
Colored Cut Games

Nils Morawietza,1,, Niels Grüttemeiera, Christian Komusiewicza, Frank
Sommera,2

aPhilipps-Universität Marburg, Fachbereich Mathematik und Informatik, Marburg, Germany

Abstract

In a graph G = (V,E) with an edge coloring ` : E → C and two distinguished
vertices s and t, a colored (s, t)-cut is a set C̃ ⊆ C such that deleting all edges
with some color c ∈ C̃ from G disconnects s and t. Motivated by applications in
the design of robust networks, we introduce colored cut games. In these games,
an attacker and a defender choose colors to delete and to protect, respectively,
in an alternating fashion. The attacker wants to achieve a colored (s, t)-cut
and the defender wants to prevent this. First, we show that for an unbounded
number of alternations, colored cut games are PSPACE-complete even on sub-
cubic graphs. We then show that, even on subcubic graphs, colored cut games
with i alternations are complete for classes in the polynomial hierarchy whose
level depends on i. To complete the dichotomy, we show that all colored cut
games are polynomial-time solvable on graphs with maximum degree at most 2.

Next, we show that all colored cut games admit a polynomial kernel for the
parameter k + κr where k denotes the total attacker budget and, for any con-
stant r, κr is the number of vertex deletions that are necessary to transform G
into a graph where the longest path has length at most r. For κ1, which is the
vertex cover number vc of the input graph, the kernel has size O(vc2k2). More-
over, we introduce an algorithm solving the most basic colored cut game, Col-
ored (s, t)-Cut, in 2vc+knO(1) time.

Keywords: Labeled Cut, Labeled Path, Network Robustness, Kernelization,
PSPACE, Polynomial Hierarchy

?Some of the results of this work are also contained in the first author’s Master thesis [24]
??An extended abstract of this work appeared in the Proceedings of the 40th IARCS An-

nual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’20), volume 182 of LIPIcs, pages 30:1-30:17. Schloss Dagstuhl - Leibniz- Zentrum
für Informatik, 2020, held in Goa, India.

Email addresses: morawietz@informatik.uni-marburg.de (Nils Morawietz),
niegru@informatik.uni-marburg.de (Niels Grüttemeier),
komusiewicz@informatik.uni-marburg.de (Christian Komusiewicz),
fsommer@informatik.uni-marburg.de (Frank Sommer)

1Supported by the Deutsche Forschungsgemeinschaft (DFG), project OPERAH,
KO 3669/5-1.

2Partially supported by the Deutsche Forschungsgemeinschaft (DFG), project EAGR,
KO 3669/6-1.

Accepted for publication at Theoretical Computer Science, Elsevier December 15, 2022

1. Introduction

Many classic computational graph problems are motivated by applications
in network robustness. A famous example is the problem of computing a mini-
mum cut between two given vertices s and t in a simple undirected graph G =
(V,E) [19, 14]. In some applications, a more realistic model for the robustness
of a given network can be obtained by considering edge-colored graphs. Here,
the input graph G comes with a coloring ` : E → C of the edges, where C is
the set of colors. For example, in multilayer networks a failure of some link in
a basic network layer may result in a failure of many seemingly unrelated links
in a virtual network layer, because all of the virtual links rely on paths in the
basic network that use the failed link [9]. This can be modeled by assigning
edge colors. A failure of the resource represented by a color c then destroys all
edges with color c. Thus, whether a failure scenario disconnects two vertices s
and t, depends directly on the colors of C that fail. This can be formalized as
follows.

Definition 1.1. Let G be an edge-colored graph and let s and t be two vertices
in G. A color set C̃ ⊆ C is a colored (s, t)-cut in G if every (s, t)-path contains
at least one edge that has a color of C̃.

For example, the color set {2, 3, 4} is a colored (s, t)-cut in Figure 1.
The size of the smallest colored (s, t)-cut then becomes an important network

robustness parameter in scenarios modeled by colored graphs. Motivated by this
fact, the problem of computing such a cut, called Colored (s, t)-Cut in the
following, has been studied intensively [4, 9, 10, 17, 25, 31, 34]. In contrast to the
classic problem on uncolored graphs, Colored (s, t)-Cut is NP-complete [9].
We may view Colored (s, t)-Cut as formulated from the perspective of an
attacker whose aim is to disconnect s and t using a minimum number of edge
colors. A related (s, t)-connectivity problem is Labeled Path, where we ask
for a smallest color set C̃ ⊆ C such that there is an (s, t)-path whose edges are
only colored with colors from C̃ [9, 17, 32]. Labeled Path is NP-complete in
general [32]; when every edge color occurs at most once it is simply Shortest
Path and thus solvable in polynomial time. We may view Labeled Path as
formulated from the perspective of a defender who wants to secure a minimum
number of edge colors in order to guarantee that s and t are connected.

We study colored cut games in which defender and attacker interact. This
can be motivated from typical approaches in network security where a so-called
red team (the attacker) plays against a so-called blue team (the defender) [23].
More precisely, we assume that there are two players that alternatingly choose
colors. The colors chosen by the attacker are deleted from the graph while the
colors chosen by the defender become safe which means that the attacker may
not choose these colors in subsequent turns. In our model, in each turn the
attacker and the defender have a fixed budget limiting the number of colors
that they may choose, Figure 1 shows an example. We study different versions

2

s t
1

4

2

3

3

5

2

7

6

5

4

1

Figure 1: An edge-colored graph with seven colors. Consider a colored cut game of two
rounds: In round one, the defender may protect one color and the attacker may attack two
colors. In round two, the defender can protect two colors, and the attacker can attack one
color. For example, the defender may protect color 1, then the attacker may delete colors 2
and 3, then in round two, the defender may protect colors 4 and 5. The resulting graph has
two (s, t)-paths containing the colors 1, 4, 5, 6 and 1, 4, 5, 7, respectively. Since the attacker
may now only attack either 6 or 7, the defender wins.

of this game. We distinguish, for example, whether the number of alternations
between defender and attacker is constant or unbounded, whether the defender
or the attacker starts, and whether we are interested in a winning strategy for
the defender or the attacker. We refer to the family of these games as colored
cut games.

Colored (s, t)-Cut is the colored cut game where the attacker has one
turn, the defender has none, and we ask if the attacker has a winning strat-
egy. Labeled Path can be seen as the colored cut game where the defender
starts with a limited budget, followed by the attacker with unlimited budget,
and we ask if the defender has a winning strategy. When the number of alterna-
tions between defender and attacker is unbounded, then we refer to the game as
(DA)∗ Colored (s, t)-Cut Robustness ((DA)∗-CCR). A well-known spe-
cial case of (DA)∗-CCR is the polynomial-time solvable Shannon Switching
Game [6, 8]. Here every edge color appears at most once and each player may
choose one color in each turn.

Our Results. We study the complexity of colored cut games. In Sec-
tion 3, we show that, in contrast to Shannon Switching Game, (DA)∗-CCR
is PSPACE-complete. Furthermore, in Section 4 we show that for an increasing
but constant number of alternations between the agents, the colored cut games
are complete for complexity classes of increasing levels of the polynomial hierar-
chy. The concrete level number depends directly on the number of alternations,
assuming that the last turn is played by the attacker.

In Section 5, we study the complexity on restricted input instances. More
precisely, in Section 5.1 we study how the structure of the input graph influ-
ences the complexity of the games. We show that all colored cut games are
polynomial-time solvable on graphs with maximum degree at most 2 and hard
for different levels of the polynomial hierarchy on bipartite planar subcubic
graphs. Moreover, we show that two cases with restricted colorings for which

3

Colored (s, t)-Cut can be solved in polynomial time are NP-hard already
when the defender starts and attacker and defender have one turn.

Finally, in Section 6, we study the parameterized complexity of colored cut
games. Our main result is a polynomial-size problem kernel for all colored cut
games parameterized by k + κr. Here k is the total budget of the attacker
and κr is the number of vertex deletions that are needed to transform the input
graph G into a graph where the longest path has length at most r (thus, κ1

is the vertex cover number vc of G). More precisely, we show that for every
constant r we can reduce any instance of a colored cut game in polynomial time
to one with O((κr)

2kr+1) edges. This general kernelization result is somewhat
surprising because for most parameters (including the vertex cover number vc, k,
or |C|) even the basic colored cut games Colored (s, t)-Cut and Labeled
Path are unlikely to admit a polynomial kernelization [17, 22, 25, 34]. In
fact, the first nontrivial kernelization for Colored (s, t)-Cut (with respect
to a rather large parameter) was provided, to the best of our knowledge, in
our companion work on Colored (s, t)-Cut [25]. Finally, we present a direct
FPT-algorithm solving Colored (s, t)-Cut for the combined parameter κr+k
for each constant r. For r = 1, this algorithm has a running time of 2vc+knO(1).

One of the main tools in our hardness proofs and algorithms is the notion
of colored-cut-equivalence (refer to Section 2 for a formal definition) which may
be of general interest for the study of colored cuts in graphs.

2. Basic Definitions and Colored-Cut-Equivalence

We next describe the graph-theoretic notation used in this work, give the
necessary definitions from parameterized complexity theory, define colored cut
games formally, and present a condition for colored graphs to be considered
equivalent in the context of colored cut games.

Notation. For integers j and k, j ≤ k, we denote with [j, k] the set {r | j ≤
r ≤ k}. For a set S and an integer k, we let

(
S
k

)
denote the family of all size-k

subsets of S. A (simple undirected) graph G := (V,E) consists of a finite set of
vertices V (G) := V and a set of edges E(G) := E ⊆

(
V
2

)
and we denote n := |V |

and m := |E|. For V ′ ⊆ V , we denote with G[V ′] := (V ′, E ∩
(
V ′

2

)
) the subgraph

of G induced by V ′ and with G−V ′ := G[V \V ′] the graph obtained from G by
deleting V ′. Analogously, we let G−E′ := (V,E\E′) denote the graph obtained
by deleting the edge set E′ ⊆ E. We denote with NG(v) := {w ∈ V | {v, w} ∈
E} the neighborhood of a vertex v in G and we denote with degG(v) := |NG(v)|
the degree of v in G. If G is clear from the context, we may omit the subscript.
We denote the maximum vertex degree in a graph by ∆.

A sequence of vertices P = (v1, . . . , vk) is a path or (v1, vk)-path of length k
in G if {vi, vi+1} ∈ E(G) for all 1 ≤ i < k. If vi 6= vj for all i 6= j, then
we call P vertex-simple. If not mentioned otherwise, we only consider vertex-
simple paths. We denote with V (P) the vertices of P and with E(P) the
edges of P . Given two paths P1 = (v1, . . . , vk) and P2 = (w1, . . . , wr) in G

4

where {vk, w1} ∈ E(G), we let P1 · P2 := (v1, . . . , vk, w1, . . . , wr) denote the
concatenation of P1 and P2. If vk = w1, then we define the merge of P1 and P2

as P1 (P2 := (v1, . . . , vk = w1, . . . , wr). A subset V ′ ⊆ V is a connected
component if V ′ is a maximal set of vertices such that G contains at least
one (u, v)-path for every pair of vertices u ∈ V ′ and v ∈ V ′.

Parameterized Complexity Theory. For the definition of classical com-
plexity classes such as PSPACE or ΣP

2 , we refer to the textbook of Arora and
Barak [2]. In the following, we give the central definitions of parameterized
complexity theory that are relevant for this work; for an introduction to pa-
rameterized complexity theory and parameterized algorithms, we refer to the
standard monographs [11, 13, 18, 27].

A parameterized problem is L ⊆ {0, 1}∗ × N and an instance of a param-
eterized problem (x, k) consists of an instance x of a decision problem and a
parameter k. A parameterized complexity class L is a set of parameterized
problems. We call a parameterized problem L fixed-parameter tractable if there
is a computable function f such that for every instance (x, k) ∈ {0, 1}∗ ×N it
can be determined in f(k) · |x|O(1) time if (x, k) ∈ L. The class FPT contains
exactly the parameterized problems that are fixed-parameter tractable. Fur-
thermore, we call a parameterized problem L slicewise polynomial if there is a
computable function f such that for every instance (x, k) ∈ {0, 1}∗ ×N it can
be determined in |x|f(k) time if (x, k) ∈ L. The class XP contains exactly the
parameterized problems that are slicewise polynomial. Clearly, FPT is a subset
of XP and it is widely assumed to be a proper subset.

Similar to classic complexity theory, we say that a parameterized reduction
from a parameterized problem L1 to a parameterized problem L2 is an algorithm
that transforms an instance I1 = (x1, k1) of L1 into an instance I2 = (x2, k2)
of L2 and runs in f(k1) · |x1|O(1) time such that I1 ∈ L1 if and only if I2 ∈
L2 and k2 ≤ g(k1) for some computable functions f and g. Note that the
parameter k2 of I2 only depends on k1. Moreover, if g is a polynomial function,
then the reduction is a polynomial parameter transformation.

The classes W[i], i ≥ 0, build the W-hierarchy. It holds that FPT = W[0] ⊆
W[1] ⊆ · · · ⊆ XP and it is widely assumed that these inclusions are proper [13].
A problem L′ is W[i]-hard if there is a parameterized reduction from L′ to L. Un-
der the assumption FPT 6= W[1], a parameterized problem L is fixed-parameter
intractable if it is L is W[i]-hard for some i ≥ 1. To show W[i]-hardness of a
problem L, one may provide a parameterized reduction from some W[i]-hard
problem L′ to L. Furthermore, we say that a parameterized problem L is con-
tained in coW[i], t ≥ 0, if ({0, 1}∗ ×N) \ L ∈W[i]. Similarly, L is coW[i]-hard
if ({0, 1}∗ ×N) \ L is W[i]-hard.

A reduction to a problem kernel for a parameterized problem L is a param-
eterized reduction from L to L that runs in polynomial time and transforms
any instance (x1, k1) of L into an instance (x2, k2) of L such that k2 ≤ k1

and |x2| ≤ h(k1) for some computable function h. In other words, we are able
to find an equivalent instance (x2, k2) of L in polynomial time such that the size

5

of (x2, k2) is upper-bounded by a computable function h only depending on k1.
We call h the size of the kernel.

