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Abstract
Let G = (V,A) be a vertex-colored arc-weighted directed acyclic graph (DAG) rooted in some
vertex r. The color hierarchy graph H(G) of G is defined as follows: the vertex set of H(G) is the
color set C ofG, andH(G) has an arc from c to c′ ifG has an arc from a vertex of color c to a vertex
of color c′. We study the Maximum Colorful Arborescence (MCA) problem, which takes
as input a DAG G such that H(G) is also a DAG, and aims at finding in G a maximum-weight
arborescence rooted in r in which no color appears more than once. The MCA problem models
the de novo inference of unknown metabolites by mass spectrometry experiments. Although the
problem has been introduced ten years ago (under a different name), it was only recently pointed
out that a crucial additional property in the problem definition was missing: by essence, H(G)
must be a DAG. In this paper, we further investigate MCA under this new light and provide new
algorithmic results for this problem, with a focus on fixed-parameter tractability (FPT) issues for
different structural parameters of H(G). In particular, we develop an O∗(3xH)-time algorithm
for solving MCA, where xH is the number of vertices of indegree at least two in H(G), thereby
improving the O∗(3|C|)-time algorithm of Böcker et al. [Proc. ECCB ’08]. We also prove that
MCA is W[2]-hard with respect to the treewidth tH of the underlying undirected graph of H(G),
and further show that it is FPT with respect to tH + `C , where `C := |V | − |C|.

2012 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases Subgraph problem, computational complexity, algorithms, fixed-parameter
tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.17

1 Introduction

Motivated by de novo inference of metabolites from mass spectrometry experiments, Böcker
et al. [4] introduced the Maximum Colorful Subtree problem. This optimization prob-
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17:2 On the Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

lem takes as input a vertex-colored arc-weighted directed acyclic graph G = (V,A) rooted
in some vertex r, and asks for a maximum-weight colorful arborescence in G with root r.
Herein, a vertex-colored graph or a vertex set is called colorful if the vertices have pairwise
different colors and a directed graph G is an arborescence with root r if the underlying undir-
ected graph of G is a tree and there is a path from r to every vertex in G. In this model, the
root r in G represents the sought metabolite, any vertex in G represents a molecule obtained
from r after (possibly several) fragmentation(s), and vertices are colored according to their
masses. An arc connects two molecules (vertices) u and v when v can be obtained from u

by fragmentation, and is assigned a weight that indicates the (possibly negative) degree of
confidence that the fragmentation from u to v actually occurs. A maximum-weight colorful
arborescence from G with root r thus represents a most plausible fragmentation scenario
from r. Let H(G) be the following graph built from G: V (H(G)) is the set C of colors used
to color V (G), and there is an arc from c to c′ in H(G) if there is an arc in G from a vertex
of color c to a vertex of color c′. We call H(G) the color hierarchy graph of G. Observe
that H(G) must be a DAG since colors represent masses and fragmenting a molecule gives
new molecules with lower mass. As recently pointed out [14], the initial definition of Max-
imum Colorful Subtree omits this crucial property of G. This led Fertin et al. [14] to
reformulate the initial Maximum Colorful Subtree problem as follows.

Maximum Colorful Arborescence (MCA)
Input: A DAG G = (V,A) rooted in some vertex r, a set C of colors, a coloring function
col : V → C such that H(G) is a DAG and an arc weight function w : A→ R.
Output: A colorful arborescence T = (VT , AT ) rooted in r of maximum weight w(T ) :=∑

a∈AT
w(a).

The study of MCA initiated in [14] essentially focused on the particular case where G
is an arborescence and showed for example that MCA is NP-hard even for very restricted
such instances. This work was also the first one to explicitly exploit that H(G) is a DAG.
In particular, it was shown that if H(G) is an arborescence, then MCA is polynomially
solvable. This latter promising result is the starting point of the present paper, in which
we aim at better understanding the structural parameters of H(G) that could lead to fixed-
parameter tractable (FPT), i.e. exact and moderately exponential, algorithms. As pointed
out in a recent study [12], obtaining exact solutions instead of approximate ones is indeed
preferable for MCA. Hence, improved exact algorithms are truly desirable for this problem.

Related Work

The MCA problem is NP-hard and highly inapproximable even when G is an arborescence
and every arc weight is equal to 1 [14]. Moreover, MCA is NP-hard even if `C = 0 where
`C := |V (G)| − |C| [14] (a consequence of the proof of [19, Theorem 1]). On the positive
side, MCA can be solved in O∗(3|C|) time by dynamic programming [4]. Moreover, as
previously mentioned, MCA is in P when H(G) is an arborescence [14]. This result can
be extended to some arborescence-like color hierarchy graphs as MCA can be solved by a
branching algorithm in time O∗(2s) where s is the minimum number of arcs of H whose
removal turns H into an arborescence [14].4 Finally, a solution of MCA of order k can
be computed in O∗((3e)k) time using the color-coding technique [1] in combination with
dynamic programming [7].

4 The notation O∗() does not take polynomial factors into account.
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Table 1 Overview of the results for the MCA problem presented in this paper. Here, xH is the
number of vertices of indegree at least two in H, tH is the treewidth of the underlying undirected
graph of H, `C := |V (G)|− |C| and ` ≥ `C is the number of vertices that are not part of the solution.

Parameter FPT status Kernel status
xH O∗(3xH) (Thm. 2.2) No poly. kernel (Thm. 2.4)
` W[1]-hard (from [19])

xH + `C FPT (from Thm. 2.2) No poly. kernel (Thm. 2.7)
xH + ` Poly. kernel (Thm. 2.8)

tH W[2]-hard (Thm. 3.3)
tH + `C O∗(2`C · 4tH) (Thm. 3.7) No poly. kernel (Cor. 3.8)

A related pattern matching problem in graphs is Graph Motif where, in its simplest
version, we are given an undirected vertex-colored graph and ask whether there is a connected
subgraph containing one vertex of each color [18, 13, 2, 3]. In contrast to MCA, Graph
Motif is fixed-parameter tractable for the parameter `C [2, 15].

