
A Graph Modification Approach for Finding
Core–Periphery Structures in Protein Interaction

Networks

Sharon Bruckner1, Falk Hüffner2?, and Christian Komusiewicz2

1 International Max Planck Research School for Computational Biology and
Scientific Computing, Ihnestr. 63-73, 14195 Berlin, Germany

sharonb@mi.fu-berlin.de
2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

{falk.hueffner,christian.komusiewicz}@tu-berlin.de

Abstract. The core–periphery model for protein interaction (PPI) net-
works assumes that protein complexes in these networks consist of a
dense core and a possibly sparse periphery that is adjacent to vertices
in the core of the complex. In this work, we aim at uncovering a global
core–periphery structure for a given PPI network. We propose two ex-
act graph-theoretic formulations for this task, which aim to fit the input
network to a hypothetical ground truth network by a minimum number
of edge modifications. In one model each cluster has its own periphery,
and in the other the periphery is shared. We first analyze both models
from a theoretical point of view, showing their NP-hardness. Then, we
devise efficient exact and heuristic algorithms for both models and finally
perform an evaluation on subnetworks of the S. cerevisiae PPI network.

1 Introduction

A fundamental task in the analysis of PPI networks is the identification of protein
complexes and functional modules. Herein, a basic assumption is that complexes
in a PPI network are strongly connected among themselves and weakly connected
to other complexes [22]. This assumption is usually too strict. To obtain a more
realistic network model of protein complexes, several approaches incorporate the
core–attachment model of protein complexes [12]: In this model, a complex is
conjectured to consist of a stable core plus some attachment proteins, which only
interact with the core temporally. In graph-theoretic terms, the core thus is a
dense subnetwork of the PPI network. The attachment (or: periphery) is less
dense, but has edges to one or more cores.

Current methods employing this type of modeling are based on seed grow-
ing [18, 19, 23]. Here, an initial set of promising small subgraphs is chosen as
cores. Then, each core is separately greedily expanded into cores and attach-
ments to satisfy some objective function. The aim of these approaches was to

? Supported by DFG project ALEPH (HU 2139/1).

predict protein complexes [18, 23] or to reveal biological features that are corre-
lated with topological properties of core–periphery structures in networks [19].
In this work, we use core–periphery modeling in a different context. Instead
of searching for local core–periphery structures, we attempt to unravel a global
core–periphery structure in PPI networks.

To this end, we hypothesize that the true network consists of several core–
periphery structures. We propose two precise models to describe this. In the
first model, the core–periphery structures are disjoint. In the second model, the
peripheries may interact with different cores, but the cores are disjoint. Then,
we fit the input data to each formal model and evaluate the results on several
PPI networks.

Our approach. In spirit, our approach is related to the clique-corruption model
of the CAST algorithm for gene expression data clustering [1]. In this model, the
input is a similarity graph where edges between vertices indicate similarity. The
hypothesis is that the objects corresponding to the vertices belong to disjoint
biological groups of similar objects, the clusters. In the case of gene expression
data, these are assumed to be groups of genes with the same function. Assuming
perfect measurements, the similarity graph is a cluster graph, that is, a graph in
which each connected component is a clique.

Because of stochastic measurement noise, the input graph is not a cluster
graph. The task is to recover the underlying cluster graph from the input graph.
Under the assumption that the errors are independent, the most likely cluster
graph is one that disagrees with the input graph on a minimum number of
edges. Such a graph can be found by a minimum number of edge modifications
(that is, edge insertions or edge deletions). This paradigm directly leads to the
optimization problem Cluster Editing [3, 4, 21].

We now apply this approach to our hypothesis that there is a global core–
periphery structure in the PPI networks. In both models detailed here, we assume
that all proteins of the cores interact with each other; this implies that the cores
are cliques. We also assume that the proteins in the periphery interact only with
the cores but not with each other. Hence, the peripheries are independent sets.

In the first model, we assume that ideally the protein interactions give rise
to vertex-disjoint core–periphery structures, that is, there are no interactions
between different cores and no interactions between cores and peripheries of
other cores. Then each connected component has at most one core which is a
clique and at most one periphery which is an independent set. This is precisely
the definition of a split graph.

Definition 1. A graph G = (V,E) is a split graph if V can be partitioned
into V1 and V2 such that G[V1] is an independent set and G[V2] is a clique.

