
On the Parameterized Complexity of Consensus

Clustering⋆

Martin Dörnfelder1, Jiong Guo1, Christian Komusiewicz2, Mathias Weller2

1 Universität des Saarlandes,
Campus E 1.7, D-66123 Saarbrücken, Germany.

{mdoernfe,jguo}@mmci.uni-saarland.de
2 Institut für Softwaretechnik und Theoretische Informatik,

Technische Universität Berlin, D-10587 Berlin, Germany
{christian.komusiewicz, mathias.weller}@tu-berlin.de

Abstract. Given a collection C of partitions of a base set S, the NP-hard
Consensus Clustering problem asks for a partition of S which has a
total Mirkin distance of at most t to the partitions in C, where t is a non-
negative integer. We present a parameterized algorithm for Consensus

Clustering with running time O(4.24k ·k3+ |C| · |S|2), where k := t/|C|
is the average Mirkin distance of the solution partition to the partitions
of C. Furthermore, we strengthen previous hardness results for Con-

sensus Clustering, showing that Consensus Clustering remains
NP-hard even when all input partitions contain at most two subsets.
Finally, we study a local search variant of Consensus Clustering,
showing W[1]-hardness for the parameter “radius of the Mirkin-distance
neighborhood”. In the process, we also consider a local search variant of
the related Cluster Editing problem, showing W[1]-hardness for the
parameter “radius of the edge modification neighborhood”.

1 Introduction

The NP-hard Consensus Clustering problem aims at reconciling the infor-
mation that is contained in multiple clusterings of a base set S. More precisely,
the input of a Consensus Clustering instance is a multi-set C of partitions
of a base set S into subsets, also referred to as clusters, and the aim is to find a
partition of S that is similar to C. Herein, the similarity between two partitions
is measured as follows. Two elements a, b ∈ S are co-clustered in a partition C
of S, if a and b are in the same cluster of C, and anti-clustered, if a and b
are in different clusters of C. For two partitions C and C′ of S and a pair of
elements a, b ∈ S, let δ{C,C′}(a, b) = 1 if a and b are anti-clustered in C and co-
clustered in C′ or vice versa, and δ{C,C′}(a, b) = 0, otherwise. Then, the Mirkin
distance dist(C,C′) :=

∑

{a,b}⊆S δ{C,C′}(a, b) between two partitions C and C′

of S is the number of pairs a, b ∈ S that are clustered “differently” by C and C′.

⋆ Supported by the DFG Excellence Cluster on Multimodal Computing and Interac-
tion (MMCI) and DFG project DARE (NI 369/11).

To appear in Proceedings of the 22nd International Symposium on Algorithms
and Computation (ISAAC’11), Yokohama, Japan, Decemer 2011, Volume 7074
of LNCS. c© Springer

The total Mirkin distance between a partition C and a multi-set C of parti-
tions is defined as dist(C, C) := ∑

C′∈C dist(C,C
′). Altogether, the Consensus

Clustering problem is defined as follows.

Input: A multi-set of partitions C = (C1, . . . , Cn) of a base set S =
{1, 2, . . . ,m} and an integer t ≥ 0.
Question: Is there a partition C of S with dist(C, C) ≤ t?

Consensus Clustering has applications, for instance, in gene expression data
analysis [13], clustering categorical data, improving clustering robustness, and
preserving privacy [9]. The NP-hardness of Consensus Clustering was shown
several times [12,16]. For n = 2, that is, with two input partitions, it is solv-
able in polynomial time: either input partition minimizes t. In contrast, already
for n = 3 minimizing t is APX-hard [5]. The variant of Consensus Clus-

tering where the output partition is required to have at most d ≥ 2 sub-
sets, d being a constant, is NP-hard for every d ≥ 2 [4] but it admits a PTAS
for minimizing t [4,6,11]. Various heuristics for Consensus Clustering have
been experimentally evaluated [2,10]. Consensus Clustering is closely related
to Cluster Editing [15], also known as Correlation Clustering [1].

