
To appear in Algorithmica, Special Issue of ISAAC 2009

Editing Graphs into Disjoint Unions of Dense

Clusters

Jiong Guo∗ Iyad A. Kanj† Christian Komusiewicz‡

Johannes Uhlmann§

Universität des Saarlandes,

Campus E 1.7, D-66123 Saarbrücken, Germany

jguo@mmci.uni-saarland.de

School of Computing, DePaul University,

243. S. Wabash Avenue, Chicago, IL 60604, USA

ikanj@cs.depaul.edu

Institut für Informatik, Friedrich-Schiller-Universität Jena

Ernst-Abbe-Platz 2, D-07743 Jena, Germany
{c.komus,johannes.uhlmann}@uni-jena.de

Abstract

In the Π-Cluster Editing problem, one is given an undirected graphG,
a density measure Π, and an integer k ≥ 0, and needs to decide whether
it is possible to transform G by editing (deleting and inserting) at most k
edges into a dense cluster graph. Herein, a dense cluster graph is a graph
in which every connected component K = (VK , EK) satisfies Π. The
well-studied Cluster Editing problem is a special case of this problem
with Π :=“being a clique”. In this work, we consider three other density
measures that generalize cliques: 1) having at most s missing edges (s-
defective cliques), 2) having average degree at least |VK | − s (average-s-
plexes), and 3) having average degree at least µ · (|VK | − 1) (µ-cliques),
where s and µ are a fixed integer and a fixed rational number, respectively.
We first show that the Π-Cluster Editing problem is NP-complete for
all three density measures. Then, we study the fixed-parameter tractabil-
ity of the three clustering problems, showing that the first two prob-
lems are fixed-parameter tractable with respect to the parameter (s, k)

∗Supported by the Excellence Cluster on Multimodal Computing and Interaction (MMCI).
Main work was done while the author was with the Friedrich-Schiller-Universität Jena.

†Part of this work was done while the author was visiting the Friedrich-Schiller-Universität
Jena.

‡Supported by a PhD fellowship of the Carl-Zeiss-Stiftung and the DFG, research project
PABI, NI 369/7.

§Supported by the DFG, research project PABI, NI 369/7.

1

To appear in Algorithmica, Special Issue of ISAAC 2009

and that the third problem is W[1]-hard with respect to the parameter k
for 0 < µ < 1.

1 Introduction

Graph-based data clustering is an important tool for analyzing real-world data,
ranging from biological to social network data. In such applications, data items
are represented as vertices, and there is an edge between two vertices if and
only if the interrelation between the two corresponding data items exceeds some
threshold value. A clustering with respect to such a graph is a partition of the
vertex set into dense subgraphs, also called clusters, such that there are few
edges between the clusters. When formulated as a graph modification problem,
one thus asks for a minimum-cardinality set of edge modifications, such that
the resulting graph is a graph in which every connected component is a cluster.
More precisely, the algorithmic task can be formalized as follows:

Π-Cluster Editing:
Input: An undirected graph G = (V,E), a density measure Π, and
an integer k ≥ 0.
Task: Find a set of at most k edge modifications to transform G
into a Π-cluster graph, that is, a graph in which every connected
component satisfies Π.

Herein, an edge modification is an insertion or deletion of an edge. Anal-
ogously, one defines Π-Cluster Deletion by allowing only edge deletions
and Π-Cluster Addition by allowing only edge insertions.

One of the most prominent problems in this context is the NP-hardCluster
Editing problem (also known asCorrelation Clustering) [3, 23], where the
required density measure is Π :=“being a clique”. Cluster Editing finds ap-
plications in various fields, such as computational biology [4] and machine learn-
ing [3], and has been intensively studied from the viewpoints of polynomial-time
approximability as well as parameterized algorithmics. In terms of approxima-
bility, the currently best known approximation factor is 2.5 [2, 25]. Cluster
Editing can be solved in O(1.83k + |E|) time [4] and several kernelization
(data reduction) algorithms for this problem have been proposed [6, 7, 11, 16].
Successful experimental studies of the parameterized algorithms for Cluster
Editing have been conducted mainly in the context of computational biol-
ogy [4, 9]. The related Cluster Deletion problem is also NP-hard [23].