Our Contribution

Our results are summarized in Table 1. We focus on two parameters from H(G), namely
its number xH of vertices of indegree at least two, and the treewidth tH of its underlying
undirected graph. This choice is motivated by the fact that when H(G) is an arborescence,
each of these two parameters is constant (namely, xH = 0 and tH = 1) and MCA is in
P. Thus, our parameters measure the distance from this trivial case [16]. In addition, we
consider the parameter `C := |V (G)|−|C| and the parameter ` which is the number of vertices
that are not part of a solution with a maximum number of vertices. More precisely, whenever
we refer to the parameter ` we consider the problem variant where we are constrained to
report the best arborescence among those with at least |V | − ` vertices. Intuitively, `C is
the number of vertices that we need to delete just to obtain a colorful subgraph of G, and
hence ` ≥ `C . Observe that MCA is W[1]-hard parameterized by ` [14]; this is a consequence
of the proof of [19, Theorem 1].

Together with FPT issues, we also address the (in)existence of polynomial problem kernels
for these parameters. In a nutshell, we provide a complete dichotomy for fixed-parameter
tractability and problem kernelization for these parameters.

Preliminaries

In the following, let G = (V,A) be the input graph of MCA, with nG := |V (G)|. For any
integer p, we let [p] := {1, . . . , p}. For any vertex v ∈ V , N+(v) is the set of outneighbors
of v. We say that a vertex v is reachable from another vertex v′ ∈ V (G) in a directed
graph G if there exists a path from v′ to v in G. The color hierarchy graph of G is denoted
H(G) := (C, AC), or, when clear from the context, simply H.

We briefly recall the relevant notions of parameterized algorithmics (see e.g. [8]). A
parameterized problem is a subset of Σ× N where the second component is the parameter.
A parameterized problem is fixed-parameter tractable if every instance (x, k) can be solved
in f(k) · |x|O(1) time. A reduction to a problem kernel, or kernelization, is an algorithm that
takes as input an instance (x, k) of a parameterized problem Q and produces in polynomial
time an equivalent (i.e., having the same solution) instance (x′, k′) of Q such that (i) |x′| ≤
g(k), and (ii) k′ ≤ k. The instance (x′, k′) is called problem kernel, and g is called the size of

CPM 2018
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the problem kernel. If g is a polynomial function, then the problem admits a polynomial-size
kernel. Classes W[1] and W[2] are classes of presumed fixed-parameter intractability: if a
parameterized problem is W[1]-hard or W[2]-hard, then it is generally assumed that it is not
fixed-parameter tractable.

This paper is organized as follows. In Section 2, we study in detail the impact of xH on
the parameterized complexity of the MCA problem, while in Section 3, the same type of
study is realized with parameter tH.

2 Parameterizing the MCA Problem by xH

Two main reasons lead us to be particularly interested in xH, the number of vertices with
indegree at least two in H. First, MCA is in P when H is an arborescence [14], thus when
xH = 0. Second, MCA can be solved in O∗(3|C|) time [4]. Since by definition xH ≤ |C|,
determining whether MCA is FPT with respect to xH is of particular interest. We answer
this question positively in Theorem 2.2. We first need some additional definitions.

Let X be the set of vertices of indegree at least two in H (thus |X| = xH) and call X the
set of difficult colors. For any V ′ ⊆ V (G), let col(V ′) denote the set of colors used by col
on the vertices in V ′. Moreover, for any vertex v ∈ V that has at least one outneighbor
in G, assume that col(N+(v)) has an arbitrary but fixed ordering. Therefore, for any
i ∈ [| col(N+(v))|], we may let col+(v, i) denote the ith color in col(N+(v)). Finally, for any
arborescence T in G or in H, let X(T ) := X ∩ col(V (T )) denote the set of difficult colors
in T . We have the following lemma.

I Lemma 2.1. Let T1 and T2 be two arborescences in H such that T1 is rooted in c1, T2 is
rooted in c2 6= c1, and c1, c2 ∈ N+(c) for some c ∈ C. If X(T1) and X(T2) are disjoint,
then V (T1) and V (T2) are disjoint.

Proof. Assume without loss of generality that c1 is not reachable from c2 in H. If V (T1)
and V (T2) are not disjoint, then there exists a color c∗ ∈ C that belongs to T1 and to T2.
In order to prove that such a color c∗ cannot exist, let τ1 (resp. τ2) be the set of colors on
the path from c1 (resp. c2) to c∗ including c1 in T1 (resp. c2 in T2). Then, either τ2 ⊂ τ1
or c2 /∈ τ1. First, if τ2 ⊂ τ1, then there exists a vertex c′ ∈ τ1 such that c′ 6= c with an arc
(c′, c2). Since H contains the arc (c, c2), the color c2 is thus difficult. This contradicts the
assumption that X(T1) and X(T2) are disjoint. Second, if c2 /∈ τ1, then |τ1 ∩ τ2| ≥ 1 since
c∗ ∈ τ1∩ τ2. Therefore, let c̄ ∈ τ1∩ τ2 such that there exists a path from c̄ to any other color
of τ1 ∩ τ2. By definition, the father of c̄ in τ1 is different from the father of c̄ in τ2, which
means that c̄ is a difficult color. This contradicts the assumption that X(T1) and X(T2) are
disjoint. J

I Theorem 2.2. MCA can be solved in O∗(3xH) time and O∗(2xH) space.

Proof. We propose a dynamic programming algorithm which makes use of two tables. The
first one, A[v,X ′, i], is computed for all v ∈ V (G), X ′ ⊆ X and i ∈ {0}∪ [| col(N+(v))|] and
stores the weight of a maximum colorful arborescence TA(v,X ′, i) in G such that

TA(v,X ′, i) is rooted in v,
(X(TA(v,X ′, i)) \ {col(v)}) ⊆ X ′, and
TA(v,X ′, i) contains an arc (v, u) only if col(u) = col+(v, j) for some j ≤ i.

