
Refined Parameterizations for Computing
Colored Cuts in Edge-Colored Graphs?

Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz[0000−0003−0829−7032],
and Frank Sommer[0000−0003−4034−525X]??

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg,
Germany

{morawietz,niegru,komusiewicz,fsommer}@informatik.uni-marburg.de

Abstract. In the Colored (s, t)-cut problem, the input is a graphG =
(V,E) together with an edge-coloring ` : E → C, two vertices s and t,
and a number k. The question is whether there is a set S ⊆ C of at
most k colors, such that deleting every edge with a color from S destroys
all paths between s and t in G. We continue the study of the parameter-
ized complexity of Colored (s, t)-cut. First, we consider parameters
related to the structure of G. For example, we study parameterization
by the number ξi of edge deletions that are needed to transform G into
a graph with maximum degree i. We show that Colored (s, t)-cut
is W[2]-hard when parameterized by ξ3, but fixed-parameter tractable
when parameterized by ξ2. Second, we consider parameters related to
the coloring `. We show fixed-parameter tractability for three param-
eters that are potentially smaller than the total number of colors |C|
and provide a linear-size problem kernel for a parameter related to the
number of edges with a rare edge color.

1 Introduction

The design of networks that are robust against failure of network components
is an important step in the quest for secure communication systems [9]. Since
current communication networks are in fact multilayer networks, it is important
to consider multiple failure scenarios where a failure of a single layer may affect
direct connections between many different nodes at once—even if these nodes
are spread widely throughout the network [1,5]. Thus, it has been proposed to
use edge-colored graphs consisting of a graph G = (V,E), a color set C, and
an edge-coloring ` : E → C to model the layers. If a network layer fails, then
all edges with the corresponding color become unavailable for communication.
In other words, we may think of these edges as being removed from the graph.
One measure for the vulnerability of a network in this model is the number
of layers that have to fail in order to disconnect two given important nodes s
and t. To compute this vulnerability measure, one needs to solve the following
computational problem [1,5].
? Some of the results of this work are also contained in the first author’s Master thesis.

?? FS was supported by the DFG, project MAGZ (KO 3669/4-1).

To appear in Proceedings of the 46th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM ’20), Limassol,
Cyprus, January 2020. c© Springer.

Colored (s, t)-cut
Input: An edge-colored graph (G = (V,E), C, `), two vertices s and t,
and a positive integer k.
Question: Is there a subset of colors S ⊆ C with |S| ≤ k such that s
and t are not in the same connected component in G′ := (V,E \ ES),
where ES := {e ∈ E | `(e) ∈ S}?

Colored (s, t)-cut is NP-hard [1,5]. Motivated by this hardness, we study the
parameterized complexity of the problem.

Known Results and Related Work. To our knowledge, Colored (s, t)-cut
was first introduced in a directed version in the context of the analysis of di-
rected attack graphs [7,10]. It was shown, by a reduction from Hitting Set,
that in this setting computing (s, t)-cuts with few colors is NP-hard [7,10]. While
the graph is directed in this case, the reduction can be easily adapted to show
NP-hardness of the undirected case by discarding all edge directions in the con-
structed graph G. Moreover, this reduction also implies that Colored (s, t)-
cut is W[2]-hard when parameterized by k. In later work, this reduction from
Hitting Set and the above-mentioned hardness results were also discovered
directly for Colored (s, t)-cut [6,8,11,12]. When the same reduction is from
Vertex Cover, the special case of Hitting Set where every hyperedge has
size two, then the resulting instance of Colored (s, t)-cut has a vertex cover
of size two [12] making the problem NP-hard even in this very restricted case.
Moreover, Colored (s, t)-cut is NP-hard even if G is a complete graph [11].

On the positive side, by considering all possible choices for choosing the k col-
ors that shall be removed, Colored (s, t)-cut can be solved in nO(k) time. This
implies an nO(∆)-time algorithm, where ∆ is the maximum degree of G, since
instances with ∆ ≤ k are trivial yes-instances. Moreover, Colored (s, t)-cut
can be solved in O(2c ·(n+m)) time, where c := |C| is the number of colors. Col-
ored (s, t)-cut can be solved in polynomial time when each edge color appears
in at most two (s, t)-paths [8,11] and if every edge color has span one. Herein, the
span of a color is the number of connected components in the subgraph of G that
contains only the edges of this color and their endpoints [1]. The latter result was
later extended to an algorithm with running time 2cspan ·nO(1) where cspan is the
number of edge colors that have span at least two [2,8,11]. Colored (s, t)-cut is
fixed-parameter tractable (FPT) with respect to the combination of pmax and k
where pmax is the number of edges of a longest simple path between s and t [13].
Finally, Colored (s, t)-cut is FPT with respect to the number of (s, t)-paths
in G [8]. For all known nontrivial parameters that lead to FPT algorithms, that
is, for c, pmax+k, cspan, and for the number of (s, t)-paths, Colored (s, t)-cut
does presumably not admit a polynomial problem kernel [8,11].