A parameterized problem L admits a kernel if and only if L admits an FPT-
algorithm [11]. Clearly, one is interested in finding kernels of small size for a
given L ∈ FPT. For some parameterized problems, however, one can show that
it is not possible to find a kernel of polynomial size, unless NP ⊆ coNP/poly [11],
which is widely assumed to be false. Such (conditional) impossibility results may
be transferred as follows.

If the unparameterized version of a parameterized problem L1 is NP-hard,
and there is a polynomial parameter transformation to another parameterized
problem L2 whose unparameterized version is contained in NP, then the exis-
tence of a polynomial kernel for L2 implies the existence of a polynomial kernel
for L1. Hence, if a polynomial kernel for L1 implies NP ⊆ coNP/poly, then so
does a polynomial kernel for L2.

Colored Cut Games. An edge-colored graph with terminals or shortly a
colored graph is a 5-tuple H := (G = (V,E), s, t, C, `) where G is an undirected
graph, s ∈ V and t ∈ V are the terminals, C is a set of colors and ` : E → C is
an edge coloring. We denote with |H| := |G| + |C| + |`| = |V | + 2|E| + |C| the
size of a colored graph.

For a graph G = (V,E) and two vertices s ∈ V and t ∈ V , we call an
edge set E′ ⊆ E an (s, t)-(edge-)cut in G if s and t are in different connected
components in G−E′. Let H = (G, s, t, C, `) be a colored graph. For a path P
in G, we let `(P) := `(E(P)) denote the set of colors of the edges on this
path. We say that C̃ ⊆ C is a colored (s, t)-cut in G if `(P) ∩ C̃ 6= ∅ for
every (s, t)-path P in G. We say that C̃ ⊆ C is a colored (s, t)-connector
in G if there is an (s, t)-path P in G with `(P) ⊆ C̃. We let C(H) := {`(P) |
P is an (s, t)-path in G} denote the family of color sets of (s, t)-paths inG. Note
that C̃ ⊆ C is a colored (s, t)-cut in G if and only if C̃∩C ′ 6= ∅ for all C ′ ∈ C(H),
that is, if C̃ is a hitting set for C(H). Moreover, C̃ is a colored (s, t)-connector
in G if and only if there is a set C ′ ∈ C(H) such that C ′ ⊆ C̃.

We now formally define all colored cut games. Since the outcome of the
game is decided after the last turn of the attacker, all colored cut games end
with a turn of the attacker. In the most general problem variant, stated below,
we allow an unbounded number of alternations between the defender D and the
attacker A.

(DA)∗ Colored (s, t)-Cut Robustness ((DA)∗-CCR)
Input: A colored graph (G = (V,E), s, t, C, `), and two integer
vectors ~d := (d1, . . . , di) ∈ Ni and ~a := (a1, . . . , ai) ∈ Ni such
that

∑i
j=1(dj + aj) ≤ |C|.

Question: ∃D1 ∈
(
C
d1

)
.∀A1 ∈

(
C\D1

a1

)
.∃D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∀Ai ∈(

C\(
⋃i−1

k=1(Dk∪Ak)∪Di)
ai

)
: the set

⋃i
j=1Aj is not a colored (s, t)-cut

in G?

6

In (DA)∗-CCR we ask if the defender has a winning strategy. The case with
a constant number i ≥ 1 of turns is denoted by (DA)i Colored (s, t)-Cut
Robustness ((DA)i-CCR).

If the attacker starts the game, that is, if d1 = 0, we denote the prob-
lems as A(DA)i Colored (s, t)-Cut Robustness (A(DA)i-CCR) for all
constant i ≥ 0. We also define the complement problem (DA)∗ Colored (s, t)-
Cut Vulnerability ((DA)∗-CCV) and the variants (DA)i-CCV, and A(DA)i-
CCV. In these problems we ask if there is a winning strategy for the attacker.

(DA)∗ Colored (s, t)-Cut Vulnerability ((DA)∗-CCV)
Input: An integer i ≥ 1, a colored graph (G = (V,E), s, t, C, `),
and two integer vectors ~d := (d1, . . . , di),~a := (a1, . . . , ai) ∈ Ni such
that

∑i
k=1(dk + ak) ≤ |C|.

Question: ∀D1 ∈
(
C
d1

)
.∃A1 ∈

(
C\D1

a1

)
.∀D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∃Ai ∈(

C\(
⋃i−1

k=1(Dk∪Ak)∪Di)
ai

)
: the set

⋃i
k=1Ak is a colored (s, t)-cut in G?

We refer to all problems defined above as colored cut games.
Colored (s, t)-Cut is equivalent to A(DA)0-CCV and Labeled Path is

the special case of (DA)1-CCR where a1 = |C| − d1. Moreover, for all i ≥ 1,
A(DA)i−1-CCR is the special case of (DA)i-CCR where the budget of the
first defender turn is zero and (DA)i-CCR is the special case of A(DA)i-CCR
where the budget of the first attacker turn is zero. Hence, Colored (s, t)-Cut
is a special case of (DA)i-CCV and A(DA)i-CCV for every i ≥ 1.

Colored-Cut-Equivalence. To argue concisely that two instances of one
colored cut game are equivalent, we introduce the following definition.

Definition 2.1. Two colored graphs H = (G, s, t, C, `) and H′ = (G′, s′, t′, C, `′)
are colored-cut-equivalent if for every L1 ∈ C(H)∪C(H′) there exists some L2 ∈
C(H) ∩ C(H′) such that L2 ⊆ L1.

Thus, intuitively, only the color sets in C(H) ∩ C(H′) are relevant for col-
ored (s, t)-cuts. Observe, moreover, that H and H′ are colored-cut-equivalent if
for every (s, t)-path P in G there is an (s′, t′)-path P ′ in G′ such that `′(P ′) ⊆
`(P) and vice versa. The following lemma shows that Definition 2.1 gives us
the intended property.

Lemma 2.2. Let H = (G, s, t, C, `) and H′ = (G′, s′, t′, C, `′) be two colored-
cut-equivalent graphs, then C̃ ⊆ C is a colored (s, t)-cut in G if and only if C̃
is a colored (s′, t′)-cut in G′.

Proof. Due to symmetry, it is sufficient to only show one direction. Let C̃ be a
colored (s, t)-cut in G, then by definition C̃ ∩L2 6= ∅ for all L2 ∈ C(H)∩ C(H′).
We show C̃ ∩ L1 6= ∅ for all L1 ∈ C(H′). Let L1 ∈ C(H′), then there is
some L2 ∈ C(H)∩C(H′) with L2 ⊆ L1 sinceH andH′ are colored-cut-equivalent.
Hence, L1 ∩ C̃ ⊇ L2 ∩ C̃ 6= ∅ and therefore C̃ is a colored (s′, t′)-cut in G′.

7

Thus, when considering two instances of any colored cut game with the same
budget vectors, we obtain the following.

Corollary 2.3. Two instances I = (H,~d,~a) and I ′ = (H′,~d,~a) of any colored
cut game are equivalent if H and H′ are colored-cut-equivalent.

The following lemmas will be useful for proving hardness on restricted input
graphs. First, we show that one can easily transform non-bipartite input graphs
to bipartite ones.

Lemma 2.4. For every colored graph H = (G, s, t, C, `), one can compute in
polynomial time a colored-cut-equivalent graph H′ = (G′, s′, t′, C, `′) where G′ is
the bipartite graph obtained by subdividing each edge in G.

Proof. We construct H′ in polynomial time as follows: V ′ := V ∪ {ve | e ∈
E}, E′ := {{u, ve} | e ∈ E, u ∈ e}, s′ := s, t′ := t, and `′({u, ve}) := `(e)
for all {u, ve} ∈ E′. That is, we subdivide every edge {u,w} ∈ E into two
edges {u, v{u,w}} and {v{u,w}, w} of the same color. Since all vertices v ∈ V
have only neighbors in V ′ \ V and vice versa, we have that G′ is bipartite.

By construction, P = (u1, . . . , uk) is an (s, t)-path in G if and only if P ′ =
(u1, v{u1,u2}, u2, . . . , v{uk−1,uk}, uk) is an (s, t)-path in G′. Moreover, `(P) =
`′(P ′) and therefore C(H) = C(H′). This implies that H and H′ are colored-
cut-equivalent.

Second, colored graphs of bounded maximum degree might be interesting.
First, we show that if a given colored graph H has a colored (s, t)-cut of size
one, that is, if there is a color α that occurs on every (s, t)-path in H, then there
is a colored-cut-equivalent graph with maximum degree 3.

Lemma 2.5. Let H = (G, s, t, C, `) be a colored graph and let α ∈ C be a
color that occurs on every (s, t)-path in H, that is, if {α} is a colored (s, t)-
cut in G. Then, one can compute in polynomial time a colored-cut-equivalent
graph H′ = (G′, s′, t′, C, `′) such that G′ has a maximum degree of 3.

Proof. We construct H′ as follows. We start with an edgeless graph containing
the vertices of V and add vertices and edges such that every vertex v ∈ V is
the root of some balanced binary tree T v that has the leafs are bvu1

, . . . , bvur

where {u1, . . . , ur} = NG(v). Moreover, we assign the color α to all edges of
these trees T v with v ∈ V . Next, we add edges {bvw, bwv } for all {v, w} ∈ E and
set `′({bvw, bwv }) := `({v, w}). Observe that H′ can be constructed in polynomial
time from H. For every v ∈ V and x, y ∈ N(v) we define the (bvx, b

v
y)-path P vx,y

and the (v, bvx)-path P vx in G′ in T v. By construction, `′(P vx,y) = `′(P vx) = {α}
for any x, y ∈ NG(v).

By construction, G′ has a maximum degree of 3 so it remains to show that H
and H′ are colored-cut-equivalent. To this end, we prove that for every LH′ ∈
C(H′), there is some LH ∈ C(H) such that LH ⊆ LH′ and vice versa.

First, we show that C(H) ⊆ C(H′) which implies that for every LH ∈ C(H),
there is some LH′ ∈ C(H′) such that LH′ ⊆ LH. Let P = (v0, . . . , vr) be

8

an (s, t)-path in G for some r ≥ 1. Let
←−−−
P vrvr−1

be the reverse path of P vrvr−1
,

then P ′ = P v0v1 · P
v1
v0,v2 · . . . · P

vr−1
vr−2,vr ·

←−−−
P vrvr−1

is an (s, t)-path in G′ and `′(P ′) ⊇⋃r−1
j=0 `

′({bvjvj+1 , b
vj+1
vj }) =

⋃r−1
j=0 `({vj , vj+1}) = `(P). By construction, every

other edge in E(P ′) is colored in α. Recall that α ∈ L for all L ∈ C(H).
Hence, α ∈ `(P) and therefore `′(P ′) = `(P).

Finally, we show that for every LH′ ∈ C(H′) there is some LH ∈ C(H)
such that LH ⊆ LH′ . Let P ′ be an (s, t)-path in G′. Then, we know by
construction that P ′ = P v0v1 ·P

v1
v0,v2 ·. . .·P

vr−1
vr−2,vr ·

←−−−
P vrvr−1

for vj ∈ V and where
←−−−
P vrvr−1

is the reverse path of P vrvr−1
. Then, P = (v0, . . . , vr) is an (s, t)-path in G

and `(P) ⊆ `′(P ′). Note that P might not be vertex-simple but then there
exists a vertex-simple (s, t)-path P̃ in G with `(P̃) ⊆ `(P) ⊆ `′(P ′). Note that
if G is planar, we can also construct G′ planar.

Ideally, we would like to drop the restriction that every colored (s, t)-cut
contains α. We show that this is not always possible. More precisely, we show
that if H has no colored (s, t)-cut of size at most 3, then there is no colored-
cut-equivalent graph for H of degree at most 3.

Lemma 2.6. Let H = (G, s, t, C, `) be a colored graph and let x ≤ max(3, |C|).
If there is no colored (s, t)-cut of size at most x in G, then every colored graph H′
which is colored-cut-equivalent with H has degree at least x+ 1.

Proof. Assume towards a contradiction that there is a colored graph H′ =
(G′, s′, t′, C, `′) which is colored-cut-equivalent with H and has degree at most x.
Let C̃ be the color set of edges incident with s′ in G′. Since G′ has maximum
degree at most x, |C̃| ≤ x. Note that C̃ is a colored (s′, t′)-cut in G′. Since G
has no colored (s, t)-cut of size at most x, C̃ is not a colored (s, t)-cut in G.
This contradicts the fact that H and H′ are colored-cut-equivalent.

We remark that by a small modification of the construction of Lemma 2.5,
one can obtain a colored-cut-equivalent graph of degree max(3, x), where x is
the size of a smallest colored (s, t)-cut in G. This construction is, however, not
necessary for our purposes and thus omitted.

3. General Hardness Results

We first show that colored cut games are PSPACE-complete if the number
of alternations between attacker and defender is unbounded by reducing from
the PSPACE-complete Maker-Breaker problem [29].

(DA)∗-CCR can also be seen as a Shannon Switching Game [16]: two
players play against each other and every agent selects an unselected color in
each turn. The game ends when there is no unselected color remaining and
the attacker wins if he selected a colored (s, t)-cut. This is the case if and
only if the defender has not selected a colored (s, t)-connector, since at the
end of the game every color is selected by either the attacker or the defender
and we ask if the defender has a winning strategy. In the classical Shannon

9

Switching Game, every agent selects an edge each turn instead of a color,
which is polynomial-time-solvable [6, 8]. In contrast to that, we will show that
(DA)∗-CCR is PSPACE-complete.

Theorem 3.1. (DA)∗-CCR and (DA)∗-CCV are PSPACE-complete on pla-
nar graphs even if each budget is one.

Proof. (DA)∗-CCR and (DA)∗-CCV can be solved within polynomial space
by a simple search tree algorithm that alternately chooses the colors for the
defender and the attacker. Thus, it remains to show PSPACE-hardness. To
this end we give a polynomial-time reduction from a competitive version of
Hitting Set which is PSPACE-complete [29, 28].

Maker-Breaker
Input: A universe U with |U| = 2i and a collection F of non-empty
subsets of U .
Question: ∀d1 ∈ U .∃a1 ∈ U \ {d1}.∀d2 ∈ U \ {d1, a1}. · · · .∃ai ∈
U \ ({dj , aj | 1 ≤ j < i} ∪ {di}) : does F ∩ {aj | 1 ≤ j ≤ i} 6= ∅ hold
for all F ∈ F?