The vertices in V1 are called periphery vertices and the vertices in V2 are called
core vertices. Note that the partition for a split graph is not always unique. Split
graphs have been previously used to model core–periphery structures in social
networks [5]. There, however, the assumption is that the network contains exactly
one core–periphery structure. We assume that each connected component is a

split graph; we call graphs with this property split cluster graphs. Our fitting
model is described by the following optimization problem.

Split Cluster Editing
Input: An undirected graph G = (V,E).
Task: Transform G into a split cluster graph by applying a minimum
number of edge modifications.

In our second model, we allow the vertices in the periphery to be attached to an
arbitrary number of cores, thereby connecting the cores. In this model, we thus
assume that the cores are disjoint cliques and the vertices of the periphery are
an independent set. Such graphs are called monopolar .

Definition 2. A graph is monopolar if its vertex set can be two-partitioned
into V1 and V2 such that G[V1] is an independent set and G[V2] is a cluster
graph. The partition (V1, V2) is called monopolar partition.

Again, the vertices in V1 are called periphery vertices and the vertices in V2 are
called core vertices. Our second fitting model now is the following.

Monopolar Editing
Input: An undirected graph G = (V,E).
Task: Transform G into a monopolar graph by applying a minimum
number of edge modifications and output a monopolar partition.

Clearly, both models are simplistic and cannot completely reflect biological
reality. For example, subunits of protein complexes consisting of two proteins
that first interact with each other and subsequently with the core of a protein
complex are supported by neither of our models. Nevertheless, our models are
less simplistic than pure clustering models that attempt to divide protein interac-
tion networks into disjoint dense clusters. Furthermore, there is a clear trade-off
between model complexity, algorithmic feasibility of models, and interpretability.

Further related work. The related optimization problem Split Editing asks to
transform a graph into a (single) split graph by at most k edge modifications.
Split Editing is, somewhat surprisingly, solvable in polynomial time [13]. An-
other approach of fitting PPI networks to specific graph classes was proposed
by Zotenko et al. [25] who find for a given PPI network a close chordal graph,
that is, a graph without induced cycles of length four or more. The modification
operation is insertion of edges.

Preliminaries. We consider undirected simple graphs G = (V,E) where n := |V |
denotes the number of vertices and m := |E| denotes the number of edges. The
open neighborhood of a vertex u is defined as N(u) := {v | {u, v} ∈ E}. We
denote the neighborhood of a set U by N(U) :=

⋃
u∈U N(u) \ U . The subgraph

induced by a vertex set S is defined as G[S] := (S, {{u, v} ∈ E | u, v ∈ S}).

2K2 C4 C5 bowtienecktieP5

Fig. 1. The forbidden induced subgraphs for split graphs (2K2, C4, and C5) and for
split cluster graphs (C4, C5, P5, necktie, and bowtie).

2 Combinatorial Properties and Complexity

Before presenting concrete algorithmic approaches for the two optimization prob-
lems, we show some properties of split cluster graphs and monopolar graphs
which will be useful in the various algorithms. Furthermore, we present compu-
tational hardness results for the problems which will justify the use of integer
linear programming (ILP) and heuristic approaches.

Split Cluster Editing. Each connected component of the solution has to be a
split graph. These graphs can be characterized by forbidden induced subgraphs
(see Fig. 1).

Lemma 1 ([10]). A graph G is a split graph if and only if G does not contain
an induced subgraph that is a cycle of four or five edges or a pair of disjoint
edges (that is, G is (C4, C5, 2K2)-free).

To obtain a characterization for split cluster graphs, we need to characterize the
existence of 2K2’s within connected components.

Lemma 2. If a connected graph contains a 2K2 as induced subgraph, then it
contains a 2K2 = (V ′, E′) such that there is a vertex v /∈ V ′ that is adjacent to
at least one vertex of each K2 of (V ′, E′).

Proof. Let G contain the 2K2 {x1, x2}, {y1, y2} as induced subgraph. With-
out loss of generality, let the shortest path between any xi, yj be P = (x1 =
p1, p2, . . . , pk = y1). Clearly, k > 2. If k = 3, then x1 and y1 are both adjacent
to p2. Otherwise, if k = 4, then {x2, x1 = p1}, {p3, p4 = y1} is a 2K2 and x1

and p3 are both adjacent to p2. Finally, if k > 4, then P contains a P5 as induced
subgraph. The four outer vertices of this P5 induce a 2K2 whose K2’s each con-
tain a neighbor of the middle vertex. ut

We can now provide a characterization of split cluster graphs.