Our Results. We study new parameterizations for Colored (s, t)-cut. Re-
call that it is known that Colored (s, t)-cut isW[2]-hard for the budget param-
eter k and that Colored (s, t)-cut is NP-hard even when G has a vertex cover
of size two. The latter result excludes tractability for most standard parameteri-
zations that are related to the structure of G, for example for the treewidth of G,
the vertex deletion distance to forests (known as feedback vertex set number), or

2

ξ2
FPT∗, No Poly Ker∗

ξ3
W[2]-h∗, XP

∆
W[2]-h∗, XP

fes
FPT∗, No Poly Ker∗

fvs
NP-h if const

vc
NP-h if const

tw
NP-h if const

p
FPT, No Poly Ker

k
W[2]-h, XP

pmax + k
FPT, No Poly Ker

Fig. 1: The parameterized complexity of Colored (s, t)-cut for structural
graph parameters; vc, fes, fvs, and tw denote the vertex cover number, feed-
back edge set number, feedback vertex set number, and treewidth, respectively.
New results are marked by an asterisk. An arrow a→ b symbolizes that a ≥ g(b)
for some function g in all graphs. Note that ξ2 → fes holds only for connected
graphs; for Colored (s, t)-cut we assume that G is connected.

the vertex deletion distance to graphs with maximum degree i: the correspond-
ing parameters are never larger than the size of a smallest vertex cover of G.
Thus, we first consider parameters that are related to the edge deletion distance
to tractable cases of Colored (s, t)-cut. Our results are shown in Fig. 1.

Since Colored (s, t)-cut can be solved in polynomial time on graphs with
constant maximum degree ∆, we consider parameterization by ξi, the number
of edges that need to be deleted in order to transform G into a graph with
maximum degree i. We show that for all i ≥ 3, Colored (s, t)-cut is W[2]-
hard for ξi. This also implies W[2]-hardness for the parameter ∆: For a vertex
of degree ∆ ≥ i, at least ξi incident edges have to be deleted to decrease its
degree to i. Hence, ∆ ≤ ξi + i. Consequently, our result strengthens the W[2]-
hardness for the parameter k, as k ≤ ∆ in all non-trivial instances. Hence, the
known nO(∆)-time algorithm for graphs with constant maximum degree cannot
be improved to an algorithm with running time f(∆) · nO(1). We then show
an FPT algorithm for parameterization by ξ2. This algorithm is obtained via
the FPT algorithm for the parameter “number p of simple (s, t)-paths in G”.
The latter algorithm also gives an FPT algorithm for parameterization by the
feedback edge set number of G, the number of edges that need to be removed to
transform G into a forest. We also observe that Colored (s, t)-cut does not
admit a polynomial kernel for ξ2 and for the feedback edge set number of G.

We then study parameterizations that are related to the edge-coloring ` of G;
our results are shown in Fig. 2. Assume that C = {α1, . . . , αc} and there are
at least as many edges with color αi as with color αi+1 for all i < c. For any
number q, we let the parameter m>q := |{e ∈ E | `(e) = αj for j > q}| denote
the number of edges with a color that is not among the q most frequent colors.

3

m>q

FPT, Lin. Kernel∗

c
FPT, No Poly Ker

cspan

FPT, No Poly Ker

cpath

FPT∗, No Poly Ker

cconf

FPT∗, No Poly Ker

csp
NP-h if const∗

csc
NP-h if const∗

cpc

FPT∗, No Poly Ker

Fig. 2: An overview of the parameterized complexity of Colored (s, t)-cut for
color-related parameters as analyzed in Sections 3 and 4. New results are marked
by an asterisk. An arrow a → b between two parameters a and b, symbolizes
that a ≥ g(b) for some function g in all instances.

Note that c ≤ m>q+q and m>q ≤ m. Hence, for constant q, the parameter m>q

is an intermediate parameter between c and m. We show that for all constant q,
Colored (s, t)-cut admits a problem kernel of size O(m>q).