The second one, B[v,X ′, i], is computed for all v ∈ V , X ′ ⊆ X and i ∈ [| col(N+(v))|] and
stores the weight of a maximum colorful arborescence TB(v,X ′, i) in G such that

TB(v,X ′, i) is rooted in v,
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Algorithm 1 Computing the entries in tables A and B

for all v ∈ V from last to first in some topological ordering of G do
for all X ′ ⊆ X do

for all i ∈ {1, . . . , | col(N+(v))|} do
Compute B[v, X ′, i]

end for
end for
for all X ′ ⊆ X do

for all i ∈ {0, . . . , | col(N+(v))|} do
Compute A[v, X ′, i]

end for
end for

end for

(X(TB(v,X ′, i)) \ {col(v)}) ⊆ X ′, and
TB(v,X ′, i) contains an arc (v, u) only if col(u) = col+(v, i).

In a nutshell, TA(v,X ′, i) and TB(v,X ′, i) share the same root v and the same allowed
set of difficult colors X ′ (disregarding col(v)), but TA(v,X ′, i) contains outneighbors of v
up to color col+(i) and TB(v,X ′, i) contains at most one outneighbor of v which is of
color col+(v, i). Hence, there is no u ∈ N+(v) such that (v, u) ∈ TA(v,X ′, i − 1) and
(v, u) ∈ TB(v,X ′, i). We now show how to compute the two abovementioned tables.

A[v,X ′, i] =

0 if i = 0,
max

X′′⊆X′
{A[v,X ′′, i− 1] +B[v,X ′ \X ′′, i]} otherwise.

For an entry A[v,X ′, i] with i = 0 note that TA(v,X ′, i) can only contain v. For i > 0,
by definition there cannot exist any u ∈ N+(v) such that u belongs both to TA(v,X ′′, i− 1)
and TB(v,X ′ \X ′′, i). Therefore, Lemma 2.1 shows that col(v) is the only color occurring in
TA(v,X ′′, i−1) and TB(v,X ′\X ′′, i). Thus, the union of TA(v,X ′′, i−1) and TB(v,X ′\X ′′, i)
is a colorful arborescence. Finally, testing every possible X ′′ ⊆ X ′ ensures the correctness
of the formula.

B[v,X ′, i] =


0 if col+(v, i) ∈ X \X ′,

max
u∈N+(u):

col(u)=col+(v,i)

{0, w(v, u) +A[u,X ′, | col(N+(u))|]} otherwise.

For an entry of type B[v,X ′, i], if col+(v, i) is a difficult color which does not belong to
X ′, then V (TB(v,X ′, i)) = {v}, and hence B[v,X ′, i] = 0. Otherwise, recall that B[v,X ′, i]
stores the weight of a maximum colorful arborescence rooted in v containing at most one
further vertex u ∈ N+(v) of color col+(v, i). Therefore, computing the maximum colorful
arborescences for any such u and only keeping the best one if it is positive ensures the
correctness of the formula.

Recall that any DAG has a topological ordering of its vertices, i.e. a linear ordering of its
vertices such that for every arc (u, v), u appears before v in this ordering. In Algorithm 1,
we show how to compute all the entries of both dynamic programming tables. For this, we
consider the entries from last to first according to some topological ordering of G. The total
running time derives from the fact that our algorithm needs at most 3xH steps to compute
A[v,X ′, i] since a difficult color can be in X ′′, X ′ \X ′′ or in X \X ′. J
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Recall that a parameterized problem Q is FPT with respect to a parameter k if and
only if it has a kernelization algorithm for k [11], but that such a kernel is not necessarily
polynomial. In Theorem 2.4, we prove that although MCA parameterized by xH is FPT (as
proved by Theorem 2.2), MCA is unlikely to admit a polynomial kernel for xH. For this,
we use the or-composition technique which, roughly speaking, is a reduction that combines
many instances of a problem into one instance of the problem Q. We first recall the definition
of or-compositions.

I Definition 2.3. ([5]) An or-composition for a parameterized problem Q ∈ Σ × N is an
algorithm that receives as input a sequence (x1, k), (x2, k), . . . , (xt, k) with (xi, k) ∈ Σ × N
for each 1 ≤ i ≤ t, takes polynomial time in

∑t
i=1 |xi|+ k, and outputs (y, k′) ∈ Σ×N with

(y, k′) ∈ Q if and only if ∃1≤i≤t(xi, k) ∈ Q and k′ is polynomial in k.

If an NP-hard parameterized problem Q admits an or-composition, then Q does not ad-
mit any polynomial-size problem kernel (unless NP ⊆ coNP/Poly) [5]. Our or-composition
actually shows that MCA is unlikely to admit a polynomial kernel for the parameter |C|.

I Theorem 2.4. Unless NP ∈ coNP/Poly, MCA does not admit a polynomial kernel for
parameter |C|, and consequently for parameter xH, even if G is an arborescence.

Proof. In the following, let t be a positive integer. For any i ∈ [t], let Gi = (Vi, Ai) be the
graph of an instance of MCA which is rooted in a vertex ri and assume that the t instances
are built on the same color set C′ = {c1, . . . , c|C′|}, otherwise colors can be relabeled suitably.

We now compose the t instances of MCA into a new instance of MCA. Let G = (V,A)
be the graph of such a new instance with V = {r} ∪ {r′i : i ∈ [t]} ∪ {v ∈ Vi : i ∈ [t]} and
A = {(r, r′i) : i ∈ [t]} ∪ {(r′i, ri) : i ∈ [t]} ∪ {(u, v) ∈ Ai : i ∈ [t]}. Here, r is a vertex not
contained in any of the t MCA instances and which has a path of length 2 towards the root
ri of any graph Gi; thus G is clearly a DAG. Let C be the color set of G, and let us define
the coloring function on V (G) as follows: the root r is assigned a unique color cr /∈ C′ ; all
vertices of type r′i are assigned the same color cr′ /∈ (C′ ∪ {cr}) ; all arcs of type (r′i, ri) and
(r, r′i) are given a weight of 0 ; the color (resp. weight) of all other vertices (resp. arcs) is
the same in the new instance as in their initial instance. Clearly, (G, C, col, w, r) is a correct
instance of MCA and |C| = |C′| + 2. Moreover, if Gi is an arborescence for every i ∈ [t],
then G is also an arborescence. We now prove that there exists i ∈ [t] such that Gi has
a colorful arborescence T = (VT , AT ) rooted in ri of weight W > 0 if and only if G has a
colorful arborescence T ′ = (VT ′ , AT ′) rooted in r and of weight W > 0.