This problem can be seen as a game between two agents where every agent
selects an unselected element of the universe in each turn. The game ends
when all elements of the universe are selected and the second player wins if he
intersects every subset F ∈ F with the elements he chose. Otherwise, the first
player wins. The definition asks if the second player has a winning strategy.

Given an instance I = (U ,F) of Maker-Breaker, we construct an equiv-
alent instance I ′ = (G = (V,E), s, t, C, `) of (DA)∗-CCV in polynomial time.

We set C := U and start with an empty graph only containing distinct
vertices s and t. For every F ∈ F we add an (s, t)-path PF such that `(PF) = F
and where all vertices of PF except s and t are new.

Thus, for every (s, t)-path P in G there is an F ∈ F such that `(P) = F .
Consequently, A ⊆ U intersects every F ∈ F if and only if A is a colored (s, t)-
cut in G.

Hence, a winning strategy for the attacker in the (DA)∗-CCV instance I ′ is
also a winning strategy for the second player in the Maker-Breaker instance I
and vice versa. Therefore, I is a yes-instance of Maker-Breaker if and only
if I ′ is a yes-instance of (DA)∗-CCV.

Note that the constructed graph is planar. Since PSPACE-complete prob-
lems is closed under complement, (DA)∗-CCR on planar graphs with unit bud-
get in every turn is also PSPACE-complete.

4. Complexity for constant number of alternations

Next, we analyze the complexity of (DA)i-CCR and A(DA)i-CCR. Recall
that (DA)i-CCR asks if the defender has a winning strategy where the defender
starts and both agents have exactly i turns for some constant i.

10

Lemma 4.1. For all i ≥ 1, (DA)i-CCV is ΠP
2i-hard and (DA)i-CCR is ΣP

2i-
hard even on planar graphs.

To prove Lemma 4.1, we reduce from the ΠP
2i-hard problem QSAT2i [2]

which we will state using the following notation. For a set of boolean variables Z,
we define the set of literals L(Z) := Z ∪ {¬z | z ∈ Z}. A subset of literals Z̃ ⊆
L(Z) is an assignment of Z if |{z,¬z}∩Z̃| = 1 for all z ∈ Z. For a subset X ⊆ Z
of variables we denote with τZ(X) := X ∪ {¬z | z ∈ Z \ X}, the assignment
of Z where all variables of X occur positively and all variables of Z \X occur
negatively. Given an assignment Z̃ and a clause φ ∈

(L(Z)
3

)
we say that Z̃

satisfies φ (denoted by Z̃ |= φ) if φ ∩ Z̃ 6= ∅. Analogously, Z̃ satisfies a set Φ ⊆(L(Z)
3

)
of clauses (denoted by Z̃ |= Φ) if Z̃ |= φ for all φ ∈ Φ.

QSAT2i

Input: A set Φ of clauses in 3-CNF over the variables Z and a
partition (X1, Y1, . . . , Xi, Yi) of Z.
Question: Is it true that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆
Yi : τZ(X̃1 ∪ Ỹ1 ∪ · · · ∪ X̃i ∪ Ỹi) |= Φ?

QSAT2i can be seen as a two-player game where Player 1 and Player 2 choose
an assignment for Xj and Yj , respectively, in their jth turn. We ask if Player 2
has a winning strategy, that is, if the combined assignment satisfies Φ.

Proof of Lemma 4.1. Let I ′ = (Z,Φ, X1, Y1, . . . , Xi, Yi) be a QSAT2i-instance.
We construct an instance I = (G = (V,E), s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) of
(DA)i-CCV as follows. Let Xj = {xjk | 1 ≤ k ≤ |Xj |}, Yj = {yjk | 1 ≤ k ≤ |Yj |}
for all j ∈ [1, i] and let L := L(Z). We can assume without loss of generality
that |Xj | ≥ 2 for all j ∈ [2, i] and |Yj | ≥ 2 for all j ∈ [1, i].

We set C := L and force the defender and the attacker to choose an assign-
ment of the variables of Xj and Xj∪Yj , respectively, in their jth turn, otherwise
they will lose.

The graph consists of three parts: the variable gadgets for the defender, the
variable gadgets for the attacker and a gadget for the evaluation of the clauses.
To this end, we define G := (V,E) with V := Vd∪Va∪VΦ and E := Ed∪Ea∪EΦ

where Vd and Ed form the variable gadget of the defender gadget, Va and Ea
form the variable gadget of the attacker, and VΦ and EΦ form the gadget for
the evaluation of the clauses. First, we introduce the variable gadget for the
defender, shown in Figure 2:

• Vd :=
⋃i
j=1{r

j
0} ∪ {r

j
k,>

j
k,⊥

j
k | 1 ≤ k ≤ |Xj |}

• Ed :=
⋃i
j=1

{
{rjk−1,>

j
k}, {r

j
k−1,⊥

j
k}, {>

j
k, r

j
k}, {⊥

j
k, r

j
k} | 1 ≤ k ≤ |Xj |

}
,

and set the colors:

• `({rjk−1,>
j
k}) := `({>jk, r

j
k}) := xjk, `({r

j
k−1,⊥

j
k}) := `({⊥jk, r

j
k}) := ¬xjk,

11

sj−1 = r
j
0

r
j
1

>j
1

⊥j
1

r
j
2

>j
2

⊥j
2

r
j
3

>j
3

⊥j
3

r
j
4 = sj

>j
4

⊥j
4

x
j
1 x

j
1

¬xj
1 ¬xj

1

x
j
2 x

j
2

¬xj
2 ¬xj

2

x
j
3 x

j
3

¬xj
3 ¬xj

3

x
j
4 x

j
4

¬xj
4 ¬xj

4

Figure 2: The gadget for the defender for the variables of Xj with |Xj | = 4.

s = r1
0

s1

s2

s3
t

b11 b12

b41 b42

vx1
1

vx1
2

vy11

Figure 3: The final graph of the construction for the graph GD = (VD, ED) of Figure 2
with |Φ| = 4. Solid edges belong to Ed, dotted edges belong to Ea, and dashed edges belong
to EΦ. The gadgets for the clauses are connected with s3 and t.

where rj|Xj | is identified with rj+1
0 for all 1 <= j < i. The idea of the vertices >jk

and ⊥jk is to create for every literal of variable xjk a path from vertex rjk−1 to rjk.
In the following, let s := s0 := r1

0 and sj := rj|Xj | for all j ∈ [1, i]. The vertex sj
is a common vertex of the gadgets for the attacker and defender. The idea is
that the defender has to choose in his jth turn an assignment of the variables
of Xj , or otherwise the attacker wins by taking at most two colors in his next
turn. Next, we define the gadgets for the attacker:

• Va := {t} ∪ {vx | x ∈ Z}

• Ea :=
⋃i
j=1

{
{sj , vx}, {vx, t} | x ∈ Xj ∪ Yj

}
,

and set the colors:

• `({sj , vx}) := x, and `({vx, t}) := ¬x for all j ∈ [1, i], x ∈ Xj ∪ Yj .

The idea is that the set of colors the attacker chooses in his jth turn is an
assignment of the variables ofXj∪Yj , or otherwise the defender wins by choosing
two colors in his next turn. Since a player can only choose colors that were not
chosen before, the assignment for the variables of Xj of the attacker is the
complement of the assignment on the variables of Xj of the defender.

Finally, we define the gadget for evaluating the clauses. To this end, we fix
an ordering on every clause φj ∈ Φ and denote with φj(y) the yth literal of φj .
The clause gadget is then defined as:

12

• VΦ := {bj1, b
j
2 | 1 ≤ j ≤ |Φ|}

• EΦ := {{si, bj1}, {b
j
1, b

j
2}, {b

j
2, t} | 1 ≤ j ≤ |Φ|},

and we set the colors:

• `({si, bj1}) := φj(1), `({bj1, b
j
2}) := φj(2), and `({bj2, t}) := φj(3).

That is, for every φ ∈ Φ, we added a new (si, t)-path P with `(P) = φ. The
final graph can be seen in Figure 3. Note that the constructed graphs is planar.
We set dj := |Xj | and aj := |Xj | + |Yj | for all j ∈ [1, i]. This completes the
construction of I.

In the following, we let GΦ := G[VΦ∪{si, t}] denote the subgraph induced by
the edges of EΦ. Note that for every (si, t)-path P in GΦ there is a clause φ ∈ Φ
such that `(P) = φ. Before we show the equivalence between I and I ′, we make
some observations on colored (s, t)-cuts and colored (s, t)-connectors in I.

Claim 4.2. Let C̃ ⊆ L be an assignment of Z, then C̃ is a colored (si, t)-cut
in GΦ if and only if C̃ |= Φ.

Proof. Note that the set of (si, t)-paths in GΦ is {Pj := (si, bj1, b
j
2, t) | 1 ≤ j ≤

|Φ|}. By definition, C̃ is a colored (si, t)-cut in GΦ if and only if C̃ ∩ `(Pj) 6= ∅
for all j ∈ [1, |Φ|]. Since `(Pj) = φj for all j ∈ [1, |Φ|], this is the case if and only
if C̃∩`(Pj) = C̃∩φj 6= ∅ which is by definition the case if and only if C̃ |= Φ. �

The following definition establishes the link between sensible choices of color
sets for the defender and partial assignments for variables in Φ.

Definition 4.3. We call a set of colors Dk ⊆ C, k ∈ [1, i], nice if Dk is an
assignment for Xk. Analogously, we call a set of colors Ak ⊆ C, k ∈ [1, i], nice
if Ak is an assignment for Xk ∪ Yk.

Based on the defined budgets, if {z,¬z} ⊆ Dj for some variable z ∈ Xj ,
then there is a variable z′ ∈ Xj such that {z′,¬z′} ∩ Dj = ∅. Hence, if Dj is
not nice, then there is z′ ∈ Xj such that {z′,¬z′} ∩Dj = ∅. Clearly, the same
also holds for the sets of colors that the attacker chooses.

First, we show, that if the defender chooses nice sets of colors in his first k
turns, then he has completed a colored (s, sk)-connector.

Claim 4.4. Let k ∈ [1, i] and D̃k :=
⋃k
j=1Dj such that Dj is nice for all j ∈

[1, k], then there is an (s, sk)-path P in G with `(P) ⊆ D̃k.

Proof. We show that there is an (sj−1, sj)-path P j in G with `(P j) ⊆ Dj if Dj

is nice for any j ∈ [1, k].
By construction, there are (rjq−1, r

j
q)-paths P> = (rjq−1,>jq, rjq) and P⊥ =

(rjq−1,⊥jq, rjq) in G with `(P>) = {xjq} and `(P⊥) = {¬xjq}, respectively for
all q ∈ [1, |Xj |]. Since Dj ∩L is an assignment for Xj , it follows that either xjq ∈
Dj , or ¬xjq ∈ Dj . Therefore, there is an (rjq−1, r

j
q)-path P

j
k in G with `(P jq) ⊆

Dj ⊆ D̃j . Hence, there is an (rj0 = sj−1, sj)-path P j in G with `(P j) ⊆ Dj .

13

Thus, there is an (s, sk)-path P in G with `(P) ⊆ D̃k if Dj is nice for all j ∈
[1, k]. �

Next, we describe some (s, t)-connectors in G assuming that the defender
has chosen only sets of nice colors in his first j turns.

Claim 4.5. Let k ∈ [1, i] and D̃k :=
⋃k
j=1Dj such that Dj is nice for all j ∈

[1, k], then D̃k ∪{x,¬x} for any x ∈ Xk ∪Yk is a colored (s, t)-connectors in G.

Proof. By Claim 4.4, there is an (s, sk)-path P in G with `(P) ⊆ D̃k. Let x ∈
Xk ∪ Yk, the path P ′ = (rk|Xk|, vx, t) is in G and `(P ′) = {x,¬x}. Hence,
for P ′′ := P (P ′ it holds that `(P ′′) = `(P) ∪ {x,¬x} ⊆ D̃k ∪ {x,¬x}. �

Intuitively, the claim show that, if the defender has chosen nice sets of colors
in his first k turns and the attacker chooses a set of colors in turn k that is not
nice, then the defender can win the game in turn k + 1. The winning strategy
for this will be shown in the proof of the equivalence between I and I ′.

Second, we show, that if the attacker chooses nice color sets in his first k
turns and the defender does not chose a nice color set in his (k+1)th turn, then
the attacker can win in his (k + 1)th turn.

Claim 4.6. Let k ∈ [1, i] and Ãk :=
⋃k−1
j=1 Aj such that Aj is nice for all j ∈

[1, k− 1], then for every (s, t)-path P in G with `(P)∩ Ãk = ∅ it holds that sj ∈
V (P) for all j, 1 ≤ j ≤ k.

In other words, every (s, t)-path that is not destroyed after removing the
edges colored in `−1(Ãk) has to contain the vertex sk.

Proof. We show this statement by induction over k. By construction, s0, s1 ∈
V (P) for every (s, t)-path P in G. Hence, the Claim holds for k = 1.

Assume that the statement is true for some k′ = k − 1, k ∈ [2, i]. We show
that the statement is true for k. Assume towards a contradiction that there is
an (s, t)-path P in G with `(P) ∩ Ãk = ∅ and sk 6∈ V (P). By the induction
hypothesis, we know that s` ∈ V (P) for ` ≤ k′. Note that by construction
for every (sk

′
, t)-path P k with rk1 ∈ V (P k) it holds that sk ∈ V (P k). Assume

towards a contradiction that rk1 6∈ V (P) and therefore, V (P) ∩ {vx | x ∈ Xk′ ∪
Yk′} 6= ∅. Then, there is some x ∈ Xk′∪Yk′ such that {{sk′ , vx}, {vx, t}} ⊆ E(P)
and therefore {x,¬x} ⊆ `(P). Since Ak′ is nice, it follows that Ak′∩{x,¬x} 6= ∅
and hence `(P) ∩Ak′ 6= ∅ which is a contradiction. �

Claim 4.7. Let k ∈ [1, i] and Ãk :=
⋃k−1
j=1 Aj such that Aj is nice for all j ∈

[1, k − 1], then Ãk ∪ {x,¬x} for any x ∈ Xk is a colored (s, t)-cuts in G.

