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Abstract

Motivated by applications in the analysis of genetic networks, we introduce and
study the NP-hard Module Map problem which has as input a graph G =
(V,E) with red and blue edges and an integer k and asks to transform G by at
most k edge modifications into a graph G′ which has the following properties:
the vertex set of G′ can be partitioned into so-called clusters such that inside
a cluster every pair of vertices is connected by a blue edge and for two distinct
clusters A and B either all vertices u ∈ A and v ∈ B are connected by a red
edge or there is no edge between A and B. We show that Module Map can be
solved in O(3k ·(|V |+|E|)) time and O(2k ·|V |3) time, respectively. Furthermore,
we show that Module Map admits a kernel with O(k2) vertices.

1. Introduction

Graphs are a useful tool for many tasks in data analysis such as graph-based
data clustering or the identification of important agents and connections in
social networks. In graph-based data clustering, the edges in the graph indicate
similarity between the objects that are represented by the vertices. The goal is to
obtain a partition of the vertex set into clusters such that the objects inside each
cluster are similar to each other and objects from different clusters are dissimilar.
One of the central problems in this area is called Cluster Editing [5], also
known as Correlation Clustering [24]. The decision version of Cluster
Editing is formulated as follows.

Cluster Editing
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Can we transform G into a cluster graph, that is, a disjoint
union of cliques, by deleting or adding at most k edges?
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In Cluster Editing, we essentially view clustering as a graph modification
problem: If we can transform G into a cluster graph G′ by at most k edge
modifications, then the connected components of G′ define a partition of V into
clusters such that at most k vertex-pairs of G contradict this partition; these
are exactly the deleted edges and the inserted edges.

In the input graph for Cluster Editing there are two possible states for
each pair of objects: similarity or dissimilarity. To model observed data more
precisely, one may aim to distinguish more than two states. This can be done
by using graphs with multiple edge types, also called multilayer graphs [9, 20].
In this work, we study Module Map, a generalization of Cluster Editing
in graphs with two types of edges.

Module maps. The Module Map problem arises in the construction of so-called
module maps in computational biology [4, 25]. The input is an edge-bicolored
graph G = (V,Eb, Er) with a set Eb of blue edges and a set Er of red edges
where Eb and Er are disjoint. In the following, we will refer to these objects
simply as graphs. The vertices of G represent genes of an organism, the blue
edges represent physical interactions between the proteins that are built from
these genes, and the red edges represent negative genetic interactions between
the genes. These are inferred from knockout experiments. In these experiments,
it is measured for two genes a and b, whether the fitness of organisms in which a
and b are defunct is lower than the fitness of organisms in which only a or only b
is defunct [4]. If this is the case, then the interaction between a and b is called
a negative interaction. In the biological application, the task is to find modules
which are groups of genes that have a common function in the organism.

According to Amar and Shamir [4], the following properties are desirable
for these modules: First, each module should be highly connected with respect
to the physical protein interactions. In other words, within each module there
should be many blue edges. Second, there should be few physical interactions
and, thus, few blue edges between different modules. Third, two different mod-
ules A and B may have a link between them. If they have a link, then there are
many negative genetic interactions and, thus, many red edges between them;
otherwise, there are few negative genetic interactions and, thus, few red edges
between them. A partition of the genes into modules and the set of links between
modules then defines a module map. Amar and Shamir [4] discuss different ob-
jective functions for obtaining a module map that take these properties into
account.

Inspired by Cluster Editing, where one views clustering as a graph modi-
fication problem, we study the problem of obtaining module maps from a graph
modification point of view. That is, we first define formally the set of module
graphs which are the graphs with a perfect module map. Then, the computa-
tional problem is to find a module graph that can be obtained from the input
graph by few edge modifications.

Module graphs. According to the properties described above, each module is
ideally a blue clique and there are no blue edges between different modules.
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Figure 1: A module graph with the clusters {a, b, c}, {d}, and {e, f}. Here, blue edges are
dark and bold, and red edges are bright.

In other words, the blue subgraph Gb := (V,Eb) obtained by discarding all red
edges is a cluster graph. Each connected component of Gb is called a cluster, and
we say that a graph G where Gb is a cluster graph fulfills the cluster property.
Moreover, for each pair of different clusters A and B there are ideally either no
edges between u ∈ A and v ∈ B or each u ∈ A and each v ∈ B are connected by
a red edge. In other words, the graph Gr[A ∪ B] is either edgeless or complete
bipartite with parts A and B, where Gr := (V,Er) is the red subgraph obtained
by discarding all blue edges. This property is called link property, and the red
bicliques are called links. The link property is only defined for graphs that
fulfill the cluster property. A graph has a perfect module map if it satisfies both
properties.

Definition 1. A graph G = (V,Eb, Er) is a module graph if G satisfies the
cluster property and the link property.

A module graph is shown in Figure 1. Clearly, not every graph is a module
graph. For example, a graph G with three vertices u, v, and w where the edges
{u, v} and {u,w} are blue and the edge {v, w} is red violates the cluster property.
Our aim is to find a module graph which can be obtained from the input graph G
by as few edge modifications as possible.2

Module Map
Input: A graph G = (V,Eb, Er) and a nonnegative integer k.
Question: Can we transform G into a module graph by deleting or
adding at most k red and blue edges?

Herein, to transform a blue edge into a red edge, we first have to delete the blue
edge and in a second step we may insert the red edge. Thus, transforming a
blue edge into a red edge has cost two and vice versa.

As in the case of Cluster Editing, a module graph that is obtained by at
most k edge modifications directly implies a module map such that at most k
vertex pairs in this map contradict the input vertex pairs. Here, a contradiction
is a red edge or a non-edge inside a cluster, a blue edge between different clusters,

2To make the correctness proof for the algorithms more concise, we focus on the decision
version of Module Map. The algorithms can be easily modified to output a solution and an
optimal solution can be found by considering increasing k starting with k = 0; the running
time for the first yes-instance dominates the total running time of all previous calls.
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a non-edge between different clusters that have a link, or a red edge between
different clusters that have no link. Our problem formulation is thus related to
previous ones [4, 25] but more simplistic: for example it does not use statistically
defined p-values to determine whether a link between modules should be present
or not. As observed previously [4, 25], most formulations of the construction
problem for module maps contain Cluster Editing as a special case. This
is also true for Module Map: if the input has no red edges, then it is not
necessary to add red edges, and thus Module Map is the same as Cluster
Editing in this case.

As a consequence, hardness results for Cluster Editing transfer directly
to Module Map. Since Cluster Editing is NP-complete [22] and cannot be
solved in 2o(|V |+|E|) time under the Exponential-Time Hypothesis (ETH) [15,
21], we observe the following.

Proposition 1. Module Map is NP-complete. If the ETH is true, then Mod-
ule Map cannot be solved in 2o(|V |+|Eb|+|Er|) time.

Because of this algorithmic hardness, heuristic approaches are used in prac-
tice [4, 25]. In this work, we are interested in exact algorithms for Module
Map. In particular, we are interested in fixed-parameter algorithms. These
are algorithms that have a running time of f(k) · nO(1) for a problem-specific
parameter k on inputs of size n. If k has moderate values and f grows not too
fast, then these algorithms solve the problem efficiently [11–13, 23]. Motivated
by the practical success of fixed-parameter algorithms with the natural param-
eter number k of edge modifications for Cluster Editing [8, 18], we focus on
fixed-parameter algorithms for Module Map with the same parameter. We
find that viewing Module Map as a graph modification problem facilitates the
algorithmic study of the problem.

A weighted problem variant. In practice, for some edges we may have a higher
confidence in the observed edge type. For this reason it is useful to consider edge-
weighted versions of the problem, where the input includes a weight function
g :

(
V
2

)
→ N+ on vertex pairs. The higher the weight, the more confidence

we have in the observed edge type. Let ω := g({u, v}) be the weight of the
vertex pair {u, v}. If {u, v} is a red edge or a blue edge, then deleting {u, v}
costs ω; if {u, v} is not an edge in G, then inserting a blue edge {u, v} or a red
edge {u, v} costs ω and, finally, replacing a blue edge {u, v} by a red edge {u, v}
or vice versa costs 2ω. In other words, each single modification of a pair {u, v}
produces cost g({u, v}). This gives the following problem.

Weighted Module Map
Input: A graph G = (V,Eb, Er) with vertex-pair weights g :

(
V
2

)
→ N+

and a nonnegative integer k.
Question: Can we transform G into a module graph by edge modifica-
tions of total cost at most k?

Our results. In Section 3, we present a characterization of module graphs by
three forbidden induced subgraphs and show how to determine whether a graph G

4



contains one of them in linear time. Afterwards, we present a simple linear-time
fixed-parameter algorithm for Module Map with running time O(3k · (|V | +
|Eb| + |Er|)). We further obtain an algorithm for Weighted Module Map
with running time O(3k · |V |2). This is also a linear-time fixed-parameter algo-
rithm since the weight function g has size Θ(|V |2).

In Section 4, we present an improved (in terms of the exponential running-
time part) fixed-parameter algorithm for Weighted Module Map with run-
ning time O(2k · |V |3). This algorithm is an extension of a previous algorithm
for Weighted Cluster Editing [7]. In order to transfer the technique to
Weighted Module Map, we solve a more general variant of Weighted
Module Map that uses a condensed view of the modification costs of an edge
in terms of cost vectors. Here, each possible type of a vertex pair (being a
blue edge, a red edge, or a non-edge) corresponds to one component of the cost
vector. We believe that this view can be useful for other graph modification
problems with multiple edge types.

In Section 5, we show that Weighted Module Map admits a kernel with a
quadratic number of vertices. More precisely, we show that given an instance of
Weighted Module Map, we can compute in O(|V |3 +k · |V |2) time an equiv-
alent instance that has O(k2) vertices. As a corollary, we can solve Weighted
Module Map in O(2k · k6 + |V |3) time by first applying the reduction rules
leading to the kernelization and then using the search tree algorithm.

Finally, in Section 6 we consider for two of the three forbidden induced
subgraphs of module graphs, the problem of finding them efficiently in a bicol-
ored graph. We show that any linear-time algorithm for finding these forbidden
induced subgraphs would result in improved algorithms for the problem of de-
tecting triangles in undirected simple graphs without edge colors.

Related work. Compared to the study of graphs with only one edge type, there
has been little work on algorithms for graphs with multiple edge types which
may be referred to as multilayer graphs [20] or edge-colored (multi)graphs. In
the following, we point to work that studies edge modification problems in such
graphs.

Chen et al. [10] introduced Multi-Layer Cluster Editing, a variant
of Cluster Editing. In this problem, the input is a multi-layer graph and
one asks to transform all layers into cluster graphs which differ only slightly.
Here, a layer is the subgraph containing only the edges of one type. Roughly
speaking, the task is to find one cluster graph such that each layer can be
transformed into this cluster graph by at most k edge modifications. Chen
et al. [10] show fixed-parameter algorithms and hardness results for different
parameter combinations. The problem differs from Module Map in the sense
that all layers, which correspond to edge colors in our formulation, play the
same role in the problem definition and that layers are evaluated independently.
In contrast, in Module Map the aim is to obtain a graph with blue and red
edges that fulfills different properties for the blue and red edges and where the
property of the red edges depends on the blue edges.

A further edge modification problem on multilayer graphs is Simultaneous
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Feedback Edge Set [2] where the aim is to delete at most k edges in a
multilayer graph with ` layers such that each layer is acyclic. Simultaneous
Feedback Edge Set is polynomial-time solvable if ` = 2, NP-hard for all ` >
3, and fixed-parameter tractable for the parameter k + ` [2].

2. Preliminaries

Graph notation. A simple and undirected graph G = (V,E) consists of a finite
set V of vertices and a finite set E of edges, which are unordered pairs of vertices
of V . For a graph G = (V,E), the subgraph of G induced by a set V ′ ⊆ V is
denoted by G [V ′] := (V ′, {{u, v} ∈ E | u, v ∈ V ′}). A graph G is a cluster graph
if each connected component of G is a complete graph. A graph G = (V,E) is
bipartite if V can be partitioned into U and W such that each edge in E has
exactly one endpoint in U and exactly one in W . A bipartite graph with partite
sets U and W and |E| = |U | · |W | is called biclique.