(⇒) If there exists i ∈ [t] such that Gi has a colorful arborescence T = (VT , AT ) rooted
in ri and of weight W > 0, then let T ′ = (VT ′ , AT ′) with VT ′ = VT ∪ {r, r′i} and AT ′ =
AT ∪ {(r, r′i), (r′i, ri)}. Clearly, T ′ is connected, colorful and of weight W .

(⇐) Suppose G contains a colorful arborescence T ′ = (VT ′ , AT ′) with root r and weight
W > 0. Since T ′ is colorful and all vertices of type r′i share the same color, there cannot
exist i and j in [t], vi ∈ Vi and vj ∈ Vj such that both vi and vj belong to T ′. Thus, let i∗
be the only index in [t] such that Vi∗ ∩VT ′ 6= ∅ and let T = (VT , AT ) with VT = VT ′ \{r, r′i∗}
and AT = AT ′ \ {(r, r′i∗), (r′i∗ , ri∗)}. Clearly, T is connected, colorful and of weight W .

Now, recall that |C| = |C′| + 2 and thus that we made a correct composition of MCA
into MCA. Moreover, recall that MCA is NP-hard [14] and that xH ≤ |C|. As a con-
sequence, MCA does not admit a polynomial kernel for the parameter |C|, and hence for
the parameter xH, even in arborescences, unless NP ⊆ coNP/Poly. J

Recall that MCA can be solved in time O∗(2s) where s is the minimum number of arcs
needed to turn H into an arborescence [14]. Since s < |C|2, we have the following.
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I Corollary 2.5. Unless NP ∈ coNP/Poly, MCA parameterized by s does not admit a
polynomial kernel, even if G is an arborescence.

In the following, we use a different technique, called polynomial parameter transform-
ation [6], to show that MCA is also unlikely to admit a polynomial kernel for the para-
meter xH + `C , where `C = nG − |C|.

I Definition 2.6. ([6, 10, 9]) Let P and Q be two parameterized problems. We say that P is
polynomial parameter reducible to Q if there exists a polynomial-time computable function
f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all (x, k) ∈ Σ∗ × N the following
holds: (x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q, and k′ ≤ p(k). The function f is a
called a polynomial parameter transformation.

If P is an NP-hard problem and Q belongs to NP, then a polynomial parameter transform-
ation from P parameterized by k to Q parameterized by k′ has the following consequence:
if Q parameterized by k′ admits a polynomial kernel, then P parameterized by k admits a
polynomial kernel [6]. Using such a transformation, we obtain the following result.

I Theorem 2.7. MCA parameterized by xH does not admit a polynomial kernel unless
NP ⊆ coNP/Poly even when restricted to the special case where `C = 0.

Proof. We reduce from Set Cover, which is defined as follows.

Set Cover
Input: A universe U = {u1, u2, . . . , uq}, a family F = {S1, S2, . . . , Sp} of subsets of U ,
an integer k.
Output: A k-sized subfamily S ⊆ F of sets whose union is U .

The reduction is as follows: for any instance of Set Cover, we create a three-levels
DAG G = (V = V1 ∪ V2 ∪ V3, A) with V1 = {r}, V2 = {vi : i ∈ [p]} and V3 = {zj : j ∈ [q]}.
We call V2 the second level of G and V3 the third level of G. Informally, we associate one
vertex at the second level to each set of F and one vertex at the third level to each element
of U . There is an arc of weight −1 from r to each vertex at level 2 and an arc of weight p
from vi to zj , for all i ∈ [p] and j ∈ [q] such that the element uj is contained in the set Si.
Now, our coloring function col is as follows: give a unique color to each vertex of G. Notice
that H is also a three-levels DAG with col(V1), col(V2), and col(V3) at the first, second, and
third levels, respectively. Therefore, the above construction is a correct instance of MCA.
We now prove that there exists a k-sized subfamily S ⊆ F of sets whose union is U if and
only if there exists a colorful arborescence T in G of weight w(T ) = pq − k.

(⇒) Suppose there exists a k-sized subfamily S ⊆ F of sets whose union is U and let
True = {i ∈ [p] : Si ∈ S}. Then, we set VT = {r} ∪ {vi : i ∈ True} ∪ {zj : j ∈ [q]}.
Necessarily, G[VT ] is connected: first, r is connected to every level-2 vertex ; second, a
vertex zj corresponds to an element uj which is contained in some set Si ∈ S. Now, let T
be a spanning arborescence of G[VT ]. Clearly, T is colorful and of weight pq − k.

(⇐) Suppose there exists a colorful arborescence T = (VT , AT ) in G of weight w(T ) =
pq− k. Notice that any arborescence T ′ in G which contains r and at least one vertex from
V3 must contain at least one vertex from V2 in order to be connected. Therefore, if such
an arborescence T ′ does not contain one vertex of type zj , then w(T ′) < pq − p − 1 and
w(T ′) < w(T ). Hence, if w(T ) = pq − k then T contains each vertex of the third level and
T contains exactly k vertices at the second level. Now, let S = {Si : i ∈ [p] s.t. vi ∈ VT }
and notice that S is a k-sized subfamily of F whose union is U as all vertices of the third
level belong to T . Our reduction is thus correct.

CPM 2018
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Now, recall that H is a three-levels DAG with col(V1), col(V2), and col(V3) at the first,
second and third levels, respectively. By construction of G, if there exists c ∈ V (H) such that
d−(c) ≥ 1, then c ∈ col(V3). Moreover, recall that | col(V3)| = |U| and thus xH ≤ |U|. Thus
we provided a correct polynomial parameter transformation from Set Cover parameterized
by |U| to MCA parameterized by xH. Now, recall that Set Cover does not admit a
polynomial kernel for |U| unless NP ⊆ coNP/Poly [10] and that Set Cover is NP-hard [17].
Moreover, the decision version of MCA, which asks for a solution of weight at least k, clearly
belongs to NP. Finally, observe that `C = 0 as G is colorful. As a consequence, MCA does
not admit any polynomial kernel for xH unless NP ⊆ coNP/Poly even if `C = 0. J

Since ` ≥ `C , and in light of Theorem 2.7, we aim at determining whether a polynomial
kernel exists for MCA parameterized xH + `. We have the following theorem.

