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Abstract. In the Π-Cluster Editing problem, one is given an undi-
rected graph G, a density measure Π , and an integer k ≥ 0, and needs
to decide whether it is possible to transform G by editing (deleting and
inserting) at most k edges into a dense cluster graph. Herein, a dense clus-
ter graph is a graph in which every connected component K = (VK , EK)
satisfies Π . The well-studied Cluster Editing problem is a special
case of this problem with Π :=“being a clique”. In this work, we con-
sider three other density measures that generalize cliques: 1) having
at most s missing edges (s-defective cliques), 2) having average degree
at least |VK | − s (average-s-plexes), and 3) having average degree at
least µ · (|VK | − 1) (µ-cliques), where s and µ are a fixed integer and a
fixed rational number, respectively. We first show that the Π-Cluster
Editing problem is NP-complete for all three density measures. Then, we
study the fixed-parameter tractability of the three clustering problems,
showing that the first two problems are fixed-parameter tractable with
respect to the parameter (s, k) and that the third problem is W[1]-hard
with respect to the parameter k for 0 < µ < 1.

1 Introduction

Graph-based data clustering is an important tool for analyzing real-world data,
ranging from biological to social network data. In such applications, data items
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are represented as vertices, and there is an edge between two vertices iff the
interrelation between the two corresponding data items exceeds some threshold
value. A clustering with respect to such a graph means a partition of the vertices
into dense subgraphs, also called clusters, such that there are few edges between
the clusters. When formulated as a graph modification problem, one thus asks for
a minimum-cardinality set of edge modifications, such that the resulting graph
is a graph in which every connected component is a cluster. More precisely, the
algorithmic task can be formalized as follows:

Π-Cluster Editing:
Input: An undirected graph G = (V, E), a density measure Π , and an
integer k ≥ 0.
Task: Find a set of at most k edge modifications to transform G into
a Π-cluster graph, that is, a graph in which every connected component
satisfies Π .

Herein, an edge modification is to insert or delete an edge. Analogously, one
defines Π-Cluster Deletion by allowing only edge deletions and Π-Cluster
Addition by allowing only edge insertions.

One of the most prominent problems in this context is the NP-hard Cluster
Editing problem (also known as Correlation Clustering) [2, 16], where
the required density measure is Π :=“being a clique”. Cluster Editing finds
applications in various fields, such as computational biology [3] and machine
learning [2], and has been intensively studied from the viewpoints of polynomial-
time approximability as well as parameterized algorithmics. In terms of approx-
imability, the currently best known approximation factor is 2.5 [17]. Cluster
Editing can be solved in O(1.83k + |E|) time [3] and several studies concern-
ing provably efficient and effective preprocessing by data reduction have been
performed [8, 11]. Successful experimental studies of the parameterized algo-
rithms for Cluster Editing have been conducted mainly in the context of
computational biology [3, 6]. The related Cluster Deletion problem is also
NP-hard [16].

The density requirement of being cliques has been often criticized for its
overly restrictive nature and modeling disadvantages [5, 15]. In this work, we
attempt to chart the tractability borderlines of Π-Cluster Editing when
the density requirement is relaxed. Therefore, we consider three relaxed density
measures, namely, s-defective cliques, average-s-plexes, and µ-cliques. The corre-
sponding modification problems are s-Defective Clique Editing, Average-
s-Plex Editing, and µ-Clique Editing. We study the classical and the pa-
rameterized complexity of the aforementioned problems. The proposed density
measures may provide more realistic models for practical applications and fixed-
parameter tractability (FPT) results can serve as a first step in a series of algo-
rithmic improvements, eventually leading to applicability in practice, as it was
the case for Cluster Editing [3, 6, 8, 11]. An overview of our results is given
in Table 1. Note that for all three density measures the polynomial-time solvabil-
ity of the addition problem can be easily seen and is included only for the sake
of completeness. In the following, we give the exact definitions of the density
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Table 1. The complexity of the problems considered in this work. For s-defective
cliques and average-s-plexes, the considered parameter is (s, k), for µ-cliques, the
considered parameter is k.