For a color set C, an edge-|C|-coloring of a graph is an assignment of exactly
one color c ∈ C to each edge in the graph. It follows from this definition that
the edge sets of distinct colors are pairwise disjoint; we use Ec to denote the
edges of color c. With Gc := (V,Ec) we denote the subgraph of G induced by the
edges with color c. In this work, we consider an edge-bicoloring with the colors
blue and red, that is, the edge-bicolored graph G = (V,Eb, Er) has a set Eb of
blue edges and a set Er of red edges. We let E := Eb ∪ Er denote the union
of the blue and red edges. We denote the blue subgraph (V,Eb) by Gb and the
red subgraph (V,Er) by Gr. The open neighborhood with color c of a vertex v
is defined as Nc(v) := {u | {u, v} ∈ Ec}. Furthermore, Nc [v] := Nc(v) ∪ {v} is
the closed neighborhood with color c of v.

For two sets A and B, the symmetric difference A4B := (A ∪ B)\(A ∩ B)
is the set of elements which are in exactly one of the two sets. A solution S for
an instance of Module Map is a tuple of edge modifications (E′b, E

′
r) of size at

most k such that the transformed graph G′ = (V,Eb4E′b, Er4E′r) is a module
graph. Herein, the size of a solution (E′b, E

′
r) is |E′b| + |E′r|. The graph G′

obtained from applying a solution S is called target graph. A solution S is
optimal if every other solution is at least as large as S.

Parameterized algorithmics. A parameterized problem L is a set of instances
of the form (I, k) where I ∈ Σ∗ for a finite alphabet Σ, and k ∈ N0 is the
parameter. A parameterized problem L is fixed-parameter tractable (FPT) with
respect to k if it can be determined in f(k)|I|O(1) time whether (I, k) ∈ L,
where f is a computable function not depending on I.

Let L be a parameterized problem. A kernelization is a polynomial-time
algorithm that replaces any instance (I, k) by an instance (I ′, k′), called kernel,
such that

• |I ′|+ k′ ≤ g(k) for some function g which depends only on k, and

• (I, k) ∈ L if and only if (I ′, k′) ∈ L.

6



The function g(k) is called the size of the kernel. For more information on
parameterized complexity, we refer to the literature [11–13, 23].

Kernels are often presented via reduction rules. A reduction rule for a param-
eterized problem L is a computable function that maps an instance (I, k) of L to
an instance (I ′, k′) of L. A reduction rule is called safe if (I, k) and (I ′, k′) are
equivalent, that is, (I, k) ∈ L if and only if (I ′, k′) ∈ L. An instance is reduced
exhaustively with respect to a reduction rule if an application of the rule does
not change the instance. A branching rule transforms an instance (I, k) of a
parameterized problem into ` instances (I1, k1), . . . , (I`, k`) of the same problem
such that ki < k for each i, 1 ≤ i ≤ `. A branching rule is safe if (I, k) ∈ L if and
only if (Ii, ki) ∈ L for at least one i. A standard tool in the analysis of search
tree algorithms are branching vectors; for further background on the analysis of
branching vectors, refer to the monograph of Fomin and Kratsch [14].

3. Basic Observations

Next, we present a forbidden subgraph characterization for Module Map.
Afterwards, we prove that a forbidden subgraph of Module Map can be de-
tected in O(|V |+ |Er|+ |Eb|) time and present an O(3k) search tree algorithm
for Module Map.

Recall that an uncolored graph G is a cluster graph if and only if G contains
no P3 as an induced subgraph: If a connected component of G contains a P3,
then there exist two vertices in this component which are not adjacent and,
hence, G is not a cluster graph. Conversely, if a connected component C of G
contains no induced P3, then each triple of vertices of C has three edges between
them. Hence, C is a clique. Moreover, it is well-known that using the following
algorithm it can be checked in linear time whether G contains an induced P3.
For each connected component C of G do the following until a P3 is found:
First, check in linear time whether |N(v)| = |C| − 1 for all v ∈ C. If yes, C is
a clique. Otherwise, any vertex v with |N(v)| < |C| − 1 is an endpoint of a P3

and with a breadth-first search starting in v, a P3 can be detected. Altogether,
this gives the following well-known fact.

Proposition 2. Let G = (V,E) be a graph. In O(|V | + |E|) time, one can
decide whether G is a cluster graph and find an induced P3 in G if this is not
the case.

In the following we present a forbidden subgraph characterization for the
property of being a module graph. To this end, we define the following three
graphs which are shown in Figure 2: a blue P3 is a path on three vertices
consisting of two blue edges, an almost-blue K3 is a clique of size three, where
one edge is red and the other two are blue, and a bicolored P3 is a path on three
vertices with exactly one blue and one red edge.

Theorem 1. A bicolored graph G is a module graph if and only if G has no
blue P3, no almost-blue K3, and no bicolored P3 as induced subgraph.
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Figure 2: The forbidden induced subgraphs for module graphs. From left to right: a blue P3,
consisting of two (dark and bold) blue edges, an almost-blue K3, consisting of two blue and
one (bright) red edge, and a bicolored P3, consisting of one blue and one red edge.

To prove Theorem 1 we first show that the blue subgraph Gb is a cluster graph
if and only if G contains no blue P3 and no almost-blue K3.

Lemma 1. A graph G fulfills the cluster property if and only if G contains
neither a blue P3 nor an almost-blue K3 as induced subgraph.

Proof. (⇒) If Gb is a cluster graph, then for all blue edges {u, v} ∈ Eb and
all w ∈ V \ {u, v} either {u,w} and {v, w} are both contained in Eb or none of
them is contained in Eb. In either case, the subgraph induced by u, v, and w
is neither a blue P3 nor an almost-blue K3. Hence, no blue edge is contained
in one of these two forbidden induced subgraphs and consequently G does not
contain such an induced subgraph.

(⇐) We prove the statement by contraposition. That is, we show that if a
graph G does not fulfill the cluster property, then it contains either a blue P3

or an almost-blue K3 as induced subgraph. If G does not fulfill the cluster
property, then Gb is not a cluster graph which means that Gb contains a P3

as induced subgraph. Let {u, v} and {v, w} be the two edges of this P3. The
edges {u, v} and {v, w} are blue edges of G and {u,w} is not a blue edge of G
since it is not an edge of Gb. Hence, {u,w} is either a non-edge or a red edge.
In the first case, G contains a blue P3 as induced subgraph; in the second case G
contains an almost-blue K3 as induced subgraph. �

Lemma 1 implies that the blue P3 and the almost-blue K3 are forbidden
induced subgraphs for module graphs. We are now ready to present the complete
forbidden subgraph characterization.

Proof (of Theorem 1). (⇒) Let G be a module graph. Because G fulfills
the cluster property, the graph Gb induced by the blue edges is a cluster graph.
By Lemma 1, G contains neither a blue P3 nor an almost-blue K3. Now observe
that any bicolored P3 contains exactly two vertices from a cluster K and one
vertex from a cluster L 6= K of Gb. Since G fulfills the link property, we have
for each pair of clusters K and L in Gb that Gr[K ∪ L] is either edgeless or a
biclique. In both cases, G[K ∪ L] contains no bicolored P3. Hence, G contains
no bicolored P3.

(⇐) Let G be a graph which contains no blue P3, no almost-blue K3, and
no bicolored P3 as induced subgraph. By Lemma 1, G fulfills the cluster prop-
erty. We now show by contraposition that G fulfills the link property. That
is, we show that if G does not fulfill the link property then it contains a bi-
colored P3. Thus, assume that there is a pair of clusters K and L in Gb such
that some but not all edges between K and L are red. Let {u, v} be a red edge
between K and L and let {u′, v′} be a non-edge between K and L. Without
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loss of generality, assume {u, u′} ⊆ K, {v, v′} ⊆ L, and v 6= v′. If u = u′,
then G[{u, v, v′}] is a bicolored P3 because {v, v′} is a blue edge. If u 6= u′

and {u′, v} is a non-edge in G, then G[{u, u′, v}] is a bicolored P3. Other-
wise, G[{u′, v, v′}] is a bicolored P3: {v, v′} is blue, {u′, v} is red, and {u′, v′}
is a non-edge. Hence, G contains a bicolored P3 if it does not fulfill the link
property. �

From the forbidden induced subgraph characterization of a module graph
we can immediately observe the following.

Proposition 3. Let u, v ∈ V be two vertices that are connected by a blue edge
in a module graph. Then Nb[u] = Nb[v] and Nr(u) = Nr(v), that is, the closed
blue neighborhood and the open red neighborhood of u and v are identical.

We now show a simple linear-time fixed-parameter algorithm for Module
Map and Weighted Module Map. The algorithm uses the standard ap-
proach to branch on the graphs of the forbidden subgraph characterization pre-
sented in Theorem 1. The main point is to obtain a linear running time for
fixed k. To this end, we show that we can determine in O(|V | + |E|) time if a
graph contains any of the three forbidden subgraphs.

We start by determining if the blue subgraph Gb of the input graph G =
(V,Eb, Er) is a cluster graph. According to Lemma 1, we have to determine
if G has a blue P3 or an almost-blue K3.

Lemma 2. Given an edge-bicolored graph G = (V,Eb, Er), we can find in
O(|V |+ |E|) time a blue P3 or an almost-blue K3, or decide that G contains no
blue P3 and no almost-blue K3 as induced subgraph.

Proof. If G contains a blue P3 or an almost-blue K3, then by Lemma 1, Gb is
not a cluster graph. Hence, the graph Gb contains a P3. According to Proposi-
tion 2, a P3 in Gb can be detected in O(|V |+ |E|) time. If we do not find such
a P3, we conclude that G contains no blue P3 and no almost-blue K3. Other-
wise, let {u, v, w} denote the vertex set of the P3 and assume that u and w are
not adjacent in Gb. Then {u,w} is either a non-edge in G, making G[{u, v, w}]
a blue P3, or {u,w} is a red edge in G, making G[{u, v, w}] an almost-blue K3.
Thus, returning {u, v, w} yields the desired forbidden induced subgraph. �

Now we show how to find a bicolored P3 in time O(|V |+ |E|) in a graph G =
(V,Eb, Er) when we assume that G contains no blue P3 and no almost-blue K3.
The idea is to find two clusters of Gb such that at least one but not all edges
between these clusters are red.

Lemma 3. Let G = (V,Eb, Er) be a graph which contains no blue P3 and no
almost-blue K3 as induced subgraph. Then, in O(|V |+ |E|) time we can find a
bicolored P3 in G or decide that G contains no bicolored P3 as induced subgraph.

Proof. According to Lemma 1, we can assume that the graph Gb is a cluster
graph. In a first step, determine in O(|V |+ |E|) time the sizes c1, . . . , c` of the
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clusters C1, . . . , C` in Gb. Now create an array A of size `. The ith entry of A
will be used to count the number of red neighbors of a vertex v in the cluster Ci.

Now do the following for each vertex v ∈ V : Create a list Lv consisting of the
red neighbors of the vertex v. For each vertex u in Lv determine the cluster Cr

that contains u and increase A [r] by one. Simultaneously, save the indices of the
entries of the array A which are different from zero in a set I. Afterwards, check
for each i ∈ I whether A[i] = ci. If this is the case for all i ∈ I, set A[i] = 0 for
all i ∈ I, set I = ∅, and investigate the next vertex with this algorithm. If this
is not the case, then v has at least one but less than ci red neighbors in some
cluster Ci. Now do the following. First, color each vertex u ∈ Ci white. Next,
color each vertex w ∈ Ci which has a red edge to v black. This can be done by
a linear scan over Lv. Now determine a white vertex x and a black vertex y in
the cluster Ci by a linear scan over all vertices in Ci. The vertex set {v, x, y}
forms a bicolored P3, since {v, x} is a non-edge, {v, y} is red, and {x, y} is blue.
Thus, we return {v, x, y}.

If the algorithm does not return any bicolored P3, then for each vertex v in
any cluster Ci and each cluster Cj , i 6= j, either v forms a red edge with every
vertex of Cj or there are no edges between v and Cj . Consequently, no vertex
is contained in a bicolored P3.

It remains to bound the running time of the algorithm: To compute for a
vertex v the number of red neighbors of v in every other cluster Ci and storing it
in A[i], we scan once through the adjacency list of v which takesO(|Nr(v)|) time.
Comparing A[i] with ci for all i ∈ I takes O(|Nr(v)|) time as well. Hence, this
part of the algorithm takes O(

∑
v∈V |Nr(v)|) = O(|V |+ |E|) time. If G contains

a bicolored P3, at some point the algorithm will choose a vertex v which has at
least one but less than ci red neighbors in some cluster Ci. For this vertex v, the
algorithm performs one extra scan of the list Lv and of the cluster Ci. This can
be done in O(|V |+ |E|) time. Hence, the overall running time is O(|V |+ |E|).