I Theorem 2.8. MCA admits a problem kernel with O(xH · `2) vertices.

To show this result we provide three data reduction rules. To formulate the rules, we
introduce some notation first.

For any vertex v ∈ V (G), we define G+(v) as the subgraph of G that is induced by
the set of vertices that are reachable from v in G (including v). Similarly, for any color
c ∈ V (H), we define H+(c) as the subgraph of H that is induced by the set of vertices
that are reachable from c in H (including c). We call a color c autonomous if (i) H+(c) is
an arborescence, and (ii) there does not exist an arc from a color c1 /∈ H+(c) to a color
c2 ∈ H+(c) in H. For a vertex v, let Tv denote a maximum colorful arborescence in G that
is rooted at v. Finally, for a color c ∈ C, let Vc := {v ∈ V : col(v) = c} denote the set of
vertices with color c.

I Reduction Rule 1. If an instance (G, C, col, w, r) of MCA contains an autonomous color c
such that H+(c) contains at least two vertices, then do the following.

For each vertex v ∈ Vc, compute the value w(Tv) of Tv, and add w(Tv) to the weight of
each incoming arc of v.
Remove from G all vertices that are reachable from a vertex in Vc, except the vertices
of Vc.

I Lemma 2.9. Reduction Rule 1 is correct and can be performed exhaustively in polynomial
time.

Proof. Consider a vertex v ∈ Vc. Since c is autonomous, H+(c) is an arborescence and thus
we may compute Tv which contains only colors from H+(c) in polynomial time [14].

Now, we prove the correctness of the rule, that is, the original instance (G, C, col, w, r) has
a colorful arborescence T = (VT , AT ) of weight at least W if and only if the new instance
(G′, C′, col′, w′, r′) has a colorful arborescence T ′ = (VT ′ , AT ′) of weight at least W . We
only show the forward direction of the equivalence; the converse can be seen by symmetric
arguments. First, recall that c is autonomous. Therefore, if T does not contain any vertex
of color c, then T does not contain any vertex whose color belongs to V (H+(c)) and we can
trivially set T ′ = T . Otherwise, if T contains a vertex v of color c, then let Sc ⊆ VT be
the set of vertices that are reachable from v in T . We now set VT ′ := (VT \ Sc) ∪ {v} and
let AT ′ contain all the arcs from AT that are not in H+(c). Now, recall that we computed
the weight w(Tv) of the maximum colorful arborescence in G that was rooted in v and
that w′(v−, v) = w(v−, v) + w(Tv) where v− is the inneighbor of v in T . This ensures that
w(T ) ≤ w′(T ′). J
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In the following, for any vertices v, v′ ∈ V (G) such that v′ is reachable from v in G, we
denote π(v, v′) as the length of the maximum weighted path from v to v′ in G.

I Reduction Rule 2. If an instance (G, C, col, w, r) of MCA contains a triple {c1, c2, c3} ⊆ C
such that (i) c1 is the unique inneighbor of c2, (ii) c2 is the unique inneighbor of c3 and
(iii) c3 is the unique outneighbor of c2, then do the following.

For any v1 ∈ Vc1 and v3 ∈ Vc3 such that there exists a path from v1 to v3 in G, create
an arc (v1, v3) and set w(v1, v3) := π(v1, v3).
Add a vertex v∗ of color c3 and, for any vertex v1 ∈ Vc1 that has at least one outneighbor
of color c2 in G, add the arc (v1, v

∗) and set w(v1, v
∗) to the highest weighted outgoing

arc from v1 to any vertex of color c2 in G.
Remove all vertices of Vc2 from G′.

I Lemma 2.10. Reduction Rule 2 is correct and can be performed exhaustively in polynomial
time.

Proof. We first prove that our transformation is correct. We show only the direction that an
arborescence of weight at leastW in the original instance (G, C, col, w, r) implies an arbores-
cence of weight at leastW in the new instance (G′, C′, col′, w′, r′); the converse direction can
be shown by symmetric arguments. Let T = (VT , AT ) be a colorful arborescence of weightW
in the original instance. First, if T does not contain a vertex of color c2, then T is an arbores-
cence of the new instance. Second, if T contains a vertex v2 of color c2 whose inneighbor is v1
in T and if T does not contain any vertex of color c3, then setting VT ′ := VT \{v2}∪{v∗} and
AT ′ := AT \{(v1, v2)}∪{(v1, v

∗)} gives an arborescence T ′ = (VT ′ , AT ′) of the new instance.
Moreover, w(T ) = w′(T ′) since w(v1, v2) = w′(v1, v

∗). Third, if T contains a vertex v2 of
color c2 whose inneighbor is v1 in T and if T contains a vertex v3 of color c3 (whose inneighbor
is necessarily v2), then setting VT ′ := VT \{v2} and AT ′ := AT \{(v1, v2), (v2, v3)}∪{(v1, v3)}
gives an arborescence T ′ = (VT ′ , AT ′) of the new instance. Moreover, w(T ) = w′(T ′) since
w(v1, v2) + w(v2, v3) = w′(v1, v3).

The polynomial running time follows from the fact that π(v1, v3) can be computed in
polynomial time. J

To describe the final rule, let N−U (v) denote the set of unique colors in the inneighborhood
of v in G, where a color c is unique if |Vc| = 1. Recall also that ` is the maximum number
of vertices that do not belong to T in G.

I Reduction Rule 3. If an instance (G, C, col, w, r) of MCA contains a vertex v ∈ V such
that |N−U (v)| > `+ 1, then delete the |N−U (v)| − `− 1 least-weighted arcs from N−U (v) to v.

I Lemma 2.11. Reduction Rule 3 is correct and can be performed exhaustively in polynomial
time.