Deletion Editing Addition

s-Defective Clique NP-complete (Thm. 1)
FPT (Thm. 3)

NP-complete (Thm. 1)
FPT (Thm. 3)

∈ P

Average-s-Plex NP-complete (Thm. 4)
FPT (Thm. 5)

NP-complete (Thm. 4)
FPT (Thm. 5)

∈ P

µ-Clique NP-complete (Thm. 7) W[1]-hard (Thm. 6) ∈ P

measures studied in this work, point to related work, and describe our results.
Defective Cliques. The concept of defective cliques has been used in biological
networks to represent a clique with exactly one edge missing [18]. Here, we
generalize this notion1 by allowing up to s missing edges: A graph G = (V, E) is
called an s-defective clique, if G is connected and |E| ≥ |V |·(|V |−1)/2−s. On the
negative side, we prove that s-Defective Clique Deletion and Editing are
NP-complete. On the positive side however, we show that s-defective cliques can
be characterized by forbidden subgraphs of size at most 2(s+1), thus showing the
fixed-parameter tractability of s-Defective Clique Deletion and Editing
with respect to the parameter (s, k).
Average-s-Plexes. With average-s-plexes, we propose a density measure that
concerns the average degree of a graph G = (V, E), which is defined as d̄ =
2|E|/|V |. We call a connected graph G = (V, E) an average-s-plex if the average
degree d̄ of G is at least |V |− s for an integer 1 ≤ s ≤ |V |. This density measure
is a relaxation of the s-plex notion, which demands that the minimum degree of
a graph G = (V, E) is |V | − s. s-Plexes find applications for example in social
network analysis [15]. For s-plexes, the clustering problem s-Plex Editing has
been previously shown to be NP-hard but fixed-parameter tractable with respect
to the parameter (s, k) [12]. Here, we complement this result by showing that
Average-s-Plex Deletion and Editing are also NP-hard as well as fixed-
parameter tractable with respect to the parameter (s, k). The fixed-parameter
tractability result is achieved by a reduction to a more general problem and a
subsequent polynomial-time data reduction for the general problem that pro-
duces a graph with at most 4k2 + 8sk vertices.
µ-Cliques. With this density measure, we capture the ratio of edges in a graph
versus the number of edges in a complete graph of the same size. More precisely,
the density of a graph G = (V, E) is defined as 2|E|/(|V |(|V | − 1)). A connected
graph G = (V, E) is then called a µ-clique for a rational constant 0 ≤ µ ≤
1 if the density of G is at least µ. We assume that µ is represented by two
constant integers a, b such that µ = a/b (note that a and b are not part of
the input). Observe that for µ = 0 every graph is a µ-clique, and that a graph
is a 1-clique iff it is a clique. The µ-clique concept was studied for example

1 Note that Yu et al. [18] introduced a different generalization of defective cliques that
is more restrictive than the one considered here.
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by Abello et al. [1] and is sometimes also referred to as µ-dense graph [13].
We show that—in contrast to s-Defective Clique Editing and Average-s-
Plex Editing—µ-Clique Editing is W[1]-hard and thus presumably fixed-
parameter intractable with respect to the parameter k for any fixed 0 < µ < 1.
Note that for µ = 1, the problem is equivalent to Cluster Editing and is thus
fixed-parameter tractable. For µ-Clique Deletion we show the NP-hardness,
the parameterized complexity remains open.
Preliminaries. We only consider undirected graphs G = (V, E), where n := |V |
and m := |E|. The (open) neighborhood N(v) of a vertex v ∈ V is the set of
vertices that are adjacent to v in G. The degree of a vertex v, denoted by deg(v),
is the cardinality of N(v). For a set U of vertices, N(U) :=

⋃

v∈U
N(v) \ U . We

use N [v] to denote the closed neighborhood of v, that is, N [v] := N(v)∪{v}. For
a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the vertex
set V ′ with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G − V ′ as an
abbreviation for G[V \ V ′] and for a vertex v ∈ V let G − v denote G − {v}. A
vertex v ∈ V (G) is called a cut-vertex if G − v has more connected components
than G. For a graph G = (V, E) let G := (V, E) with E := {{u, v} | u, v ∈
V ∧ u 6= v ∧ {u, v} 6∈ E} denote the complement graph of G.