Proof. Let k ∈ [2, i] and assume that Aj is nice for all j ∈ [1, k−1]. By Claim 4.6
we have sk−1, sk ∈ V (P) for every (s, t)-path P in G with `(P) ∩ Ãk = ∅. To
prove the statement, we show that for every (sk−1, sk)-path P k in G with t 6∈
V (P k), `(P k) ∩ {x,¬x} 6= ∅ for all x ∈ Xk. We can assume that t 6∈ V (P k)

14

since otherwise there is an (s, t)-path P in G with `(P)∩ Ãk = ∅ and sk 6∈ V (P)
which is impossible due to Claim 4.6.

By construction, every (sk−1, sk)-path P k in G with t 6∈ V (P k) contains all
vertices rk0 , . . . , rk|Xk|. Thus, `(P

k) ∩ {x,¬x} 6= ∅ for all x ∈ Xk. �

Intuitively, the claim show that, if the attacker has chosen nice sets of colors
in his first k− 1 turns and the defender chooses a set of colors in turn k that is
not nice, then the attacker can win the game in turn k. The winning strategy
for this will be shown in the proof of the equivalence between I and I ′.

If all colors of each agent are nice in every turn, then we can show that
the attacker has completed a colored (s, t)-cut if and only if the he chooses a
satisfying assignment for Φ.

Claim 4.8. Let Dj , Aj be nice for all j ∈ [1, i] and Ã :=
⋃i
j=1Aj, then Ã is a

colored (s, t)-cut in G if and only if Ã is a colored (si, t)-cut in GΦ.

Proof. By Claim 4.6, si ∈ V (P) for every (s, t)-path P in G with `(P)∩ Ã = ∅.
Since Ai is nice, by construction, all (si, t)-paths P ′ = (si, w, t) with w ∈ Va
are cut. Thus, bq1 ∈ V (P) for some q ∈ [1, |Φ|]. By Claim 4.4 there is an (s, si)-
path Pd in G with `(Pd) ⊆ D̃i. Hence, s and si cannot be separated by the
attacker anymore. Therefore, Ã is a colored (s, t)-cut in G if and only if Ã is a
colored (si, t)-cut in GΦ. Recall that `(EΦ) ⊆ L. Hence, Ã is a colored (s, t)-cut
in G if and only if Ã ∩ L is a colored (si, t)-cut in GΦ. �

Next, we show that the QSAT2i instance is a yes-instance if and only if the
constructed (DA)i-CCV instance is a yes-instance.

(⇒) Assume that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆ Yi.τZ(X̃1 ∪ Ỹ1 ∪
· · · ∪ X̃i ∪ Ỹi) |= Φ is true. Then, there are functions fk : P(

⋃k
j=1 X̃j)→ P(Yk)

for all k ∈ [1, i] such that ∀X̃1 ⊆ X1. · · · .∀X̃i ⊆ Xi.τZ(X̃1 ∪ f1(X̃1) ∪ · · · ∪
X̃i ∪ fi(

⋃i
k=1 X̃k)) |= Φ is true [3]. Herein, P(S) denotes the powerset of S.

The functions f1, . . . , fi are called Skolem functions and can be seen as the
winning strategy of Player 2 in the QSAT2i instance. We will use these functions
to describe a winning strategy for the attacker in the (DA)i-CCV instance
iteratively.

Let D1 be the set of colors the defender chooses in his first turn. Assume
that D1 is not nice, then {x,¬x} ∩ D1 = ∅ for some x ∈ X1. By Claim 4.6,
the sets {x,¬x}, with x ∈ X1 are all colored (s, t)-cuts in G. Since a1 ≥ 2 the
attacker has a winning strategy. So, we assume that D1 is nice. Then, D1 is
an assignment for X1. Let D1 := X1 \D1, that is, the complement assignment
of D1 ∩ X1. We set A1 := τX1∪Y1

(D1 ∪ f1(D1)) which is nice and disjoint
from D1.

Let j ∈ [2, i] such that Dr and Ar are nice for all r ∈ [1, j − 1]. Let Dj

be the set of colors the defender chooses in his jth turn. Assume that Dj is
not nice, then {x,¬x} ∩ Dj = ∅ for some x ∈ Xj . With Claim 4.6 we know
that Ãj−1 ∪ {x,¬x}, x ∈ Xj is a colored (s, t)-cut in G. Since aj ≥ 2, the
attacker has a winning strategy. So, we assume that Dj is nice. Then, Dj is

15

an assignment for Xj . Let Dr := Xr \Dr, that is, the complement assignment
of Dr for all r ∈ [1, j]. We set Aj := τXj∪Yj

(Dj∪fj(
⋃j
r=1Dr)). Observe that Aj

is also nice and therefore Dr and Ar are nice for all r ∈ [1, j].
Hence, we can assume that Dj is nice and Aj is defined as described for

all j ∈ [1, i]. We show that Ãi :=
⋃i
j=1Aj is a colored (s, t)-cut in G. By

Claim 4.8, Ãi is a colored (s, t)-cut in G if Ãi∩L is a colored (si, t)-cut in GΦ. By
Claim 4.2 this is the case if Ãi is a satisfying assignment for Φ. Since we assumed
that ∀X̃1 ⊆ X1. · · · .∀X̃i ⊆ Xi.τZ(X̃1 ∪ f1(X̃1) ∪ · · · ∪ X̃i ∪ fi(

⋃i
k=1 X̃k)) |= Φ

is true, it follows that Ãi = τZ(D1 ∪ f1(D1) ∪ · · · ∪ Di ∪ fi(
⋃i
k=1Dk)) |= Φ.

Therefore, Ãi is a colored (s, t)-cut in G. Hence, the attacker has a winning
strategy.

(⇐) We show this direction by contraposition. In the following, we assume
that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆ Yi.τZ(X̃1∪ Ỹ1∪· · ·∪X̃i∪ Ỹi) |= Φ
is false. Therefore, ∃X̃1 ⊆ X1.∀Ỹ1 ⊆ Y1. · · · .∃X̃i ⊆ Xi.∀Ỹi ⊆ Yi.τZ(X̃1 ∪ Ỹ1 ∪
· · ·∪X̃i∪Ỹi) 6|= Φ is true. Then, there are functions gk : P(

⋃k−1
j=1 Ỹj)→ P(Xk) for

all k ∈ [1, i] such that ∀Ỹ1 ⊆ Y1. · · · .∀Ỹi ⊆ Yi.τZ(g1(∅)∪ Ỹ1 ∪ · · · ∪ gi(
⋃i−1
j=1 Ỹj)∪

Ỹi) 6|= Φ is true [3]. Note that g1 : {∅} → P(X1), that is, the empty set
is the only possible argument for g1. The functions g1, . . . , gi can be seen as
the winning strategy of Player 1 in the QSAT2i instance. We will use these
functions to describe a winning strategy for the defender in the (DA)i-CCV
instance iteratively and therefore show that the attacker has no winning strategy.

Let A1 := g1(∅) and set D1 := τX1
(A1). Note that D1 is nice. Let A1

be the set of colors the attacker chooses in his first turn. Assume that A1 is
not nice, then {x,¬x} ∩ A1 = ∅ for some x ∈ X1 ∪ Y1. By Claim 4.5, D1 ∪
{x,¬x}, x ∈ X1∪Y1 is a colored (s, t)-connector in G. Hence, the defender has a
winning strategy. So, we assume that A1 is nice. Therefore, A1 is an assignment
for X1 ∪Y1. Since D1 is also nice, D1 is an assignment for X1 and D1 ∩A1 = ∅.
Hence, A1 ∩X1 = X1 \A1 = g1(∅), that is, the attacker is forced to chose g1(∅)
as his assignment for X1.

Let j ∈ [2, i] such that Dr and Ar are nice for all r ∈ [1, j − 1]. For
all r ∈ [1, j − 1], let Ỹr := Ar ∩ Yr for be the corresponding assignment of Yr
chosen by Ar. Let Aj := gj(

⋃j−1
r=1 Ỹr) and set Dj := τXj

(Xj \ Aj). Observe
that Dj is nice. Now, let Aj be the set of colors the attacker chooses in his jth
turn. Assume that Aj is not nice, then {x,¬x} ∩Aj = ∅ for some x ∈ Xj ∪ Yj .
By Claim 4.5, D̃j ∪ {x,¬x}, x ∈ Xj ∪ Yj is a colored (s, t)-connector in G.
If i = j, then the attacker cannot complete a colored (s, t)-cut anymore and
otherwise dj+1 ≥ 2 by definition. In both cases the defender has a winning
strategy. So, we assume that Aj is nice. Therefore, Aj is an assignment
for Xj ∪ Yj . Since Dj is also nice, Dj is an assignment for Xj and Dj ∩Aj = ∅.
Hence, Aj ∩ Xj = Xj \ Aj = gj(

⋃j−1
r=1 Ỹr), that is, the attacker is forced to

pick gj(
⋃j−1
r=1 Ỹr) as his assignment for Xj .

Thus, assume that Dj is defined as described above and that Aj is nice for
all j ∈ [1, i]. We show that Ãi :=

⋃i
j=1Aj is not a colored (s, t)-cut in G. By

16

Claim 4.8, Ãi is a colored (s, t)-cut in G if and only if Ãi is a colored (si, t)-
cut in GΦ. By Claim 4.2 this is the case if an only if Ãi ∩ L is a satisfying
assignment for Φ. Since we assumed that ∀Ỹ1 ⊆ Y1. · · · .∀Ỹi ⊆ Yi.τZ(g1(∅) ∪
Ỹ1 ∪ · · · ∪ gi(

⋃i−1
j=1 Ỹj) ∪ Ỹi) 6|= Φ is true, it follows that Ãi ∩ L = τZ(g1(∅) ∪

Ỹ1 ∪ · · · ∪ gi(
⋃i−1
r=1 Ỹr) ∪ Ỹi) 6|= Φ. Therefore, Ãi is not a colored (s, t)-cut in G.

Hence, the defender has a winning strategy and therefore the attacker cannot
have a winning strategy.

Hence, I is a yes-instance of (DA)i-CCV if and only if I ′ is a yes-instance
of QSAT2i. Therefore, (DA)i-CCV is ΠP

2i-hard. Since (DA)i-CCR is the
complement problem of (DA)i-CCV, it follows that (DA)i-CCR is ΣP

2i-hard.
This completes the proof of Lemma 4.1.

Next, we analyze the computational complexity of A(DA)i-CCR.

Corollary 4.9. For all i ≥ 0, A(DA)i-CCR is ΠP
2i+1-hard.

Proof. We show this statement by a polynomial-time reduction from the ΣP
2i+1-

complete problem QSAT2i+1 [2] to A(DA)i-CCV. Recall that QSAT2i+1 is
the special case of QSAT2i+2 where X1 = ∅. In other words, QSAT2i+1 starts
and ends with an existential quantified set.

Let I := (Z,Φ, Y1, . . . , Xi+1, Yi+1) be an instance of QSAT2i+1. Clearly, I is
equivalent to the instance I2 := (Z,Φ, X1 = ∅, Y1, . . . , Xi+1, Yi+1) of QSAT2i+2.
Therefore, we may use the reduction in the proof of Lemma 4.1 to get an
equivalent instance I ′2 = (G = (V,E), s, t, C, `, (d1, . . . , di+1), (a1, . . . , ai+1)) of
(DA)i+1-CCV. Note that by construction of I ′2 we get that d1 = |X1| = 0.

Now, let I ′ := (G = (V,E), s, t, C, `, (d2, . . . , di+1), (a1, . . . , ai+1)) be an
A(DA)i-CCV instance. Clearly, I ′2 is equivalent to I ′. We thus constructed
for I an equivalent instance I ′ of A(DA)i-CCV in polynomial time. Hence,
A(DA)i-CCV is ΣP

2i+1-hard and A(DA)i-CCR is ΠP
2i+1-hard.

Due to Lemma 4.1 and Corollary 4.9, it is sufficient to show that A(DA)i-
CCR is in the class ΠP

2i+1 and that (DA)i-CCR is in the class ΣP
2i to show the

following theorem.

Theorem 4.10. For all i ≥ 0, A(DA)i-CCR is ΠP
2i+1-complete and for all i ≥

1, (DA)i-CCR is ΣP
2i-complete.

Proof. By Lemma 4.1 and Corollary 4.9, (DA)i-CCV is ΠP
2i-hard and A(DA)i-

CCV is ΣP
2i+1-hard. Hence, it remains to show that (DA)i-CCV ∈ ΠP

2i and
A(DA)i-CCV ∈ ΣP

2i+1. We show this statement by induction over i.
Since A(DA)0-CCV and Colored (s, t)-Cut are equivalent, we get that

A(DA)0-CCV is NP = ΣP
1 -complete and A(DA)0-CCR is ΠP

1 -complete [9].
Hence, the statement holds for i = 0.

Assume that the statement is true for j−1 ≥ 0. We show that the statement
is also true for j. To this end, we show an inductive steps in which we first show
that the statement is true for (DA)j-CCR if it is true for A(DA)j−1-CCV
and afterwards that the statement is true for A(DA)j-CCV since it is rue for
(DA)j-CCR.

17

First, we show that the statement is true for (DA)j-CCR if it is true for
A(DA)j−1-CCV. Let I = (G, s, t, C, `, (d1, . . . , dj), (a1, . . . , aj)) be an instance
of (DA)j-CCR and let D1 ∈

(
C
d1

)
. Clearly, the attacker is not able to sepa-

rate vertices anymore that are connected with an edge colored in D1. We can
compute the graph G′ where we remove all edges of `−1(D1) and identify u
and v for all {u, v} ∈ E, `({u, v}) ∈ D1 in polynomial time. Note that this
graph might have parallel edges. Hence, we also subdivide every edge e into
two new edges e′1 and e′2 and set `′(e′1) := `′(e′2) := `(e). Next, we can use an
oracle to solve the instance I ′ = (G′, s, t, C \D1, `

′, (d2, . . . , dj), (a1, . . . , aj)) of
A(DA)j−1-CCR. Since A(DA)j−1-CCR is ΠP

2j−1-complete as shown above, it
follows that (DA)j-CCR is ΣP

2j-complete and (DA)j-CCV is ΠP
2j-complete.