Until now, the study of the parameterized complexity [7,8,14] of Consensus

Clustering seems to be neglected. One reason for this might be the lack of an
obvious reasonable parameter for this problem: First, the overall Mirkin distance
of solutions is usually not small in practice: every element pair that is co-clustered
in at least one partition and anti-clustered in at least one other partition con-
tributes at least one to this parameter. Second, Consensus Clustering is triv-
ially fixed-parameter tractable with respect to the number m of elements but m
is also unlikely to take small values in real-world instances. Finally, Consensus

Clustering is NP-hard for n = 3, ruling out fixed-parameter tractability with
respect to n. Betzler et al. [3] considered the parameter “average Mirkin dis-
tance p between the input partitions”, that is, p :=

∑

i6=j dist(Ci, Cj)/(n(n−1)),
and presented a “partial kernelization” for this parameter. More precisely, they
presented a set of polynomial-time data reduction rules whose application yields
an instance with |S| = O(p) [3]. Then, checking all possible partitions of S gives
an optimal solution, resulting in a fixed-parameter algorithm for the parameter p.
Since the Mirkin distance is a metric, the average Mirkin distance of solution par-
titions k := t/n is at least p/2 [3]. Hence, the above also implies fixed-parameter
tractability with respect to k. However, the brute-force check of all possible par-
titions of S leads to an impractical running time of roughly 2O(k log k) poly(n,m).

Motivated by these observations, we study several parameterizations of Con-

sensus Clustering. First, we complement the partial kernelization result by
presenting a search tree algorithm with running time O(4.24k ·k3+nm2). Second,
we consider the parameter “maximal number of clusters in any input partition”.
We show that Consensus Clustering remains NP-hard even if every input
partition consists of at most two clusters, ruling out fixed-parameter tractabil-
ity for this parameter. We also strengthen the result of Bonizzoni et al. [4] by
showing that, even if all input partitions contain at most two clusters, seek-
ing a solution partition with at most two clusters remains NP-hard. Finally, we

2

consider a local search variant of Consensus Clustering showing that, given
in addition to C and S a partition C of S, the problem of deciding whether
there is a partition C′ such that dist(C′, C) < dist(C, C) and dist(C′, C) ≤ d
for some integer d ≥ 0, is W[1]-hard with respect to d. Moreover, we also show
W[1]-hardness of a local search variant of Cluster Editing. Due to the lack
of space, several details are deferred to a full version of this article.

Preliminaries. Given a base set S and a multi-set C of partitions of S, let n := |C|
and m := |S|. We use co(a, b) for a, b ∈ S to denote the number of partitions
in C where a and b are co-clustered and use anti(a, b) to denote the number of
partitions where a and b are anti-clustered. Clearly, n = co(a, b)+ anti(a, b). For
a partition C of S and elements a, b ∈ S, the function distC(a, b) is defined as
the number of partitions in C in which a, b are clustered in a different way than
in C. More precisely, if a and b are co-clustered in C, then distC(a, b) = anti(a, b);
otherwise, distC(a, b) = co(a, b). Clearly, dist(C, C) = 1/2 ·∑{a,b}⊆S distC(a, b).

2 A Search Tree Algorithm for the Average Mirkin

Distance

In this section, we present a search tree algorithm for Consensus Clustering

parameterized by the average Mirkin distance k := t/n of a solution partition to
the set of input partitions C. The main idea of this search tree algorithm follows
the standard paradigm of branching algorithms in parameterized algorithmics:
branch into a bounded number of cases and decrease the parameter in each case.
The difficulty for using this approach for the parameter k lies in the fact that
for a pair of elements a, b ∈ S the values of either co(a, b) or anti(a, b) can be
arbitrarily small for increasing n. When branching on such element pairs, the
parameter might not really decrease in some cases. We circumvent this problem
by finding a way to always branch into at most two cases, decreasing k by at
least 1/3 in each case. In the following, we describe this approach in detail.

Description of the algorithm. The algorithm consists of two phases, the first
phase is a search tree algorithm and the second phase is a polynomial-time
algorithm solving the remaining instances at the leaves of the search tree. Each
node v of the search tree is associated with a partition Cv of S, called “temporary
solution”, and a list Lv, called “separation list”, that contains pairs of subsets
in Cv. These two data structures restrict the partitions we are seeking in the
subtree rooted at v: The temporary solution Cv requires that the elements co-
clustered by Cv will remain co-clustered in the final solution sought for. The
separation list Lv requires that in the solution for each pair {K1,K2} ∈ Lv the
elements in K1 are in different subsets than the elements in K2. In each search
tree node, we keep track of the average Mirkin distance that is already caused
by the constraints of Cv and Lv. To this end, consider the following.