�

According to Theorem 1, a bicolored graph G is a module graph if and only
if G has no blue P3, no almost-blue K3, and no bicolored P3 as induced sub-
graphs. With Lemmas 2 and 3 at hand, it can be determined inO(|V |+|E|) time
if a graph G = (V,Eb, Er) contains one of those three forbidden subgraphs and,
thus, also whether G is a module graph. A simple fixed-parameter algorithm
for Module Map now works as follows: Check whether G is a module graph.
If this is the case, then return ‘yes’. Otherwise, check whether k = 0. If this is
the case, return ‘no’. Otherwise, find one of the three forbidden subgraphs and
branch on the possibilities to destroy it by an edge modification as follows.

Branching Rule 1. Let (G, k) be an instance of Module Map. If G contains
three vertices u, v, and w such that G[{u, v, w}] is either a blue P3 with non-
edge {u,w}, or an almost-blue K3 with red edge {u,w}, or a bicolored P3 with
blue edge {u, v} and red edge {v, w}, then branch into three cases:

Case 1: Transform {u, v} into a non-edge and decrease k by 1.

Case 2: Transform {v, w} into a non-edge and decrease k by 1.
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Case 3: If G[{u, v, w}] is a blue P3, transform {u,w} into a blue edge and
decrease k by 1. If G[{u, v, w}] is an almost-blue K3, transform {u,w}
into a blue edge and decrease k by 2. If G[{u, v, w}] is a bicolored P3,
transform {u,w} into a red edge and decrease k by 1.

Lemma 4. Branching Rule 1 is safe.

Proof. Clearly, if one of the three instances created by the branching rule is a
yes-instance, then so is (G, k).

Conversely, assume (G, k) is a yes-instance for Module Map. Let S be a so-
lution for (G, k) and let H be the corresponding target graph. First, assume that
the type of {u, v} in H is different from the type of {u, v} in G. Then, S deletes
the blue edge {u, v} and thus the instance constructed in the first branch is a
yes-instance. In the following, assume that the type of {u, v} in G and H are
identical. Next, assume that the type of {v, w} in H is different from the type
of {v, w} in G. Then, S deletes the edge {v, w} and thus the instance constructed
in the second branch is a yes-instance. Finally, consider the case that {v, w}
has the same type in G and H. Now we apply Theorem 1 to G[{u, v, w}].
If G[{u, v, w}] is a blue P3 or an almost-blue K3 and {u, v} and {v, w} are blue
in H, then {u,w} is blue in H too. This means that if G[{u, v, w}] is a blue P3,
then the solution inserts the blue edge {u,w}, and if G[{u, v, w}] is an almost
blue K3, then the solution deletes the red edge {u,w} and inserts the blue
edge {u,w}. If G[{u, v, w}] is a bicolored P3 and {u, v} is blue and {v, w} is red
in H, then {u,w} is red in H, too. Then, the solution inserts the red edge {u,w}.
In all cases, the instance created in the third branch is a yes-instance. �

The algorithm branches into three cases and decreases k by at least 1 in each
case. This leads to a branching vector of (1, 1, 1). Since branching is performed
only while k > 0, the overall search tree size is O(3k); the steps of each search
tree node can be performed in O(|V |+|E|) time by Lemmas 2 and 3. Altogether,
we obtain the following.

Proposition 4. Module Map can be solved in O(3k · (|V |+ |E|)) time.

For Weighted Module Map, we can use the same algorithm: since the edge
weights are positive integers, the parameter decrease is again at least 1 in each
created branch of the search tree algorithm. A subtle difference is that, due
to the edge weight function g, the overall instance size is Θ(|V |2). Hence, the
following running time is still linear for each fixed k.

Proposition 5. Weighted Module Map can be solved in O(3k · |V |2) time.

4. An Improved Search Tree Algorithm

To improve the running time, we adapt a branching strategy for Clus-
ter Editing [7]. To apply this strategy, we first introduce a generalization
of Weighted Module Map. Then, we explain our branching strategy which
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consists of two branching rules. Finally, we show that the instances to which
these rules do not apply can be solved in polynomial time. Altogether, this
leads to an O(2k · |V |3)-time search tree algorithm.

4.1. A More Flexible Cost Function

To describe our algorithm for Weighted Module Map, we introduce a
more general problem since during branching, we will merge some vertices. To
represent the adjacencies of the merged vertices, we generalize the concept of
edge weights: Recall that in Weighted Module Map, transforming a blue
edge with weight ω into a non-edge costs ω and transforming it into a red edge
costs 2ω. Hence, the two modification costs are related. From now on, we allow
independent modification costs for the different possibilities. To this end, we
introduce a vertex-pair cost function s :

(
V
2

)
→ R3 for all pairs of vertices {u, v}

of a given graph G where s(u, v) := (bu,v, nu,v, ru,v). The vector (bu,v, nu,v, ru,v)
is called cost vector. Herein, bu,v is the cost of making {u, v} blue, nu,v is the
cost of making {u, v} a non-edge, and ru,v is the cost of making {u, v} red. For
a short form of the cost vector we write (b, n, r)u,v. If there is no danger of
confusion, we omit the index of the associated vertices u and v. Consider for
example a blue edge {u, v} in an instance of Weighted Module Map with
weight ω. The corresponding modification cost would be represented by the
cost vector (0, ω, 2ω). Given a vertex-pair cost function s, we define the cost of
a module graph as follows.

Definition 2. Let s :
(
V
2

)
→ R3 with s(u, v) := (bu,v, nu,v, ru,v) be a vertex-pair

cost function. The cost of a graph G′ = (V,E′b, E
′
r) on the vertex set V (with

respect to s) is ∑
{u,v}∈E′

b

bu,v +
∑

{u,v}∈E′
r

ru,v +
∑

{u,v}∈(V
2)\(E′

b∪E′
r)

nu,v.

We do not allow arbitrary cost vectors but demand the following four prop-
erties. Herein, a number x is called half-integral if and only if x = p + 1/2 for
some nonnegative integer p.

Property 1. In each cost vector (b, n, r)u,v either all components are nonneg-
ative integers or all components are half-integral.

A cost vector (b, n, r)u,v where all three components are half-integral is called
half-integral as well. All other cost vectors are called integral. Half-integral
cost vectors will be introduced during the algorithm for technical reasons. The
second property restricts the relation between the three costs.

Property 2. For each cost vector (b, n, r)u,v we have b + r ≥ 2n.

Property 2 is essentially a relaxed version of the property that transforming
a blue edge into a red edge is at least as expensive as transforming the blue
edge first into a non-edge and subsequently into a red edge. The third property
guarantees that for every given cost function, there is at most one graph that
has cost zero.
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Property 3. Each integral cost vector (b, n, r)u,v contains exactly one compo-
nent which is equal to zero.

The final property demands that at least two components of a half-integral cost
vector are small.

Property 4. Each half-integral cost vector (b, n, r)u,v contains at least two com-
ponents equal to 1/2.

With these definitions at hand, we may now state Module Map with
Cost Function (MMC).

MMC
Input: A vertex set V with a vertex-pair cost function s :

(
V
2

)
→ R3

which fulfills Properties 1–4 and an integer k.
Question: Is there a module graph G′ = (V,E′b, E

′
r) of cost at most k?

We call a module graph G′ of cost at most k a target graph for s. Properties 1–
4 are fulfilled by the cost function obtained from Weighted Module Map
instances. Thus, Weighted Module Map is a special case of MMC and,
hence, MMC is also NP-complete. Our aim is to show the following.

Theorem 2. MMC can be solved in O(2k · |V |3) time.

Before we describe the algorithm, we provide further details for the cost
function and for the rationale behind Properties 1–4. First, observe that due to
Properties 3 and 4, we may put each vertex pair {u, v} into exactly one of the
following four categories: We call a vertex pair {u, v} with cost vector (b, n, r)
blue if b = 0, neutral if n = 0, red if r = 0, and half-integral otherwise.

Moreover, we can observe the following fact which will be crucial in several
correctness proofs.

Proposition 6. Let (b, n, r)u,v be a cost vector fulfilling Properties 1–4.

• If {u, v} is blue, then n ≥ 1 and r ≥ 2n.

• If {u, v} is red, then n ≥ 1 and b ≥ 2n.

• If {u, v} is half-integral, then n = 1/2.

Proof. The first two claims follow from the fact that (b, n, r) has only integer
components in these cases, that only one component is zero, and that b+r ≥ 2n
due to Property 2. The third claim can be seen as follows. By Property 1, all
three components are half-integral and at least two of them are equal to 1/2.
By Property 2, b+r ≥ 2n. If n > 1/2, then b = 1/2 = r according to Property 4
and hence Property 2 is violated. Thus, n = 1/2. �
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4.2. Merge-Based Branching

As for unweighted graphs, the overall strategy is to branch on small sub-
structures whose presence implies that there is no module graph with cost 0.
To this end, recall that by Proposition 3, the endpoints of a blue edge in a
module graph have the same closed blue neighborhood and the same open red
neighborhood. Thus, in the unweighted case every blue edge whose endpoints
have different blue or different red neighbors is contained in a forbidden sub-
graph on which we may branch. In MMC, we follow a similar strategy. A subtle
difference is that now costs may also be caused by half-integral cost vectors. We
define the configurations on which we branch as follows.

Definition 3. A blue pair {u, v} forms a conflict triple with a vertex w if the
vertex pairs {u,w} and {v, w} are not both blue, not both neutral, or not both red.

In other words, the vertices u, v, and w form a conflict triple if {u,w} and {v, w}
have different type or if {u,w} and {v, w} are both half-integral.

The branching on a blue pair {u, v} follows the approach that Böcker et
al. [7] used for Cluster Editing: In one case we increase bu,v in such a way
that {u, v} does not become a blue edge in any target graph. In the other case,
we keep the blue pair and use Proposition 3 which states that vertices which
are connected by a blue edge have the same neighborhood in a module graph.
This allows us to merge the vertex pair {u, v} into a new vertex u′ in this case.

Definition 4. Let (V, s, k) be an instance of MMC. Merging two vertices u
and v is the following operation: Remove u and v from V and add a new ver-
tex u′. For all vertices w ∈ V \ {u, v} set s(u′, w) := s(u,w) + s(v, w).

We call s(u′, w) the join of s(u,w) and s(v, w).
In both cases of the branching, we reduce the modified cost vectors by apply-

ing what we call a restoration rule. More precisely, we say that the restoration
rule reduces a cost vector by x if the value of each entry is decreased by x.
There are two reasons for introducing this rule. First, the modified cost vectors
may not fulfill Properties 1–4. Second, increasing bu,v for a vertex pair {u, v}
or merging the two vertices u and v does not decrease the parameter k. The
restoration rule will thus decrease the bound k and, simultaneously, reduce the
new cost vectors in such a way that they fulfill Properties 1–4.

The overall strategy is now as follows: If k < 0, then the instance (V, s, k)
has no solution. Else, find a blue pair {u, v} which is either contained in at least
two conflict triples or there exists a vertex w such that merging u and v into v′

results in reducing the joint cost vector s(u′, w) by at least 1. If there is no such
blue pair, then solve the remaining instance of MMC in polynomial time. The
pseudocode of this algorithm is shown in Algorithm 1.

Let x = min{b, n, r} be a minimal value of the cost vector (b, n, r). If x is
unique, then we can reduce (b, n, r) by x, since afterwards exactly one component
of the cost vector is equal to zero. Otherwise, we cannot reduce the cost vector
by x, since afterwards at least two components have value zero, a contradiction
to Property 3. Clearly, we could reduce the vector by x− 1, but this would not
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Algorithm 1 The O(2k · |V |3) algorithm for MMC.

Input: An instance (V, s, k) of MMC
1: if k < 0 then
2: reject
3: else if (V, s, k) contains blue pair {u, v} that is in at least two conflicts then
4: apply Branching Rule 2
5: else if (V, s, k) contains blue pair {u, v} and a vertex w ∈ V \ {u, v}

such that merging u and v into u′ decreases s(u′, w) by at least 1 then
6: apply Branching Rule 3
7: else
8: solve (V, s, k) in O(|V |2) time (Theorem 3)
9: end if

give a parameter decrease for vectors such as (1, 1, 3). Using the bookkeeping
trick introduced in [7], in such a case, we reduce this vector by x − 1/2 to
circumvent the above problem.