We then provide a general framework to obtain FPT algorithms for parame-
ters that are potentially smaller than c, the number of colors. To formulate the
framework, we identify certain properties of color sets in the input instances that
directly give an FPT algorithm for the parameterization by the size of this color
set. We then provide four applications of this framework. The first application is
for cspan, the number of colors with span at least two. For this parameterization,
an FPT algorithm is already known [2,8,11], and an algorithm with the same
running time can be obtained by applying our framework. The second applica-
tion is for parameterization by the number cpath of colors that appear in at least
three (s, t)-paths. Using our framework, we extend the known polynomial-time
algorithm for cpath = 0 to an FPT algorithm with running time 2cpath ·nO(1). The
third application is for the parameterization by cconf which we define as follows.
Two colors i and j are in conflict if G contains some (s, t)-path containing i
and j. Then, cconf is the number of colors i that are in conflicts with at least
three other colors. We show by applying our framework, that Colored (s, t)-
cut can be solved in 2cconf · nO(1) time. Finally, we strengthen the latter two
results by showing an FPT algorithm for the parameter cpc counting the number
of colors which are in at least three paths and in at least three conflicts. The
parameter cpc can be seen as an “intersection” of cpath and cconf. We also show
that Colored (s, t)-cut is NP-hard even when every color has span one or
occurs in at most two paths, and NP-hard even when every color has span one
or occurs in at most two conflicts. Thus, an FPT algorithm is unlikely for the
intersection of cspan with cpath or cconf, denoted by csp and csc, respectively.

Preliminaries. An edge-colored graph is a triple H = (G = (V,E), C, ` : E →
C) where G is an undirected graph, C is a set of colors and ` : E → C is an edge
coloring. We extend the definition of ` to edge sets E′ ⊆ E by defining `(E′) :=
{`(e) | e ∈ E′}. We let n and m denote the number of vertices and edges in G,

4

respectively, and c the size of the color set C. We call |I| := m + n the size of
an instance I. We assume k < m and that all input graphs are connected, since
connected components containing neither s nor t may be removed.

In a graph G = (V,E), we call a sequence of vertices P = (v1, . . . , vk) ∈
V k, k ≥ 1, a path of length k− 1 if {vi, vi+1} ∈ E for all 1 ≤ i < k. If vi 6= vj for
all 1 ≤ i < j ≤ k, then we call P vertex-simple. If not mentioned otherwise, we
only talk about vertex-simple paths. Furthermore, we say that a path (v1, . . . , vk)
is a (v1, vk)-path. We denote with V (P) := {vi | 1 ≤ i ≤ k} the vertices of P
and with E(P) := {{vi, vi+1} | 1 ≤ i < k} the edges of P . Hence, `(E(P))
denotes the set of colors of a path P in a colored graph (G = (V,E), C, `).
Given two paths P1 = (v1, . . . , vk) and P2 = (w1, . . . , wr) in G, we define the
concatenation as P1 · P2 := (v1, . . . , vk, w1, . . . , wr). Note that P1 · P2 is a path
if {vk, w1} ∈ E. Let H = (G,C, `) be a colored graph and let s, t ∈ V be
two vertices in G. We say that C̃ ⊆ C is a colored (s, t)-cut in G if for ev-
ery (s, t)-path P in G, `(E(P)) ∩ C̃ 6= ∅. We denote by C(H) := {`(E(P)) |
P is an (s, t)-path in G} the collection of sets of colors of vertex simple (s, t)-
paths in G. Note that C̃ ⊆ C is a colored (s, t)-cut in G if and only if C̃ ∩C ′ 6= ∅
for all C ′ ∈ C(H). The following lemma implies that we can efficiently compute
an “or”-composition of many Colored (s, t)-cut instances.

Lemma 1 ([11]). Let I1, I2, . . . , Ii be a set of Colored (s, t)-cut instances
with the same budget k. Then, we can compute in linear time an instance I ′ with
budget k such that I ′ is a yes-instance if and only if Ij is a yes-instance for at
least one j ∈ {1, . . . , i} and |I ′| ≤

∑i
j=1 |Ii|.

For the standard notions on parameterized complexity, refer to [3,4]. Due to
lack of space, several proofs are deferred to the full version of this paper.

2 Structural Graph Parameters

As discussed above, Colored (s, t)-cut is unlikely to be FPT for vertex deletion
parameters. We thus consider edge deletion parameters.

Definition 1. Let G = (V,E) be a graph and i ≥ 0 be an integer. Further,
let ξi := min{|E′| | E′ ⊆ E,G − E′ has a maximum degree of i} be the edge
deletion distance to a maximum degree of i.

Since Colored (s, t)-cut can be solved in polynomial time for constant ∆, the
parameter ξi measures the distance to a trivial case. Since ∆ ≤ ξi + i, Col-
ored (s, t)-cut parameterized by ξi is in XP when i is constant. The larger i,
the smaller the parameter value ξi will be in most instances. We now show that
even for small i, namely for i = 3, an FPT algorithm for ξi is unlikely.