Let U be the set of all unordered pairs {a, b} of elements a, b ∈ S with a 6=
b. Based on Cv and Lv, we divide U into two subsets. The first subset U1

v

3

contains the “resolved pairs”, that is, the pairs of elements that are either co-
clustered in Cv or contained in two subsets forming a pair in Lv. The other
subset U2

v := U \ U1
v contains the “unresolved pairs”. Then, each node carries

a rational number kv, called the “average Mirkin distance bound for unresolved
pairs”, which means that in the subtree rooted at v we seek only partitions C
with 1/n ·∑{a,b}∈U2

v

distC(a, b) ≤ kv.

At the root r of the search tree, we start with the partition Cr := {{i} | i ∈
S} where all elements are in distinct sets, an empty separation list, and kr =
k = t/n. At every node v of the search tree, we branch into two cases, each
performing one of the following two operations on two subsets Xi and Xj in Cv.
One operation “merges” Xi and Xj, that is, it removes Xi and Xj from Cv and
adds Xi ∪Xj to Cv. The other operation “separates” Xi and Xj , that is, it adds
the subset pair {Xi, Xj} to the separation list Lv.

To give a formal description of the search tree we introduce the following
notations. Let X and Y be two subsets of S that are contained in the temporary
solution Cv of a search tree node v, and let Lv be the separation list of v. If X
and Y do not form a pair in Lv, then we define cov(X,Y) :=

∑

a∈X

∑

b∈Y co(a, b)
and antiv(X,Y) :=

∑

a∈X

∑

b∈Y anti(a, b); otherwise, we set cov(X,Y) := 0
and antiv(X,Y) := ∞. Moreover, we say that the predicate (XY)v is true
iff antiv(X,Y) < n/3, X ↔v Y is true iff cov(X,Y) < n/3, and X#vY is
true iff cov(X,Y) ≥ n/3 and antiv(X,Y) ≥ n/3. If X#vY holds, we call X
and Y a dirty subset pair. Three subsets X , Y , and Z are called a dirty subset
triple, if (XY)v, (Y Z)v, and X ↔v Z are true.

The search tree algorithm uses two branching rules, the dirty pair rule and
the dirty triple rule. In the following, let v denote the node of the search tree
in which the rules are applied. Both rules branch into two cases, referred to
as v1 and v2. Furthermore, branching into case v1 (case v2) is only performed
if kv1 ≥ 0 (kv2 ≥ 0); we refer to this as the stop criterion.

Branching Rule 1 (Dirty pair rule) If Cv contains two subsets X and Y
with X#vY , then branch into the following two cases.

– Case v1: merge X and Y and set kv1 := kv − 1/n · antiv(X,Y).
– Case v2: separate X and Y and set kv2 := kv − 1/n · cov(X,Y).

In case the dirty pair rule is not applicable, because there is no dirty pair, we
apply the following rule.

Branching Rule 2 (Dirty triple rule) If Cv contains three subsets X, Y ,
and Z such that (XY)v, (Y Z)v, and X ↔v Z, then branch into the following
two cases.

– Case v1: separate X and Y and set kv1 := kv − 1/n · cov(X,Y).
– Case v2: separate Y and Z and set kv2 := kv − 1/n · cov(Y, Z).

We call a search tree node in which neither branching rule can be applied
a leaf of the search tree. At the leaves the algorithm enters its second phase in
which the temporary solution Cv is modified into a complete solution as follows.

4

As long as possible, merge all subset pairs X and Y for which (XY)v holds
and, after each merge operation, update kv := kv−1/n ·antiv(X,Y). Afterwards,
if kv ≥ 0 then output Cv (or, alternatively, answer “yes”) and terminate the
algorithm. If there is no search tree leaf in which a partition is output, then
answer “no”.

Correctness of the algorithm. We now show the correctness of the algorithm. In
the following, a partition C of S satisfies the restrictions of a search tree node v
if C fulfills the following three conditions:

(C1) for every subset X ∈ Cv, there is a subset Z ∈ C with X ⊆ Z,
(C2) for every pair {X,Y } in Lv, there are two subsets Z,Z ′ ∈ C with Z 6= Z ′,

X ⊆ Z, and Y ⊆ Z ′, and
(C3) 1/n ·∑{a,b}∈U2

v

distC(a, b) ≤ kv.