Theorem 1. A graph G is a split cluster graph if and only if G is a (C4, C5, P5,
necktie, bowtie)-free graph.

Proof. Let G be a split cluster graph, that is, every connected component is a
split graph. Clearly, G does not contain a C4 or C5. If a connected component
of G contains a P5, then omitting the middle vertex of the P5 yields a 2K2, which

contradicts that the connected component is a split graph. The same argument
shows that the graph cannot contain a necktie or bowtie.

Conversely, let G be (C4, C5, P5, necktie, bowtie)-free. Clearly, no connected
component contains a C4 or C5. Assume for a contradiction that a connected
component contains a 2K2 consisting of the K2’s {a, b} and {c, d}. Then accord-
ing to Lemma 2 there is a vertex v which is, without loss of generality, adjacent
to a and c. If no other edges between the 2K2 and v exist, then {a, b, v, c, d} is
a P5. Adding exactly one of {b, v} or {d, v} creates a necktie, and adding both
edges results in a bowtie. No other edges are possible, since there are no edges
between {a, b} and {c, d}. ut

This leads to a linear-time algorithm for checking whether a graph is a split
cluster graph.

Theorem 2. A forbidden subgraph for a split cluster graph can be found in O(n+
m) time.

Proof. For each connected component, we run an algorithm by Heggernes and
Kratsch [14] that checks in linear time whether a graph is a split graph, and if
not, produces a 2K2, C4, or C5. If the forbidden subgraph is a C4 or C5, we are
done. If it is a 2K2, we can find in linear time a P5, necktie, or bowtie, using the
method described in the proof of Lemma 2. ut

In contrast, Split Cluster Editing is NP-hard even in restricted cases. We
reduce from Cluster Editing which has as input an undirected graph G =
(V,E) and an integer k, and asks whether G can be transformed into a cluster
graph by applying at most k edge modifications. Cluster Editing is NP-
hard even if the maximum degree of the input graph is five [11] and it cannot be
solved in 2o(k) · nO(1) time assuming the so-called exponential-time hypothesis
(ETH) [11, 17]. The reduction simply attaches to each vertex u an additional
degG(v) many new degree-one vertices; we omit the correctness proof.

Theorem 3. Split Cluster Editing is NP-hard even on graphs with maxi-
mum degree 10. Further, it cannot be solved in 2o(k) · nO(1) or 2o(n) · nO(1) time
if the exponential-time hypothesis (ETH) [15] is true.

This hardness result motivates the study of algorithmic approaches such as
fixed-parameter algorithms or ILP-formulations. For example, Split Cluster
Editing is fixed-parameter tractable for the parameter number of edge mod-
ifications k by the following search tree algorithm: Check whether the graph
contains a forbidden subgraph. If this is the case, branch into the possibilities
to destroy this subgraph. In each recursive branch, the number of allowed edge
modifications decreases by one. Furthermore, since the largest forbidden sub-
graph has five vertices, at most ten possibilities for edge insertions or deletions
have to be considered to destroy a forbidden subgraph. By Theorem 2, forbidden
subgraphs can be found in O(n+m) time. Altogether, this implies the following.

Theorem 4. Split Cluster Editing can be solved in O(10k · (n+m)) time.

This result is purely of theoretical interest. With further improvements of the
search tree algorithm, practical running times might be achievable.

Monopolar Graphs. The class of monopolar graphs is hereditary, and thus it is
characterized by forbidden induced subgraphs, but the set of minimal forbidden
induced subgraphs is infinite [2]; for example among graphs with five or fewer
vertices, only the wheel W4 () is forbidden, but there are 34 minimal forbidden
subgraphs with six vertices. In contrast to the recognition of split cluster graphs,
which is possible in linear time by Theorem 2, deciding whether a graph is
monopolar is NP-hard [9]. Thus Monopolar Editing is NP-hard already for
k = 0 edge modifications.

3 Solution Approaches

Integer Linear Programming. We experimented with a formulation based di-
rectly on the forbidden subgraphs for split cluster graphs (Theorem 1). How-
ever, we found a formulation based on the following observation to be faster in
practice, and moreover applicable also to Monopolar Editing: If we correctly
guess the partition into clique and independent set vertices, we can get a simpler
characterization of split cluster graphs by forbidden subgraphs.