Second, we show that the statement is true for A(DA)j-CCV if it is true for
(DA)j-CCR. Let I = (G, s, t, C, `, (d2, . . . , dj+1), (a1, . . . , aj+1)) be an instance
of A(DA)j-CCV and let A1 ∈

(
C
a1

)
. We can compute the graph G′ := G −

`−1(A1), set C ′ := C \ A1, and set `′(e) := `(e) for all e ∈ E(G), `(e) 6∈ A1

in polynomial time. Next, we can use an oracle to solve the instance I ′ =
(G′, s, t, C ′, `, (d2, . . . , dj+1), (a2, . . . , aj+1)) of (DA)j-CCV. Since (DA)j-CCV
is ΠP

2j-complete due to the induction hypothesis, it follows that A(DA)j-CCV
is ΣP

2j+1-complete and A(DA)j-CCR is ΠP
2j+1-complete.

5. Restricted Instances

We now take a closer look at the classic complexity of (DA)i, A(DA)i,
and (DA)∗-CCR on restricted instances. First, we investigate graph classes
like subcubic and planar graphs. Second, we consider two restricted classes of
colored graphs for which Colored (s, t)-Cut is polynomial-time-solvable and
show that DA-CCR is NP-complete on these restricted colored graphs.

5.1. Computational Complexity on Restricted Graph Classes
First, we show that the classic complexity of all colored cut games is the same

even on bipartite planar graphs. Second, we show that (DA)i-CCR, A(DA)i-
CCR, i ≥ 1, and (DA)∗-CCR can be solved in polynomial time on graphs with
maximum degree at most 2 but cannot be solved in polynomial time on graphs
with maximum degree at least 3, unless P = NP.

By Corollary 2.3 and Proposition 2.4, we can find for each instance I of a
colored cut game an equivalent instance I ′ of the same colored cut game such
that the graph of I ′ is bipartite planar if the graph of I is planar. Hence, the
hardness results of Theorem 4.10 and Theorem 3.1 imply the following.

Theorem 5.1. Even on bipartite planar graphs, for all i ≥ 1, (DA)i-CCR
is ΣP

2i-complete and for all i ≥ 0, A(DA)i-CCR is ΠP
2i+1-complete. Further-

more, (DA)∗-CCR and (DA)∗-CCV are PSPACE-complete even on planar
graphs.

18

In the following, we focus on graphs with a constant maximum degree. To
prove that (DA)i-CCR, A(DA)i-CCR, with i ≥ 1 and (DA)∗-CCR can be
solved in polynomial time on graphs with maximum degree at most 2, we first
prove the following lemmas.

Intuitively, the first lemma states that the outcome of a colored cut game is
determined at the latest at the turn in which the total attacker budget so far
is at least |C(H)|, the number of different color sets of vertex-simple (s, t)-paths
in G.

Lemma 5.2. Let I = (G, s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) be an instance of
(DA)i-CCR and if there is some j ≤ i such that

∑j
r=1 ar ≥ |C(I)|, that is, the

sum of the budget of the attacker in the first j turns is at least the number of
color sets of vertex-simple (s, t)-paths in G, then I is a yes-instance for (DA)i-
CCR if and only if the instance I ′ = (G, s, t, C, `, (d1, . . . , dj), (a1, . . . , aj)) of
(DA)j-CCR is a yes-instance.

Proof. The attacker can intersect at least one L ∈ C(I) for each color he chooses.
Hence, after choosing at most |C(I)| colors, he has completed a colored (s, t)-
cut, unless the defender has completed a colored (s, t)-connector before. Thus,
the outcome of the game is determined at the latest after the attacker’s jth
turn.

Intuitively, the second lemma states that the player with the winning strat-
egy can be determined efficiently if the total attacker budget is at most one.

Lemma 5.3. (DA)∗-CCR can be solved in O(i+|C|·(n+m)) time if
∑i
j=1 aj ≤

1 for the total attacker budget.

Proof. First, we show that DA-CCR can be solved in O(|C|(n + m)) time
if a1 ≤ 1. Let I = (G = (V,E), s, t, C, `, d1, a1) be an instance of DA-CCR.
We can assume that s and t are in the same connected component in G, since
otherwise I is a trivial no-instance of DA-CCR. Hence, if a1 = 0, I is a trivial
yes-instance of DA-CCR. If a1 = 1, we can compute the set of all colored (s, t)-
cuts of size exactly one, that is, A ⊆ C such that {α} is a colored (s, t)-cut in G
for all α ∈ A. This can be done in O(|C| · (n+m)) time.

We show that I is a yes-instance if and only if d ≥ |A|. If the attacker is able
to choose some α ∈ A in his turn, then he has picked a colored (s, t)-cut and
therefore, the defender will lose the game. Therefore, I is a no-instance if d <
|A|. If d ≥ |A|, then I is a yes-instance, since the defender can choose D1 ⊇ A
and therefore, there is no colored (s, t)-cut of size one left.

Next, we show that (DA)∗-CCR can be solved in O(i+ |C| · (n+m)) time
if
∑i
j=1 aj ≤ 1. Let I = (G = (V,E), s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) be an

instance of (DA)∗-CCR with
∑i
j=1 aj ≤ 1. Recall that if

∑i
j=1 aj = 0, the

defender wins if and only if s and t are in the same connected component in G.
Thus, assume that

∑i
j=1 aj = 1. Hence, there is some x with x ∈ [1, i], such

that ax = 1 and ay = 0 for all y ∈ [1, i] with y 6= x. Recall that the defender
cannot change the outcome of the game after the attacker has performed his

19

last turn. This also holds for the last turn in which the attacker is able to
select a set of colors of size at least one. Therefore, I is a yes-instance, if
the (DA)x-CCR instance Ĩ := (G, s, t, C, `, (d1, . . . , dx), (a1, . . . , ax)) is a yes-
instance. Note that a1 = a2 = · · · = ax−1 = 0. Hence, Ĩ is a yes-instance, if the
DA-CCR instance I ′ := (G, s, t, C, `, d, a) is a yes-instance where d :=

∑x
j=1 dj

and a = 1. Recall that we can solve I ′ in O(|C|(n+m)) time and therefore we
can solve the equivalent instance I in O(i + |C|(n + m)) time. The additional
summand i in the running time, comes from finding the turn x where ax = 1.

Thus, we conclude that (DA)∗-CCR can be solved in O(i + |C|(n + m))

time if
∑i
j=1 aj ≤ 1.

Observe that we can assume that for each turn either the budget of the
defender or the attacker is at least one. Thus, we can assume that i ≤ 2|C|
and hence the running time of Lemma 5.3 is O(|C| · (n + m)). Since (DA)i-
CCR and A(DA)i-CCR are special cases of (DA)∗-CCR, (DA)i-CCR and
A(DA)i-CCR can also be solved in O(|C|(n+m)) time if

∑i
j=1 aj ≤ 1.

Lemma 5.4. (DA)i-CCR, A(DA)i-CCR with i ≥ 1, and (DA)∗-CCR can
be solved in polynomial time on graphs with maximum degree at most two.

Proof. Let H = (G, s, t, C, `) be a colored graph where G has maximum de-
gree at most two. Consequently, there are at most two (s, t)-paths in G and
therefore |C(H)| ≤ 2 and can be computed in polynomial time.

We prove the statement by an induction over i. To this end, we will show
the base case for i = 1 and i = 2.

First, let I1 = (H, d, a) be an instance of (DA)1-CCR. We show that we can
solve I1 in polynomial time. Note that I1 is a no-instance if C(H) = ∅, that is,
if s and t are not in the same connected component in G. Hence, we can assume
that C(H) 6= ∅. By Lemma 5.3, we can solve I1 in polynomial time if a ≤ 1.
Therefore, assume that a ≥ 2. Since a ≥ 2 and |C(H)| ≤ 2, the attacker can win
the game if the defender has not picked a colored (s, t)-connector in his turn.
Hence, I1 is a yes-instance if and only if d ≥ min{|L| | L ∈ C(H)} which can be
checked in polynomial time.

Next, let I2 = (H, (d1, d2), (a1, a2)) be an instance of (DA)2-CCR. We
show that we can solve I2 in polynomial time. Note that I2 is a no-instances
if C(H) = ∅, that is, if s and t are not in the same connected component
in G. Hence, we can assume that C(H) 6= ∅. By Lemma 5.3, we can solve I2 in
polynomial time if a1+a2 ≤ 1. Therefore, assume that a1+a2 ≥ 2 and C(H) 6= ∅.
If a1 ≥ |C(H)| then I2 is equivalent to the (DA)1-CCR instance (H, d1, a1) due
to Lemma 5.2 and therefore can be solved in polynomial time. Moreover, if a1 =
0, I2 is equivalent to the (DA)1-CCR instance (H, d1 + d2, a2) and therefore
can be solved in polynomial time. Hence, we can assume that a1 = 1, a2 ≥ 1,
and |C(H)| = 2. Let C(H) = {L1, L2} and assume that |L1| ≤ |L2|. Note that
the defender can win the game in his first turn if d ≥ |L1|. If the defender does
not choose D1 such that D1 ⊇ L1 ∩ L2, then the attacker can win the game in
his first turn by taking only one color α ∈ (L1 ∩L2) \D1. Therefore, I2 is a no-
instance if d1 < |L1∩L2|. Thus, assume that |L1∩L2| ≤ d1 < |L1|. SinceD1 has

20

to be a superset of L1∩L2, we can reduce the instance such that L1∩L2 = ∅ by
decreasing d1 by |L1∩L2| and merging the endpoints of edges e ∈ E with `(e) ∈
L1 ∩ L2. Note that the attacker can pick α ∈ Li, i ∈ {1, 2}, in his first turn
where |Li \ D1| = min(|L1 \ D1|, |L2 \ D1|), that is, the set that is closest to
being fully chosen by the defender. If d1 + d2 < |L2| then the defender loses the
game since the attacker can choose α ∈ L1 in his first turn and the defender
cannot complete a colored (s, t)-connector, since |L2|−|D1| > d2. Thus, assume
that d1 ≥ |L2| − d2, a1 = 1, a2 ≥ 1, and L1 ∩ L2 = ∅.

If d1 ≥ |L1|−d2 + |L2|−d2 then the defender can choose D1 such that |L1 \
D1| ≤ d2 and |L2 \ D1| ≤ d2. By the fact that a1 = 1 and L1 ∩ L2 = ∅, the
attacker can cut at most one path with the color α in his first turn. Therefore,
in the second turn of the defender there is an i ∈ {1, 2} such that α 6∈ Li
and |Li \D1| ≤ d2. Hence, the defender can win by choosing D2 ⊇ (Li \D1) :
We have Li ⊆ D1∪D2 and therefore D1∪D2 is a colored (s, t)-connector and I2
is a yes-instance.

Otherwise, if d1 < |L1|−d2 +|L2|−d2 then the defender is not able to choose
a set D1 such that |L1 \ D1| ≤ d2 and |L2 \ D1| ≤ d2. Assume without loss
of generality that |L2 \D1| > d2, then the attacker can choose α ∈ (L1 \D1).
Hence, the defender can now only win by choosing D2 such that (D1∪D2) ⊇ L2

which is not possible since |L2 \D1| > d2 = |D2|. Therefore, the defender loses
and I2 is a no-instance.

Note that we checked all possibilities and that all checks in this algorithm
can be done in polynomial time and therefore, we can solve I2 in polynomial
time. This completes the base case.

Let j ≥ 3 and assume that the statement is true for j − 1, we show that
the statement is also true for j. Let I = (G, s, t, C, `, (d1, . . . , dj), (a1, . . . , aj))
be an instance of (DA)j-CCR. If a1 = 0 or a2 = 0, then we can construct
an equivalent instance I ′ of (DA)j−1-CCR in polynomial time. Due to the
induction hypothesis, we can solve I ′ and therefore I in polynomial time. Hence,
assume that a1 6= 0 and a2 6= 0. So, a1 + a2 ≥ 2 ≥ |C(I)| and therefore I is
equivalent to the (DA)2-CCR instance I2 = (G, s, t, C, `, (d1, d2), (a1, a2)) due
to Lemma 5.2. Since we can solve the base case I2 in polynomial time, we can
also solve I, in polynomial time.

The statement for A(DA)i-CCR follows analogously.

We obtain a dichotomy by showing that, for all i ≥ 1, (DA)i-CCR and
A(DA)i-CCR are ΣP

2i-hard on graphs with maximum degree at least 3.

Lemma 5.5. For all i ≥ 1, (DA)i-CCR and A(DA)i-CCR are ΣP
2i-hard even

on subcubic graphs and (DA)∗-CCR is PSPACE-hard even on subcubic graphs.

Proof. Since (DA)i-CCR is a special case of A(DA)i-CCR, we only have to
show that (DA)i-CCR is ΣP

2i-hard even on subcubic graphs.
Let I ′ = (G′ = (V ′, E′), s′, t′, C ′, `′, (d′1, . . . , d

′
i), (a

′
1, . . . , a

′
i)) with a′1 ≥ 1

be an instance of (DA)i-CCR. We construct an instance I of (DA)i-CCR
with maximum degree 3 as follows: We add a new color α, a new vertex s,
set t := t′, V := V ′ ∪ {s}, E := E′ ∪ {{s, s′}}, C := C ′ ∪ {α}, `({s, s′}) :=

21

α, d1 := d′1 + 1, a1 := a′1, dj := d′j , and aj := a′j for all j ∈ [2, i]. Furthermore,
let H = (G = (V,E), s, t, C, `) be the corresponding colored graph. Recall that
with Lemma 2.5 we can construct a colored-cut-equivalent graph with maximum
degree 3 since α occurs in every (s, t)-path. Now, the equivalence follows from
Corollary 2.3.

Theorem 5.6 follows directly from Lemmas 5.4 and 5.5.

Theorem 5.6. Let i ≥ 1. The problems (DA)i-CCR, A(DA)i-CCR, and
(DA)∗-CCR can be solved in polynomial time on graphs with a maximum degree
at most 2. On bipartite planar subcubic graphs with a maximum degree 3, (DA)i-
CCR and A(DA)i-CCR are ΣP

2i-hard and (DA)∗-CCR is PSPACE-hard.