Theorem 1. Colored (s, t)-cut parameterized by ξ3 is W[2]-hard even on
planar graphs.

We now show that this result is tight by showing an FPT algorithm for ξ2
which is obtained via an FPT algorithm for p, the number of (s, t)-paths in G.

5

Proposition 1 ([8]). Colored (s, t)-cut is FPT parameterized by p and does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

For a graph G = (V,E), we call F ⊆ E a feedback edge set if G − F is a
forest. We define with fes := min{|F | | F is a feedback edge set} the feedback
edge set number. The following can be obtained by applying Proposition 1.

Proposition 2. Colored (s, t)-cut is FPT parameterized by fes or ξ2 does
not admit a polynomial kernel for fes+ξ2, unless NP ⊆ coNP/poly.

3 A Kernel for the Number of Edges with Rare Colors

In this section, we give a linear problem kernel for Colored (s, t)-cut pa-
rameterized by the number of edges whose color is not among the top-q most
frequent colors. More precisely, we define a family of parameters m>q for ev-
ery q ∈ N as follows. For a Colored (s, t)-cut-instance I with color set C,
let (α1, α2, . . . , αc) be an ordering of the colors in C such that the number of
edges with color αi is not smaller than the number of edges with color αi+1 for
all i ∈ {1, . . . , c− 1}. For a given constant q, let C̃ ⊆ C be the set of the q most
frequent colors. We then definem>q as the number of edges that are not assigned
to a color in C̃. In the following, we show a linear problem kernel for m>q for
every q.

Informally, the kernel is based on the following idea: Since q is a constant,
we may try all possible partitions of {α1, . . . , αq} into a set of colors Cr that
we want to remove and a set of colors Cm that we want to keep. Fix one par-
tition (Cr, Cm). Under the assumption posed by this partition, we can sim-
plify the instance as follows. The edges of Cr can be deleted. Moreover, all
vertices that are connected by a path P in G, such that `(E(P)) ⊆ Cm can-
not be separated anymore under this assumption. Thus, all vertices of P can
be merged into one vertex. To formalize this merging, we give the following
definition. For a colored graph (G = (V,E), `) and a set Cm ⊆ C, we de-
fine [v]Cm := {u ∈ V | ∃P = (v, . . . , u) in G : `(E(P)) ⊆ Cm} as the set of
vertices that are connected to v by a path only colored in Cm. If Cm is clear
from the context, we may only write [v]. The instance that can be built for
specific sets Cr and Cm is defined as follows.

Definition 2. Let I = (G,C, `, s, t, k) be a Colored (s, t)-cut instance and
let Cr, Cm ⊆ C with Cr ∩ Cm = ∅. The remove-merge-instance of I with re-
spect to (Cr, Cm) is rmi(I, Cr, Cm) := (G′ = (V ′, E′), C ′, `′, [s], [t], k − |Cr|),
where C ′ := C \ (Cr ∪ Cm), V ′ := V ′1 ∪ V ′2 , and

V ′1 := {[v] | v ∈ V },
V ′2 := {vα{[u],[w]} | [u], [w] ∈ V

′
1 , α ∈ C ′, [u] 6= [w],

∃u′ ∈ [u], w′ ∈ [w] : {u′, w′} ∈ E, `({u′, w′}) = α},
E′ := {{[w], vα{[u],[w]}}, {[u], v

α
{[u],[w]}} | v

α
{[u],[w]} ∈ V

′
2}, and

`′({[u], vα{[u],[w]}}) := α.

6

The vertices of V ′2 only exist to prevent G′ from having parallel edges. We first
show that a remove-merge-instance can be computed efficiently.

Proposition 3. Let I = (G = (V,E), C, `, s, t, k) be a Colored (s, t)-cut
instance, and let I ′ = rmi(I, Cr, Cm) be the remove-merge-instance of I for
some Cr, Cm ⊆ C such that Cr ∩ CM = ∅. Then, |I ′| ∈ O(|I|) and I ′ can be
computed in O((|Cr|+ |Cm|) ·m) time.

We now show that for any C̃ ⊆ C, we can solve the original instance by
creating and solving all possible remove-merge-instances for subsets of C̃.

Lemma 2. Let I := (G = (V,E), C, `, s, t, k) be a Colored (s, t)-cut instance
and let C̃ ⊆ C, then I is a yes-instance if and only if there is a subset Cr ⊆ C̃
such that the remove-merge-instance I ′ := rmi(I, Cr, C̃ \ Cr) is a yes-instance.

Theorem 2. For every constant q ∈ N, Colored (s, t)-cut admits a problem
kernel of size O(m>q) that can be computed in O(|I|) time.