The requirement of being a clique has been often criticized for its overly
restrictive nature and modeling disadvantages [8, 22]. Consequently, less re-
strictive models for dense graphs have been proposed in various application sce-
narios [1, 22, 24]. In this work, we study the combination of clique relaxations
and graph-based data clustering by charting the tractability borderlines of Π-
Cluster Editing when the density requirement is relaxed. We consider three
relaxed density measures, namely, s-defective cliques, average-s-plexes, and µ-
cliques. The corresponding modification problems are s-Defective Clique

2

To appear in Algorithmica, Special Issue of ISAAC 2009

Table 1: The complexity of the problems considered in this work. For s-defective
cliques and average-s-plexes, the considered parameter is (s, k), for µ-cliques,
the considered parameter is k.

Deletion Editing Addition
s-Defective Clique NP-c. (Thm. 1)

FPT (Thm. 3)
NP-c. (Thm. 1)
FPT (Thm. 3)

P

Average-s-Plex NP-c. (Thm. 4)
FPT (Thm. 5)

NP-c. (Thm. 4)
FPT (Thm. 5)

P

µ-Clique NP-c. (Thm. 7) W[1]-hard
(Thm. 6)

P

Editing, Average-s-Plex Editing, and µ-Clique Editing. For all three
density measures we also consider the deletion variants s-Defective Clique
Deletion, Average-s-Plex Deletion, and µ-Clique Deletion of the clus-
tering problems. We study the classical and the parameterized complexity of
the aforementioned problems; this complements previous work where we con-
sidered a different density measure, so-called s-plexes [17]. The proposed den-
sity measures may provide more realistic models for practical applications and
fixed-parameter tractability (FPT) results can serve as a first step in a series of
algorithmic improvements, eventually leading to applicability in practice, as it
was the case for Cluster Editing [4, 9, 11, 16]. An overview of our results is
given in Table 1. Note that for all three density measures the polynomial-time
solvability of the addition problem can be easily seen, and is included only for
the sake of completeness. In the following, we give the exact definitions of the
density measures studied in this work, point to related work, and describe our
results.

Defective Cliques. The concept of defective cliques has been used in biolog-
ical networks to represent a clique with exactly one edge missing [24]. Here, we
generalize this notion1 by allowing up to s missing edges: A graph G = (V,E) is
called an s-defective clique, if G is connected and |E| ≥ |V | · (|V |− 1)/2− s. On
the negative side, we prove that s-Defective Clique Deletion and Editing
are NP-complete. On the positive side however, we show that s-defective cliques
can be characterized by forbidden subgraphs of size at most 2(s + 1), thus es-
tablishing the fixed-parameter tractability of s-Defective Clique Deletion
and Editing with respect to the parameter (s, k).

Average-s-Plexes. With average-s-plexes, we propose a density measure that
concerns the average degree of a graph G = (V,E), which is defined as d̄ =
2|E|/|V |. We call a connected graph G = (V,E) an average-s-plex if the average
degree d̄ of G is at least |V |−s for an integer 1 ≤ s ≤ |V |. This density measure
is a relaxation of the s-plex notion, which demands that the minimum degree of

1Note that Yu et al. [24] introduced a different generalization of defective cliques that is
more restrictive than the one considered here.

3

To appear in Algorithmica, Special Issue of ISAAC 2009

a graph G = (V,E) be |V |− s. s-Plexes find applications, for example, in social
network analysis [22]. For s-plexes, the clustering problem s-Plex Editing
has been previously shown to be NP-hard, but fixed-parameter tractable with
respect to the parameter (s, k) [17]. Here, we complement this result by show-
ing that Average-s-Plex Deletion and Editing are also NP-hard, and that
they are fixed-parameter tractable with respect to the parameter (s, k). The
fixed-parameter tractability result is achieved by a reduction to a more gen-
eral problem and a subsequent polynomial-time data reduction for the general
problem that produces a graph with at most 4k2 + 8sk vertices.