5.2. Restricted Colorings
We now analyze the complexity of (DA)1-CCR on instances where the graph

may be arbitrary but the coloring is restricted. First, we consider the case where
every color appears in at most two (s, t)-paths. In this case, Colored (s, t)-
Cut can be solved in polynomial time [9, 19, 30]. We show that (DA)1-CCR
is NP-complete. Hence, for any i ≥ 1, (DA)i-CCR and A(DA)i-CCR cannot
be solved in polynomial time on these restricted colored graphs, unless P = NP.
Since there is only one turn per agent, the budget-vectors are only single integers,
and we use the notation a := a1 and d := d1.

Theorem 5.7. DA-CCR is NP-complete and W[1]-hard when parameterized
by d even if every color appears in at most two (s, t)-paths.

Proof. First, we show that DA-CCR is contained in NP if every color appears in
at most two (s, t)-paths. Let I = (G = (V,E), s, t, C, `, d, a) be a yes-instance of
DA-CCR where every color appears in at most two (s, t)-paths and let D1 ⊆ S
with |D1| ≤ d be a winning strategy of the defender. We define a graph G′ where
we identify the vertices u, v ∈ V if there is an (u, v)-path P in G with `(P) ⊆ D1.
Since the resulting graph might have parallel edges, we also subdivide every edge.
In the resulting colored graph, every color still appears in at most two (s, t)-
paths [25]. Thus, we can check in polynomial time if there is a colored (s, t)-cut
of size at most a in the constructed colored graph [30] and therefore verify
that D1 is a winning strategy for the defender. Hence, DA-CCR is contained
in NP if every color appears in at most two (s, t)-paths.

Second, we show that DA-CCR is NP-hard even if every color appears in
at most two (s, t)-paths by giving a polynomial-time reduction from the NP-
complete problem Matching Interdiction [33].

Matching Interdiction
Input: A graph G = (V,E) and integers b and r.
Question: Is there a subset S ⊆ E with |S| ≤ b such that the
maximum matching in G− S has size at most r?

22

In other words, we ask if there is a set S ⊆ E such that there are no r + 1
disjoint edges in G − S. Given an instance I = (G = (V,E), b, r) of Match-
ing Interdiction, we build in polynomial time an equivalent instance I ′ =
(G′ = (V ′, E′), s, t, C, `, d, a) of DA-CCR where every color appears in at most
two (s, t)-paths. Since the maximum matching in G has size at most |V |/2, I
is a yes-instance if r ≥ |V |/2. Hence, we can assume without loss of generality
that r ≤ |V |/2− 1.

We start with an empty graph G′, set d := b, a := |V | − r − 1, C := {αvj |
v ∈ V, 0 ≤ j ≤ d} ∪ E and add vertices s and t to G′. Furthermore, we add for
every v ∈ V an (s, t)-path Pv in G′ such that `(Pv) = {αvj | 0 ≤ j ≤ d} ∪ {e ∈
E | v ∈ e}.

Note that for distinct vertices v, w ∈ V , `(Pv)∩ `(Pw) = {{v, w}} if {v, w} ∈
E and `(Pv) ∩ `(Pw) = ∅, otherwise. Moreover, every color e ∈ E appears on
exactly two (s, t)-paths in G′ and every color α ∈ C \ E appears on exactly
one (s, t)-path. By construction, there are exactly |V | many (s, t)-paths in G′
and all of them have pairwise different sets of colors. Hence, |C(I ′)| = |V |.
The idea of this construction is that the defender is not able to choose a col-
ored (s, t)-connector since each (s, t)-path contains at least d+1 different colors
and therefore he only has a winning strategy if he is able to reduce the size of
the maximum matching in G. We now give the formal proof of this intuition.
That is, we show that I is a yes-instance of Matching Interdiction if and
only if I ′ is a yes-instance of DA-CCR.

(⇒) Let S ⊆ E, such that there is no matching of size r + 1 in G − S. We
will show that there is no colored (s, t)-cut A1 ⊆ C \ S of size at most a in G′.
Assume towards a contradiction that there is a colored (s, t)-cut A1 ⊆ C \ S
of size at most a in G′. Recall that every color appears in at most two (s, t)-
paths in G′. Since |A1| ≤ a = |V | − r − 1 and |C(I ′)| = |V |, there is a set
of colors R ⊆ A1 of size at least r + 1 such that every color α ∈ R appears in
two (s, t)-paths and for all distinct colors α, β ∈ R, there is no (s, t)-path P ′ inG′
with {α, β} ⊆ `(P ′). By construction, only the colors E ⊆ C appear in exactly
two (s, t)-paths and therefore R ⊆ E. For every pair of distinct edges e1 :=
{u1, w1} ∈ R and e2 := {u2, w2} ∈ R in I (these are distinct colors in I ′), it
holds that `(E(Pu1

) ∪ E(Pw1
)) ∩ `(E(Pu2

) ∪ E(Pw2
)) = ∅. Hence e1 ∩ e2 = ∅

and therefore R is a matching of size r + 1 in G− S, a contradiction.
(⇐) Let D1 ⊆ C be a color set of size at most d such that there is no

colored (s, t)-cut A1 ⊆ C \D1 in G′ of size at most a in G′. By construction,
there is no colored (s, t)-connector of size at most d in G′ and, therefore, for
every v ∈ V , there is some βv ∈ `(Pv) \D1. We will show that G − (D1 ∩ E)
has no matching of size r + 1. Assume towards a contradiction that there is a
matching M of size at most r + 1 in G − (D1 ∩ E). Then, A1 := M ∪ {βv |
v ∈ V \ (

⋃
e∈M e)} has size at most r + 1 + |V | − 2(r + 1) = |V | − (r + 1) = a

and A1 ∩ D1 = ∅. By construction, A1 is a colored (s, t)-cut in G′, since for
every (s, t)-path Pv with v ∈ V it holds that either βv ∈ A1 or `(Pv) ∩M 6= ∅,
a contradiction.

Clearly, this is a parameterized reduction from Matching Interdiction
parameterized by b to DA-CCR parameterized by d. Since Matching Inter-

23

diction parameterized by b is W[1]-hard [33], DA-CCR parameterized by d is
W[1]-hard even if every color appears in at most two (s, t)-paths

Second, we consider the case when no two edges have the same color or, in
other words, the case of uncolored input graphs. In this case, Colored (s, t)-
Cut can be solved in polynomial time since it is is equivalent to the classi-
cal Min (s, t)-Cut problem [19]. Consequently, if we restrict DA-CCR to
uncolored graphs, we ask if there is a set D of edges of size d such that ev-
ery (s, t)-edge-cut distinct from D has size at least a + 1. This exact problem
has been considered for both weighted and unweighted graphs in our companion
work [20] under the name Min (s, t)-Cut Prevention.

Theorem 5.8 ([20]). Min (s, t)-Cut Prevention is NP-complete and W[1]-
hard when parameterized by d.

This implies the following for games with a fixed number of alternations.

Theorem 5.9. For i ≥ 1, (DA)i-CCR and A(DA)i-CCR are both NP-hard
and W[1]-hard when parameterized by d :=

∑i
j=1 dj on uncolored graphs.

Consequently, Colored (s, t)-Cut and its complement problem are the only
colored cut games that can be solved in polynomial time on uncolored graphs
or if every color appears in at most two (s, t)-paths, unless P = NP.

6. Parameterized Complexity of Colored Cut Games

Finally, we analyze the parameterized complexity of the colored cut games.
First, we investigate budget-related parameters. Second, we present polynomial
kernels for all colored cut games. Since Colored (s, t)-Cut does not admit a
polynomial kernel when parameterized by |C|, the kernels use parameters larger
than |C|.

6.1. Parameterization by the Total Budget b(I) and |C|
For an instance I = (H,~d,~a) of a colored cut game we denote with

b(I) :=

i∑
x=1

(dx + ax)

the sum of all budgets and with

k :=

i∑
x=1

ax

the total budget of the attacker. First, we investigate the parameter b(I). Col-
ored (s, t)-Cut is W[2]-hard when parameterized by k = b(I) [9]. Similar to
Colored (s, t)-Cut, we will show that all the colored cut games do not ad-
mit an FPT-algorithm when parameterized by b(I). Moreover, we show that
all colored cut games are in FPT and do not admit polynomial kernels when
parameterized by |C|.

24

Proposition 6.1. (DA)i-CCR, i ≥ 1, A(DA)i-CCR, i ≥ 0, and (DA)∗-CCR
parameterized by b(I) are coW[2]-hard and can be solved in O(|C|b(I)(n + m))
time.

Proof. First, we describe the XP-algorithm for (DA)∗-CCR. By using an and-
or tree of depth 2i+1 that branches into all possible sets of unchosen colors of size
equal to the budget of the current turn, we can determine in timeO(

(|C|
d1

)(|C|−d1
a1

)
. . .
(|C|−∑i−1

j=1(dj+aj)−di
ai

)
(n+

m)) ⊆ O(|C|b(I)(n + m)) if the defender has a winning strategy. Since (DA)i-
CCR and A(DA)i-CCR are special cases of (DA)∗-CCR, the same algorithm
works for (DA)i-CCR and A(DA)i-CCR as well.

Second, we show the coW[2]-hardness. Let I ′ = (G, s, t, C, `, k) be a Col-
ored (s, t)-Cut instance. Since Colored (s, t)-Cut is a special case of (DA)i-
CCV,A(DA)i-CCV, and (DA)∗-CCV where all budgets except a1 are set
to zero, we can give a trivial reduction from Colored (s, t)-Cut to any of
these problems where b(I) = a1 = k. The statement follows since Col-
ored (s, t)-Cut is W[2]-hard parameterized by k [17, 30]. The coW[2]-hardness
for (DA)i-CCR (and generalizations) follows from considering the complement
problem.

By definition, b(I) ≤ |C|. Hence, the algorithm of Proposition 6.1 with
a running time of O(|C|b(I)(n + m)) also implies an FPT-algorithm for the
parameter |C|.

Corollary 6.2. (DA)i-CCR, A(DA)i−1-CCR, i ≥ 1, and (DA)∗-CCR can
be solved in time O(min(|C||C|, 22i|C|)(n + m)) and do not admit a polynomial
kernel when parameterized by |C|, unless NP ⊆ coNP/poly.

Proof. With the algorithm described in Proposition 6.1 and the fact that b(I) ≤
|C|, a running time of O(|C||C|(n+m)) follows directly. Moreover,

(|C|
j

)
≤ 2|C|

for every j ∈ [0, |C|] and therefore, I can be solved in O(22i|C|(n + m)) =

O((2|C|)2i(n+m)) ⊇ O(
(|C|
d1

)(|C|−d1
a1

)
. . .
(|C|−∑i−1

j=1(dj+aj)−di
ai

)
(n+m)) time.

Unless NP ⊆ coNP/poly, Colored (s, t)-Cut parameterized by |C| does
not admit a polynomial compression [30] and therefore also no polynomial ker-
nel [11]. Since Colored (s, t)-Cut is a special case of all colored cut games
where we ask if the attacker has a winning strategy, none of these colored cut
games admits a polynomial kernel when parameterized by |C|, unless NP ⊆
coNP/poly.

For DA-CCR and DA-CCV, we can improve the running time.

Proposition 6.3. DA-CCR can be solved in O(2|C|(n+m)) time.

Proof. Recall that in DA-CCR we ask if there is a set D1 ⊆ C of size at most d
such that there is no colored (s, t)-cut A1 ⊆ (C \D1) of size at most a in G. In
the following, we call a set D̃ ⊆ C safe if D̃ has size at least a and if there is no
colored (s, t)-cut A1 ⊆ D̃ of size at most a in G, that is, if the defender chooses
all colors in C \ D̃, the attacker is not able to select a colored (s, t)-cut of size at

25

most a. In other words, the defender wins if and only if there is a safe set D̃ ⊆ C
of size at least |C| − d. We describe an algorithm that runs in O(2|C|(n + m))
time and checks if there is a safe set D̃ ⊆ C of size at least |C| − d.

The algorithm computes iteratively the sets Sj of all safe sets of colors D̃j ∈(
C
j

)
of size exactly j for every j ∈ [a, |C| − d]. Clearly, the defender has a

winning strategy if S|C|−d 6= ∅. We can compute the set Sa in O(
(|C|
a

)
(n+m))

time by checking for every D̃a ∈
(
C
a

)
in O(|C|(n + m)) time if D̃a is not a

colored (s, t)-cut in G. Next, we use the set Sj to compute the set Sj+1 for
every j ∈ [a, |C| − d − 1]. By definition, D̃ with |D̃| > a is safe if and only if
there is no D′ ⊂ D̃ with |D′| = a such that D′ is not safe. Therefore, D̃j+1 ∈(
C
j+1

)
is safe if every D̃j ∈

(
D̃j+1

j

)
is safe. Hence, the algorithm checks for

every D̃j+1 ∈
(
C
j+1

)
in O(|C|) time if every D̃j ∈

(
D̃j+1

j

)
is safe. Therefore,

we can compute Sj+1 in O(
(|C|
j+1

)
|C|) time. Consequently, the algorithm checks

if S|C|−d 6= ∅ in O(
∑|C|−d
j=a

(|C|
j

)
(|C|+ n+m)) ⊆ O(2|C|(n+m)) time.

6.2. Polynomial Kernels for a Family of Combined Parameters
Second, we investigate colored cut games from the viewpoint of kernelization.

As shown above, natural parameterizations by b(I) or |C| will not give a kernel.
Moreover, Colored (s, t)-Cut is NP-hard even if the vertex cover number of
the input graph is at most two [31]. Hence, for most structural graph parameters
there is little hope to obtain polynomial kernels. We will show that all colored
cut games admit polynomial kernels when parameterized by the total attacker
budget k and the vertex cover number. In fact, we show polynomial kernels for
smaller parameters. To this end, we consider generalizations of vertex cover.
For a graph G, we let lp(G) denote the length of a longest simple path in G.
We call a vertex set S ⊆ V an r-path vertex cover in G if lp(G− S) ≤ r [5, 7].
Thus, an r-path vertex cover is a vertex set whose deletion results in a graph that
has no simple path of length at least r+ 1. We call the size of a smallest r-path
vertex cover of a graph G the r-path vertex cover number κr of G.