Restoration Rule 1. Let {u, v} be a vertex pair with the cost vector (b, n, r).
If (b, n, r) has a unique minimum component, then decrease each component
of (b, n, r) and parameter k by min{b, n, r}. Otherwise, decrease each component
of (b, n, r) and parameter k by min{b, n, r} − 1/2.

For example, Restoration Rule 1 reduces the vector (1, 1, 3) by 1/2 giving the
vector (1/2, 1/2, 5/2). We may now formulate the first branching rule.

Branching Rule 2. Let (V, s, k) be an instance of MMC. If (V, s, k) contains
a blue pair {u, v} and two distinct vertices w and w′ that form a conflict triple
with {u, v}, then branch into two cases:

Case 1: Set bu,v := k + 1. Afterwards, apply Restoration Rule 1 to the vertex
pair {u, v}.

Case 2: Merge the vertices u and v into a new vertex u′. Afterwards, for each
vertex z ∈ V \{u′} apply Restoration Rule 1 to the vertex pair {u′, z}.

An example of Case 2 of Branching Rule 2 is shown in Figure 3. Now we prove
that Properties 1–4 are maintained in both cases of the branching rule.

Lemma 5. Let {u, v} be a blue pair with cost vector (b, n, r) in an instance (V, s, k)
of MMC, and let (V ′, s′, k′) be obtained by an application of Branching Rule 2
for {u, v}. Then, (V ′, s′, k′) is an instance of MMC. In particular, s′ fulfills
Properties 1–4.

Proof. First, we show that for a blue pair {u, v}, setting b := k + 1 and
applying Restoration Rule 1 afterwards, maintains Properties 1–4: Observe
that since the vertex pair {u, v} is blue, we have that each component of s(u, v)
is integral and b = 0. Since n and r are not changed, Property 2 remains true
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2
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(0, 1, 2) (1, 0, 1)

(1, 0, 1) (2, 0, 1)

(a) The initial instance (V, s, k) of MMC.

a′

c d

e f

(2, 2, 2) (1, 2, 2)

(1, 1, 3) (3, 0, 2)

(b) The instance (V, s, k) after merging a
and g into a′.

a′

c d

e f

(
1
2
, 1
2
, 1
2

)
(0, 1, 1)(

1
2
, 1
2
, 5
2

)
(3, 0, 2)

(c) The instance (V ′, s′, k′) of MMC af-
ter applying Restoration Rule 1. We
have: k′ = k − 3.

Figure 3: Example for merging two vertices a and g, and for subsequent application of Restora-
tion Rule 1.

after setting b := k + 1. Furthermore, each component is integral and, hence,
Property 1 remains true. Property 4 is fulfilled, since {u, v} is not half-integral.
Property 3, however, is violated since each component has value at least 1.

Applying Restoration Rule 1 decreases each of the three components by
the same value. Hence, Property 2 remains true. Recall that according to
Proposition 6, r ≥ 2n. Let (b′, n′, r′) denote the reduced cost vector. If n =
k + 1, applying Restoration Rule 1 reduces this cost vector by k + 1/2 and in
the reduced cost vector (b′, n′, r′) the components b′ and n′ are equal to 1/2.
Furthermore, r′ is half-integral. If n > k + 1, then Restoration Rule 1 reduces
this cost vector by k + 1 and only b′ is equal to zero. Furthermore, n′ and r′

are integral. If n < k + 1, then Restoration Rule 1 will reduce the cost vector
by n and afterwards only n′ is equal to zero. Furthermore, b′ and r′ are integral.
Hence, Properties 1–4 remain true.

Second, we prove that merging the vertices u and v into a new vertex u′ and
applying Restoration Rule 1 afterwards, maintains Properties 1–4: After merg-
ing, we compute for each z ∈ V \{u, v} the joint cost vector s(u′, z). According
to the requirements, the cost vectors s(u, z) and s(v, z) fulfill Properties 1–4.
Adding both inequalities implied by Property 2 gives bu,z + bv,z + ru,z + rv,z ≥
2nu,z + 2nv,z. Using the definition of the new cost vector s(u′, z), we conclude
that bu′,z + ru′,z ≥ 2nu′,z. Applying Restoration Rule 1 decreases each compo-
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nent of s(u′, z) by the same value. Hence, Property 2 remains true.
To verify Properties 1, 3, and 4, observe first that joining two vectors which

fulfill Properties 1, 3, and 4 gives a joint cost vector that is either integral
or half-integral: If either both terms of the sum are nonnegative integers or
half-integral, then the resulting cost vector is integral. If one cost vector is half-
integral and the other consists of nonnegative integers, then the resulting cost
vector is half-integral. Since applying Restoration Rule 1 to a cost vector fulfill-
ing Property 1 does not violate Property 1, Property 1 remains true. Moreover,
applying Restoration Rule 1 restores Properties 3 and 4: First, assume there is
exactly one component of (b, n, r)u′,z which has value x = min{bu′,z, nu′,z, ru′,z}.
Then we can reduce (b, n, r)u′,z by the value x of the minimal component. Ob-
serve that it is not relevant whether (b, n, r)u′,z is integral or half-integral. After
reducing (b, n, r)u′,z by x, the resulting cost vector (b′, n′, r′)u′,z consist of in-
tegers and exactly one component is equal to zero. Hence, Properties 3 and 4
are fulfilled. Second, assume there are at least two components of (b, n, r)u′,z

which have value x. In this case, we can reduce (b, n, r)u′,z only by x − 1/2.
Observe that it is not relevant whether (b, n, r)u′,z is integral or half-integral.
After reducing (b, n, r)u′,z by x − 1/2, the resulting cost vector is half-integral
and since at least two components have value x, the reduced cost vector has
at least two components with value 1/2. Hence, Properties 3 and 4 are ful-
filled. We conclude: merging vertices u and v into a new vertex u′ and applying
Restoration Rule 1 afterwards maintains Properties 1–4. �

With this lemma at hand, we can prove the correctness of Branching Rule 2.

Lemma 6. Branching Rule 2 is safe.

Proof. By Lemma 5, Branching Rule 2 produces an instance of MMC. It
remains to show that the original instance is a yes-instance if and only if one of
the two new instances is a yes-instance.

First, assume (V, s, k) is a yes-instance and let H denote a target graph
for (V, s, k). If {u, v} is either a non-edge or a red edge in the target graph H,
then H is also a target graph of the instance constructed in Case 1.

Second, assume the vertex pair {u, v} is a blue edge in the target graph H.
Hence, the vertices u and v are in the same cluster in Hb. According to
Proposition 3, Nb [u] = Nb [v] and Nr(u) = Nr(v) in H. We may thus ob-
tain a target graph H ′ for the instance constructed in Case 2, by assigning
the vertex pair {u′, w} in H ′ the same type as the vertex pair {u,w} for
each w ∈ V \ {u, v} in H. The cost of H ′ is the same as the cost of H
since s(u′, w) := s(u,w) + s(v, w).

Conversely, assume that one of the two instances created in Case 1 and 2 is
a yes-instance. First, any target graph H ′ of the instance constructed in Case 1
is a target graph of the same cost for (V, s, k) since {u, v} is not a blue edge
in H ′. Second, any target graph H ′ for the instance created in Case 2 implies a
target graph H of the same cost for (V, s, k): Replace u′ by u and v, make {u, v}
a blue edge, and for each w ∈ V \ {u, v}, assign both edges {u,w} and {v, w}
the same type as edge {u′, w}. This step does not introduce new conflict triples
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since u and v have the same neighborhood and hence we obtain a solution for
the original instance (V, s, k). Moreover, the cost of H is the same as the cost
of H ′ since s(u′, w) := s(u,w) + s(v, w) for all w ∈ V \ {u, v}. �

We now show that if we merge a blue pair {u, v} into a new vertex u′ where
the vertices u and v form a conflict triple with some vertex w, then Restoration
Rule 1 reduces the joint cost vector (b, n, r)u′,w by at least 1/2.

Lemma 7. Let s(u′, w) be the join of two cost vectors s(u,w) and s(v, w), where
the vertices u, v, and w form a conflict triple. Then, Restoration Rule 1 applied
to s(u′, w) decreases k by at least 1/2.

Proof. We give a complete case distinction.
Case 1: s(u,w) and s(v, w) are half-integral. Then, each component

of s(u,w) and s(v, w) has value at least 1/2. Consequently, the minimum com-
ponent of s(u′, w) has value at least 1. Thus, s(u′, w) can be reduced by at
least 1/2.

Case 2: s(u,w) and s(v, w) are integral. Since vertices u, v, and w form
a conflict triple, the vertex pairs s(u,w) and s(v, w) have different type. Hence,
there is no component that has value 0 in both vectors. Consequently, the
minimum component of s(u′, w) has value at least 1. Thus, this cost vector can
be reduced by at least 1/2.

Case 3: The cost vector s(u,w) is half-integral and s(v, w) is integral.
Then, a minimum component of s(u,w) has value exactly 1/2 and there is
exactly one component of s(v, w) that has value 0. If the minimum component
of s(u′, w) is unique, then s(u′, w) can be reduced by at least 1/2. Otherwise,
the minimum components have value at least 3/2 because one of them has value
at least 1/2 + 1. In this case, the parameter can be decreased by at least 1. �

Now we show that increasing b for blue pairs decreases k by at least 1.

Lemma 8. Let {u, v} be a blue pair and let (b∗, n, r) be the cost vector that
results from (b, n, r) by setting b := k + 1. Then, applying Restoration Rule 1
to (b∗, n, r) decreases k by at least 1.

Proof. Since {u, v} is a blue pair, we have n ≥ 1 and r ≥ 2n according
to Proposition 6. Thus, applying Restoration Rule 1 to (b∗, n, r) reduces this
vector and k by min{b∗, n, r} ≥ 1. �

Consider the instances obtained by an application of Branching Rule 2. In
Case 1, the new parameter is at most k − 1 due to Lemma 8 since we may
immediately reject the no-instances. In Case 2, the new parameter is also at
most k − 1 because {u, v} is in two conflict triples. By Lemma 7 this means
that we create two cost vectors which are both reduced by at least 1/2.

Corollary 1. Branching Rule 2 has a branching vector of (1, 1) or better.
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We now introduce a second branching rule that also has a branching vector
of (1, 1) or better. This rule deals with blue pairs {u, v} which are contained
in exactly one conflict triple with some vertex w such that s(u,w) and s(v, w)
give a join that can be reduced by at least 1.

Branching Rule 3. Let (V, s, k) be an instance of MMC. If (V, s, k) contains
a blue pair {u, v} and a vertex w such that u, v, and w form a conflict triple and
the joint cost vector s(u′, w) := s(u,w) + s(v, w) can be reduced by at least 1,
then branch into the following two cases:

Case 1: Set bu,v := k + 1. Afterwards, apply Restoration Rule 1 to {u, v}.

Case 2: Merge the vertices u and v into a new vertex u′. Afterwards, for each
vertex z ∈ V \ {u′} apply Restoration Rule 1 to {u′, z}.

Lemma 9. Branching Rule 3 is correct and has branching vector (1, 1) or bet-
ter.

Proof. The proof of correctness of this branching rule is the same as the proof
of correctness of Branching Rule 2.

According to Lemma 8, the parameter of the instance created in Case 1 is
at most k− 1. The parameter of the instance created in Case 2 is at most k− 1
according to the condition of Branching Rule 3. Hence, Branching Rule 3 has
a branching vector of (1, 1) or better. �

4.3. Solving The Remaining Instances in Polynomial Time

We now show that instances (V, s, k) of MMC to which Branching Rules 2
and 3 do not apply can be solved efficiently.

Theorem 3. Let (V, s, k) be an instance of MMC. If Branching Rules 2 and 3
do not apply, then (V, s, k) can be solved in O(|V |2) time.

The polynomial-time algorithm behind the theorem consists of a series of data
reduction rules. To formulate the reduction rules, we define the graph Mb of
an instance (V, s, k) of MMC to be the graph with vertex set V and an edge
for each blue pair in (V, s, k). In the rules, we make use of two properties of
optimal solutions. The first property is the following.

Proposition 7. Let (V, s, k) be an instance of MMC. Then, there exists a
target graph H which does not contain any blue edges between vertices of different
connected components of Mb.