µ-Cliques. With this density measure, we capture the ratio of edges in a
graph versus the number of edges in a complete graph with the same num-
ber of vertices. More precisely, the density of a graph G = (V,E) is defined
as 2|E|/(|V |(|V | − 1)). A connected graph G = (V,E) is then called a µ-clique
for a rational constant 0 ≤ µ ≤ 1 if the density of G is at least µ. We as-
sume that µ is represented by two constant integers a, b such that µ = a/b
(note that a and b are not part of the input). Observe that for µ = 0 ev-
ery graph is a µ-clique, and that a graph is a 1-clique if and only if it is a
clique. The µ-clique concept was studied, for example, by Abello et al. [1] and
is sometimes also referred to as µ-dense graph [19]. We show that—in contrast
to s-Defective Clique Editing and Average-s-Plex Editing—µ-Clique
Editing is W[1]-hard with respect to the parameter k for any fixed 0 < µ < 1.
Note that for µ = 1, the problem is equivalent to Cluster Editing and is thus
fixed-parameter tractable. For µ-Clique Deletion we show the NP-hardness,
the parameterized complexity remains open.

Preliminaries. We only consider undirected graphs G = (V,E), where n :=
|V | and m := |E|. The (open) neighborhood N(v) of a vertex v ∈ V is the set of
vertices that are adjacent to v in G. The degree of a vertex v, denoted by deg(v),
is the cardinality of N(v). For a set U of vertices, N(U) :=

⋃

v∈U N(v) \U . We
use N [v] to denote the closed neighborhood of v, that is, N [v] := N(v)∪{v}. For
a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the vertex
set V ′ with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G− V ′ as an
abbreviation for G[V \ V ′] and for a vertex v ∈ V let G− v denote G− {v}. A
vertex v ∈ V (G) is called a cut-vertex if G− v has more connected components
than G. For a graph G = (V,E) let G := (V,E) with E := {{u, v} | u, v ∈
V ∧ u 6= v ∧ {u, v} 6∈ E} denote the complement graph of G.

A parameterized problem is fixed-parameter tractable (FPT) with respect
to a parameter k, if there exists an algorithm solving the problem in f(k) ·
nO(1) time, where n denotes the overall input size and f is a computable func-
tion. Downey and Fellows [10] developed a formal framework to show fixed-
parameter intractability by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, k), computes in f(k) · |x|O(1) time an
instance (x′, k′) (with k′ only depending on k) such that (x, k) is a yes-instance

4

To appear in Algorithmica, Special Issue of ISAAC 2009

of problem P if and only if (x′, k′) is a yes-instance of problem P ′. The ba-
sic complexity class for fixed-parameter intractability is called W [1] and it is
a common belief among researchers in parameterized complexity theory that
W [1]-hard problems are not FPT [10, 21].

2 Defective Cliques

In this section, we focus on the s-Defective Clique Editing problem. A
graph is called an s-defective clique graph if every connected component forms
an s-defective clique. An edge {u, v} ∈ E is called a missing edge of G. Our con-
tribution is twofold. First, we prove the NP-hardness of s-Defective Clique
Editing by a reduction from Cluster Editing. Second, we present a charac-
terization of s-defective clique graphs by means of forbidden induced subgraphs
whose size is bounded by O(s), directly leading to fixed-parameter tractability
of s-Defective Clique Editing with respect to the parameter (s, k).

Theorem 1. For any constant s ≥ 0, s-Defective Clique Deletion and
Editing are NP-complete.

Proof. For s = 0, the problems are equivalent to Cluster Editing and Clus-
ter Deletion, and hence NP-complete [20, 23]. For s > 1, we present a
reduction from Cluster Editing to s-Defective Clique Editing. Then,
we observe that the same construction also yields a reduction from Cluster
Deletion to s-Defective Clique Deletion.

Given a graph G = (V,E) and a nonnegative integer k we construct a
graphH = (W,F) and an integer k′ as follows. Let n := |V | and γ := 16(n2+s).
Initially, we set H := G. Then, for every 1 ≤ i ≤ n we add a set Di of γ vertices
to H and make every vertex in Di adjacent to all vertices in V . Within each Di

we add all but s edges such that the missing edges do not share endpoints.
Finally, we set k′ := k + n(n− 1)γ.

For the correctness of the reduction, we show that (G, k) is a yes-instance
of Cluster Editing if and only if (H, k′) is a yes-instance of s-Defective
Clique Editing.