Lemma 3. Let G = (V,E) be a graph and C ∪̇I = V a partition of the vertices.
Then G is a split cluster graph with core vertices C and periphery vertices I if
and only if it does not contain an edge with both endpoints in I, nor an induced
P3 with both endpoints in C.

Proof. “⇒”: Clearly, if there is an edge with both endpoints in I or an induced
P3 with both endpoints in C, then I is not an independent set or C does not
form a clique in each connected component, respectively.

“⇐”: We again use contraposition. If G is not a split cluster graph with
core vertices C and periphery vertices I, then it must contain an edge with
both endpoints in I, or C ∩ H does not induce a clique for some connected
component H of G. In the first case we are done; in the second case, there
are two vertices u, v ∈ C in the same connected component with {u, v} /∈ E.
Consider a shortest path u = p1, . . . , pl = v from u to v. If it contains a periphery
vertex pi ∈ I, then pi−1, pi, pi+1 forms a forbidden subgraph. Otherwise, p1, p2, p3
is one. ut

With a very similar proof, we can get a simpler set of forbidden subgraphs
for annotated monopolar graphs.

Lemma 4. Let G = (V,E) be a graph and C ∪̇I = V a partition of the vertices.
Then G is a monopolar graph with core vertices C and periphery vertices I if
and only if it does not contain an edge with both endpoints in I, nor an induced
P3 whose vertices are contained in C.

Proof. “⇒”: Easy to see as in Lemma 3.
“⇐”: If G is not monopolar with core vertices C and periphery vertices I,

then it must contain an edge with both endpoints in I, or C does not induce a
cluster graph. In the first case we are done; in the second case, there is a P3 with
all vertices in C, since that is the forbidden subgraph for cluster graphs. ut

From Lemma 3, we can directly derive an integer linear programming formu-
lation for Split Cluster Editing. We introduce binary variables euv indicating
whether the edge {u, v} is present in the solution graph and binary variables cu
indicating whether a vertex u is part of the core. Defining ēuv := 1 − euv and
c̄u := 1− cu, and fixing an arbitrary order on the vertices, we have

minimize
∑

{u,v}∈E

ēuv +
∑

{u,v}/∈E

euv subject to (1)

cu + cv + ēuv ≥ 1 ∀u, v (2)
ēuv + ēvw + euw + c̄u + c̄w ≥ 1 ∀u 6= v, v 6= w > u. (3)

Herein, Eq. (2) forces that the periphery vertices are an independent set and
Eq. (3) forces that core vertices in the same connected component form a clique.
For Monopolar Editing, we can replace Eq. (3) by

ēuv + ēvw + euw + c̄u + c̄v + c̄w ≥ 1 ∀u 6= v, v 6= w > u (4)

which forces that the graph induced by the core vertices is a cluster graph.

Data Reduction. Data reduction (preprocessing) proved very effective for solv-
ing Cluster Editing optimally [3, 4]. Indeed, any instance can be reduced
to one of at most 2k vertices [7], where k is the number of edge modifications.
Unfortunately, the data reduction rules we devised for Split Cluster Editing
were not applicable to our real-world test instances. However, a simple observa-
tion allows us to fix the values of some variables of Eqs. (1) to (3) in the Split
Cluster Editing ILP: if a vertex u has only one vertex v as neighbor and
deg(v) > 1, then set cu = 0 and euw = 0 for all w 6= v. Since our instances have
many degree-one vertices, this considerably reduces the size of the ILPs.

Heuristics. The integer linear programming approach is not able to solve the
hardest of our instances. Thus, we employ the well-known simulated annealing
heuristic, a local search method. For Split Cluster Editing, we start with a
clustering where each vertex is a singleton. As random modification, we move a
vertex to a cluster that contains one of its neighbors. Since this allows only a
decrease in the number of clusters, we also allow moving a vertex into an empty
cluster. For a fixed clustering, the optimal number of modifications can be com-
puted in linear time by counting the edges between clusters and computing for
each cluster a solution for Split Editing in linear time [13]. For Monopolar
Editing, we also allow moving a vertex into the independent set. Here, the
optimal number of modifications for a fixed clustering can also be calculated
in linear time: all edges in the independent set are deleted, all edges between
clusters are deleted, and all missing edges within clusters are added.