Proof. Let I = (G = (V,E), C, `, s, t, k) be an instance of Colored (s, t)-cut
and let C̃ = {α1, α2, . . . , αq} ⊆ C be the set of the q most-frequent colors. We
first describe how to compute an equivalent instance I ′ from I in linear time and
afterwards we show that |I ′| ∈ O(m>q).

Construction of I ′. We start by computing the set I = {rmi(I, Cr, C̃ \ Cr) |
Cr ⊆ C̃} containing for every Cr ⊆ C̃, the remove-merge instances of I with
respect to (Cr, C̃ \Cr). Note that |I| = 2q ∈ O(1). We write I = {I1, I2, . . . , I2q}
and let Ii =: (Gi = (Vi, Ei), Ci, `i, [s]i, [t]i, ki) denote each instance Ii ∈ I.
By Proposition 3 we can compute every Ii ∈ I in O(q · |I|) = O(|I|) time.
Therefore, we can compute I in O(|I|) time. Note that maxi∈{1,...,2q} ki = k and
that Ci = C \ C̃ for every i ∈ {1, . . . , 2q}.

Next, we apply the algorithm of Lemma 1 on all instances of I. Note that the
budgets ki of the instances Ii ∈ I might not be equal. Thus, in order to apply
Lemma 1 we transform every instance Ii ∈ I into an instance I∗i by adding
auxiliary vertices v1, . . . , vk−ki to Vi and auxiliary edges {[s]i, vj} and {[t]i, vj}
for every j ∈ {1, . . . , k−ki} to Ei. Let V ∗i and E∗i be the resulting sets. Finally, we
set k∗i = k and `∗i (e) = `i(e) if e ∈ Ei and `∗i ({[s]i, vj}) = `∗i ({[t]i, vj}) = αj for
every j ∈ {1, . . . , k−ki}. Note that we added at most k−ki vertices and 2(k−ki
edges to every instance Ii and that k−ki ≤ q. Since q is a constant, |I∗i | ∈ O(|Ii|)
and I∗i can be computed from Ii in O(|Ii|) time.

Let I∗ = {I∗1 , . . . , I∗2q} be the resulting set of instances. Note that the budget
is k in all instances in I∗. Therefore, we can apply Lemma 1 on the 2q instances
in I∗ and compute an instance I ′ in O(|I|) time, such that I ′ is a yes-instance
if and only if there exists some i ∈ {1, . . . , 2q} such that I∗i is a yes-instance. We
defer the proof of the equivalence of I and I ′.

Size of I ′. It remains to give a bound for the size of I ′. By Definition 2 of
remove-merge-instances, every Ii ∈ I contains no edges with a color in C̃, and
subdivides every other edge of I. Therefore, every Ii ∈ I contains at most 2m>q

edges. Since |I∗i | ∈ O(|Ii|) we conclude |I∗i | ∈ O(m>q) for every I∗i ∈ I. Finally,
by Lemma 1 it holds that |I ′| ≤

∑2q

i=1 |I∗i | ∈ O(m>q), since 2q ∈ O(1). �

7

4 Parameterization by Color Subsets

In this section we present a general framework for color parameterizations of
Colored (s, t)-cut leading to an FPT algorithm. To apply our framework, one
has to check two properties of the parameterization.

Definition 3. A function π that maps every instance I = (G,C, `, s, t, k) of
Colored (s, t)-cut to a subset π(I) ⊆ C of the colors of I is called a color
parameterization. If for every Colored (s, t)-cut instance I, π(I) can be com-
puted in polynomial time and I can be solved in polynomial time if π(I) = ∅,
then π is called a polynomial color parameterization.

In the following, we will only deal with polynomial color parameterizations.
Next, we will use remove-merge-instances to transform an instance I of Col-
ored (s, t)-cut to a set I of remove-merge-instances of Colored (s, t)-cut
such that π(I ′) = ∅ for each I ′ ∈ I and I has size f(π(I)) for some computable
function f . Each I ′ can be solved in polynomial-time since π is polynomial
and π(I ′) = ∅. This leads to an FPT algorithm.

Definition 4. A color parameterization π has the strong remove-merge prop-
erty if for every Colored (s, t)-cut instance I, every C̃ and every Cr ⊆ C̃ it
holds that π(I ′) ⊆ π(I) where I ′ := rmi(I, Cr, C̃ \ Cr). Further, π has the weak
remove-merge property if for every Colored (s, t)-cut instance I and every
Cr ⊆ π(I) it holds that π(I ′) = ∅ where I ′ := rmi(I, Cr, π(I) \ Cr).

Lemma 3. If π has the strong remove-merge property, π also has the weak
remove-merge property.