We say that a branching rule is sound if each partition C satisfying the
restrictions of a node v, satisfies the restrictions of one of the child nodes created
by applying this rule to v.

Lemma 1. Both branching rules are sound.

The following lemma shows the correctness of the second phase of the algorithm.
More precisely, it states that the operations performed in a leaf v of the search
tree yield a partition C that, of all partitions satisfying the restrictions of v, has
minimum distance to the input partitions.

Lemma 2. Let v be a leaf of the search tree, and let D be the set of parti-
tions satisfying the restrictions of v. Then, there exists a partition C ∈ D such
that dist(C, C) = minC′∈D dist(C′, C) and for all X,Y ∈ Cv, the following holds:

(a) If (XY)v, then there is a subset Z ∈ C with X ⊆ Z and Y ⊆ Z.
(b) If X ↔v Y , then there are two subsets Z,Z ′ ∈ C with Z 6= Z ′, X ⊆ Z,

and Y ⊆ Z ′ .

Altogether, this implies the following.

Proposition 1. The algorithm is correct.

Running time analysis. Next, we bound the running time of the algorithm. The
exponential part of the running time clearly depends on the size of the search
tree, that is, on the number of search tree nodes. A rough estimation of this size
is as follows.

At each node v of the search tree, we either merge or separate two sub-
sets X,Y ∈ Cv. Both operations cause a decrease of the average Mirkin dis-
tance bound kv. More precisely, the dirty pair rule decreases kv either by 1/n ·
antiv(X,Y) or 1/n · cov(X,Y). Since X and Y form a dirty subset pair, kv
is decreased by at least 1/3 in both cases. Branching on a dirty triple X , Y ,
and Z with (XY)v, (Y Z)v, and X ↔v Z causes separation of X and Y in one
case and separation of Y and Z in the other case. The bound kv is decreased

5

by 1/n·cov(X,Y) and 1/n·cov(Y, Z), respectively. Since (XY)v and (Y Z)v hold,
the distance bound kv is decreased by at least 2/3 in both cases. Since kv < 0 is
a stop criterion for the search tree, the size of the tree is thus O(23k) = O(8k).
Using this simple analysis, one obtains a running time bound of 8k · poly(n,m).
In the following, we give a more detailed analysis of the search tree size. In the
proof, we use φ := (1 +

√
5)/2 to denote the golden ratio.

Theorem 1. Consensus Clustering can be solved in O(4.24k · k3 + nm2)
time.

Proof. We show only the size of the search tree, the proof of the polynomial
running time part is deferred to a long version of this article. More precisely,
we show that the search tree has size at most (2/

√
5)φ3k+2 − 1. To this end,

we consider an arbitrary node v in the tree and estimate the size of the subtree
rooted at v. Clearly, kv ≥ 0 for every node v in the tree. We consider three cases
for the value of kv and prove the size bound for each case.

Case 1: 0 ≤ kv < 1/3. Then, the two cases created by applying one of the two
branching rules both have average Mirkin distance bounds at most kv−1/3 < 0.
Hence, the search tree has only one node. Since 3kv + 2 ≥ 2 for kv ≥ 0, it holds

that (2/
√
5)φ3kv+2 − 1 ≥ (2/

√
5)φ2 − 1 = 1+2

√
5+5

2
√
5

− 1 = 3√
5
> 1. Thus, the

claimed search tree size bound holds in this case.
Case 2: 1/3 ≤ kv < 1/2. If the dirty triple rule is applied, then kv is

decreased by at least 2/3 in both cases. Therefore, the rule creates no child node
for v, and the claimed search tree size bound holds as shown above. If the dirty
pair rule is applied to a dirty subset pair X,Y ∈ Cv, then kv is decreased by 1/n ·
cov(X,Y) in one case and by 1/n·antiv(X,Y) in the other case. Since cov(X,Y)+
antiv(X,Y) = |X | · |Y | · n, at least one of 1/n · cov(X,Y) and 1/n · antiv(X,Y)
is greater than 1/2. Consequently, v has at most one child node. Since Case 1
applies to this child node, the subtree rooted at v contains at most two nodes.
Since 3kv + 2 ≥ 3 for k ≥ 1/3 and