A parameterized problem is fixed-parameter tractable (FPT) with respect to
a parameter k, if there exists an algorithm solving the problem in time f(k) ·
nO(1), where n denotes the overall input size and f is a computable function.
Downey and Fellows [7] developed a formal framework to show fixed-parameter
intractability; the basic complexity class for fixed-parameter intractability is
called W [1] and there is good reason to believe that W [1]-hard problems are
not FPT [7, 14].

Due to lack of space, some proofs are deferred to the full version.

2 Defective Cliques

First, we focus on the s-Defective Clique Editing problem. A graph is called
an s-defective clique graph if every connected component forms an s-defective
clique. An edge {u, v} ∈ E is called a missing edge of G. The following theorem
can be obtained by reductions from Cluster Deletion and Editing.

Theorem 1. s-Defective Clique Deletion and Editing are NP-complete.

If we delete an arbitrary vertex of an s-defective clique graph, then clearly the
resulting graph is still an s-defective clique graph. A graph property that is closed
under the operation of deleting vertices (and hence, taking induced subgraphs)
is called hereditary. It is well known that hereditary graph properties can be
described by forbidden induced subgraphs [10]. This means that there exists a
set F of graphs such that a given graph G is an s-defective clique graph iff G
is F -free, that is, G does not contain any graph from F as induced subgraph. A
forbidden induced subgraph is minimal if each of its proper induced subgraphs
is an s-defective clique graph. Clearly, a graph is an s-defective clique graph iff
it does not contain any minimal forbidden induced subgraph. Next, we show
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that, for s ≥ 1, every minimal forbidden subgraph of s-defective clique graphs
contains at most 2(s+1) vertices. Note that for s = 0 the only forbidden induced
subgraph is a path on 3 vertices.

Theorem 2. For s ≥ 1, every minimal forbidden induced subgraph of s-defective
clique graphs contains at most 2(s + 1) vertices. Given a graph that is not an
s-defective clique graph, a minimal forbidden induced subgraph can be found
in O(nm) time.

Proof. Assume towards a contradiction that there exists a minimal forbidden
subgraph G = (V, E) with |V | > 2(s + 1). Clearly, we can assume that G is
connected, since otherwise we can keep one connected component that is not an
s-defective clique and delete all other connected components.

First, we consider the case when G contains a cut-vertex v. Let U denote a set
of s+2 vertices which together with v induce a connected graph G′ := G[U∪{v}]
and v remains a cut-vertex in G′. We show that G′ is not an s-defective clique
graph, a contradiction to the fact that G is minimal (note that s + 3 ≤ 2s + 2
for s ≥ 1). Let U1, . . . , Uℓ denote the connected components of G′ − v. It is not

hard to see that there are at least 1
2

∑ℓ

i=1 |Ui| · (|U \Ui|) > s edges missing in G′,
and, hence, G′ is not an s-defective clique graph.

In the following, we assume that G does not contain any cut-vertex. Moreover,
we can assume that no vertex of G is adjacent to all other vertices of G, since
otherwise we can delete it to get a connected graph that has the same number
of missing edges as G, thus contradicting the minimality of G. Hence, there are
more than s+1 missing edges in G, since every vertex is incident to at least one
missing edge. Let v be an arbitrary vertex of G and let A := V \N [v]. Since the
deletion of v results in an s-defective clique graph, it follows that in G− v there
are at most s missing edges. Hence, there exists a vertex u that is adjacent to
all vertices of G− v. Clearly, u ∈ A, since, otherwise, u would be adjacent to all
vertices in G. Then, the deletion of u reduces the number of missing edges by
one. Thus, G − u is connected and has at least s + 1 missing edges, and, hence,
is not an s-defective clique graph, contradicting the fact that G is minimal.