Proof. Let H be a target graph that has a minimum number t of blue edges
between different connected components of Mb. If t ≥ 1, then there is a cluster D
in Hb such that D contains vertices from two different connected components K
and L of Mb. In the following, we show that there is a target graph H ′ with two
clusters DL := D ∩L and DK := D\DL in H ′b. More precisely, the graph H ′ is
the same as H with the only difference that there are no blue edges with one
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endpoint in DL and one in DK . Hence, H ′ has less blue pairs between different
connected components of Mb.

First, we show that H ′ is a module graph. Observe that H ′ differs from H
only with respect to edges with one endpoint in DL and one in DK . Hence, any
forbidden induced subgraph in H ′ has to contain at least one vertex u ∈ DL and
one vertex v ∈ DK . If the third vertex w is from DL or DK , then H ′[{u, v, w}]
has at least two non-edges and therefore u, v, and w do not form a forbidden
induced subgraph. If w is from V \D, then {u,w} and {v, w} are either both
non-edges or both are red. Consequently, u, v, and w do not form a forbidden
induced subgraph. Hence, H ′ is a module graph.

We now show that the cost of H ′ is not higher than the cost of H. Consider
any pair {u, v} with u ∈ DL, v ∈ DK and let (b, n, r) be the cost vector of {u, v}.
We show b ≥ n. By assumption, {u, v} is not blue. Thus, {u, v} is neutral, red,
or half-integral. If {u, v} is neutral, then n = 0 which implies b ≥ 1. If {u, v}
is red, then r = 0 which implies b ≥ 2n, due to Proposition 6. If {u, v} is
half-integral, then n = 1/2, due to Proposition 6. According to Property 1, all
components are half-integral. Hence, b ≥ 1/2 = n. Altogether, the cost of H ′ is
not larger than the cost of H. �

Second, we observe the following fact about instances to which Branching
Rule 2 does not apply. The same fact was shown by Böcker et al. [7] for Cluster
Editing; since the proof is completely analogous for MMC, we omit it.

Proposition 8. Let K be a connected component of the graph Mb of an instance
(V, s, k) of MMC. If each blue edge {u, v} of K is contained in at most one
conflict triple in (V, s, k), then K is either a cluster or a cluster minus exactly
one blue pair.

Proposition 8 states that when neither Branching Rule 2 nor 3 can be ap-
plied to an instance (V, s, k) of MMC, there are two cases for the connected
components in Mb. To prove Theorem 3 we thus introduce reduction rules which
can be exhaustively applied in O(|V |2) time and resolve these two cases.

In a first step, we resolve all connected components of Mb which are clusters
minus exactly one blue pair. Reduction Rule 1 treats the subcase |K| = 3 and
Reduction Rule 2 treats the subcase |K| ≥ 4. Before describing the rules, we
observe the following facts about clusters minus exactly one blue pair.

Lemma 10. Let (V, s, k) be an instance of MMC to which Branching Rule 2
does not apply, and let K be a cluster minus exactly one blue pair {v, w} in Mb.
Then, each vertex in V \K has either only neutral pairs or only red pairs with
the vertices in K.

Proof. Recall that for a blue pair which is contained in at least two conflict
triples, Branching Rule 2 applies. First, observe that for each vertex y ∈ K \
{v, w}, every red neighbor x of v is also a red neighbor of y because otherwise
the pair {v, y} is contained in the two conflicts v, w, y and v, x, y. Similarly,
every neutral neighbor x of v is also a neutral neighbor of y. By a symmetric
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argument, y and w have the same neutral neighbors and the same red neighbors.
Moreover, neither v nor w form half-integral vertex pairs with vertices x ∈ V \K
because otherwise the pair {v, y} is again in two conflicts. Altogether, this
implies that every vertex x ∈ V \K is either a red neighbor of all vertices in K
or a neutral neighbor of all vertices in K. �

Next, we prove that the vertices of a cluster K minus exactly one blue pair
in Mb do not form conflict triples with vertices of other connected components
of Mb.

Lemma 11. Let (V, s, k) be an instance of MMC to which Branching Rule 2
does not apply, and let K be a cluster minus exactly one blue pair {v, w} in Mb.
Then, there exists no vertex x /∈ K which forms conflict triples with the vertices
of K.

Proof. According to Lemma 10, each vertex x /∈ K forms either a neutral pair
with each vertex in K or x forms a red pair with each vertex in K. Hence,
it remains to show that for every connected component L 6= K of Mb, either
each vertex of L forms a red pair with each vertex in K or each vertex of L
forms a neutral pair with each vertex in K. Assume otherwise. Then, there is
a blue pair {x, y} where x ∈ L and y ∈ L and a vertex z ∈ K such that {y, z}
is red and {x, z} is neutral. By Lemma 10, this implies that each vertex of K
forms a red pair with y and a neutral pair with x. Thus, the blue pair {x, y}
is contained in at least three conflict triples since |K| ≥ 3. This contradicts the
fact that Branching Rule 2 does not apply. �

Now we are ready to present the reduction rules.

Reduction Rule 1. Let (V, s, k) be an instance of MMC to which Branch-
ing Rule 2 does not apply. If Mb has a connected component {u, v, w} such
that {u,w} is not blue, then compute the value t of an optimal solution for
the restriction of (V, s, k) to {u, v, w}, decrease k by t, and remove {u, v, w}
from (V, s, k).

Lemma 12. Reduction Rule 1 is safe and can be applied exhaustively in O(|V |) time.

Proof. Let (V ′, s′, k′ := k − t) denote the instance obtained from the ap-
plication of the rule. If (V, s, k) is a yes-instance, then so is (V ′, s′, k′): Any
target graph H has cost at least t for pairs between u, v, and w and, there-
fore, H ′ = H[V \{u, v, w}] is a module graph with cost at most k′ for (V ′, s′, k′).

For the converse, let H ′ be a target graph for (V ′, s′, k′), thus H ′ has cost
at most k′ = k − t. According to Proposition 7, we may assume that H ′

does not contain blue edges with endpoints in different connected components
of M ′b. Let H∗ be a solution for (V, s, k) created by combining the graph H ′

with a target graph H ′′ for the restriction of (V, s, k) to {u, v, w} as follows:
Take the union of H ′ and H ′′. Then, for each pair {x, y} with x ∈ {u, v, w}
and y ∈ V \{u, v, w} add a red edge in H∗ if {x, y} is a red pair and do not add
an edge otherwise. Since H ′ has cost at most k − t and H ′′ has cost at most t,
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the cost of H∗ is at most k. It remains to show that H∗ is indeed a module
graph.

By construction, H∗ has no conflicts containing only vertices from {u, v, w}
and no conflicts containing only vertices from V \{u, v, w}. Thus, it is sufficient
to show that for each remaining connected component K in M∗b , there are
no conflicts between {u, v, w} and vertices of K. According to Lemma 11, the
vertex pairs {u, v} and {v, w} form no conflict triples with any vertex z 6= w and
thus, either all pairs between K and {u, v, w} are neutral or red. According to
Proposition 7, in the graph H∗, the connected component K is partitioned into
clusters C1, . . . , C` that do not contain vertices from V \K. Since H∗ has cost 0
for all vertex pairs between K and {u, v, w}, for each cluster Ci there are in H∗

either no edges between {u, v, w} and Ci or every vertex pair between {u, v, w}
and Ci is red. Thus, H∗ has no conflict containing vertices of K and {u, v, w}.
Hence, H∗ is a module graph of cost at most k for G.

The running time can be seen as follows. In O(|V |2) time, we can determine
all connected components of Mb which are blue or bicolored P3s. For each
such P3 with vertex set {u, v, w} we can compute the best solution for the
restriction of (V, s, k) to {u, v, w} inO(1) time. The overall running time follows.
�

Reduction Rule 2. Let (V, s, k) be an instance of MMC to which Branching
Rules 2 and 3 do not apply. If Mb has a connected component K of size at
least four, such that exactly one vertex pair {v, w} of K is not blue, then trans-
form {v, w} into a blue pair, decrease k accordingly, and remove K from G.

Lemma 13. Reduction Rule 2 is safe and can be applied exhaustively in O(|V |) time.

Proof. Let (V ′, s′, k′) denote the instance obtained from the application of
the rule. We show that (V, s, k) is a yes-instance if and only if (V ′, s′, k′) is a
yes-instance.

First, assume that (V, s, k) is a yes-instance. Assume bv,w > 1. Since |K| ≥
4, there is a vertex u ∈ K such that {u, v} and {u,w} are blue. Then merging
the blue pair {u,w} results in joining s(u, v) and s(v, w) into the joint cost
vector (b∗, n∗, r∗) with b∗ ≥ 3/2, n∗ ≥ 1, and r∗ ≥ 2. Applying Restoration
Rule 1 reduces this vector by at least 1. Hence, Branching Rule 3 applies
to {u,w}, a contradiction. Consequently, bv,w ≤ 1. Since |K| ≥ 4, it is optimal
to transform K into a cluster by transforming {v, w} into a blue pair: otherwise,
the cost spent on vertex pairs from K in (V, s, k) is at least two because any cut
in Mb[K] contains at least two blue edges and transforming each of them into
a neutral pair or a red pair has total cost at least 1. Thus, every module graph
for the restriction of (V, s, k) to K has cost at least bv,w = k−k′. Consequently,
since (V, s, k) has a module graph of cost k, there is a module graph on V \K
that has cost at most k′ for the vertex pairs of V \K.

Conversely, assume that (V ′ = V \K, s′, k′) has a module graph H ′ of cost
at most k′. By Proposition 7, we may assume that H ′ does not have blue
edges with endpoints in different connected components of Mb. We show that
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extending H ′ by adding a clique of blue edges on the vertex set K and setting
all edges between K and V \K in such a way that they produce no cost gives
a module graph H∗ of cost at most k for (V, s, k). The cost bound for H∗ is
obvious. It remains to show that H∗ is a module graph. According to Lemma 11,
the vertices of K form no conflicts with any vertex z /∈ K and thus for each
connected component L, L 6= K, of Mb, either all vertex pairs between K and L
are neutral or all are red. By the above assumption on H ′, in the graph H∗

each L is partitioned into clusters C1, . . . , C`. Since H∗ has no cost on vertex
pairs between K and L, there is thus no conflict containing vertices from K
and L. Hence, H∗ is a module graph of cost at most k for G.

By searching for a P3 in each connected component of Mb, we can determine
all connected components of Mb which are clusters minus exactly one edge
in O(|V |2) time. Let K be a cluster minus exactly one edge {v, w} in Mb. Then
we can find the edge {u, v} by searching for a P3 in Mb. This needs O(|K|) time.
In O(1) time we can make {v, w} blue. The overall running time follows. �

After applying these reduction rules exhaustively, every connected component
of Mb is a cluster. The following two reduction rules will resolve all conflict
triples between a cluster K of size at least two and another cluster L. Reduction
Rule 3 treats the case |L| ≥ 2 and Reduction Rule 4 treats the case |L| = 1.
Recall that since conflict triples contain at least one blue pair, each conflict triple
contains vertices from at most two connected components of Mb. Since Mb is a
cluster graph, each conflict triple thus contains vertices of exactly two clusters.

We first observe the following restriction on the structure of conflict triples
between clusters in the remaining graph.

Lemma 14. Let (V, s, k) be an instance of MMC to which Branching Rule 2
does not apply, and let K be a cluster of size at least two in Mb. Then, there
exists at most one vertex x /∈ K which is in conflict triples with blue pairs of K
and each vertex w ∈W := V \ (K ∪{x}) forms either only neutral pairs or only
red pairs with the vertices of K.