(2/
√
5)φ3 − 1 =

1 + 3
√
5 + 15 + 5

√
5

4
√
5

− 1 =
4 + 2

√
5√

5
− 1 =

4√
5
+ 1 > 2,

the claimed search tree size bound holds for this case.
Case 3: kv ≥ 1/2. As argued above, the dirty pair rule creates at most

two child nodes, v1 with kv1 := kv − 1/n · cov(X,Y) and v2 with kv2 :=
kv−1/n ·antiv(X,Y), while the dirty triple rule adds at most two child nodes, v1
with kv1 := kv − 1/n · cov(X,Y) and v2 with kv2 := kv − 1/n · cov(Y, Z).
Since cov(X,Y) + antiv(X,Y) = |X | · |Y | · n, we have antiv(X,Y) ≥ n/3
and cov(X,Y) ≥ n/3 for a dirty subset pair X,Y . Therefore, we have kv1 ≤ kv−α
and kv2 ≤ kv − 1 + α for some α with 1/3 ≤ α < 2/3. Due to symmetry, we can
assume 1/3 ≤ α ≤ 1/2. Moreover, for the dirty subset triple, we have (XY)v
and (Y Z)v, implying 1/n·cov(X,Y) ≥ 2/3 and 1/n·cov(Y, Z) ≥ 2/3. As the func-
tion (2/

√
5)φ3k+2 − 1 is monotonically increasing on k, we can use kv1 = kv − α

and kv2 = kv − 1 + α with 1/3 ≤ α ≤ 1/2 to obtain an upper bound on the size
of the subtree rooted at v, that is, in our analysis the worst-case search tree size

6

bound is obtained for the dirty pair rule. Assume, by an inductive argument,
that the search tree size bound holds for all k′ < kv. Clearly, the size of the
subtree rooted at v is at most

[

(2/
√
5)φ3(kv−1+α)+2 − 1

]

+
[

(2/
√
5)φ3(kv−α)+2 − 1

]

+ 1.

We differentiate this bound with respect to α to find local extrema:

d
dα (2/

√
5)φ3(kv−1+α)+2 + (2/

√
5)φ3(kv−α)+2 − 1

= 6√
5
log

(

2
1+

√
5

)

[

φ3(kv−1+α) − φ3(kv−α)
]

.

This term equals zero only if kv − 1 + α = kv − α, that is, if α = 1/2. Thus, the
candidates for the maximum are the critical point α = 1/2 and the endpoints
of the interval [1/3, 1/2]. For α = 1/2, the search tree has size at most (4/

√
5) ·

φ3kv+1/2−1 and for α = 1/3 the search tree has size at most (2/
√
5) ·φ3kv+2−1.

Hence, the claimed search tree size bound holds in this case as well.
Summarizing, the upper bound of (2/

√
5)φ3kv+2 − 1 holds for all kv ≥ 0 and

thus we can construct the search tree in O(φ3k+2 · k3) = O(4.24k · k3) time. The
overall running time bound follows. ⊓⊔

3 NP-Hardness for Input Partitions with a Bounded

Number of Clusters

Bonizzoni et al. [4] proved that the variation of Consensus Clustering in
which the solution C is required to contain at most d clusters, is NP-hard for
every d ≥ 2. First, we consider—instead of solution partitions with a bounded
number of clusters—instances (C, t) in which each input partition has at most d′

clusters, that is, d′ := maxC∈C |C|. We show that Consensus Clustering is
fixed-parameter intractable with respect to d′ by proving the following.

Theorem 2. Consensus Clustering remains NP-hard, even if all input par-
titions have at most two subsets.

Next, we strengthen the hardness result of Bonizzoni et al. [4] by showing that
it is NP-hard to find solution partitions with at most two clusters even if every
input partition has at most two clusters.

Consensus Clustering with 2-Partitions (CC2P)
Input: A multi-set of partitions C = (C1, . . . , Cn) of a base set S =
{1, 2, . . . ,m}, where |Ci| ≤ 2 for all 1 ≤ i ≤ n, and an integer t ≥ 0.
Question: Is there a partition C of S with |C| ≤ 2 and dist(C, C) ≤ t?