Table 1. Network statistics. Here, n is the number of proteins, without singletons, and
m is the number of interactions; nlcc and mlcc are the number of proteins and inter-
actions in the largest connected component; C is the number of CYC2008 complexes
with at least 50% and at least three proteins in the network, p is the number of net-
work proteins that do not belong to these complexes, and AC is the average complex
size. Finally, ig is the number of genetic interactions between proteins without physical
interaction.

n m nlcc mlcc C p AC ig

cell cycle 196 797 192 795 7 148 21.8 1151
transcription 215 786 198 776 11 54 28.0 1479
translation 236 2352 186 2351 5 88 29.8 174

4 Experimental Results

We test exact algorithms and heuristics for Split Cluster Editing (SCE) and
Monopolar Editing (ME) on several PPI networks, and perform a biological
evaluation of the modules found. We use two known methods for comparison.
The algorithm by Luo et al. [19] (“Luo” for short) produces clusters with core
and periphery, like SCE, but the clusters may overlap and might not cover the
whole graph. The SCAN algorithm [24], like ME, partitions the graph vertices
into “clusters”, which we interpret as cores, and “hubs” and “outliers”, which we
interpret as periphery.

4.1 Experimental setup

Data. We perform all our experiments on subnetworks of the S. cerevisiae (yeast)
PPI network from BioGRID [6], version 3.2.101. Our networks contain only phys-
ical interactions; we use genetic interactions only for the biological evaluation.
From the complete BioGRID yeast network with 6377 vertices and 81549 edges,
we extract three subnetworks, corresponding to three essential processes: cell cy-
cle, translation, and transcription. These are important subnetworks known to
contain complexes. To determine the protein subsets corresponding to each pro-
cess, we select all yeast genes annotated with the relevant GO terms: GO:0007049
(cell cycle), GO:0006412 (translation), and GO:0006351 (DNA-templated tran-
scription). Table 1 shows some properties of these networks.

Implementation details. The integer linear program and simulated annealing
heuristic were implemented in C++ and compiled with the GNU g++ 4.7.2
compiler. As ILP solver, we used CPLEX 12.6.0. For the ILP, we use the heuristic
solution found after one minute as MIP start, and initially add all independent
set constraints (2). In a cutting plane callback, we add the 500 most violated
constraints of type (3) or (4).

The test machine is a 4-core 3.6GHz Intel Xeon E5-1620 (Sandy Bridge-E)
with 10MB L3 cache and 64GB main memory, running Debian GNU/Linux 7.0.

Biological evaluation. We evaluate our results using the following measures.
First, we examine the coherence of the GO terms in our modules using the
semantic similarity score calculated by G-SESAME [8]. We use this score to
test the hypothesis that the cores are more stable than the peripheries. If the
hypothesis is true, then the pairwise similarity score within the core should be
higher than in the periphery. We test only terms relating to process, not function,
since proteins in the same complex play a role in the same biological process.
Since Monopolar Editing and SCAN return multiple cores and only a single
periphery, we assign to each cluster C its neighborhood N(C) as periphery. We
consider only clusters with at least two core vertices and one periphery vertex.

Next, we compare the resulting clusters with known protein complexes from
the CYC2008 database [20]. Since the networks we analyze are subnetworks of
the larger yeast network, we discard for each network the CYC2008 complexes
that have less than 50% of their vertices in the current subnetwork, restrict
them to proteins contained in the current subnetwork, and then discard those
with fewer than three proteins. We expect that the cores mostly correspond to
complexes and that the periphery may contain complex vertices plus further
vertices.

Finally, we analyze the genetic interactions between and within modules.
Ideally, we would obtain significantly more genetic interactions outside of cores
than within them. This is supported by the between pathways model [16], which
proposes that different complexes can back one another up, thus disabling one
would not harm the cell, but disabling both complexes would reduce its fitness
or kill it. Here, when counting genetic interactions, we are interested only in
genetic interactions that occur between proteins that do not physically interact.

4.2 Results

Our results are summarized in Table 2. For Split Cluster Editing, the
ILP approach failed to solve the cell cycle and transcription network, and for
Monopolar Editing, it failed to solve the transcription network, with CPLEX
running out of memory in each case. The fact that for the “harder” problem ME
more instances were solved could be explained by the fact that the number k
of necessary modifications is much lower, which could reduce the size of the
branch-and-bound tree. For the three optimally solved instances, the heuristic
also finds the optimal solution after one minute for two of them, but for the last
one (ME transcription) only after several hours; after one minute, it is 2.9% too
large. This indicates the heuristic gives good results, and in the following, we
use the heuristic solution for the three instances not solvable by ILP.