⇒: Assume that G can be transformed by up to k edge modifications into a
cluster graph G′ and let K1, . . . ,Kℓ denote the cliques (connected components)
of G′. We show how to transform H into an s-defective clique graph H ′ using at
most k′ edge modifications. First, the edges between vertices of V are modified
in H in the same way as in G. Then, consider each vertex v ∈ V and let Kj

denote the clique containing v. For every i 6= j, 1 ≤ i ≤ n, delete the edges
between v and Di. Let H ′ denote the resulting graph. Clearly, H ′ is an s-
defective clique graph. Moreover, in order to transform H to H ′ one needs at
most k edge modifications between vertices in V and for every vertex v ∈ V
exactly (n− 1)γ further edge deletions.

⇐: Let S denote an optimal solution for H of size at most k′ = k+n(n−1)γ.
Let H ′ denote the graph that results by modifying H according to S, and

5

To appear in Algorithmica, Special Issue of ISAAC 2009

let K1, . . . ,Kℓ denote the connected components ofH ′. Clearly, each Kj for 1 ≤
j ≤ ℓ is an s-defective clique.

First, we show that for every Di with 1 ≤ i ≤ n there is a Kj with Di ⊆ Kj .
Assume towards a contradiction that this is not the case. Then there is one Di,
say D1, such that there are several connected components of H ′ that contain
vertices from D1. Without loss of generality assume that these are the first t
Kj’s for an integer t > 1. Let Bj := D1 ∩Kj , 1 ≤ j ≤ t. First, observe that
there exists a Bj with |Bj | > γ/2: if |Bj | ≤ γ/2 for all 1 ≤ j ≤ t, then we need

−s+ 1/2 ·
t

∑

j=1

|Bj | · (γ − |Bj |) ≥ − s+ 1/2 ·
t

∑

j=1

|Bj | · γ/2

≥ − s+ γ/4 ·
t

∑

j=1

|Bj | = γ2/4− s > k′

edge deletions; this is not allowed. Hence, there is a Bj with |Bj | > γ/2, say B1.
Using this fact, we can show that Dj ∩K1 = ∅ for every 2 ≤ j ≤ n: Let X :=
∪j 6=1(Dj ∩ K1). If X 6= ∅, then, compared to putting B1 and X together
in K1, separating X from K1 saves, for each vertex v ∈ X , at least γ/2 − s >
n edge insertions that are needed to put B1 and X together, and needs at
most n additional edge deletions to separate v from K1 \ (B1 ∪ X). From
the optimality of S it follows that Dj and K1 are disjoint for j > 1. Next,
consider Bj with j > 1. We count the number of edge modifications needed for
separating Bj from Kj and putting Bj together with B1 in K1. First we need
to delete the edges between Bj and Kj∩V and to reinsert the edges between Bj

and K1∩V , which together amount to at most n·|Bj | edge modifications. Then,
to ensure thatK1∪Bj is an s-defective clique we insert all edges between vertices
in B1 ∪Bj . However, by doing so, we save at least |B1| · |Bj | − s > n · |Bj |+ s
edge deletions which are needed to separate B1 and Bj . This means that in an
optimal solution Bj = ∅ for j > 1. Therefore, B1 = D1 ⊆ K1, contradicting
the assumption that there are t > 1 connected components that have nonempty
intersection with D1. Hence, we have shown that for every Di there is a Kj

such that Di ⊆ Kj.
Furthermore, observe that Di1 ⊆ Kj and Di2 ⊆ Kj implies i1 = i2 since,

otherwise, we would need at least γ2 > k′ edge insertions. Hence, we can assume
without loss of generality that Di ⊆ Ki ⊆ Di ∪ V for every 1 ≤ i ≤ n and thus
that in H ′ every vertex v ∈ V is adjacent to the vertices of at most one Di.
Next, we show that a vertex v ∈ V is adjacent to the vertices of at least one Di.
Assume that there exist α vertices in V that are nonadjacent to all vertices
in Di’s. Then at least α · nγ + (n − α)(n − 1)γ = α · γ + n(n − 1)γ > k′

edge deletions are necessary, contradicting the assumption that |S| ≤ k′. In
summary, every vertex in V is adjacent to all vertices of exactly one Di and
exactly n(n − 1)γ edge deletions are used to achieve this. That is, ℓ = n
and Di ⊆ Ki ⊆ Di ∪ V for 1 ≤ i ≤ ℓ.

We conclude the proof by showing that it can be assumed that the sets Vi :=
V ∩Ki form cliques in H ′[V]. Assume that there exists a missing edge in H ′[Vi].