Proof. Assume there exists at least one vertex x /∈ K which forms conflict
triples with the blue pairs of cluster K. Hence, there are vertices y, z ∈ K such
that the vertices x, y, z form a conflict triple. Similar to the proof of Lemma 10,
for each vertex w ∈ W , the vertex pairs {w, y} and {w, z} are either both red
or both neutral, as otherwise Branching Rule 2 applies. Hence, W = N ] R
where N is the set of vertices in W which form neutral pairs with y and z,
and R is the set of vertices in W which form red pairs with y and z. Now we
will prove that each vertex u ∈ K \{y, z} forms only red pairs with vertices in R
and only neutral pairs with vertices in N . Assume that there is a vertex r ∈ R
such that {r, u} is not red (the case that a vertex pair {s, u} for a vertex s ∈ N
is not neutral follows by similar arguments). Then, r, u, y and r, u, z are conflict
triples. We show that either {u, y} or {u, z} is contained in two conflict triples
which implies that Branching Rule 2 applies, a contradiction to the premise of
the lemma.
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Consider the conflict triple x, y, z. If {x, y} and {x, z} are both half-integral,
then the vertices u, x, y and u, x, z are conflict triples. Hence, the blue pair {u, y}
is contained in two conflict triples u, x, y and r, u, y, and Branching Rule 2
applies. If the vertex pairs {x, y} and {x, z} are not both half-integral, at
most one of them has the same type as {u, x}, since not both of them can
be red or neutral because x, y, z is a conflict triple. Assume without loss of
generality that {x, y} and {u, x} have a different type. Then the blue pair {u, y}
is contained in two conflict triples r, u, y and u, x, y. Hence, Branching Rule 2
applies, a contradiction. Altogether this implies that all vertex pairs between K
and R are red and all vertex pairs between K and N are neutral and x is the
only vertex which forms conflict triples with blue pairs of K. �

Lemma 15. Let (V, s, k) be an instance of MMC to which Branching Rule 2
does not apply, and let K be a cluster of size at least two in Mb. Then, there is
at most one cluster L of Mb such that the vertices from K and L form conflict
triples.

Proof. According to Lemma 14, there is at most one vertex x /∈ K which forms
conflict triples with blue pairs in K and the set V \ (K∪{x}) can be partitioned
into N , the set of vertices which form neutral pairs with the vertices in K and R,
the set of vertices which form red pairs with the vertices in K. Let L denote
the cluster containing x and assume that there is a further cluster M such that
the vertices of K and M form at least one conflict triple. Consider the partition
of M into NM := M ∩ N and RM := M ∩ R. Since the vertices of M and K
form at least one conflict triple, there exist vertices s ∈ NM and r ∈ RM such
that {s, r} is the blue pair of this conflict triple. By the definition of N,R, and M
and since |K| ≥ 2, there are vertices y, z ∈ K such that {r, y} and {r, z} are red,
and {s, y} and {s, z} are neutral. Hence, the blue pair {r, s} is contained in two
conflict triples and Branching Rule 2 applies, a contradiction. Consequently, M
does not form conflict triples with K. �

Consider a cluster L which is the unique cluster of Mb forming conflicts with
vertices of cluster K. Next, we prove that in the case |L| ≥ 2, there is exactly
one vertex pair between K and L such that after transforming this vertex pair,
either all vertex pairs with one endpoint in K and the other in L are red or all
of them are neutral. In other words, after transforming this vertex pair, the link
property is established between clusters K and L.

Lemma 16. Let (V, s, k) be an instance of MMC to which Branching Rule 2
does not apply and let K and L be two clusters of size at least two in Mb such
that there exists a vertex x ∈ L, a vertex y ∈ K, and a vertex z ∈ K ∪ L
such that {x, y, z} forms a conflict triple. Then either all except one vertex pair
between K and L are neutral or all except one vertex pair between K and L
are red.

Proof. Assume without loss of generality that two vertices of K form a conflict
with some vertex x ∈ L. According to Lemmas 14 and 15, cluster K has only
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conflicts with cluster L and each vertex w ∈ W := L \ {x} forms either only
neutral pairs with the vertices of cluster K or only red pairs with the vertices
of cluster K. Hence, W = N ] R where N is the set of vertices in W which
have neutral pairs to K, and R is the set of vertices in W which have red pairs
to K. Analogously to the proof of Lemma 15, one can show that if |N | ≥ 1
and |R| ≥ 1, then Branching Rule 2 applies to any blue pair with one vertex
in N and one in R. Hence, either |N | = 0 or |R| = 0. Assume |N | = 0; the
case |R| = 0 follows by similar arguments. Hence, for each vertex v ∈ K and
each vertex w ∈ W the vertex pair {v, w} is red. Since x forms conflict triples
with the vertices of cluster K, there exists at least one vertex y ∈ K such that
the vertex pair {y, x} is not red.

For a vertex w ∈ W consider the blue pair {w, x} in cluster L. Since {x, y}
is not red and {w, y} is red, the vertices w, x, y form a conflict triple. Since
for each vertex v ∈ K the vertex pair {v, w} is red, the vertex pair {v, x} has
to be red as well, otherwise Branching Rule 2 applies. Hence, all vertex pairs
between K and L are red except for {x, y}. �

For two clusters K and L with |K| ≥ 2 and |L| ≥ 2 of the graph Mb, we call
the one vertex pair {x, y} that has a different type from all other vertex pairs
between both clusters K and L the dissenting vertex pair. We now resolve all
conflict triples between two clusters of Mb of size at least two by transforming
the dissenting pair.

Reduction Rule 3. Let (V, s, k) be an instance of MMC to which Branch-
ing Rules 2 and 3 do not apply. If Mb contains two clusters K and L such
that {x, y}, with y ∈ K and x ∈ L, is a dissenting pair, then transform {x, y}
into the same type as the other vertex pairs between K and L and decrease the
parameter k accordingly. Afterwards, remove K and L from G.

Lemma 17. Reduction Rule 3 is safe and can be applied exhaustively in O(|V |2) time.

Proof. According to Lemma 16, all vertex pairs between K and L are either all
red or neutral, except the dissenting vertex pair {x, y}. Assume that all these
vertex pairs are red; the other case follows by similar arguments. Consider
another vertex z ∈ K. Let s(x, z) = (b′, n′, r′). Observe that since {x, z} is
red, we have b′ ≥ 2, n′ ≥ 1, and r′ = 0. Merging the blue pair {y, z} results in
joining s(x, y) and s(x, z) into the joint cost vector (b∗, n∗, r∗). We distinguish
whether the dissenting vertex pair is half-integral or integral.

First, assume {x, y} is half-integral. If rx,y ≥ 3/2, then b∗ ≥ 5/2, n∗ ≥ 3/2,
and r∗ ≥ 3/2. Thus, applying Restoration Rule 1 reduces (b∗, n∗, r∗) by at
least 1, and hence, Branching Rule 3 applies. Consequently, we can assume
that rx,y = 1/2. We have cost at least 1/2 to resolve the half-integral vertex
pair and transforming {x, y} into a red pair has cost 1/2. Afterwards, there
are no conflict triples with vertices of clusters K and L. Moreover, for each
further cluster M the vertex pairs between K and M are either all red or all
neutral. Similarly, the vertex pairs between L and M are either all red or all
neutral. Hence, combining a module graph with minimum cost for the vertex
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set V \ (K ∪ L) and the solution for clusters K and L described above results
in a module graph of optimal cost for (V, s, k).

Second, assume {x, y} is neutral. If rx,y ≥ 2, then b∗ ≥ 3, n∗ ≥ 1,
and r∗ ≥ 2 and again Branching Rule 3 applies in this case. Hence, we can
assume that rx,y = 1. Now observe that the minimum cost to resolve all conflict
triples is 1 since no pair between two vertices of K ∪ L is half-integral. Thus,
making {x, y} a red edge and setting all other edges such that they have cost 0
is a minimum-cost module graph for the vertex set K ∪ L since the vertices
of K ∪L are not part of any further conflict triples. As in the first case, we can
expand this graph to a minimum-cost module graph for (V, s, k).

In O(|V |2) time we can determine all clusters of Mb to which Reduction
Rule 3 applies. For each pair K and L of such clusters, we can determine the
dissenting vertex pair, change the type of this vertex pair, and remove K and L
from (V, s, k) in O(|K| · |L|) time. The total running time is thus O(|V |2). �

After applying Reduction Rule 3, all remaining conflict triples are between
clusters of size at least two and size-one clusters.

Reduction Rule 4. Let (V, s, k) be an instance of MMC to which Branching
Rules 2 and 3 do not apply. If Mb contains a cluster K ⊇ {y, z} and a clus-
ter L = {x} such that {x, y, z} forms a conflict triple, then compute the cost ñ
to transform all vertex pairs between K and L into non-edges and the cost r̃
to transform all vertex pairs between K and L into red edges. Decrease the
parameter k by min{ñ, r̃} and remove K and L from G.

Lemma 18. Reduction Rule 4 is safe and can be applied exhaustively in O(|V |2) time.

Proof. By Lemma 14, the vertices of cluster K form only conflict triples with
the vertex x of cluster L. We prove that the minimum of ñ and r̃ is not higher
than the cost of partitioning cluster K of the graph Mb into at least two smaller
clusters. Observe that partitioning K into at least two clusters causes cost of
at least |K| − 1, since the minimum edge cut in a clique of size |K| has size
at least |K| − 1 and transforming a blue pair into a non-edge costs at least 1.
In the proof we distinguish four cases and show in each case that ñ ≤ |K| − 1
or r̃ ≤ |K| − 1.

Case 1: there is a vertex y ∈ K such that {x, y} is neutral and
rx,y ≥ 2. If there is another vertex z ∈ K such that {x, z} is red, merg-
ing the blue pair {y, z} results in joining s(x, y) and s(x, z) into the joint cost
vector (b′, n′, r′) where b′ ≥ 3, n′ ≥ 1, and r′ ≥ 2. Restoration Rule 1 re-
duces (b′, n′, r′) by at least 1 and, hence, Branching Rule 3 applies, a contradic-
tion. We conclude that each vertex pair between K and x is either half-integral
or a neutral. Transforming each half-integral vertex pair into a non-edge causes
cost of exactly 1/2. There are at most |K| − 1 half-integral vertex pairs be-
tween K and x. Hence, we have cost at most (|K|−1)/2 < |K|−1 to transform
all half-integral vertex pairs between clusters K and L into non-edges.

Case 2: there is a vertex y ∈ K such that {x, y} is half-integral
and rx,y ≥ 3/2. If there is another vertex z ∈ K such that {x, z} is red,
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merging the blue pair {y, z} results in joining s(x, y) and s(x, z) into (b′, n′, r′)
where b′ ≥ 5/2, n′ ≥ 3/2, and r′ ≥ 3/2. Restoration Rule 1 reduces (b′, n′, r′)
by at least 1 and, hence, Branching Rule 3 applies, a contradiction. By the
same argumentation as in the first case, transforming all vertex pairs between
clusters K and L into non-edges has cost at most |K|/2 ≤ |K| − 1.

Case 3: there is a vertex y ∈ K such that {x, y} is red and nx,y ≥
2. If there is another vertex z ∈ K such that {x, z} is neutral, merging the
blue pair {y, z} results in joining s(x, y) and s(x, z) into cost vector (b′, n′, r′)
with b′ ≥ 5, n′ ≥ 2, and r′ ≥ 1. Restoration Rule 1 reduces (b′, n′, r′) by at least
1 and, hence, Branching Rule 3 applies, a contradiction. Since Case 2 does not
apply, we conclude that transforming all vertex pairs between K and L into red
edges has cost at most |K|/2 ≤ |K| − 1.

Case 4: otherwise. By excluding the cases above, we may assume that for
each neutral pair {x, y} we have rx,y = 1, for each red pair {x, y} we have nx,y =
1 and for each half-integral pair {x, y} we have rx,y = 1/2. Consequently,∑

y∈K ny,x + ry,x = |K|. Thus, ñ =
∑

y∈K ny,x ≤ |K|/2 ≤ |K| − 1 or r̃ =∑
y∈K ry,x ≤ |K|/2 ≤ |K| − 1.
This proves the correctness of the rule. The running time can be seen as

follows. In O(|V |2) time we can determine all clusters of Mb to which Reduction
Rule 4 applies. Let K and L be two such clusters. In O(|K|) time we can
examine all vertex pairs between K and L, decide if ñ ≤ r̃, and remove K
and L. The overall running time is thus O(|V |2). �

Recall that a conflict triple contains at least one blue pair. After applying
Reduction Rule 4 exhaustively, the instance (V, s, k) of MMC contains no con-
flict triple. The instance (V, s, k) is, however, not necessarily equivalent to a
module graph: there can be clusters of size one in Mb which have a half-integral
vertex pair between them. Nevertheless, we can solve (V, s, k) in polynomial
time.

Lemma 19. An instance (V, s, k) of MMC can be solved in O(|V |2) time
if (V, s, k) contains no conflict triple.