Proof. Since |N−U (v)| > `+ 1, T has to contain at least two vertices from N−U (v). Now, let
v1 be a vertex from N−U (v) such that (v1, v) is the least-weighted incoming arc from a unique
color to v in G. Even if v1 belongs to T , there will always exist at least one other vertex v2
that will also belong to T and such that w(v1, v) ≤ w(v2, v). Thus, we may assume that T
does not contain the arc (v1, v) and safely delete it. The correctness of the rule now follows
from repeated application of this argument. J

We are now ready to prove Theorem 2.8.
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Proof. The kernelization algorithm consists of the exhaustive application of Reduction
Rules 1– 3 in polynomial time. Let (G, C, col, w, r) denote the resulting equivalent in-
stance and let T = (VT , AT ) be a solution of this instance. It remains to show that G
has O(xH · `2) vertices. First, we show that the indegree of any color in H is at most
(`+ 1)2 + `. This will allow us to show, subsequently, the claimed bound on nG.

Let us first bound the indegree of any color in H. Since T is colorful and since |VT | =
nG−`, there exist at most ` non-unique colors in C and hence the inneighborhood of any color
c ∈ V (H) cannot contain more than ` non-unique colors in H. Moreover, since the instance
is reduced with respect to Reduction Rule 3, the inneighborhood of any vertex v ∈ V (G)
contains at most `+1 vertices of unique color in G. Furthermore, we may assume |Vc| ≤ `+1
for any any color c ∈ V (H) as T cannot be colorful if there exists more than `+1 occurrences
of c in G. As a consequence, for any color c ∈ V (H), the inneighborhood of c cannot contain
more than |Vc| · (`+ 1) = (`+ 1)2 unique colors in H, and hence c has at most (`+ 1)2 + `

inneighbors.
Now, let F be the forest whose vertex set is CF = C \ X and which contains each arc

(c, c′) of H such that {c, c′} ⊆ CF . In the following, we successively bound the maximum
number of leaves of F , the maximum number of vertices of F , of V (H) and finally of V (G)
in a function of ` and xH. First, recall that there does not exist any autonomous color
c ∈ C to which Reduction Rule 1 applies. Thus, each leaf c of H is in fact a difficult color.
Consequently, every leaf of F is in H an inneighbor of a difficult color. Since the maximum
indegree of any color in H is at most (` + 1)2 + `, the number of leaves in F is at most
xH((` + 1)2 + `). Now, by Lemma 2.10, H does not contain any color which has a unique
inneighbor and a unique outneighbor. As a consequence, F has no internal vertices of degree
two that are not inneighbors of a difficult color. Hence, the number of nonleafs of F that are
not inneighbors of a difficult color is O(xH · `2), and thus |V (F )| = O(xH · `2). Moreover,
since CF = C \ X, we have that |C| ≤ xH + O(xH · `2). Finally, the number of vertices
in G can exceed the number of colors in H by at most `. Therefore, nG = O(xH · `2) as
claimed. J

3 Parameterizing the MCA Problem by the Treewidth of the Color
Hierarchy Graph

Let U(H) denote the underlying undirected graph of H. In this section, we are interested in
parameter tH, defined as the treewidth of U(H). Indeed, since MCA is in P whenever H is
an arborescence [14], it is natural to study whether MCA parameterized by tH is FPT. To
do so, we first introduce some definitions.

I Definition 3.1. Let G = (V,E) be a undirected graph. A tree decomposition of G is a
pair 〈{Xi : i ∈ I}, T 〉, where T is a tree whose vertex set is I, and each Xi is a subset of V ,
called a bag. The following three properties must hold:
1. ∪i∈IXi = V .
2. For every edge (u, v) ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.
3. For all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi ∩Xk ⊆ Xj .

The width of 〈{Xi : i ∈ I}, T 〉 is defined as max{|Xi| : i ∈ I} − 1, and the treewidth of
G is the minimum k such that G admits a tree decomposition of width k.

I Definition 3.2. A tree decomposition 〈{Xi : i ∈ I}, T 〉 is called nice if the following
conditions are satisfied:
1. Every node of T has at most two children.
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2. If a node i has two children j and k, then Xi = Xj = Xk and in this case, Xi is called a
Join Node.

3. If a node i has one child j, then one of the following situations must hold:
a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi and in this case, Xi is called an Introduce Node, or
b) |Xi| = |Xj | − 1 and Xi ⊂ Xj and in this case, Xi is called a Forget Node.

4. If a node i has no child, then |Xi| = 1 and in this case, Xi is called a Leaf Node.

We first show that MCA is unlikely to be FPT with respect to parameter tH.

I Theorem 3.3. MCA parameterized by tH is W[2]-hard.

Proof. We reduce from the k-Multicolored Set Cover problem, which is defined below.

k-Multicolored Set Cover
Input: A universe U = {u1, u2, . . . , uq}, a family F = {S1, S2, . . . , Sp} of subsets of U ,
a set of colors Λ with a coloring function col′ : F → Λ, an integer k.
Output: A subfamily S ⊆ F of sets whose union is U , and such that (i) |S| = k and
(ii) S is colorful, i.e. col′(Si) 6= col′(Sj) for any i 6= j such that Si, Sj ∈ S.

The reduction is as follows: for any instance of k-Multicolored Set Cover, we
create a three-level DAG G = (V = V1 ∪ V2 ∪ V3, A) with V1 = {r}, V2 = {vi : i ∈ [p]} and
V3 = {zj : j ∈ [q]}. Informally, we associate a vertex at the second level to each set of F
and a vertex at the third level to each element of U . We then add an arc of weight −1 from
r to each vertex at level 2 and an arc of weight p from vi to zj , for all i ∈ [p] and j ∈ [q]
such that uj ∈ Si. Now, our coloring function col is as follows: we give a unique color to
each vertex in V1 ∪ V3, while at the second level (thus in V2), two vertices of type vi are
assigned the same color if and only if their two associated sets are assigned the same color
by col′. Notice that H is also a three-levels DAG with col(V1), col(V2), and col(V3) at the
first, second and third levels, respectively. Therefore, (G, C, col, w, r) is a correct instance of
MCA. We now prove that there exists a colorful set S ∈ F of size k whose union is U if and
only if there exists a colorful arborescence T in G of weight w(T ) = pq − k.