6

To appear in Algorithmica, Special Issue of ISAAC 2009

Since Ki = Vi∪Di forms an s-defective clique, S must contain an edge insertion
within Di (note that H [Di] has exactly s missing edges). Clearly, we can undo
this edge insertion and insert an edge between two vertices of Vi instead. This
can be done iteratively until H ′[Vi] is a clique. Hence, modifying G in the same
way as H [V] needs at most k edge modifications and yields a disjoint union of
cliques.

It is straightforward to verify that all steps of the proof can be adapted to
work for the case that only edge deletions are allowed. Hence, the given con-
struction yields a reduction from Cluster Deletion to s-Defective Clique
Deletion, as well.

Next, we show that s-defective clique graphs are characterized by forbidden
induced subgraphs with at most 2(s+1) vertices. This characterization directly
leads to fixed-parameter tractability of s-Defective Clique Editing with
respect to the parameter (s, k) by means of a search tree based algorithm.

We start with some preliminaries. If we delete an arbitrary vertex of an
s-defective clique graph, then clearly the resulting graph is still an s-defective
clique graph. A graph property that is closed under the operation of deleting
vertices (and hence, taking induced subgraphs) is called hereditary. It is well
known that hereditary graph properties can be described by forbidden induced
subgraphs [15]. This means that there exists a set F of graphs such that a
given graph G is an s-defective clique graph if and only if G is F -free, that
is, G does not contain any graph from F as induced subgraph. A forbidden
induced subgraph is minimal if each of its proper induced subgraphs is an s-
defective clique graph. Clearly, a graph is an s-defective clique graph if and
only if it does not contain any minimal forbidden induced subgraph. Next, we
show that, for s ≥ 1, every minimal forbidden induced subgraph of s-defective
clique graphs contains at most 2(s + 1) vertices. Note that for s = 0 the only
forbidden induced subgraph is a path on 3 vertices [14, 23].

Theorem 2. For s ≥ 1, every minimal forbidden induced subgraph of s-defective
clique graphs contains at most 2(s + 1) vertices. Given a graph that is not an
s-defective clique graph, a minimal forbidden induced subgraph can be found
in O(nm) time.

Proof. Assume towards a contradiction that there exists a minimal forbidden
induced subgraphG = (V,E) with |V | > 2(s+1). Clearly, we can assume that G
is connected, since otherwise we can keep one connected component that is not
an s-defective clique and delete all other connected components.

First, we consider the case when G contains a cut-vertex v. Let U denote
a set of s + 2 vertices which together with v induce a connected graph G′ :=
G[U ∪ {v}] and v remains a cut-vertex in G′. We show that G′ is not an
s-defective clique graph, a contradiction to the fact that G is minimal (note
that s+3 ≤ 2s+2 for s ≥ 1). Let U1, . . . , Uℓ denote the connected components

of G′ − v. It is not hard to see that there are at least 1
2

∑ℓ

i=1 |Ui| · (|U \Ui|) > s
edges missing in G′, and, hence, G′ is not an s-defective clique graph.

7

To appear in Algorithmica, Special Issue of ISAAC 2009

In the following, we assume that G does not contain any cut-vertex. More-
over, we can assume that no vertex of G is adjacent to all other vertices of G,
since otherwise we can delete it to get a connected graph that has the same
number of missing edges as G, thus contradicting the minimality of G. Hence,
there are more than s+1 missing edges in G, since every vertex is incident to at
least one missing edge. Let v be an arbitrary vertex of G and let A := V \N [v].
Since the deletion of v results in an s-defective clique graph, it follows that
in G− v there are at most s missing edges. Hence, there exists a vertex u that
is adjacent to all vertices of G − v. Clearly, u ∈ A, since, otherwise, u would
be adjacent to all vertices in G. Then, the deletion of u reduces the number of
missing edges by one. Thus, G − u is connected and has at least s + 1 miss-
ing edges, and, hence, is not an s-defective clique graph, contradicting the fact
that G is minimal.

To find a minimal forbidden induced subgraph proceed as follows. Given a
graphG = (V,E) that is not an s-defective clique graph we check for every v ∈ V
whether G − v is an s-defective clique graph in O(n +m) time and delete v if
this is not the case. Observe that we have to consider every vertex at most once,
since if G− v is an s-defective clique graph, then G′ − v is an s-defective clique
graph for every induced subgraph G′ of G containing v. Hence, the overall
running time is O(nm).