Lemma 4. Let π be a polynomial color parameterization with the weak remove-
merge property. Then, any instance I of Colored (s, t)-cut can be solved
in 2|π(I)||I|O(1) time and Colored (s, t)-cut does not admit a polynomial ker-
nel for |π(I)|, unless NP ⊆ coNP/poly.

Proof. First, we present an FPT algorithm with the claimed running time. Let I
be an instance of Colored (s, t)-cut. We compute π(I) and the set I of all
remove-merge-instances for G with respect to π(I) and answer yes if and only if
there is some I ′ ∈ I such that I ′ is a yes-instance. This algorithm is correct due to
Lemma 2. Since π is a polynomial color parameterization, we can compute π(I)
in polynomial time. Since |I| = 2|π(I)|, we can compute I in 2|π(I)||I|O(1) time.
Since π is a polynomial color parameterization that has the weak remove-merge
property, we can solve each I ′ ∈ I in |I|O(1) time. Hence, this algorithm runs in
2|π(I)||I|O(1) time. The kernel lower bound follows from the fact that in every
instance I of Colored (s, t)-cut it holds that |π(I)| ≤ c and Colored (s, t)-
cut admits no kernel when parameterized by c, unless NP ⊆ coNP/poly. ut

Next, we apply Lemma 4 to three polynomial color parameterizations. The
proof for the parameterization by cspan is deferred to the full version.

8

4.1 Number of Path-Frequent Colors

This parameter counts the number of colors occurring on many (s, t)-paths.

Definition 5. Let I = (G = (V,E), C, `, s, t, k) be a Colored (s, t)-cut in-
stance. A color α ∈ C is called path-frequent if there exist at least three vertex-
simple (s, t)-paths such that at least one edge on each path has color α.

By Cpath we denote the function that maps each Colored (s, t)-cut in-
stance I to the set of path-frequent colors of I. Further, for a fixed instance I,
let cpath := |Cpath(I)|. For a fixed color α one can test in polynomial time
whether α is path-frequent [11]. Further, an instance I of Colored (s, t)-cut
can be solved in polynomial time if Cpath(I) = ∅. [11]. Thus, the following holds.

Lemma 5. The function Cpath is a polynomial color parameterization. More-
over, for every α that is contained in at most two (s, t)-paths we can compute
all these (s, t)-paths in polynomial time.

Lemma 6. The function Cpath has the strong remove-merge property.

Proof. Let I = (G,C, `, s, t, k) be an instance of Colored (s, t)-cut, let C̃ ⊆ C,
let Cr ⊆ C̃ be the colors which will be removed and let I ′ = (G′, C ′, `′, [s], [t], k−
|Cr|) := rmi(I, Cr, C̃ \ Cr) be the resulting remove-merge-instance. We show
that Cpath(I

′) ⊆ Cpath(I). Assume towards a contradiction that there is a
color α ∈ Cpath(I

′) \ Cpath(I). Thus, there are three vertex-simple ([s], [t])-
paths Pi for i = {1, 2, 3} in G′ such that `′(E(Pi)) ⊆ C \Cpath(I) and each path
contains an edge of color α. By construction of G′, we can assume without loss of
generality that Pi = ([v1], v

α1

[v1],[v2]
, [v2], . . . , [vir]) for some ir ∈ N where s ∈ [v1]

and t ∈ [vir]. By definition of G′, it follows that there exists some vjini ∈ [vi]

and some vjout

i ∈ [vi+1] such that eji := {vjini , vjouti } ∈ E with `(eji) = αi for
each j, 1 ≤ j < ir, where αi ∈ C \ C̃. Further, we set v1ini = s and vjoutir

= t,
and since vjini , vjout

i ∈ [vi], we can conclude that there is a path P ji from vjini
to vjout

i in G such that `(E(P ji)) ⊆ C̃ \ Cr. Then P i := P 1
i · P 2

i · . . . · P
ir
i is a

vertex-simple (s, t)-path in G such that `(E(P i)) ⊆ C \ Cr. Hence, there exist
at least three paths from s to t such that at least one edge has color α, a con-
tradiction. ut

Lemmas 4, 5, and 6 now give an FPT algorithm.

Theorem 3. Colored (s, t)-cut can be solved in O(2cpath |IO(1)|) time.

4.2 Number of Colors in at least Three Conflicts

The next parameter concerns colors which occur on vertex-simple (s, t)-paths
with many different colors.

Definition 6. Let I = (G = (V,E), C, `, s, t, k) be a Colored (s, t)-cut in-
stance. Two colors α, β ∈ C form a conflict if there exists an (s, t)-path such
that at least one edge on this path has color α and at least one edge has color β.