(⇒) Suppose there exists a colorful set S ∈ F of size k whose union is U and let
True = {i ∈ [p] : Si ∈ S}. Let VT = {r} ∪ {vi : i ∈ True} ∪ {zj : j ∈ [q]}. Necessarily, G[VT ]
is connected: first, r is connected to every level-2 vertex ; second, a vertex zj corresponds to
an element uj which is contained in some set Si ∈ S. Now, let T be a spanning arborescence
of G[VT ]. Clearly, T is colorful and of weight pq − k.

(⇐) Suppose there exists a colorful arborescence T = (VT , AT ) in G of weight w(T ) =
pq− k. Notice that any arborescence T ′ in G which contains r and at least one vertex from
V3 must contain at least one vertex from V2 in order to be connected. Therefore, if such
an arborescence T ′ does not contain one vertex of type zj , then w(T ′) < pq − p − 1 and
w(T ′) < w(T ). Hence, if w(T ) = pq − k then T necessarily contains each vertex from V3,
and thus contains exactly k vertices from V2. Now, let S = {Si : i ∈ [p] s.t. vi ∈ VT } and
notice that S is a colorful subfamily of size k whose union is U as all vertices of the third
level belong to T . Our reduction is thus correct.

Now, recall that H is a three-levels DAG with resp. col(V1), col(V2) and col(V3) at the
first, second and third levels. Thus, there exists a trivial tree decomposition 〈{Xi : i ∈
[| col(V3)| + 2]}, T 〉 of U(H) which is as follows: the bag X0 = {col(r)} has an arc towards
the bag X1 = {{col(r)}∪ col(V2)} and, for any i ∈ [| col(V3)|], there exists an arc from X1 to
Xi where each Xi contains col(V2) and a different vertex of col(V3). Consequently, the width
of 〈{Xi : i ∈ [| col(V3)|+ 2]}, T 〉 is k, and hence MCA is W[2]-hard parameterized by tH as
k-Multicolored Set Cover is well-known to be W[2]-hard parameterized by k. J
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We now use the above proof to show that MCA is unlikely to admit FPT algorithms
relatively for different further parameters related to H. The vertex cover number of U(H)
is the size of a smallest subset S ⊆ V (H) such that at least one incident vertex of any arc
of H belongs to S. Notice that col(V2) is a vertex cover of U(H) and thus U(H) ≤ k. The
feedback vertex set number is the size of a smallest subset S ⊆ H whose removal makes U(H)
acyclic. The size of such a subset S is an interesting parameter as xH = 0 in H[V (H) \ S]
and any vertex cover of U(H) is also a feedback vertex set of U(H) – hence, col(V2) is also
a feedback vertex set of U(H). Altogether, we thus obtain the following corollary.

I Corollary 3.4. MCA parameterized by the vertex cover number of U(H) or the feedback
vertex set number of U(H) is W[2]-hard.

Next, recall that in the proof of Theorem 3.3 each color from the third level of H is a leaf.
Hence, the number of colors of outdegree at least two in H is | col(V1)|+ | col(V2)| = k + 1.
Although Theorem 2.2 showed that MCA is FPT relatively to xH, we obtain the following.

I Corollary 3.5. MCA parameterized by the number of colors of outdegree at least two in H
is W[2]-hard.

By Theorem 3.3, MCA parameterized by tH is W[2]-hard; thus, one may look for a
parameter whose combination with tH may lead to MCA being FPT. Here, we focus on
parameter `C = nG − |C|. We know that MCA parameterized by `C is W[1]-hard, but the
problem can be solved in O∗(2`C ) time when G is an arborescence [14]. Recall also that
MCA is in P when H is an arborescence [14], and hence when tH = 1. In the following, a
fully-colorful subgraph of G is a subgraph of G that contains exactly one occurrence of each
color c ∈ C.

I Lemma 3.6. Any graph G with |C| colors has at most 2`C fully-colorful subgraphs.

Proof. Let nc be the number of vertices of color c ∈ C and notice that
∏

c∈C nc is the number
of fully-colorful subgraphs of G. Then, observe that nc ≤ 2nc−1 for all nc ∈ N, which implies∏

c∈C nc ≤ 2
∑

c∈C
nc−1 and thus

∏
c∈C nc ≤ 2`C . J

I Theorem 3.7. MCA can be solved in O∗(2`C · 4tH) time and O∗(3tH) space.

Proof. In the following, let 〈{Xi : i ∈ I}, T 〉 be a nice tree decomposition of U(H). In this
proof, we provide a dynamic programming algorithm that makes use of 〈{Xi : i ∈ I}, T 〉 in
order to compute a solution to MCA in any fully-colorful subgraph G′ ⊆ G, to which we
remove all vertices that are not accessible from r. First, observe that 〈{Xi : i ∈ I}, T 〉 is also
a correct nice tree decomposition for the (undirected) color hierarchy graph of any subgraph
of G. Second, as any colorful graph is equivalent to its color hierarchy graph, notice that
〈{Xi : i ∈ I}, T 〉 is also a correct nice tree decomposition of any fully-colorful subgraph
G′ ∈ G. Therefore, we assume without loss of generality that any bag Xi contains vertices
of such graph G′ instead of colors, and that X0 = {r} is the root of 〈{Xi : i ∈ I}, T 〉.

Now, for any i ∈ I and for any subsets L1, L2, L3 that belong to Xi such that L1⊕L2⊕
L3 = Xi, let Ti[L1, L2, L3] store the weight of a partial solution of MCA in G′, which is a
collection of |L1| disjoint arborescences such that:

each v ∈ L1 is the root of exactly one such arborescence,
each v ∈ L2 is contained in exactly one such arborescence,
no vertex v ∈ L3 belongs to any of these arborescences,
any vertex v ∈ V whose color is forgotten below Xi can belong to any such arborescence,
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there does not exist another collection of arborescences with a larger sum of weights
under the same constraints.

Besides, let us define an entry of type Di[L1, L2, L3] which stores the same partial solution as
entry Ti[L1, L2, L3], except for the vertices v ∈ V whose colors are forgotten below Xi which
cannot belong to any arborescence of the partial solution. We now detail how to compute
each entry of Ti[L1, L2, L3]. We stress that each entry of Di[L1, L2, L3] is filled exactly as
an entry of type Ti[L1, L2, L3], apart from the case of forget nodes which we detail below.