The forbidden subgraph characterization given in Theorem 2 directly leads
to a search tree algorithm for s-Defective Clique Editing [5]. As long as the
given graph is not an s-defective clique graph find a minimal forbidden induced
subgraph and branch into all cases (at most

(

2s+2
2

)

) to destroy this subgraph
by adding or deleting an edge between two of its vertices. Since in each case
we can decrease the parameter k by one, the size of the search tree is bounded

by O
(

(

2s+2
2

)k
)

. Putting all together, we arrive at the following.

Theorem 3. s-Defective Clique Editing and Deletion can be solved

in O(
(

2s+2
2

)k
· nm) time and hence are fixed-parameter tractable with respect to

the parameter (s, k).

3 Average-s-Plexes

Here, we consider the Average-s-Plex Editing problem, showing its NP-
completeness and its fixed-parameter tractability with respect to (s, k). To
prove the NP-hardness, we make use of the following problem.

Equal-Size Clique Editing:
Input: An undirected graph G = (V,E) and two integers k, d ≥ 0.
Question: Can G be transformed by at most k edge modifications
into a vertex-disjoint union of d cliques which have the same size ?

The edge deletion version of this problem allows only edge deletions. We show
the NP-hardness of Equal-Size Clique Editing and Deletion by a reduc-
tion from the well-known NP-hard Clique problem.

8

To appear in Algorithmica, Special Issue of ISAAC 2009

Lemma 1. Equal-Size Clique Editing and Deletion are NP-complete.

Proof. Clearly, both problems are contained in NP. Next, we prove only the NP-
hardness of the edge deletion version. The same reduction works also for the
editing version. The reduction is from the NP-complete Clique problem [13]:
Given a graph G = (V,E) and an integer ℓ > 0, decide whether there exists
a clique of size ℓ. The construction of the Equal-Size Clique Deletion
instance is simple: Add to the given Clique instance G = (V,E) a set of |V |−ℓ
vertex-disjoint size-(ℓ−1) cliques and make all vertices in these cliques adjacent
to all vertices in G. Set d := |V | − ℓ + 1 and k := |E| − ℓ(ℓ − 1)/2 + ℓ(|V | −
ℓ)(ℓ− 1) + (|V | − ℓ)(|V | − ℓ− 1)(ℓ− 1).

To see the equivalence between the solutions, consider a size-ℓ clique K
of G. A corresponding solution of the Equal-Size Clique Deletion instance
consists of the deletions of the edges between K and V \K, the deletions of the
edges between the vertices in V \K, the deletions of the edges between K and
all introduced |V | − ℓ cliques, and, for each vertex v ∈ (V \K), the deletions of
the edges between v and all but one introduced cliques. These edge deletions
amount to k. Clearly, we have d size-ℓ cliques at the end.

The other direction can be shown as follows: Clearly, each of the newly
introduced cliques needs exactly one vertex from V , which must be separated
from all other vertices of the newly introduced cliques and from all other vertices
in V . A simple calculation shows that this requires already k edge deletions.
Hence, the remaining ℓ vertices of V must form a clique.

Reducing from Equal-Size Clique Editing and Deletion we can show
the following.

Theorem 4. For any constant s ≥ 1, Average-s-Plex Editing and Dele-
tion are NP-complete.

Proof. Clearly both problems are in NP. We show only that the deletion version
is NP-hard by giving a reduction from Equal-Size Clique Deletion; the
reduction for the editing version is based on the same idea and therefore omitted.
For s = 1, the problems are equivalent to Cluster Editing and Cluster
Deletion, and hence NP-complete [20, 23]. In the following, we therefore
assume that s > 1.