Clearly, the r-path vertex cover number of G is monotonically decreasing
with r. Note that the vertex cover number is exactly the 1-path vertex cover.
More generally, if every connected component of a graph has order at most r,
then lp(G) ≤ r. Thus, the r-path vertex cover number of a graph is never larger
than the so-called r-COC number, the smallest size of a vertex set whose deletion
results in a graph where every connected component has order at most r.

To obtain the correctness of the kernelization, we use the following general-
ization of colored-cut-equivalence for colored (s, t)-cuts of size at most x.

Definition 6.4. Let x be an integer. Two colored graphs H = (G, s, t, C, `)
and H′ = (G′, s′, t′, C, `′) are x-colored-cut-equivalent if for all C̃ ⊆ C of size
at most x it holds that C̃ is a colored (s, t)-cut in G if and only if C̃ is a
colored (s′, t′)-cut in G′.

Since the total attacker budget is an upper bound for the size of the col-
ored (s, t)-cut that the attacker can choose, we obtain the following.

26

Corollary 6.5. Two instances I = (H,~d,~a) and I ′ = (H′,~d,~a) of any colored
cut game are equivalent if H and H′ are x-colored-cut-equivalent for x ≥ k.

Note that the total defender budget is irrelevant for this equivalence.
Now, we show that we can compute in polynomial time a k-colored-cut-

equivalent graph which has at most (k + κr)
O(r) edges.

Lemma 6.6. Let H = (G = (V,E), s, t, C, `) be a colored graph with r-path
vertex cover number κr and let k ≤ |C| be an integer. Then, one can compute
in |H|O(r) time a k-colored-cut-equivalent graph H′ = (G′ = (V ′, E′), s′, t′, C, `′)

with at most
(

(r+1)κr+2
2

)
· (r + 1)(r + 1)! · kr+1 edges.

The idea is the following: First, we approximate an r-path vertex cover Γ
containing both s and t and compute for each pair {x, y} of vertices of Γ the
collection A{x,y} of all color sets of (x, y)-paths not containing other vertices
of Γ. For each such pair, we compute the Hitting Set-instance (A{x,y}, k) and
kernelize it to a Hitting Set-instance (A′{x,y}, k) with |A′{x,y}| < (r+ 1)! ·kr+1

by using the Sunflower Lemma [15]. Finally, we construct a colored graph H′
such that Γ is an r-path vertex cover of G′ and such that for each pair {x, y}
of vertices of Γ the collection A′{x,y} contains all color sets of (x, y)-paths not
containing other vertices of Γ.

We now describe in detail how to construct H′. First, we compute an r-
path vertex cover Γ of size at most κr(r + 1) + 2 containing s and t via the
following (r + 1)-approximation algorithm: Start with an empty set Γ′. While
the graph G− Γ′ contains a path of length at least r+ 1, add the r+ 1 vertices
of this path to Γ′. Afterwards, we set Γ := Γ′ ∪ {s, t}. By construction, Γ is
an r-path vertex cover and it has size at most κr(r + 1) + 2 since every r-path
vertex cover contains at least one vertex of each path of length at least r + 1.

Since G − Γ has no paths of length at least r + 1, we know that every
path between two vertices of Γ, which does not contain a third vertex of Γ,
has at most r + 1 edges. We compute for every {a, b} ∈

(
Γ
2

)
the family of all

color sets A{a,b} of (a, b)-paths in G{a,b} := G − (Γ \ {a, b}). That is, A{a,b} =

C(H{a,b}), where H{a,b} := (G{a,b}, a, b, C, `). Hence, for every color set C̃ ⊆ C

it holds that C̃ is a colored (a, b)-cut in G{a,b} if and only if C̃ is a hitting set
for A{a,b}. Note that A{a,b} contains only color sets of size at most r+ 1. Next,
we reduce each of the sets A{a,b} to a size of at most (r + 1)! · kr+1 using a
well-known reduction rule for (r + 1)-Hitting Set. This reduction rule uses
the famous Sunflower Lemma [15].

Lemma 6.7. If A{a,b} has size more than (r + 1)! · kr+1, then there are k + 1
distinct sets S1, . . . , Sk+1 ∈ A{a,b} that can be computed in polynomial time such
that Sj ∩ Sj′ =

⋂
1≤i≤k+1 Si =: S for all distinct j, j′ ∈ [1, k + 1].

Reduction Rule 6.1. If |A{a,b}| > (r + 1)! · kr+1, then compute sets S and
S1, . . . , Sk+1 ∈ A{a,b} with the property of Lemma 6.7.

• If S = ∅, then remove all sets of A{a,b} except {S1, . . . , Sk+1}.

27

• Otherwise, remove S1, . . . , Sk+1 from A{a,b} and add the set S.

Next, we show that the rule is correct in the following sense.

Proposition 6.8. Let C̃ ⊆ C be a set of size at most k.

• If S 6= ∅, then C̃ is a hitting set for A{a,b} if and only if C̃ is a hitting set
for {S} ∪ (A{a,b} \ {Si | 1 ≤ i ≤ k + 1}).

• If S = ∅, then C̃ is a hitting set for A{a,b} if and only if C̃ is a hitting set
for {Si | 1 ≤ i ≤ k + 1} (none of these collections has a hitting set of size
at most k).

Proof. We distinguish the case whether S = ∅.
Case 1: S 6= ∅. (⇒) Suppose that C̃ is a hitting set for A{a,b}. It follows

that C̃∩S 6= ∅, as otherwise, C̃∩(Si\S) 6= ∅ for all i ∈ [1, k+1] which contradicts
the fact that |C̃| ≤ k. Consequently, C̃ is a hitting set for {S} ∪ A{a,b} ⊇
{S} ∪ (A{a,b} \ {Si | 1 ≤ i ≤ k + 1}).

(⇐) Suppose that C̃ is a hitting set for {S}∪ (A{a,b} \ {Si | 1 ≤ i ≤ k+ 1}).
Hence, C̃ ∩S 6= ∅ and, thus, C̃ ∩Si 6= ∅ for all i ∈ [1, k+ 1]. Thus, C̃ is a hitting
set for {S} ∪A{a,b} ⊇ A{a,b}.

Case 2: S = ∅. Since both collections A{a,b} and {Si | 1 ≤ i ≤ k + 1}
contain k + 1 pairwise disjoint sets each, none of these collections has a hitting
set of size at most k.

Let A′{a,b} be the set obtained after exhaustively applying Reduction Rule 6.1
to A{a,b}. By the definition of Reduction Rule 6.1, A′{a,b} has size at most (r+

1)! · kr+1. Moreover, by the definition of A{a,b} and Proposition 6.8, we obtain
that every color set C̃ ⊆ C of size at most k is a colored (a, b)-cut in G{a,b} if
and only if C̃ is a hitting set for A′{a,b}.

Finally, we define the colored graph H′. We start with a graph G′ containing
only the vertices of Γ and set s′ = s and t′ = t. Next, for every set {a, b} ∈

(
Γ
2

)
and every color set L ∈ A′{a,b}, we add an (a, b)-path PL with max(1, |L|−1) new
internal vertices to G′ and color the edges of P in such a way that `′(P ′L) := L,
where P ′L := a ·PL · b. This finishes the definition of H′. We may now show the
correctness and running time of the data reduction and the size bound of the
resulting graph H′.

Proof of Lemma 6.6. Note that C(H′{a,b}) = A′{a,b}, where G
′
{a,b} := G′ − (Γ \

{a, b}) and H′{a,b} := (G′{a,b}, a, b, C, `
′). Hence, every color set C̃ ⊆ C of size at

most k is a colored (a, b)-cut in G′{a,b} if and only if C̃ is a hitting set for A′{a,b}.
By the above, this is the case if and only if C̃ is a colored (a, b)-cut in G{a,b}.
Consequently, H{a,b} and H′{a,b} are k-colored-cut-equivalent.

Now, we use this fact to prove that H and H′ are k-colored-cut-equivalent.
Let C̃ be a colored (s, t)-cut of size at most k in G. We show that C̃ is a col-
ored (s, t)-cut in G′. Assume towards a contradiction, that this is not the case.

28

Then, there is an (s, t)-path P ′ = (u1, . . . , uq) in G′ with u1 = s and uq = t

such that `′(P ′) ∩ C̃ = ∅. Let ui1 , . . . , uiz be the vertices of Γ in P ′ in the
ordering of the traversal of the path. Recall that s ∈ Γ and t ∈ Γ, which implies
that ui1 = u1 and uiz = uq. Now, let P ′j := (uij , uij+1, . . . , ui(j+1)−1, ui(j+1)

) for
all j ∈ [1, z−1]. Due to the fact that `′(P ′)∩ C̃ = ∅, it follows that `′(P ′j)∩ C̃ =

∅ for all j ∈ [1, z − 1]. Thus, for each j ∈ [1, z − 1] it holds that C̃ is
not a colored (uij , uij+1

)-cut in G′{uij
,uij+1

}. Moreover, since for each j ∈
[1, z − 1], H{uij

,uij+1
} and H′{uij

,uij+1
} are k-colored-cut-equivalent, it follows

that there is a (uij , uij+1
)-path Pj in G{uij

,uij+1
} such that `(Pj) ∩ C̃ = ∅.

By connecting all paths P1 (· · · (Pz−1, we get an (s, t)-path P in G

with `(P)∩ C̃ =
⋃z−1
j=1(`(Pj)∩ C̃) = ∅. This contradicts the assumption that C̃

is a colored (s, t)-cut in G. The converse can be shown analogously.
Next, we show the running time of the construction. Since paths of length at

least r+1 can be computed in 2O(r) · |V |O(1) time [1], we can compute the set Γ
in the same running time. Moreover, since no (a, b)-path in G{a,b} has length
more than r + 2, we can compute all the sets A{a,b} in O(

(|Γ|
2

)
|V |r+O(1)) time.

Since each application of Reduction Rule 6.1 takes only polynomial time and
reduces the size of A{a,b} by at least one, all the sets A′{a,b} can be computed
in O(

(|Γ|
2

)
|V |r+O(1)) time as well. Thus, the construction takes O(

(|Γ|
2

)
· 2O(r) ·

|V |r+O(1)) time.
Finally, we show the size of the kernel. By construction, G′ contains for

every {a, b} ∈
(

Γ
2

)
at most |A′{a,b}| ≤ (r + 1)! · kr+1 paths with at most r + 1

edges each. Consequently, G′ contains at most
(|Γ|

2

)
· (r+ 1)(r+ 1)! · kr+1 edges.

Since |Γ| has size at most (r + 1)κr + 2, we obtain the stated kernel size.

Corollary 6.5 and Lemma 6.6 lead to the following kernelization.

Theorem 6.9. For each constant r ≥ 1, every colored cut game admits a
polynomial kernel with at most

(
(r+1)κr+2

2

)
· (r + 1)(r + 1)! · kr+1 edges when

parameterized by the r-path vertex cover number κr of G and the total attacker
budget k.

Proof. The bound on the number of edges follows due to Lemma 6.6. Thus, to
obtain an instance of bounded size, we also have to show that we can bound
the budget of the defender and the total number of colors by (κr + k)O(1).
Note that there are at most |E′| colors that are assigned to at least one edge
each. Let C∗ be the set of exactly these colors. Since there is no edge in E′

assigned with any color of C \ C∗, no winning strategy for the defender or the
attacker has to contain any of the colors of C \ C∗. Hence, replace the set of
colors by C∗ which is as most as large as |E′| and, thus, we only have to bound
the budgets of the defender. If b(I) ≤ |C∗|, then we are done. Otherwise,
if b(I) > |C∗|, then there is a smallest index j∗ such that the sum of the
first j∗ budgets of attacker and defender are larger than |C∗|. We set d′j := dj
and a′j := aj for all j ∈ [1, j∗ − 1], d′r := a′r := 0 for all r ∈ [j∗ − 1, i], d′j∗ :=

29

min(dj∗ , |C∗|−
∑j∗−1
r=1 (dr+ar)), and a′j∗ := max(0, |C∗|−

∑j∗−1
r=1 (dr+ar)−dj∗).

That is, the budgets remain the same as long as the sum of the budgets so far
(including the current one) is not larger than |C∗|. The next budget is set to
the difference of |C∗| and the sum of all previous budgets (including the current
one) and all remaining budgets are set to zero.

For the special case of r = 1, we obtain the following.

Corollary 6.10. Every colored cut game admits a polynomial kernel with at
most

(
2vc+2

2

)
· 4k2 edges when parameterized by the vertex cover number vc of G

and the total attacker budget k.

A further parameter to consider in this context is the treedepth of G [26]:
The treedepth td(G) of a graph is at least log(lp(G)) [26]. Thus, Theorem 6.9
also implies the following result for modulators to graphs with treedepth at
most r. By λr we denote the size of a smallest treedepth r-modulator.

Corollary 6.11. For any constant r ≥ 1, every colored cut game admits a
polynomial kernel when parameterized by the size λr of a smallest treedepth r-
modulator and the total attacker budget k.

The size of the kernel is λ2
rk
O(2r) and thus the guarantee is not of practical

interest even for rather moderate values of k and r. However, both kernel-
ization results are optimal in the following two ways: First, Colored (s, t)-
Cut does not admit a kernel with respect to k even on graphs with treewidth
two [17]. Hence, we may not replace r-path vertex cover or treedepth-r mod-
ulators by treewidth-r modulators. Moreover, the so-called standard reduc-
tion from d-Hitting Set to Colored (s, t)-Cut [25] gives graphs in which s
and t are connected only via vertex-disjoint paths of length at most d + 1.
Hence, lp(G − {s, t}) ≤ d − 1 and, thus, κd−1 ≤ 2. Moreover, the size k of the
sought colored (s, t)-cut is exactly the size of the sought hitting set of the Hit-
ting Set instance. Thus, since d-Hitting Set does not admit a compression of
bitsize kd−ε unless NP ⊆ coNP/poly [12], Colored (s, t)-Cut does not admit
a kernel of size kd−ε even if it has an (d−1)-path vertex cover of size two. Since
in the simple graphs produced by the reduction, we have td(G) ∈ Θ(log lp(G)),
we can also not improve on the exponential dependence on r in the exponent of
the kernel bound for treedepth.