• If Xi is a leaf node: Ti[L1, L2, L3] = 0
Notice that leaf nodes are base cases of the dynamic programming algorithm as 〈{Xi : i ∈
I}, T 〉 is a nice tree decomposition. Moreover, recall that leaf nodes have size 1 and thus
that the only partial solution for such nodes has a weight of zero.

• If Xi is an introduce node having a child Xj and if v∗ is the introduced vertex:

Ti[L1, L2, L3] =



A) max
∀S⊆L2

{
∑

v∈S

w(v∗, v) + Tj [L1 ∪ S \ {v∗}, L2 \ S,L3]}

if v∗ ∈ L1
B) max
∀u∈(L1∪L2)

{w(u, v∗)+

max
∀S⊆(L2\{u})

{
∑

v∈S

w(v∗, v) + Tj [L1 ∪ S \ {v∗}, L2 \ S,L3]}}

if v∗ ∈ L2
C) Tj [L1, L2, L3 \ {v∗}]} if v∗ ∈ L3

where we set w(u, v) := −∞ when there is no arc from u to v in G′. There are three cases:
v∗ is the root of an arborescence in a partial solution (case A)), an internal vertex of such
a solution (case B)) or v∗ does not belong to such a solution (case C)). In case A), S cor-
responds to the set of outneighbors of v∗ in the partial solution, thus the vertices of S do
not have any other inneighbor in the partial solution. Therefore, in the corresponding entry
Tj , the vertices of S are roots. Now, notice that B) is very similar to A). In addition to a
given set S of outneigbors, v∗ being in L2 implies that v∗ has an inneighbor u ∈ (L1 ∪ L2)
in the partial solution. Since the inneighbor u cannot be an outneighbor at the same time,
u is not contained in S. Exhaustively trying all possibilities for both S and u ensures the
correctness of the solution. Finally, by definition of L3, observe that v∗ does not belong to
the partial solution of Ti[L1, L2, L3] if v∗ ∈ L3.

• If Xi is a forget node having a child Xj and if v∗ is the forgotten vertex:

Ti[L1, L2, L3] = max{Tj [L1, L2 ∪ {v∗}, L3], Tj [L1, L2, L3 ∪ {v∗}]}

Informally, the above formula determines whether the collection of arborescences that is
stored in Ti[L1, L2, L3] had a higher weight with or without v∗ as an internal vertex. Ob-
serve that we do not consider the case where v∗ is the root of an arborescence as such an
arborescence could not be connected to the rest of the partial solution via an introduced
vertex afterwards. Besides, notice that Di[L1, L2, L3] = Dj [L1, L2, L3 ∪ {v∗}] as the partial
solution in Di[L1, L2, L3] does not contain any forgotten vertex by definition.

• If Xi is a join node having two children Xj and Xk:

Ti[L1, L2, L3] = Tj [L1, L2, L3] + Tk[L1, L2, L3]−Di[L1, L2, L3]
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Informally, the partial solution in Ti[L1, L2, L3] can contain both the forgotten vertices
of the partial solution in Tj [L1, L2, L3] and those of the partial solution in Tk[L1, L2, L3].
Recall that the partial solution in Di[L1, L2, L3] does not contain any forgotten vertices and
therefore that any arc of the partial solution in Ti[L1, L2, L3] is only counted once.

We fill the tables from the leaves to the root for all i ∈ I until T0 and any entry of type
Ti[L1, L2, L3] is directly computed after the entry of type Di[L1, L2, L3]. If T ′ = (VT ′ , AT ′)
is a solution of MCA in a fully-colorful subgraph G′ ⊆ G, then w(T ′) = T0[{r}, ∅, ∅]. Thus,
for each fully-colorful subgraph we can compute the solution by filling the tables T and D.
The table has 3tH entries which implies the upper bound on the space consumption. The
most expensive recurrences in terms of running time are the one of cases A) and B) for
introduce nodes Xi where we consider altogether O(4tH) cases: each term corresponds to a
partition of Xi into four sets L1, L2 \ S, L2 ∩ S, and L3. Finally, the solution of MCA in
G is also the solution of at least one fully-colorful subgraph G′ ⊆ G. Therefore, computing
the solution of MCA for any such subgraph G′ ensures the correctness of the algorithm
and hence, by Lemma 3.6, adding a factor O(2`C ) to the complexity of the above algorithm
proves our theorem. J

We now use the proof of Theorem 2.7 to show that MCA parameterized by tH + `C is
unlikely to admit a polynomial kernel. Recall that the proof shows a polynomial parameter
transformation from Set Cover to MCA and notice that (col(V1) ∪ col(V3)) is a vertex
cover of U(H) that is of size xH + 1. Moreover, recall that the size of a minimum vertex
cover of a graph is lower-bounded by its treewidth. As a consequence, MCA does not admit
any polynomial kernel for tH unless NP ⊆ coNP/Poly even if `C = 0.

I Corollary 3.8. MCA parameterized by tH does not admit a polynomial kernel unless
NP ⊆ coNP/Poly, even when restricted to the special case where `C = 0.

4 Conclusion

In this paper, we obtained an O∗(3xH) time algorithm for MCA, which improves upon
the O∗(3|C|) of Böcker et al. [4]. We also showed that MCA parameterized by xH + `C is
unlikely to admit a polynomial kernel and then that the problem admits such a kernel for
the parameter xH + `. Furthermore, we proposed an FPT algorithm for MCA relatively to
tH + `C and showed that MCA is W[2]-hard relatively to tH. Moreover, we showed that
MCA parameterized by `C+tH does not admit a polynomial kernel. In light of these results,
we ask the following question: does MCA parameterized by the larger parameter ` + tH
admit a polynomial kernel?

A further issue that is not addressed by our algorithm and previous algorithms is that
parameterization by ` or k essentially constrains the cardinality of the arborescences that are
considered to be solutions. In other words, to make use of these parameters we need to know
the number of vertices in an optimal solution in advance. Can we obtain fixed-parameter
algorithms also when we do not know the number of vertices in the optimal solution?
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