Table 3 gives an overview of the results. We say that a cluster is interesting
if it contains at least two vertices in the core and at least one in the periphery.
In the cell cycle network (see Fig. 2), the SCE solution identifies ten interesting
clusters, along with four clusters containing only cores, and some singletons. Only
for one of the ten clusters is the GO term coherence higher in the periphery than
in the core, as expected (for two more the scoring tool does not return a result).

Table 2. Experimental results. Here, K is the number of clusters with at least two
vertices in the core and at least one in the periphery, p is the size of the periphery, k
is the number of edge modifications, and ct, cc, and cp is the average coherence within
the cluster, core, and periphery, respectively.

cell-cycle transcription translation

K p k ct cc cp K p k ct cc cp K p k ct cc cp

SCE 10 108 321 0.60 0.64 0.40 13 112 273 0.54 0.54 0.57 6 94 308 0.63 0.73 0.69
ME 24 75 126 0.46 0.58 0.39 26 78 106 0.55 0.61 0.54 11 129 240 0.52 0.58 0.53
SCAN 28 48 — 0.42 0.62 0.34 26 58 — 0.53 0.51 0.47 2 25 — 0.59 0.59 0.76
Luo 16 84 — 0.34 0.50 0.31 12 125 — 0.40 0.52 0.38 4 137 — 0.72 0.84 0.67

Table 3. Experimental results for the complex test. Here, D is the number of detected
complexes (≥ 50% of core contained in complex and ≥ 50% of complex contained in
cluster), core% is among the detected complexes the median percentage of core vertices
that are in this complex and comp% is the median percentage of complex proteins that
are in the cluster.

cell-cycle transcription translation

D core% comp% D core% comp% D core% comp%

SCE 4 100 100 7 89 100 4 100 96
ME 5 100 100 11 100 100 4 100 96
SCAN 4 91 100 8 84 100 0 — —
Luo 5 81 100 6 87 100 4 92 96

Following our hypothesis, we say that a complex is detected by a cluster if at
least 50% of the core belongs to the complex and at least 50% of the complex
belongs to the cluster. Out of the seven complexes, three are detected without
any error, and one is detected with an error of two additional proteins in the
core that are not in the complex. The periphery contains between one and eight
extra proteins that are not in the complex (which is allowed by our hypothesis).

The Monopolar Editing result contains more interesting clusters than
SCE (24). Compared to SCE, clusters are on average smaller and have a smaller
core, but about the same periphery size (recall that a periphery vertex may
occur in more than one cluster). ME detects the same complexes as SCE, plus
one additional complex.

SCAN identifies 7 hubs and 41 outliers, which then comprise the periphery.
SCAN fails to detect one of the complexes ME finds. It also has slightly more
errors, for example having three extra protein in the core for the anaphase-
promoting complex plus one missing. Luo identifies only large clusters (this is
true for all subnetworks we tested). It detects the same complexes as ME, but
also finds more extra vertices in the cores.

In the transcription network, for GO-Term analysis, we see a similar pattern
here that Luo has worse coherence, but all methods show less coherence in the

(a) Complexes (b) SCE cores (c) Monopolar (d) SCAN (e) Luo

Fig. 2. Results of the four algorithms on the cell-cycle network. The periphery is in
white, remaining vertices are colored according to their clusters.

peripheries than in the cores. The ME method comes out a clear winner here
with detecting all 11 complexes and generally fewer errors.

In the translation network, SCE and ME find about the same number of
interesting clusters (22 and 24) and detect the same four complexes. The SCAN
algorithm does not seem to deal well with this network, since it finds only two
interesting clusters and does not detect any complex. Luo finds only four inter-
esting clusters, corresponding to the four complexes also detected by SCE and
ME; this might also explain why it has the best coherence values here.

Counting genetic interactions. Since the identified clusters largely correspond
to known protein complexes, it is not surprising that we identify a higher than
expected number of genetic interactions between these complexes. For SCE, the
binomial test to check whether the frequency of genetic interactions within the
periphery is higher than the frequency in the entire network gives p-values lower
than 4 · 10−7 for all networks, thus the difference is significant.