Proof. If the number of half-integral vertex pairs is larger than 2k, then we
may return ‘no’. Otherwise, we may return ‘yes’. If (V, s, k) has a module graph
with cost 0 this is clearly correct. If this is not the case, then, since G contains
no conflict triple, all half-integral vertex pairs are between clusters of size one.
Thus, transforming all half-integral vertex pairs into non-edges and choosing
the cost-0 edge type for all other vertex pairs yields a module graph H. By the
check above, the number of half-integral vertex pairs is at most 2k and thus H
has cost at most k. The running time follows from the fact we can count the
number of half-integral vertex-pairs in O(|V |2) time. �

Now we can prove Theorem 3, that is, any instance of MMC can be solved
in O(|V |2) time if Branching Rules 2 and 3 do not apply.

Proof (of Theorem 3). Since Branching Rule 2 does not apply to this in-
stance, each connected component K of Mb is either a cluster or a cluster minus
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exactly one blue pair, according to Proposition 8. Applying Reduction Rules 1
and 2 resolves all connected components of Mb which are clusters minus exactly
one blue pair. Hence, all remaining connected components of Mb are clusters.
Reduction Rule 3 resolves all conflict triples between two clusters of size at least
two. Reduction Rule 4 resolves all conflict triples between a cluster of size one
and a cluster of size at least two.

Applying those reduction rules exhaustively needsO(|V |2) time. Afterwards,
no conflict triples remain. Now Lemma 19 applies and (V, s, k) can be solved
in O(|V |2) time. �

Finally, we prove Theorem 2, that is, MMC can be solved inO(2k·|V |3) time.

Proof (of Theorem 2). First, check for each blue pair {u, v} if Branching
Rule 2 or 3 applies. This needs O(|V |3) time. If this is the case, we branch
on {u, v}. According to Corollary 1 and Lemma 9, Branching Rules 2 and 3 have
a branching vector of (1, 1) or better. This implies a search tree size of O(2k)
because we only branch as long as k > 0. In one case, we set bu,v := k+1, which
can be done in constant time. In the other case, we merge u and v. That is, we
remove the vertices u and v from the graph and replace them by a new vertex u′

and join all O(|V |) incident vertex pairs. We can compute the cost vector for
each new joint pair in O(|V |) time. Hence, we need O(|V |3) time for each inner
node of the search tree. By Theorem 3, MMC can be solved in O(|V |2) time if
Branching Rules 2 and 3 do not apply, that is, for each leaf of the search tree.
Altogether, we obtain an O(2k · |V |3)-time algorithm for MMC. �

5. A Polynomial Kernel

We now present a kernelization for Weighted Module Map that yields
a kernel with O(k2) vertices. In the description of the kernelization, it will
be convenient to use the cost vector notation introduced in Section 4. To this
end, recall that each instance (G, g, k) of Weighted Module Map is also an
instance of MMC. In the terminology of MMC each vertex pair in G is either
blue, red, or neutral. The basic idea is the following: Let {u, v} be a vertex
pair of an instance (G = (V,Eb, Er), g, k) of Weighted Module Map. We
investigate if it is possible that the vertex pair {u, v} can be a blue, a non-,
or red edge in any target graph of a size-k solution. To this end, we estimate
for each edge type the induced costs of transforming {u, v} into this type; this
approach was also used for Cluster Editing [16] and Weighted Cluster
Editing [7].

If, for example, {u, v} is a blue edge in a target graph, then for each other
vertex w in this graph, {u,w} and {v, w} are either both red or both non-edges.
Thus, if {u,w} and {v, w} have a different type in G, at least one of them has
to be transformed. To formally define the cost estimation, we make use of the
vertex-pair cost function introduced in Section 4. As discussed in Section 4, we
can easily translate the weight and the edge type for each vertex pair {u, v} into
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a cost vector (b, n, r)u,v. The value b describes the cost of transforming {u, v}
into a blue edge, the value n is the cost to transform {u, v} into a non-edge and
the value r is the cost to transform {u, v} into a red edge. Recall that the edge
weight function g assigns only positive integers ω and that the resulting cost
vectors have the form (0, ω, 2ω), (ω, 0, ω), or (2ω, ω, 0).

We first define how to estimate the three types of induced costs: icb (u, v)
is a lower bound for the cost of {u, v} being a blue edge in the target graph
of an optimal solution, icn (u, v) is a lower bound for the cost of {u, v} being
a non-edge in the target graph of an optimal solution, and icr (u, v) is a lower
bound for the cost of {u, v} being a red edge in the target graph of an optimal
solution.

Definition 5. Let (G = (V,Eb, Er), g, k) be an instance of Weighted Mod-
ule Map and let u and v be vertices in G. Furthermore, let U := {u, v} and
W := V \U . Then the induced costs of transforming {u, v} are defined as

icb (u, v) := bu,v +
∑
w∈W

min (bu,w + bv,w, nu,w + nv,w, ru,w + rv,w),

icn (u, v) :=nu,v +
∑

w∈W : bu,w=0=bv,w

min (nu,w, nv,w)

+
∑

w∈W,x,y∈U,x 6=y: bx,w=0=ry,w

min (nx,w, ny,w),

icr (u, v) := ru,v +
∑

w∈W : bu,w=0=bv,w

min (ru,w, rv,w, nu,w + nv,w)

+
∑

w∈W,x,y∈U,x 6=y: bx,w=0=ny,w

min (nx,w, ry,w).

The definition of icb (u, v), icn (u, v), and icr (u, v) can be explained as follows.
First, consider the cost icb (u, v). We have to pay bu,v to transform {u, v}

into a blue edge. For each remaining vertex w ∈ W , the vertex pairs {u,w}
and {v, w} have to be of the same type in the target graph. Otherwise, there
is a conflict triple. The definition assumes the best case among the three possi-
bilities.

Second, consider the cost icn (u, v). We have to pay nu,v to transform the
vertex pair {u, v} into a non-edge. Then we have to destroy each blue P3 and
each bicolored P3 which contains the non-edge {u, v}. In both cases, we have
to transform one of the incident blue or red edges. The case that such an edge
is transformed into a non-edge is a lower bound for the costs that arise.

Finally, consider icr (u, v). We have to pay ru,v to transform the vertex
pair {u, v} into a red edge. Moreover, we have to destroy each resulting almost-
blue K3 and each bicolored P3 which contains the red edge {u, v}. For the
almost-blue K3, either both blue edges have to be transformed into a non-edge
or one of the two blue edges has to be transformed into a red edge. For the
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Figure 4: A vertex pair {u, v} with icb (u, v) = 6, icn (u, v) = 2, and icr (u, v) = 4. Here, blue
edges are dark and bold, red edges are bright and non-edges are dashed.

bicolored P3, either the blue edge has to be transformed into a non-edge or the
non-edge has to be transformed into a red edge (because transforming it into a
blue edge gives an almost-blue K3).

Proposition 9. Let (G = (V,Eb, Er), g, k) be an instance of Weighted Mod-
ule Map. We can compute icb (u, v), icn (u, v), and icr (u, v) for all vertex
pairs {u, v} in O(|V |3) time.

After computing the induced costs, we compare them with the parameter k.
If, for example, there is a blue edge {u, v} with icb (u, v) > k, then in any
solution of cost at most k the edge {u, v} has to be transformed into either a
non-edge or a red edge. Hence, we may directly transform {u, v} into a non-edge
and pay nu,v. Similarly, we can transform any red edge with icr (u, v) > k into
a non-edge. In contrast, if there is a non-edge {u, v} with icn (u, v) > k, it is
not immediately clear whether we need to transform this edge into a blue edge
or into a red edge.

The following reduction rule will change the type of an edge if the associated
induced costs are larger than the parameter k. For the case that icn(u, v) > k,
it considers the values of icb(u, v) and icr(u, v) to decide which transformation
to apply.

Reduction Rule 5. Let (G = (V,Eb, Er), g, k) be an instance of Weighted
Module Map.

If G contains a blue edge {u, v} such that icb (u, v) > k, then transform {u, v}
into a non-edge and decrease the parameter by nu,v.

If G contains a red edge {u, v} such that icr (u, v) > k, then transform {u, v}
into a non-edge and decrease the parameter by nu,v.

If G contains a non-edge {u, v} such that icn (u, v) > k and icb (u, v) > k,
then transform {u, v} into a red edge and decrease the parameter by ru,v.

If G contains a non-edge {u, v} such that icn (u, v) > k and icr (u, v) > k,
then transform {u, v} into a blue edge and decrease the parameter by bu,v.

Consider the example in Figure 4. If k = 3, then icb (u, v) > k and icr (u, v) >
k. Hence, {u, v} has to be a non-edge in any solution of cost at most k. Since
{u, v} is already a non-edge, the rule does not apply.
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Lemma 20. Reduction Rule 5 is safe and can be applied exhaustively in O(k ·
|V |2) time when the induced costs of each edge have been calculated.

Proof. The safeness of the rule can be seen as follows. In the first case, there
is no target graph for solutions of cost at most k such that {u, v} is a blue
edge. Hence, we need to transform {u, v} into a non-edge or a red edge, and for
both possibilities, it is optimal to transform {u, v} into a non-edge first. The
safeness of the second case follows by symmetric arguments. The safeness of
the third case follows from the fact that transforming {u, v} into a blue edge or
keeping {u, v} a non-edge is impossible in solutions of cost at most k. Hence,
we need to transform {u, v} into a red edge. Similarly, in the last case, we need
to transform {u, v} into a blue edge.

Checking the conditions of Reduction Rule 5 can be done in O(|V |2) time by
considering each vertex pair. Reduction Rule 5 can be applied at most k times
because each application decreases the parameter by at least 1. Observe that
after every application, we need to recompute the induced costs of each vertex
pair containing either u or v. This can be done in O(|V |) time for each pair.
Since there are O(|V |) such pairs, the update of the induced costs takes O(|V |2)
time. �

Note that if an instance (G, g, k) of Weighted Module Map contains a
vertex pair {u, v} such that icb(u, v) > k, icn(u, v) > k, and icr(u, v) > k, then
each solution for (G, g, k) has cost at least k and hence (G, g, k) is a no-instance.

Reduction Rule 5 only changes edges. The definition of the induced costs
can be further used to mark some edges as unchangeable which could be useful
in implementations. Consider Figure 4 for an example: Since icb (u, v) > k
and icr (u, v) > k, the non-edge {u, v} can be marked as unchangeable. In the
following, we will not further use this marking scheme since transforming edges
will be sufficient to provide a kernelization.

To obtain a quadratic-vertex kernel, we have to delete clusters whose vertices
are not contained in any conflict triples.

Reduction Rule 6. Let (G = (V,Eb, Er), g, k) be an instance of Weighted
Module Map. If Gb contains a cluster C such that for all other connected
components L of Gb the vertex pairs between C and L are either all non-edges
or all are red, then delete C from the graph.

Lemma 21. Reduction Rule 6 is safe and can be applied exhaustively in O(|V |2) time.

Proof. Since for each other connected component L (not necessarily a clus-
ter) all vertex pairs between C and L are either all red or all are non-edges,
G contains no conflict triples with at least two vertices u and v from C. Now,
assume towards a contradiction that G contains three vertices u, v, and w which
form a conflict triple such that u ∈ C and v, w /∈ C. Since each conflict triple
contains at least one blue pair, there exists a connected component L such
that v, w ∈ L. Since the vertex pairs between C and L are either all red or all
non-edges, u, v, and w do not form a conflict triple, a contradiction. Hence, no
vertex of cluster C is contained in a conflict triple.
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(0, 1, 2)
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(2, 1, 0)

(2, 1, 0)(2, 1, 0)

Figure 5: The clusters C1, C2, . . . , C` are modified. Consider a blue edge {u, v} between two
modified clusters which has to be deleted to obtain the optimal solution S. Then the blue
edge {u, v} forms conflict triples with at most k vertices from unmodified clusters.

Consider a solution S for G [V \ C]. We will prove that S is also a solu-
tion for G. Since instances of Weighted Module Map are also instances
of MMC, Proposition 7 applies: in the target graph H that is obtained from
solution S there is no blue edge between vertices that are from different con-
nected components of Gb. In G the edges between C and another connected
component L are either all red or non-edges, and since connected components
of Hb are subsets of connected components of Gb, each connected component
in Hb also forms either only non-edges or red edges with cluster C. Hence, S is
also a solution for G.

Fix a cluster C in Gb. To check if all edges between cluster C and some other
connected component L of Gb have the same type, we check |C|·|L| edges. Since
the sum of the sizes of all connected components in Gb is |V |, checking whether
Reduction Rule 6 applies to cluster C needs |C| · |V | time. Since each vertex
of G is contained in at most one cluster of Gb, Reduction Rule 6 can be applied
exhaustively in O(|V |2) time. �

We now obtain a kernelization with a quadratic number of vertices.