9

By Cconf we denote the function that maps an instance I of Colored (s, t)-
cut to the set of colors of I which are in conflict with at least three different
colors. Further, for a fixed instance I, let cconf := |Cconf(I)|.

Lemma 7. Let D ⊆ C be a color set of size at most three, then we can determine
in polynomial time if there is an (s, t)-path P on G such that D ⊆ `(E(P)).

Lemma 8. The function Cconf is a polynomial color parameterization.

Lemma 9. The function Cconf has the strong remove-merge property.

Proof. Let I = (G,C, `, s, t, k) be an instance of Colored (s, t)-cut, let C̃ ⊆ C,
let Cr ⊆ C̃ be the colors which will be removed and let I ′ = (G′, C ′, `′, [s], [t], k−
|Cr|) := rmi(I, Cr, Cconf \Cr) be the resulting remove-merge-instance. We show
that Cconf(I

′) ⊆ Cconf(I). Assume towards a contradiction that there exist a
color α ∈ Cconf(I

′) such that α /∈ Cconf(I) and α forms conflicts with col-
ors β1, β2, β3. Let P = ([v1], v

α1

[v1],[v2]
, [v2], . . . , [vx]) for some x ∈ N be a vertex-

simple (s, t)-path in G′ containing at least one edge of color α and at least one
edge of color βi for some i ∈ {1, 2, 3}, where s ∈ [v1] and t ∈ [vx]. By definition
of G′ it follows that there exist some vinj ∈ [vj] and some voutj ∈ [vi+1] such
that ej := {vinj , voutj } ∈ E with `(ej) = αj for each 1 ≤ j < x where αi ∈ C \ C̃.
Further, we set vin1 = s and voutx = t. Since vinj , voutj ∈ [vj] we can conclude
that there is a path Pj from vinj to voutj in G such that `(E(Pj)) ⊆ C̃ \ Cr.
Then P ∗ := P1 · P2 · . . . · Px is a vertex-simple (s, t)-path in G such that P ∗
contains at least one edge of color α and at least one edge of color βi. Hence,
color α forms conflicts with each βi, a contradiction. ut

Lemmas 4, 8, and 9 now give an FPT algorithm.

Theorem 4. Colored (s, t)-cut can be solved in O(2cconf |I|O(1)) time.

4.3 Parameter Intersections

In the following we study Colored (s, t)-cut parameterized by the pairwise
intersection of all three parameters of the previous sections.

Theorem 5. Let I be an instance of Colored (s, t)-cut and let π, φ be color
parameterizations with the strong remove-merge property. Then the intersected
parameter ρ(I) := π(I) ∩ φ(I) also has the strong remove-merge property.

Proof. Fix a set C̃ ⊆ C, fix a set Cr ⊆ C̃ and let I ′ = rmi(I, Cr, C̃ \ C) be
the resulting remove-merge-instance. We have to show that ρ(I ′) ⊆ ρ(I). By
definition, ρ(I ′) = π(I ′) ∩ φ(I ′). Since π and φ are strong, we have π(I ′) ⊆ π(I)
and φ(I ′) ⊆ φ(I). Hence, ρ(I ′) ⊆ π(I) ∩ φ(I) = ρ(I). ut

We now study the pairwise intersection of color parameterizations.

10

Definition 7. Let Cpc(I) := Cpath(I) ∩ Cconf(I) denote the function that maps
an instance I of Colored (s, t)-cut to the set of colors of I which are path-
frequent and contained in at least three conflicts. Further, let cpc := |Cpc(I)|.

Theorem 6. Colored (s, t)-cut can be solved in O(2cpc |I|O(1)) time.

Proof. We will prove this theorem by applying Lemma 4. First, we observe
that Cpc has the weak remove-merge property: Since Cpath and Cconf both have
the strong remove-merge property, Cpc also has the strong remove-merge prop-
erty due to Theorem 5.

Second, we show that Cpc is polynomial. According to Lemmas 5 and 8 it can
be determined in polynomial time whether a color α is in Cpath(I) or in Cconf(I).
Thus, Cpc(I) can be computed in polynomial time.

