation factors; however,
maximal isolation yields significantly more cliques with good performance.

4.2.3 Possible Applications

We observed that isolated cliques have interesting properties compared to
general maximal cliques. For example, looking more closely at the cliques
responsible for the peaks of the performance for intermediate isolation levels
(for max- and avg-isolation and both enumeration types), we observe that
these cliques represent some niche in the market. For instance, in Figure 10a
and Figure 10b the peak is caused by American raw material, oil, and energy
stocks, and by related industries like transportation, pipeline construction, and
refineries. This peak is less pronounced in graphs based on earlier time periods
(that is, beginning before 12/02/2003) and becomes even more pronounced
for graphs based on later time periods (that is, beginning after 12/02/2003).
This indicates that isolation can be useful to detect market trends. Finally,
isolated cliques performed better than general maximal cliques. Hence, we
can employ isolation to filter out financial instruments with bad performance
when enumerating cliques. This could provide a new alternative for investors
to classify financial instruments (using clique analysis as proposed by Boginski
et al. [2]). Here, a more thorough and detailed study is necessary, cooperating
with financial experts.
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4.3 Music Artist Similarity Network

Last.fm is a music community website with over 20 million active users. Based
on user statistics, Last.fm is able to calculate a similarity score for any two
artists. A network is obtained by applying a threshold value for the similarity
score. The resulting network with 6797 vertices and 108 314 edges is an inter-
esting test case, since we would expect features such as musical genres, groups
of artists, and geographical or temporal proximity to induce isolated cliques,
and it is interesting to see whether our algorithms can retrieve them.

4.3.1 Maximal Isolated Cliques

We tried to find the isolation factor that would yield a manageable number of
cliques: with min-1-isolation, we obtain 215 cliques, with avg-5-isolation 180
cliques, and with max-8-isolation 204 cliques.

All generated cliques look reasonable in the sense that not only do they con-
stitute clearly similar artists, but usually it is also possible to label them by
a combination of genre, time, and location. For example, the largest min-
1-isolated clique contains 14 current European and Commonwealth Drum ’n’
Bass artists. For min-isolation, not all cliques are this specific: for example, the
clique containing Mick Jagger, Joe Cocker, Dire Straits, Eric Clapton, Bruce
Springsteen, Aerosmith, Rod Stewart, Queen, U2, and The Rolling Stones
could probably only be described as “mainstream rock”. For max-isolation,
the cliques tend to be smaller and more specific, usually homogeneous with
respect to all of genre, place, and time, coinciding with the intuition that
these cliques are “more isolated”. For example, a clique contains 6 contempo-
rary Polish reggae bands. Further, groups of closely connected artists appear
such as Mike Patton together with his three projects Tomahawk, Mr. Bungle,
and Fantômas, or John Zorn together with his bands Masada and Naked City.

4.3.2 Isolated Maximal Cliques

We found that there are only small differences in the results between maximal
isolated cliques and isolated maximal cliques. This could be explained by the
structure of the graph: due to the assignment of similarity scores, all vertices
have similar degrees. Therefore, the situation that an isolated clique is exten-
sible by a vertex that has high enough degree to destroy the isolation is less
frequent.
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5 Conclusion and Outlook

Summarizing, our experimental results strongly support the practical rele-
vance of various isolation concepts [13, 16] for enumerating maximal cliques.
Indeed, with the exception of maximal avg-isolated cliques, the enumeration
of isolated cliques is fast and feasible compared to the enumeration of max-
imal cliques. Since the isolation concepts significantly restrict the number of
maximal cliques to be enumerated, the corresponding algorithms for small
degrees of isolation are significantly faster than algorithms enumerating all
cliques (such as the famous Bron-Kerbosch algorithm [4]). When comparing
“isolated maximal” with the “maximal isolated” enumeration task, it turns
out that (not surprisingly) the first is faster than the latter both in theory and
in practice. However, the enumeration algorithms for isolated maximal cliques
are not output-sensitive, since many isolated cliques are discarded because
they are not maximal cliques. Moreover, enumerating maximal isolated cliques
is worthwhile, since more cliques are output. When comparing min-isolation
versus avg-isolation versus max-isolation, the following general observations
have been made. Recall that max-isolation implies avg-isolation implies min-
isolation with respect to the enumerated cliques. Notably, avg-isolation makes
the biggest problems in achieving output-sensitive algorithms. As a rule, the
algorithms for min- and max-isolation turn out to be faster. However, for all
isolation concepts problem instances of interesting size could be solved and,
hence, it often will depend on the specific application behind which of the
isolation concepts (and also which of the two enumeration tasks) is to be pre-
ferred from a semantic point of view. This is indicated by our studies with
real-world networks from finance and music artist similarity. Min-isolation,
being the weakest demand, can be used for the enumeration of some maximal
cliques, in case there are too many of them.

As to future work, we see the following challenges. First, trying to further
speedup the presented algorithms is a worthwhile task; the strongest demand
here concerns the avg-isolation concept. Second, there is no need to restrict
isolation concepts only to clique enumeration. In particular, incorporating
other (somewhat more relaxed) concepts of dense subgraphs such as pseudo-
cliques [13] and s-plexes [16] into further experimental investigations is clearly
interesting. Third, based on the duality of the Clique problem with the In-

dependent Set problem, it seems promising to explore whether extending
the experiments to the complements of the input graphs provides further in-
sights in certain cases (cf. [2, 3]). Note that complementation makes a dense
graph sparse and vice versa. Finally, there is an almost unlimited potential for
studying further real-worlds networks (e.g., biological ones) using our clique
enumeration tools and giving plausible semantic interpretations for the respec-
tive meaning of isolation in the corresponding application context.
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[12] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Enumerating
isolated cliques in synthetic and financial networks. In Proceedings of
the 2nd Annual International Conference on Combinatorial Optimization
and Applications (COCOA ’08), volume 5165 of LNCS, pages 405–416.
Springer, 2008.

[13] H. Ito and K. Iwama. Enumeration of isolated cliques and pseudo-cliques.

25



ACM Transactions on Algorithms, 2008. To appear.
[14] H. Ito, K. Iwama, and T. Osumi. Linear-time enumeration of isolated

cliques. In Proceedings of the 13th Annual European Symposium on Algo-
rithms (ESA ’05), volume 3669 of LNCS, pages 119–130. Springer, 2005.

[15] I. Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 250(1–2):1–30, 2001.
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