To find a minimal forbidden induced subgraph proceed as follows. Given a
graph G = (V, E) that is not an s-defective clique graph we check for every v ∈ V
whether G − v is an s-defective clique graph in O(n + m) time and delete v if
not. It is not hard to observe that we have to consider every vertex at most once.
Hence, the overall running time is O(nm). ⊓⊔

The forbidden subgraph characterization given in Theorem 2 directly leads
to a search tree algorithm for s-Defective Clique Editing [4].

Theorem 3. s-Defective Clique Editing and Deletion are fixed-parameter
tractable with respect to the parameter (s, k).

3 Average-s-Plexes

Here, we consider the Average-s-Plex Editing problem, showing its NP-
completeness and fixed-parameter tractability with respect to (s, k). To this end,
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we need the following problem, called Equal-Size Clique Editing: Given an
undirected graph G = (V, E) and two integers k, d ≥ 0, decide whether it is
possible to transform G, by adding and deleting at most k edges, into a vertex-
disjoint union of d cliques which have the same size. The edge deletion version of
this problem allows only edge deletions. The NP-completeness of both problems
can be shown by a reduction from the well-known Clique problem. Reducing
from Equal-Size Clique Editing and Deletion we can show the following.

Theorem 4. Average-s-Plex Editing and Deletion are NP-complete.

In the following, we describe a fixed-parameter algorithm for Average-s-
Plex Editing parameterized by (s, k). Our algorithm consists of two main
steps. First, we reduce the original problem to a weighted version. Then, we
show the fixed-parameter tractability of the weighted version by describing
two polynomial-time data reduction rules that yield instances which contain at
most 4k2 +8sk vertices. Note that being an average-s-plex graph is not a hered-
itary graph property. Hence, the fixed-parameter tractability of Average-s-
Plex Editing and Average-s-Plex Deletion cannot be shown by a forbid-
den subgraph characterization as in the case of s-Defective Clique Deletion
and s-Defective Clique Editing.

We begin with describing a weighted version of Average-s-Plex Editing.
We introduce three types of weights: two vertex weights and one edge weight.
The idea behind these weight types is the following: whenever there are two
vertices in G that cannot be separated by at most k edge modifications, we
can merge them into a new “super-vertex”, since it is clear that they end up
in the same connected component of the solution. We say that a super-vertex v
“comprises” a vertex u of the input graph, if u is merged into v. When doing so,
we must remember for each such super-vertex v:
- How many vertices of the input graph v comprises,
- How many edges there are between the vertices that v comprises, and
- For each vertex w outside v, how many vertices that v comprises are
adjacent to w.

The first two aspects can be remembered by introducing two weights for v, σ(v)
which keeps track of the number of vertices comprised by v, and δ(v) which keeps
track of the number of edges between these vertices. The third aspect can be
stored as the edge weight ω(e) for the edge e = {w, v}. Herein, we call a vertex
pair having no edge between them a non-edge. Then, edges have edge weights
at least one and non-edges have edge weight zero.

The “size” of a vertex set S is then simply defined as σ(S) :=
∑

v∈S
σ(v). The

average degree d̄(Vi) of a connected component Vi can be computed as follows:

d̄(Vi) =
2

∑

v∈Vi
δ(v) +

∑

v∈Vi

∑

u∈N(v) ω({u, v})

σ(Vi)
.

Similar to the definition of average-s-plex graphs, we say that a graph is a
weighted average-s-plex graph, if for each connected component Vi, the aver-
age degree d̄(Vi) is at least σ(Vi) − s. For modifying the weighted graph, we
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allow the following modifications: increasing δ(u) by one for some u ∈ V , in-
creasing ω({u, v}) by one for some {u, v} ∈ E, decreasing ω({u, v}) by one for
some {u, v} ∈ E, deleting some {u, v} ∈ E with ω({u, v}) = 1, and adding some
edge {u, v} to E and setting ω({u, v}) := 1. Each of these operations has cost
one, and the overall cost of a modification set S is thus exactly |S|. The weighted
problem version is then defined as

Weighted Average-s-Plex Editing
Input: A graph G = (V, E), with two vertex-weight functions σ : V →
[1, n] and δ : V → [0, n2], an edge weight function ω : E → [1, n2], and a
nonnegative integer k.
Question: Is there a set of edge modifications S such that applying S
to G yields a weighted average-s-plex graph, and such that |S| ≤ k?