Given an Equal-Size Clique Deletion instance (G = (V,E), k, d), we
add d identical connected components to G. Each of these components, denoted
by (VC , EC), satisfies |VC | = |V |4 and |EC | = 1/2 · [|VC |(|VC | − 1) − (s −
1) · (|VC | + |V |/d)]. Note that graphs with this property exist since we can
assume that s < |V | and |V | ≥ 2. Then, make all vertices in these introduced
components adjacent to all vertices in G and set k′ := k+(d− 1)|VC | · |V |. The
key observation to show the equivalence between the solutions is that each of the
newly introduced components does not satisfy the condition for average-s-plex
and adding a size-(|V |/d) clique to such a component will transform it into an
average-s-plex. In particular, adding a size-|V |/d clique leads to a graph with
average degree exactly |VC | + |V |/d − s and adding fewer vertices is therefore

9

To appear in Algorithmica, Special Issue of ISAAC 2009

not sufficient. Thus, given a size-k solution S of size k for the Equal-Size
Clique Deletion instance, we match the resulting size-(|V |/d) cliques to the
introduced components and for each of the cliques delete the edges between it
and all components except the matched one. Adding these edge deletions to S
will give us a solution to the Average-s-Plex Deletion instance. The same
argument applies for the reverse direction.

In the following, we describe a fixed-parameter algorithm for Average-s-
Plex Editing parameterized by (s, k). Our algorithm consists of two main
steps. First, we reduce the original problem to a weighted version. Then,
we show the fixed-parameter tractability of the weighted version by describ-
ing two polynomial-time data reduction rules that yield instances which con-
tain at most 4k2 + 8sk vertices. Note that being an average-s-plex graph is
not a hereditary graph property. Hence, the fixed-parameter tractability of
Average-s-Plex Editing and Average-s-Plex Deletion cannot be shown
by a forbidden subgraph characterization as in the case of s-Defective Clique
Deletion and s-Defective Clique Editing.

We begin with describing a weighted version of Average-s-Plex Editing.
We introduce three types of weights: two vertex weights and one edge weight.
The idea behind these weight types is the following: whenever there are two
vertices in G that cannot be separated by at most k edge modifications, we can
merge them into a new “super-vertex”, since it is clear that they must end up
in the same connected component of the solution. We say that a super-vertex v
“comprises” a vertex u of the input graph, if u is merged into v. When doing
so, we must remember for each such super-vertex v:
- How many vertices of the input graph v comprises,
- How many edges there are between the vertices that v comprises, and
- For each vertex w outside v, how many vertices that v comprises are

adjacent to w.
The first two aspects can be remembered by introducing two weights for v, σ(v)
which keeps track of the number of vertices comprised by v, and δ(v) which
keeps track of the number of edges between these vertices. The third aspect
can be stored as the edge weight ω(e) for the edge e = {w, v}. Herein, we call a
vertex pair having no edge between them a “nonedge”. Then, edges have edge
weight at least one and nonedges have edge weight zero. In the following, we
will assume that the weight functions δ and ω have the following limits on their
values: For every v ∈ V , it must hold that δ(v) ≤ σ(v) · (σ(v)− 1)/2. For every
edge {u, v} it must hold that ω({u, v}) ≤ σ(u) · σ(v). We call this property σ-
limited. Informally, it ensures that there is indeed an undirected graph from
which the weighted graph can be obtained by merging vertices and it is also
necessary for showing the size-bound on the reduced instance.

We introduce the following two notions for these weighted graphs. The
“size” of a vertex set S is simply defined as σ(S) :=

∑

v∈S σ(v). The average
degree d̄(Vi) of a connected component G[Vi] can be computed as follows:

d̄(Vi) =
2
∑

v∈Vi
δ(v) +

∑

v∈Vi

∑

u∈N(v) ω({u, v})

σ(Vi)
.

10

To appear in Algorithmica, Special Issue of ISAAC 2009

Similar to the definition of average-s-plex graphs, we say that a graph is a
weighted average-s-plex graph, if for each connected component G[Vi], the av-
erage degree d̄(Vi) is at least σ(Vi) − s. For modifying the weighted graph, we
allow the following modifications:
- increasing δ(u) by one for some u ∈ V ,
- increasing ω({u, v}) by one for some {u, v} ∈ E,
- decreasing ω({u, v}) by one for some {u, v} ∈ E with ω({u, v}) > 1,
- deleting some {u, v} ∈ E with ω({u, v}) = 1, and
- adding some edge {u, v} to E and setting ω({u, v}) := 1.

Each of these operations has cost one, and the overall cost of a modification
set S is thus exactly |S|. We assume that all these operations can only be
applied when the weight function that is changed remains σ-limited after the
modification.