Theorem 3. CC2P is NP-hard.

With introducing some dummy elements, one can then easily prove that Con-

sensus Clustering is also NP-hard if the input partitions have at most d ≥ 3
subsets and we ask for a partition with at most d subsets. Moreover, for ev-
ery d ≥ 2, a similar reduction can be used to show the NP-hardness in case
the input partitions contain exactly d subsets and we ask for a partition with
exactly d subsets.

7

4 Hardness of Local Search

In this section, we study the parameterized complexity of the following local
search variant of Consensus Clustering:

Consensus Clustering with Mirkin-Local Search (CCML)
Input: A multi-set C = (C1, . . . , Cn) of partitions of a base set S =
{1, 2, . . . ,m}, a partition C of S, a nonnegative integer d.
Question: Is there a partition C′ of S such that dist(C′, C) < dist(C, C)
and dist(C,C′) ≤ d?

The study of CCML is motivated as follows. For a given multi-set C of input
partitions, a partition that has an average Mirkin distance at most k to C trivially
has Mirkin distance at most k to at least one of the input partitions. Moreover,
it could be that there is one input partition to which this optimal partition has
a Mirkin distance d ≪ k. Hence, a good strategy to find a partition with average
distance at most k to C could be to search in the local neighborhood of the
input partitions. Unfortunately, as we show in the following, it is unlikely that a
running time of f(d) · poly(n,m) can be achieved for this local search problem.

We present a parameterized reduction from the W[1]-hard Clique prob-
lem [7]. More precisely, we reduce a variant of Clique in which there is at least
one vertex in the input graph that is adjacent to all other vertices.

Clique with Universal Vertex

Input: An undirected graph G = (V,E) with a vertex u ∈ V such
that N [u] = V , and a nonnegative integer k.
Question: Is there a clique of size k in G?

The W[1]-hardness of Clique with Universal Vertex with respect to k
follows from a straightforward reduction from Clique. For notational simplicity,
we assume that k is an odd number in the following; the problem clearly remains
W[1]-hard with this further restriction.

Given an instance (G = (V,E), k) of Clique with Universal Vertex,
we construct an instance of CCML as follows. The base set S consists of the
vertex set V and of (|V | · (k − 1)/2) − 1 further elements. More precisely, for
each vertex v ∈ V \ {u}, we create an element set Sv := {v1, . . . , v(k−1)/2}, and
for the universal vertex u, we create an element set Su := {u1, . . . , u(k−1)/2−1}.
The complete element set is then S := V ∪ Su ∪⋃

v∈V \{u} Sv.

We construct a CCML instance in which C consists of n := 2|E|+1 partitions
of S. The first |E| partitions consist of one cluster that completely contains S:

Ci := {S}, 1 ≤ i ≤ |E|.

For each {v, w} ∈ E we create one partition containing {v, w} as one cluster and
a singleton cluster for each of the other elements. Let E = {e1, . . . , e|E|}. Then
these partitions are formally defined as

C|E|+i := {ei} ∪ {{s} | s ∈ S \ ei}, 1 ≤ i ≤ |E|.

8

Finally, we create one partition that, for each v ∈ V , contains a cluster that
contains v and Sv:

C2|E|+1 := {{v} ∪ Sv | v ∈ V }.
Overall, the following can be observed for this set of partitions. Two vertices that
are adjacent in G are co-clustered in |E|+1 partitions of the CCML instance. Two
vertices that are not adjacent in G are co-clustered in |E| partitions. Further-
more, each pair of elements v ∈ V and w ∈ S \ V , is co-clustered in |E|+1 par-
titions if w ∈ Sv, and co-clustered in |E| partitions, otherwise. Finally, each pair
of elements v, w ∈ S \ V is co-clustered in |E|+ 1 partitions if there is an x ∈ V
such that v ∈ Sx and w ∈ Sx and co-clustered in |E| partitions, otherwise. Con-
sequently, for each pair of elements v, w ∈ S we have | co(v, w)− anti(v, w)| = 1.

The partition C of the instance is defined exactly as the partition C2|E|+1,
that is, for each v ∈ V , C contains the cluster {v} ∪ Sv. We conclude the
construction of the CCML instance by setting d := k · (k − 1)− 1.