Theorem 4. Weighted Module Map admits a kernelization with O(k2) ver-
tices which can be computed in O(|V |3 + k · |V |2) time.

Proof. The kernelization algorithm is to first compute all induced costs, then
to apply Reduction Rule 5 exhaustively, and finally to apply Reduction Rule 6
exhaustively. The running time of O(|V |3 + k · |V |2) follows from Lemmas 20
and 21. Thus, it remains to prove the size bound on the kernel.

Let (G = (V,Eb, Er), g, k) be an instance of Weighted Module Map
which is reduced with respect to Reduction Rules 5 and 6 and which has a
solution S of cost at most k. The target graph H of solution S is a module
graph which can be obtained from the graph G by edge transformations of cost
at most k.

We distinguish modified and unmodified clusters. A modified cluster is a
cluster which contains at least one vertex which is part of a vertex pair trans-
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formed by solution S. An unmodified cluster is a cluster whose vertices are not
part of any transformed vertex pair. In the first step of the proof, we bound
the size of any modified cluster in this target graph H. In the second step,
we bound the number of modified clusters and in the third step, we bound the
overall size of unmodified clusters. In Step 4, we complete the proof of the
quadratic number of vertices.

Step 1: Bounding the size of modified clusters. We prove that for
each modified cluster C in H, |C| ≤ 2k. Assume towards a contradiction that H
contains a cluster C with at least 2k + 1 vertices. First, assume G contains a
blue edge {u, v} with u ∈ C and v /∈ C. Since S transforms at most k edges,
there are at least k + 1 vertices in C that are neighbors of u in G and non-
neighbors of v in G. Hence, icb (u, v) ≥ k + 1 and Reduction Rule 5 applies.
Second, assume there is a vertex pair {u, v} in C which is red or a non-edge.
Since S transforms at most k − 1 edges with one endpoint in {u, v} and one
endpoint in C \{u, v}, the vertices u and v have at least k+1 common neighbors
in C. Hence, icn (u, v) > k and icr (u, v) > k and Reduction Rule 5 applies. We
conclude that C is a cluster in G.

Consider a vertex z /∈ C in G. Since |C| ≥ 2k + 1, there are at least k + 1
non-edges between C and z or at least k + 1 edges between C and z are red.
Assume without loss of generality that at least k + 1 edges between z and C
are red. If there is a vertex u ∈ C such that {u, z} is a non-edge, then for each
red edge between C and z, the vertices incident with the red edge and vertex u
form a bicolored P3. Hence, icn (u, z) > k and icb (u, z) > k. This implies that
Reduction Rule 5 transforms {u, z} into a red edge, a contradiction since G
is reduced exhaustively. Consequently, if z has at least k + 1 red edges to C,
then it has only red edges to C. By symmetric arguments, it holds that if z
has at least k + 1 non-edges to C, then z has only non-edges to C. Thus, each
vertex z /∈ C has only red or non-edges to cluster C. This implies that each
connected component L 6= C of Gb can be partitioned into Ln and Lr, where Ln

is the set of vertices which have only non-edges with C, and Lr is the set of
vertices which have only red edges with C. Consider a vertex u ∈ Ln and a
vertex v ∈ Lr that are connected in G by a blue edge. Such a pair of vertices
exists if Ln and Lr are not empty. Clearly, u and v form a bicolored P3 with each
vertex w in cluster C. Hence, icb (u, v) > k. Thus, Reduction Rule 5 applies
and transforms {u, v} into a non-edge. This implies that for each connected
component L 6= C in Gb, either all edges between C and L are red or all
are non-edges. Consequently, Reduction Rule 6 applies to C, a contradiction.
Hence, all clusters in H have size at most 2k.

Step 2: Bounding the number of modified clusters. Since all edge-
weights are integers, each edge-transformation has cost at least 1. Hence, the
graph H contains at most 2k modified clusters since exactly two vertices are
incident with a transformed edge.

Step 3: Bounding the overall size of unmodified clusters. Let L be
an unmodified cluster. Since L is unmodified, no vertex of L is incident with
a transformed edge. Since Reduction Rule 6 did not apply, the vertices of L
are part of conflict triples. Since no vertex of L is incident with a transformed
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edge, the only possible forbidden subgraph is a bicolored P3 where the blue
edge {u, v} is part of another connected component K in Gb and deleted by
the solution. Hence, there exist at least two distinct clusters Ci and Cj in the
target graph H which contain u and v, respectively. Clearly, all vertices of
the unmodified cluster L have the same set of red neighbors. Assume the blue
edge {u, v} forms k + 1 bicolored P3s with vertices from unmodified clusters.
By definition this implies icb (u, v) ≥ k + 1 which contradicts the fact that
Reduction Rule 5 does not apply.

By the above, for each blue edge {u, v} the number of vertices in unmodified
clusters that form a bicolored P3 with {u, v} is at most k. Since we can transform
at most k blue edges and each blue edge can be part of at most k conflict triples,
all unmodified clusters together can have at most k2 vertices; see Figure 5 for
an illustration.

Step 4: Bounding the overall number of vertices. From Step 1 and
Step 2 we conclude that the overall number of vertices in modified clusters is
at most 2k · 2k. From Step 3 we conclude that all unmodified clusters together
can have at most k2 vertices. Hence, G contains at most 5k2 vertices.

Since the number of vertices in yes-instances is bounded, we obtain a ker-
nelization for Weighted Module Map: If an instance (G = (V,Eb, Er), g, k)
contains more than 5k2 vertices after the exhaustive application of Reduction
Rules 5 and 6, then it is a no-instance and can be replaced by a no-instance of
constant size. Afterwards, we have achieved the claimed bound on the number
of vertices in both cases. �

6. Two Fine-Grained Complexity Lower Bounds

A natural way to find a forbidden subgraph of module graphs would be to
search for example first for a blue P3, then for an almost-blue K3, and finally for
a bicolored P3. In this section, we show that, under some common assumptions
in fine-grained complexity theory, it is impossible to find an almost-blue K3

in O(|V |+|E|) time and impossible to find a blue P3 in O(|V |+|E|) time. Hence,
the linear-time algorithm for detecting forbidden induced subgraphs of module
graphs relies crucially on the fact that we search simultaneously for blue P3s and
almost-blue K3s. This side result, although only loosely connected to Module
Map, may prove useful for the investigation of further graph problems with two
edge colors.

For both problems, we give a reduction from Triangle Detection, defined
as follows.

Triangle Detection
Input: A graph G = (V,E).
Question: Does G contain a K3?

It has been open for a long time whether triangles can be detected in a graph
in O(|V | + |E|) time or in O(|V |2) time. Triangle Detection is a special
case of the k-Clique problem where the task is to detect a clique of size k in
a graph G = (V,E). The current best algorithm for k-Clique has a running
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time of O(|V |kω/3) [19], where ω < 2.373 is the exponent of the time that is
needed to multiply two n× n matrices [26]. The k-clique-conjecture states that
this running time is optimal for k-Clique [1] and thus implies that the best
running time for any algorithm for Triangle Detection is O(|V |ω). Hence,
an O(|V |2)-time algorithm for Triangle Detection would either falsify the
k-clique-conjecture or imply ω = 2. We state our relative lower bounds in terms
of the running times for Triangle Detection that would be implied by fast
algorithms for our problems.

The reductions use hashing. For a set U (called universe) of size n, an
(n, k)-perfect hash family is a set of functions h : U → {1, . . . , k} such that
for each size-k subset S of U , the family contains a function h that maps the
elements of S to different values. Given U and k, an (n, k)-perfect hash family
of size 2O(k) log n can be constructed in 2O(k)n log(n) time [3].

First, we show that a linear-time algorithm for detecting an almost-blue K3

implies an almost linear-time algorithm for Triangle Detection.

Proposition 10. If we can detect almost-blue K3s in a graph G = (V,Eb, Er)
in O(|V |+ |E|) time, then we can detect triangles in O((|V |+ |E|) log |V |) time.

Proof. We reduce from Triangle Detection as follows. Let G = (V,E) be
the graph of the Triangle Detection instance. The universe U of the hash
function consists of the edges in G (so U := E) and k = 3. In other words,
we use a (|E|, 3)-perfect hash family. This family has size O(log |E|) and can
be constructed in O(|E| log |E|) time. For each function h in the hash family,
we create a graph Gh with blue and red edges from G by making all edges e
with h(e) = 1 or h(e) = 2 blue and the edges with h(e) = 3 red.

The graph G contains a triangle if and only if Gh contains an almost-blue K3

for some hash function h of the hash family: If G contains a triangle, then
there exists a function h in which the edges of the triangle receive different
hash values, since the hash family is (|E|, 3)-perfect. For this function, two of
the three triangle edges are blue and one is red in Gh. Thus, Gh contains an
almost-blue K3. The converse statement is obviously true since the edges of an
almost-blue K3 in any Gh are also edges of G.

By the above, we can find a triangle in G by searching for an almost-blue K3

in each Gh. If this can be done in O(|V | + |E|) time for each Gh, then the
overall running time of the algorithm for detecting a triangle in G is O((|V | +
|E|) log |E|), since the hash family consists of O(log |E|) functions. �

With a similar construction, we can show a slightly weaker statement for the
problem of detecting blue P3s in bicolored graphs. More precisely, we show
that an algorithm for detecting blue P3s whose running time is quadratic in |V |
gives an algorithm for Triangle Detection whose running time is almost
quadratic in |V |. Hence, such an algorithm would imply a major speed-up for
Triangle Detection. This result is slightly surprising, since detecting P3s
in uncolored graphs can be done in linear time according to Proposition 2.

Proposition 11. If we can detect blue P3s in a graph G = (V,Eb, Er) in O(|V |2)
time, then we can detect triangles in O((|V |2) log |V |) time.
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Proof. Similar to the proof of Proposition 10 we give a reduction from Tri-
angle Detection using a perfect hash family with universe U := E and k = 3.
This hash family has sizeO(log |E|) and can be constructed inO(|E| log |E|) time.
For each function h in the hash family, we construct in O(|V |2) time the
graph Gh := (V,Eh

b , E
h
r ) with blue and red edges by adding a red edge for

each non-edge of G and adding all edges e ∈ E with h(e) = 1 or h(e) = 2 to the
set Eh

b of blue edges. Thus, we can think of the edges with h(e) = 3 as being
deleted.

The graph G contains a triangle if and only if Gh contains a blue P3 for some
hash function h of the hash family: If G contains a triangle, then there exists a
function h in which the edges of the triangle receive different hash values, since
the hash family is (|E|, 3)-perfect. For this function, two of the three triangle
edges are blue in Gh and one is a non-edge in Gh. Thus, Gh contains a blue P3.
The converse statement is also true since in any Gh the two blue edges of a
blue P3 and its non-edge are also edges of G because the non-edges of G are red
edges of Gh.

By the above, we can find a triangle in G by searching for a blue P3 in
each Gh. If this can be done in O(|V |2) time for each Gh, then the overall
running time of the algorithm is O(|V |2 log |V |) since the hash family consists
of O(log |E|) = O(log |V |) functions. �

7. Conclusion

We investigated Module Map, a new natural edge modification problem in
graphs with two different edge types from a parameterized algorithmic perspec-
tive, presenting a nontrivial search tree algorithm and a kernel with a quadratic
number of vertices. There are many open questions: Does Module Map admit
a kernelization with O(k) vertices? Can we compute a constant-factor approx-
imation in polynomial time? Is Module Map NP-hard when Gb is a cluster
graph? Is Module Map fixed-parameter tractable for smaller parameters, for
example when parameterized by some lower bound on the solution size as it was
done for Cluster Editing [6]? Moreover, can we determine in O(|V | + |E|)
time whether a bicolored graph contains a bicolored P3? We find it also very
intriguing to study further edge modification problems in graphs with multi-
ple edge types from an algorithmic point of view. For example, in follow-up
work we studied Bicolored P3 Deletion, where the aim is to destroy in an
edge-bicolored graph all induced bicolored P3s by at most k edge deletions, and
showed for example that Bicolored P3 Deletion is NP-hard [17].

Concerning the biological application, it would be interesting to investigate
how our model compares to the one of Amar and Shamir [4] in terms of biological
results. In this context, one should also investigate the case where vertex pairs
may have red and blue edges in the input graph and further possibilities to
model the transformation of blue into red edges and vice versa.
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