It would also be possible to generalize the vertex cover number to the vertex
deletion distance to a maximum degree of r for any r ∈ N. Note that Col-
ored (s, t)-Cut is NP-hard even when G has only two vertices of degree at
least 3 [9]. Hence, Colored (s, t)-Cut parameterized by both |C| and the ver-
tex deletion distance to a maximum degree of r, for r ≥ 2 admits a polynomial
kernel if Colored (s, t)-Cut parameterized by |C| alone admits a polynomial
kernel. Such a kernel does not exists, unless NP ⊆ coNP/poly [17, 30].

6.3. Direct FPT-algorithms for Colored (s, t)-Cut
The kernelization algorithms of Theorem 6.9 also implies that all colored

cut games admit FPT-algorithms when parameterized by κr + k by simply

30

brute-forcing on the kernel. In the following, we describe FPT-algorithms for
Colored (s, t)-Cut and DA-CCV when parameterized by κr + k with a bet-
ter running time than a simple brute-force on the kernel. Recall that Col-
ored (s, t)-Cut asks if there is a colored (s, t)-cut of size at most k in a given
colored graph.

Theorem 6.12. For any constant r ≥ 1, Colored (s, t)-Cut can be solved in
(2κr (r + 1)k + (r + 1)κr) · nO(r) time, where κr denotes the r-path vertex cover
number of G and the size of the sought colored (s, t)-cut is denoted by k.

Proof. First, we compute an r-path vertex cover Γ′ of size κr in (r + 1)κrnO(r)

time using a search tree algorithm that checks whether a graph contains a simple
path of length r + 1 and branches on the possibilities to destroy this path via
vertex deletion. Afterwards, we check for each of the 2κr many partitions (S, T)
of Γ := Γ′ ∪ {s, t} with s ∈ S and t ∈ T , if there is a color set C̃ ⊆ C of size at
most k such that there is no connected component containing both a vertex of S
and a vertex of T after removing all the edges colored in C̃. To this end, we first
compute for every pair of vertices x ∈ S and y ∈ T the collection A{x,y} of all
color sets of (x, y)-paths in G{x,y} := G− (Γ\{x, y}). This can be done in nO(r)

time since G{x,y} does not contain any (x, y)-path of length more than r+2. To
check if there is a color set C̃ ⊆ C of size at most k with the intended property,
we only have to check if C̃ ∩ L 6= ∅ for all pairs of vertices x ∈ S and y ∈ T
and all L ∈ A{x,y}. This is equivalent to ask, if there is a hitting set of size
at most k for

⋃
(x,y)∈S×T A{x,y}. This can be determined in (r + 1)knO(1) time

due to the fact that every A{x,y} contains only color sets of size at most r + 1

and (r + 1)-Hitting Set can be solved in (r + 1)knO(1) time.

For r = 1, we obtain the following.

Corollary 6.13. Colored (s, t)-Cut can be solved in 2vc+knO(1) time, where
the vertex cover number of G is denoted by vc and the size of the sought col-
ored (s, t)-cut is denoted by k.

We extend our fixed-parameter tractability result from Colored (s, t)-Cut
to (DA)1-CCV.

Theorem 6.14. For any constant r ≥ 1 the problem (DA)1-CCV can be solved
in ((2k)κr (r + 1)k + (r + 1)κr) · nO(r) time, where κr denotes the r-path vertex
cover number of G and k denotes the budget of the attacker.

Proof. Let I := (G, s, t, C, `, d1, a1 = k) be an instance of (DA)1-CCV. First,
we compute an r-path vertex cover Γ of size κr in (r + 1)κrnO(r) time using a
search tree algorithm. Note that the length of a shortest (s, t)-path P ∗ in G is at
most (r+1)(κr+1)+1: there is no path of length more than r in G−(Γ′∪{s, t})
and, thus, P ∗ contains at most r vertices between each pair of consecutive
vertices of Γ′ ∪ {s, t}. Hence, if d1 > (r + 1)(κr + 1), then the defender has
a winning strategy by choosing the color set `(P ∗). Thus, we assume in the
following that d1 ≤ (r + 1)(κr + 1).

31

We describe a branching algorithm to determine if there is a set of colors D
of size at most d such that every disjoint colored (s, t)-cut in G has size at
least k + 1. We start with an empty set D.

If D has size at least d1 + 1, then discard the current branch. Otherwise,
check if there is a colored (s, t)-cut C̃ of size at most k in G with C̃ ∩ D =
∅. This can be done in 2κr (r + 1)knO(r) time by using a modified version of
the algorithm described in the proof of Theorem 6.12: instead of checking for
every partition (S, T) of Γ := Γ′ ∪ {s, t} if there is a hitting set of size at
most k for

⋃
(x,y)∈S×T A{x,y}, we check if there is a hitting set of size at most k

for
⋃

(x,y)∈S×T {L \D | L ∈ A{x,y}}.
If G has no colored (s, t)-cut C̃ of size at most k with C̃ ∩ D = ∅, then D

is a winning strategy for the defender. Otherwise, a winning strategy for the
defender has to contain at least one of the elements of C̃. Hence, we branch in
all |C̃| ≤ k different cases of adding one color of C̃ to D.

The branching tree has size O(kd1) ⊆ O(k(r+1)(κr+1)) and, thus, the whole
algorithm runs in ((2k)κr (r + 1)k + (r + 1)κr) · nO(r) time.

7. Conclusion

We have studied the complexity of a variety of games that deal with pre-
venting or establishing a colored cut in edge-colored graphs. The main results
are summarized in Table 1. It has been observed several times, that there is a
close connection between colored cuts and the Hitting Set problem. In fact,
the PSPACE-hardness proof for the most general game presented in this work,
is based on a simple reduction from Maker-Breaker which is essentially a
competitive version of Hitting Set. Ideally, we would have liked to also use
such a simple reduction for the games with a constant number of rounds. How-
ever, we do not know whether the corresponding Hitting Set games are hard.
In particular, it seems open whether the following problem is ΠP

2 -hard.

∀∃ Hitting Set
Input: A collection F of subsets of a universe U and two integers k1

and k2.
Question: ∀D ∈

(U
k1

)
.∃A ∈

(U\D
k2

)
such that A ∩ F 6= ∅ for all F ∈

F?

This problem asks for a winning strategy for the attacker who wants to
complete a hitting set in the case that the defender starts. If this problem is
ΠP

2 -hard, then we can infer the ΠP
2 -hardness of (DA)1-CCV directly from it.

Otherwise, the hardness of (DA)1-CCV would be rooted in the fact that we
can create an exponential number of paths in our hardness construction.

There are several interesting directions for future research. Since most of
the colored cut games are hard for higher classes of the polynomial hierarchy,
it is unlikely that we can reduce them in polynomial time to ILP or SAT. This
also limits the use of ILP or SAT solvers for these problems. To circumvent
this obstacle, one might study whether there are parameterized reductions from

32

Table 1: Classic Complexity of Colored (s, t)-Cut, (DA)i-CCR, A(DA)i-CCR, and
(DA)∗-CCR in general and in some restricted graph classes.

Colored (s, t)-Cut (DA)i-CCR A(DA)i-CCR (DA)∗-CCR
general NP-c [9, 17] ΣP

2i-c ΠP
2i+1-c PSPACE-c

subcubic ∈ P ΣP
2i-c ΣP

2i-h PSPACE-c

bipartite NP-c [31] ΣP
2i-c ΠP

2i+1-c PSPACE-c
planar
bipartite
planar ∈ P ΣP

2i-c ΣP
2i-h PSPACE-c

subcubic
uncolored ∈ P [19, 14] NP-h [20] NP-h NP-h

NP-c if i = 1
every color ∈ P [30] NP-h NP-h NP-h
in ≤ 2
(s, t)-paths NP-c if i = 1

colored cut games to some problem in NP [21]. Moreover, for the uncolored
versions of the colored cut games, only NP-hardness is known. It could be in-
teresting to examine if for increasing number of alternations between defender
and attacker, these problems are also hard for increasing levels of the polyno-
mial hierarchy. Finally, one could investigate further parameterizations for the
colored cut games. One candidate parameter could be C(H), the number of
different color sets in the input graph. Here, an important first step would be to
determine whether the problem of computing C(H) is fixed-parameter tractable
in |C(H)|.

References

[1] Alon, N., Yuster, R., Zwick, U., 1995. Color-coding. Journal of the ACM
42, 844–856.

[2] Arora, S., Barak, B., 2009. Computational Complexity - A Modern Ap-
proach. Cambridge University Press.

[3] Ben-Ari, M., 2012. Mathematical Logic for Computer Science, 3rd Edition.
Springer.

[4] Bordini, A., Protti, F., da Silva, T.G., de Sousa Filho, G.F., 2019. New al-
gorithms for the minimum coloring cut problem. International Transactions
in Operational Research 26, 1868–1883.

[5] Bresar, B., Kardos, F., Katrenic, J., Semanisin, G., 2011. Minimum k-path
vertex cover. Discrete Applied Mathematics 159, 1189–1195.

[6] Bruno, J., Weinberg, L., 1970. A constructive graph-theoretic solution of
the Shannon switching game. IEEE Transactions on Circuit Theory 17,
74–81.

33

[7] Cervený, R., Suchý, O., 2019. Faster FPT algorithm for 5-path vertex
cover, in: Proceedings of the 44th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’19), Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. pp. 32:1–32:13.

[8] Chase, S.M., 1972. An implemented graph algorithm for winning Shannon
switching games. Communications of the ACM 15, 253–256.

[9] Coudert, D., Datta, P., Perennes, S., Rivano, H., Voge, M., 2007. Shared
risk resource group complexity and approximability issues. Parallel Pro-
cessing Letters 17, 169–184.

[10] Coudert, D., Pérennes, S., Rivano, H., Voge, M., 2016. Combinatorial op-
timization in networks with shared risk link groups. Discrete Mathematics
& Theoretical Computer Science 18.

[11] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk,
M., Pilipczuk, M., Saurabh, S., 2015. Parameterized Algorithms. Springer.

[12] Dell, H., van Melkebeek, D., 2014. Satisfiability allows no nontrivial spar-
sification unless the polynomial-time hierarchy collapses. Journal of the
ACM 61, 23:1–23:27.

[13] Downey, R.G., Fellows, M.R., 2013. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science, Springer.

[14] Edmonds, J., Karp, R.M., 1972. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM 19, 248–264.

[15] Erdös, P., Rado, R., 1960. Intersection theorems for systems of sets. Journal
of the London Mathematical Society 1, 85–90.

[16] Even, S., Tarjan, R.E., 1976. A combinatorial problem which is complete
in polynomial space. Journal of the ACM 23, 710–719.

[17] Fellows, M.R., Guo, J., Kanj, I.A., 2010. The parameterized complexity of
some minimum label problems. Journal of Computer and System Sciences
76, 727–740.

[18] Flum, J., Grohe, M., 2006. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series, Springer.

[19] Ford, L.R., Fulkerson, D.R., 1956. Maximal flow through a network. Cana-
dian Journal of Mathematics 8, 399–404.

[20] Grüttemeier, N., Komusiewicz, C., Morawietz, N., Sommer, F., 2021. Pre-
venting small (s, t)-cuts by protecting edges, in: Proceedings of the 47th
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG ’21), Springer. pp. 143–155.

34

[21] de Haan, R., Szeider, S., 2019. A compendium of parameterized problems
at higher levels of the polynomial hierarchy. Algorithms 12, 188.

[22] Klein, S., Faria, L., Sau, I., Sucupira, R., Souza, U., 2016. On colored
edge cuts in graphs, in: Proceedings of the 1st Encontro de Teoria da
Computaçao (ETC ’16), CSBC. pp. 780–783.

[23] Mirkovic, J., Reiher, P., Papadopoulos, C., Hussain, A., Shepard, M.,
Berg, M., Jung, R., 2008. Testing a collaborative DDoS defense in a red
team/blue team exercise. IEEE Transactions on Computers 57, 1098–1112.

[24] Morawietz, N., 2019. Computational Complexity of Network Robustness
in Edge-Colored Graphs. Master’s thesis. Philipps-Universität Marburg.

[25] Morawietz, N., Grüttemeier, N., Komusiewicz, C., Sommer, F., 2020. Re-
fined parameterizations for computing colored cuts in edge-colored graphs,
in: Proceedings of the 46th International Conference on Current Trends in
Theory and Practice of Informatics (SOFSEM ’20), Springer. pp. 248–259.

[26] Nesetril, J., de Mendez, P.O., 2006. Tree-depth, subgraph coloring and
homomorphism bounds. European Journal of Combinatorics 27, 1022–
1041.

[27] Niedermeier, R., 2006. Invitation to Fixed-Parameter Algorithms. Oxford
University Press.

[28] Rahman, M.L., Watson, T., 2021. 6-Uniform Maker-Breaker game is
PSPACE-complete, in: Proceedings of the 38th International Symposium
on Theoretical Aspects of Computer Science (STACS ’21), Schloss Dagstuhl
- Leibniz-Zentrum für Informatik. pp. 57:1–57:15.

[29] Schaefer, T.J., 1978. On the complexity of some two-person perfect-
information games. Journal of Computer and System Sciences 16, 185–225.

[30] Sucupira, R.A., 2017. Problemas de cortes de arestas maximos e mínimos
em grafos. Ph.D. thesis. Universidade Federal do Rio de Janeiro.

[31] Wang, Y., Desmedt, Y., 2011. Edge-colored graphs with applications to
homogeneous faults. Information Processing Letters 111, 634–641.

[32] Yuan, S., Varma, S., Jue, J.P., 2005. Minimum-color path problems for
reliability in mesh networks, in: Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFO-
COM ’05), pp. 2658–2669.

[33] Zenklusen, R., 2010. Matching interdiction. Discrete Applied Mathematics
158, 1676–1690.

[34] Zhang, P., Fu, B., 2016. The label cut problem with respect to path length
and label frequency. Theoretical Computer Science 648, 72–83.

35