The main idea behind the construction is that with the Sv’s and by set-
ting d := k · (k − 1) − 1 we can enforce that in a “better” partition within
distance d there is a cluster with exactly k elements from V . The elements of
this cluster must then induce a clique in G since otherwise the partition is not
better than C.

Theorem 4. CCML parameterized by the radius d of the Mirkin-distance neigh-
borhood is W[1]-hard.

In the construction above we have | co(v, w)−anti(v, w)| = 1 for each element
pair v, w ∈ S. Consequently, each element pair causes a Mirkin distance of at
least |E| and at most |E| + 1 in any solution. Hence, the Consensus Clus-

tering instance can also be formulated as an “equivalent” instance of Cluster

Editing. We can modify the construction above to also show the hardness of a
local search variant for Cluster Editing.

Cluster Editing with Edge-Modification-Local Search

Input: An undirected graph G = (V,E), a cluster graph C = (V,E′),
and a nonnegative integer k.
Question: Is there a cluster graph C′ = (V,E′′) such that dist(G,C′) <
dist(G,C) and dist(C,C′) ≤ k?

Herein, a cluster graph is a disjoint union of complete graphs and dist(G =
(V,E), H = (V,E′)) := |(E \E′)∪ (E′ \E)| denotes the number of edge modifi-
cations needed to transform a graph G into a graph H . In complete analogy to
Theorem 4, we can show the following.

Theorem 5. Cluster Editing with Edge-Modification-Local Search

parameterized by the radius k of the edge-modification neighborhood is W[1]-hard.

5 Conclusion

There are many possibilities for further research concerning Consensus Clus-

tering. For instance, comparing our algorithm with known heuristics for Con-

sensus Clustering would be interesting. Also, further parameters should be

9

considered for Consensus Clustering. For example, what is the complexity
of Consensus Clustering when for each input partition, every cluster has
a bounded number of elements? Also, the previously known partial kerneliza-
tion implies fixed-parameter tractability [3] for the parameter “number of dirty
element pairs”. Are there efficient fixed-parameter algorithms for this parame-
ter? Finally, it would be interesting to consider further parameters for the local
search variant of Consensus Clustering. For example, is this problem fixed-
parameter tractable when the number n of input partitions is bounded?

References

1. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Mach. Learn., 56(1):89–
113, 2004.

2. M. Bertolacci and A. Wirth. Are approximation algorithms for consensus clustering
worthwhile? In Proc. 7th SDM, pages 437–442. SIAM, 2007.

3. N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. Average parameterization
and partial kernelization for computing medians. J. Comput. Syst. Sci., 77(4):774–
789, 2011.

4. P. Bonizzoni, G. D. Vedova, and R. Dondi. A PTAS for the minimum consensus
clustering problem with a fixed number of clusters. In Proc. 11th ICTCS, 2009.

5. P. Bonizzoni, G. D. Vedova, R. Dondi, and T. Jiang. On the approximation of
correlation clustering and consensus clustering. J. Comput. Syst. Sci., 74(5):671–
696, 2008.

6. T. Coleman and A. Wirth. A polynomial time approximation scheme for k-
consensus clustering. In Proc. 21st SODA, pages 729–740. SIAM, 2010.

7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
8. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
9. A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM Trans.

Knowl. Discov. Data, 1(1), 2007.
10. A. Goder and V. Filkov. Consensus clustering algorithms: Comparison and refine-

ment. In Proc. 10th ALENEX, pages 109–117. SIAM, 2008.
11. M. Karpinski and W. Schudy. Linear time approximation schemes for the Gale-

Berlekamp game and related minimization problems. In Proc. 41st STOC, pages
313–322. ACM, 2009.

12. M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Inform., 23(3):311–323, 1986.

13. S. Monti, P. Tamayo, J. P. Mesirov, and T. R. Golub. Consensus clustering: A
resampling-based method for class discovery and visualization of gene expression
microarray data. Mach. Learn., 52(1–2):91–118, 2003.

14. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

15. R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete

Appl. Math., 144(1-2):173–182, 2004.
16. Y. Wakabayashi. The complexity of computing medians of relations. Resenhas,

3(3):323–350, 1998.

10