Observe that we can easily reduce an instance ((V, E), k) of Average-s-Plex
Editing to an instance of Weighted Average-s-Plex Editing, by set-
ting σ(v) := 1 and δ(v) := 0 for each v ∈ V , and ω({u, v}) := 1, if {u, v} ∈ E;
otherwise, ω({u, v}) := 0. Note that this reduction is parameter-preserving, that
is, s and k are not changed.

In the following, we present two data reduction rules for Weighted Average-
s-Plex Editing which (as we show in Theorem 5) yield instances that contain
at most 4k2 + 8sk vertices.

Rule 1 Remove connected components that are weighted average-s-plexes from G.

The rule is obviously correct, since no optimal solution modifies any edges inci-
dent to vertices of such a connected component.

The second reduction rule identifies two vertices that have a large common
neighborhood, or a heavy edge between them and “merges” these vertices into
a new “super-vertex”.

Rule 2 If G contains two vertices u and v such that ω({u, v}) > k or u and v
have more than k common neighbors, then remove u from G and set
− σ(v) := σ(u) + σ(v),
− δ(v) := δ(u) + δ(v) + ω({u, v}), and
− ω({v, w}) := ω({v, w}) + ω({u, w}) for each w ∈ V \ {u, v}.

To see the correctness of the rule, consider the following: we cannot separate u
and v using at most k edge modifications, they thus end up in the same connected
component. Hence, we can remove one of them, and store the information about
its adjacency in the vertex weights and edge weights of the other vertex.

With these two reduction rules we can show our main result of this section.

Theorem 5. (Weighted) Average-s-Plex Editing and Deletion are fixed-
parameter tractable with respect to the parameter (s, k).

Proof. We first show that a yes-instance I of Weighted Average-s-Plex
Editing that is reduced with Rules 1 and 2 contains at most 4k2 +8sk vertices.
Let I be such a reduced instance, and let G be the input graph of I. Since I is a
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yes-instance, there is a weighted average-s-plex graph G′ that can be obtained
from G by applying at most k edge modifications. We now bound the size of G′.
Herein, we call a vertex v “affected” if v is an endpoint of a modified edge.

First, since G is reduced with respect to Rule 1, there is at least one affected
vertex in each connected component of G′. Hence, there can be at most 2k
connected components in G′.

Next, we show that each connected component of G′ contains at most 2k+4s
vertices. Suppose towards a contradiction that there is a connected component Vi

of G′ such that |Vi| > 2k + 4s. Let u ∈ Vi be a vertex of maximum degree
in Vi. Since G′ is a weighted average-s-plex graph, the average vertex degree
in G′[Vi] is at least σ(Vi) − s. Since |Vi| ≤ σ(Vi), u must be adjacent to at
least |Vi| − s ≥ 2k + 3s vertices in G′[Vi]. We consider two cases for σ(v).
Case 1: σ(u) ≥ σ(Vi)/2. We show that the average degree of G′[Vi] is less
than σ(Vi)−s, contradicting the assumption that G′ is a weighted average-s-plex
graph. Since G is reduced with respect to Rule 2, there is no edge that has weight
at least k + 1 in G. In G′, the edge weights of edges incident to u have increased
by at most k overall. Without loss of generality we can assume that the solution
distributes these edge weight increases evenly, since for the average degree of
a connected component only the overall edge and vertex weights are relevant.
The maximum edge weight of edges incident to u in G′ is thus at most k + 2,
since u has 2k + 3s neighbors in G′ and spreading the edge additions equally
leads to a weight increase of at most one for each edge. However, with σ(u) ≥
σ(Vi \ {u}) ≥ 2k + 3s, this means that for each edge incident to u, the edge
weight is at most σ(u)/2. This leads to a low average degree. More precisely, we
can bound the average degree of Vi as

d̄(Vi)
(∗)
<

2
(

σ(Vi)
2

)

− (σ(u)/2) · σ(Vi \ {u})

σ(Vi)

(∗∗)
<

2
(

σ(Vi)
2

)

− (σ(u)/2) · 4s

σ(Vi)

(∗∗∗)

≤
2
(

σ(Vi)
2

)

− (σ(Vi)/4) · 4s

σ(Vi)
< σ(Vi) − s.