It remains to show that an instance I = (G = (V,E), C, `, s, t, k) can be
solved in polynomial time if Cpc(I) = ∅. Recall that C(I) := {`(E(P)) | P is a
vertex-simple (s, t)-path in G}. Without loss of generality we can assume that
each set D ∈ C(I) has size at least two. We first show that C(I) can be computed
in polynomial time when Cpc(I) = ∅. Let α ∈ C \ Cpath(I), then there exist at
most two paths containing an edge with color α. Both paths can be computed in
polynomial time according to Lemma 5. Let α ∈ C \Cconf(I). In other words, α
forms conflicts with at most two other colors β and γ. The colors β and γ can
be computed according to Lemma 8. Hence, C(I) contains at most three sets
containing α. Each subset D ∈ C(I) can be computed as follows: If color α
forms a conflict only with one other color β, then {α, β} is the unique set in C(I)
containing α. This set can be computed in polynomial time. Now, assume color α
forms conflicts with colors β and γ. Next, test if T := {α, β1, β2} ∈ C(I). This can
be done in polynomial time due to Lemma 7. If T /∈ C(I), {α, β1}, {α, β2} ∈ C(I)
and there is no other set D ∈ C(I) such that α ∈ D. If T ∈ C(I), then test for
each i ∈ {1, 2} whether s and t are connected in G[`−1({α, βi})]. If yes, the
set {α, βi} is contained in C(I).

From C(I), we now construct an instance I := (G = (V, E), C, `′, s, t, k)
of Colored (s, t)-cut as follows: For each D ∈ C(I) create an (s, t)-path P
with `′(P) = D. Note that S is a colored (s, t)-cut for G if and only if S is a
colored (s, t)-cut for G.

Now, we show that a colored (s, t)-cut S with |S| ≤ k can be computed in
polynomial time for I. Let α ∈ Cpath(I). Hence, α ∈ C \ Cconf(I). Hence, C(I)
contains exactly three sets T1 = {α, β1, β2}, T2 = {α, β1} and T3 = {α, β2}
containing color α. Note that if there is a fourth set D ∈ C(I) such that βj ∈ D
and D \ T1 6= ∅ for some j ∈ {1, 2}, then βj ∈ Cpath(I) ∩ Cconf(I), that is, βj
is in at least four paths in G and βj forms conflicts with at least three different
colors. This contradicts the assumption Cpc = ∅. Hence, such a set D ∈ C(I)
does not exist. In other words, there is no color γ such that γ forms a conflict
with βj for j ∈ {1, 2}. The only possible further set containing β1 or β2 can
be T4 := {β1, β2}. First, assume T4 ∈ C(I). Then each colored (s, t)-cut S of G
contains at least two of α, β1, and β2. Without loss of generality, add α and β1
to S. Second, if T4 /∈ C(I), adding α to S covers each Ti for i ∈ {1, 2, 3}.

11

Afterwards, for each color α we have α /∈ Cpath(I
′) and we can apply

Lemma 5. Hence, if Cpc(I) = ∅, I can be solved in polynomial time. ut

As in Definition 7, one can define Cps(I) := Cpath(I)∩Cspan(I) and Csc(I) :=
Cspan(I) ∩ Cconf(I). We show that both of them are not polynomial.

Proposition 4. Colored (s, t)-cut is NP-hard even for instances I where
Cps(I) = ∅ and Csc(I) = ∅.

References

1. D. Coudert, P. Datta, S. Perennes, H. Rivano, and M. Voge. Shared risk re-
source group complexity and approximability issues. Parallel Processing Letters,
17(2):169–184, 2007.

2. D. Coudert, S. Pérennes, H. Rivano, and M. Voge. Combinatorial optimization in
networks with shared risk link groups. Discret. Math. Theor. C., 18(3), 2016.

3. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

4. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

5. A. Faragó. A graph theoretic model for complex network failure scenarios. In
Proc. Eighth INFORMS Telecommunications Conference, 2006.

6. M. R. Fellows, J. Guo, and I. A. Kanj. The parameterized complexity of some
minimum label problems. J. Comput. Syst. Sci., 76(8):727–740, 2010.

7. S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In
Proc. 15th IEEE Computer Security Foundations Workshop, pages 49–63. IEEE,
2002.

8. S. Klein, L. Faria, I. Sau, R. Sucupira, and U. Souza. On colored edge cuts in
graphs. In Sociedade Brasileira de Computaçao, Editor, Primeiro Encontro de
Teoria da Computaçao—ETC. CSBC, 2016.

9. M. Pióro and D. Medhi. Routing, flow, and capacity design in communication and
computer networks. Morgan Kaufmann, 2004.

10. O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Proc. 2002 IEEE Symposium on
Security and Privacy, pages 273–284. IEEE Computer Society, 2002.

11. R. A. Sucupira. Problemas de cortes de arestas maximos e mínimos em grafos.
PhD thesis, Universidade Federal do Rio de Janeiro, 2017.

12. Y. Wang and Y. Desmedt. Edge-colored graphs with applications to homogeneous
faults. Inf. Process. Lett., 111(13):634–641, 2011.

13. P. Zhang and B. Fu. The label cut problem with respect to path length and label
frequency. Theor. Comput. Sci., 648:72–83, 2016.

12

	Refined Parameterizations for Computing Colored Cuts in Edge-Colored Graphs