Experiments conclusion. The coherence values for cores and peripheries indicate
that a division of clusters into core and periphery makes sense. In detecting
complexes, the ME method does best (20 detected), followed by SCE and Luo
(15 each), and finally SCAN (12). This indicates that the model that peripheries
are shared is superior. Note however that SCE is at a disadvantage in this eval-
uation, since it can use each protein as periphery only once, while having large
peripheries makes it easier to count a complex as detected.

5 Outlook

There are many further variants of our models that could possibly yield better
biological results or have algorithmic advantages. For instance, one could restrict
the cores to have a certain minimum size. Also, instead of using split graphs as
a core–periphery model, one could resort to dense split graphs [5] in which every
periphery vertex is adjacent to all core vertices. Finally, one could allow some
limited amount of interaction between periphery vertices.

References

[1] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6(3-4):281–297, 1999.

[2] A. J. Berger. Minimal forbidden subgraphs of reducible graph properties.
Discussiones Mathematicae Graph Theory, 21(1):111–117, 2001.

[3] S. Böcker and J. Baumbach. Cluster editing. In Proc. 9th CiE, volume 7921
of LNCS, pages 33–44. Springer, 2013.

[4] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011.

[5] S. P. Borgatti and M. G. Everett. Models of core/periphery structures.
Social Networks, 21(4):375–395, 1999.

[6] A. Chatr-aryamontri et al. The BioGRID interaction database: 2013 update.
Nucleic Acids Research, 41(D1):D816–D823, 2013.

[7] J. Chen and J. Meng. A 2k kernel for the cluster editing problem. Journal
of Computer and System Sciences, 78(1):211–220, 2012.

[8] Z. Du, L. Li, C.-F. Chen, P. S. Yu, and J. Z. Wang. G-SESAME: web
tools for GO-term-based gene similarity analysis and knowledge discovery.
Nucleic Acids Research, 37(suppl. 2):W345–W349, 2009.

[9] A. Farrugia. Vertex-partitioning into fixed additive induced-hereditary
properties is NP-hard. The Electronic Journal of Combinatorics, 11(1):
R46, 2004.

[10] S. Foldes and P. L. Hammer. Split graphs. Congressus Numerantium, 19:
311–315, 1977.

[11] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger.
Subexponential fixed-parameter tractability of cluster editing. CoRR,
abs/1112.4419, 2011.

[12] A.-C. Gavin et al. Proteome survey reveals modularity of the yeast cell
machinery. Nature, 440(7084):631–636, 2006.

[13] P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica,
1(3):275–284, 1981.

[14] P. Heggernes and D. Kratsch. Linear-time certifying recognition algorithms
and forbidden induced subgraphs. Nordic Journal of Computing, 14(1–2):
87–108, 2007.

[15] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):
512–530, 2001.

[16] R. Kelley and T. Ideker. Systematic interpretation of genetic interactions
using protein networks. Nature Biotechnology, 23(5):561–566, 2005.

[17] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded
modifications. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

[18] H. C. Leung, Q. Xiang, S.-M. Yiu, and F. Y. Chin. Predicting protein
complexes from PPI data: a core-attachment approach. Journal of Compu-
tational Biology, 16(2):133–144, 2009.

[19] F. Luo, B. Li, X.-F. Wan, and R. Scheuermann. Core and periphery struc-
tures in protein interaction networks. BMC Bioinformatics, (Suppl 4):S8,
2009.

[20] S. Pu, J. Wong, B. Turner, E. Cho, and S. J. Wodak. Up-to-date catalogues
of yeast protein complexes. Nucleic Acids Research, 37(3):825–831, 2009.

[21] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
Discrete Applied Mathematics, 144(1–2):173–182, 2004.

[22] V. Spirin and L. A. Mirny. Protein complexes and functional modules in
molecular networks. PNAS, 100(21):12123–12128, 2003.

[23] M. Wu, X. Li, C.-K. Kwoh, and S.-K. Ng. A core-attachment based method
to detect protein complexes in PPI networks. BMC Bioinformatics, 10(1):
169, 2009.

[24] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: a structural
clustering algorithm for networks. In Proc. 13th KDD, pages 824–833. ACM,
2007.

[25] E. Zotenko, K. S. Guimarães, R. Jothi, and T. M. Przytycka. Decomposition
of overlapping protein complexes: a graph theoretical method for analyzing
static and dynamic protein associations. Algorithms for Molecular Biology,
1(7), 2006.

	A Graph Modification Approach for Finding Core–Periphery Structures in Protein Interaction Networks