Inequality (*) follows from assuming the (maximum-density) case that with ex-
ception of the edges incident to u all edges are present and have maximum pos-
sible weight, and the fact that the maximum edge weight of edges incident to u
is k+1, which means that for each such edge, a weight of at least σ(u)−(k+1) >
σ(u)/2 is “missing”. Inequality (**) follows from σ(Vi \ {u}) ≥ |Vi|− 1 > 4s and
inequality (***) follows from σ(u) ≥ σ(Vi)/2.
Case 2: σ(u) < σ(Vi)/2. First, we show that there must be at least one other
vertex w ∈ Vi that has at least |Vi| − 2s neighbors in G′[Vi]. Suppose otherwise.
Then it holds for the average degree of G′[Vi] that

d̄
(∗)

≤
σ(u) · (σ(Vi) − 1) + (σ(Vi) − σ(u)) · (σ(Vi) − 2s − 1)

σ(Vi)

=
σ(Vi) · (σ(Vi) − 1) − 2s · (σ(Vi) − σ(u))

σ(Vi)

(∗∗)
<

σ(Vi) · (σ(Vi) − s)

σ(Vi)
.
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Inequality (*) follows from assuming the (maximum-density) case that u is ad-
jacent to all vertices in Vi and that all edge and vertex weights have maximum
possible values. Inequality (**) follows from σ(Vi) − σ(u) > σ(Vi)/2. We have
thus shown that there is at least one vertex w that is adjacent to at least |Vi|−2s
vertices in G′. Since u has at least |Vi| − s neighbors in G′[Vi], there must be at
least |Vi| − 3s > 2k +4s− 3s = 2k + s vertices in G′[Vi] that are common neigh-
bors of u and w. Clearly, more than k+s of those vertices are common neighbors
of u and w in G. This contradicts that G is reduced with respect to Rule 2.

We have thus shown that a reduced yes-instance contains at most 4k2 + 8sk
vertices. We obtain a fixed-parameter algorithm for Weighted Average-s-
Plex Editing as follows. First we exhaustively apply the reduction rules, which
can clearly be done in polynomial time. If the reduced instance contains more
than 4k2 + 8sk vertices, then it is a no-instance. Otherwise, we can solve the
problem with running time only depending on s and k, for example by brute-
force generation of all possible partitions of the graph. The fixed-parameter
tractability of Average-s-Plex Editing, then directly follows from the de-
scribed reduction to Weighted Average-s-Plex Editing. ⊓⊔

4 µ-Cliques

The main result of this section is that, in contrast to s-Defective Clique
Editing and Average-s-Plex Editing, µ-Clique Editing is fixed-parameter
intractable with respect to the number k of allowed edge modifications.

Theorem 6. For any fixed 0 < µ < 1, µ-Clique Editing is NP-complete and
W[1]-hard with respect to the number k of allowed edge modifications.

The reduction used in the proof of Theorem 6 does not work for the edge dele-
tion case. However, we can establish the NP-hardness of µ-Clique Deletion by
a reduction from the NP-complete Maximum Triangle Packing problem [9].

Theorem 7. For any fixed 0 < µ < 1, µ-Clique Deletion is NP-complete.

5 Outlook

There are numerous topics for future research, we only point out some of them.
For s-Defective Clique Editing and Average-s-Plex Editing clearly
further algorithmic improvements are necessary. For instance, s-Defective
Clique Editing is still missing a non-trivial kernelization algorithm, whereas
for Average-s-Plex Editing a solution algorithm other than the brute-force
one that can be applied to the reduced instance is needed. As a next step, ex-
perimental studies should then be undertaken regarding the running time of the
algorithms and the quality of the produced clusterings. For µ-Clique Editing,
other parameterizations should be studied. Finally, the parameterized complex-
ity of µ-Clique Deletion remains open.
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