The weighted problem version is then defined as

Weighted Average-s-Plex Editing
Input: A graph G = (V,E), with a vertex-weight function σ : V →
[1, n], a σ-limited vertex-weight function δ : V → [0, n2], a σ-limited
edge-weight function ω : E → [1, n2], and a nonnegative integer k.
Question: Is there a set of edge modifications S such that apply-
ing S to G yields a weighted average-s-plex graph and |S| ≤ k?

Observe that we can easily reduce an instance ((V,E), k) of Average-s-Plex
Editing to an instance of Weighted Average-s-Plex Editing, by set-
ting σ(v) := 1 and δ(v) := 0 for each v ∈ V , and ω({u, v}) := 1, if {u, v} ∈ E;
otherwise, ω({u, v}) := 0. Note that this reduction is parameter-preserving,
that is, s and k are not changed.

In the following, we present two data reduction rules forWeighted Average-
s-Plex Editing which (as we show in Theorem 5) yield instances that contain
at most 4k2 + 8sk vertices.

Rule 1. Remove connected components that are weighted average-s-plexes from G.

The rule is obviously correct, since no optimal solution modifies any edges
incident to vertices of such a connected component.

The second reduction rule identifies two vertices that have a large common
neighborhood, or a “heavy” edge between them and “merges” these vertices into
a new super-vertex.

Rule 2. If G contains two vertices u and v such that ω({u, v}) > k or u and v
have more than k common neighbors, then remove u from G and set
- σ(v) := σ(u) + σ(v),
- δ(v) := δ(u) + δ(v) + ω({u, v}), and
- ω({v, w}) := ω({v, w}) + ω({u,w}) for each w ∈ V \ {u, v}.

To see the correctness of the rule, consider the following: we cannot sepa-
rate u and v using at most k edge modifications; thus, they must end up in the
same connected component. Hence, we can remove one of them, and store the

11

To appear in Algorithmica, Special Issue of ISAAC 2009

information about its adjacency in the vertex weights and edge weights of the
other vertex. Note that Rule 2 preserves the property of being σ-limited for
both δ and ω.

With these two reduction rules we can show our main result of this section.

Theorem 5. (Weighted) Average-s-Plex Editing and Deletion are
fixed-parameter tractable with respect to the parameter (s, k).

Proof. We first show that a yes-instance I of Weighted Average-s-Plex
Editing that is reduced with Rules 1 and 2 contains at most 4k2+8sk vertices.
Let I be such a reduced instance, and let G be the input graph of I. Since I is a
yes-instance, there is a weighted average-s-plex graph G′ that can be obtained
from G by applying at most k edge modifications. We now bound the size of G′.
Herein, we call a vertex v “affected” if v is an endpoint of a modified edge or
if δ(v) has been increased.

First, since G is reduced with respect to Rule 1, there is at least one affected
vertex in each connected component of G′. Hence, there can be at most 2k
connected components in G′.

Next, we show that each connected component of G′ contains at most 2k+4s
vertices. Suppose towards a contradiction that there is a connected compo-
nent Vi of G

′ such that |Vi| > 2k + 4s. Let u ∈ Vi be a vertex that has a maxi-
mum number of neighbors in Vi. Since G

′ is a weighted average-s-plex graph, the
average vertex degree d̄(Vi) of G

′[Vi] is at least σ(Vi)− s. Since |Vi| ≤ σ(Vi), u
has at least |Vi|−s ≥ 2k+3s neighbors in G′[Vi]. We consider two cases for σ(u).
Case 1: σ(u) ≥ σ(Vi)/2. We show that the average degree d̄(Vi) of G′[Vi] is
less than σ(Vi)− s, contradicting the assumption that G′ is a weighted average-
s-plex graph. Since G is reduced with respect to Rule 2, each edge in G has
weight at most k. Furthermore, the overall edge weight increase of edges inci-
dent to u is at most k. The average edge weight of edges incident to u in G′

is thus at most k + 1, since u has at least 2k + 3s neighbors in G′. However,
with σ(u) ≥ σ(Vi \ {u}) ≥ 2k+ 3s, this means that the average weight of edges
incident to u is at most σ(u)/2. This leads to a low average degree. More
precisely, we can bound the average degree of G′[Vi] as follows:

d̄(Vi)
(∗)
<

σ(Vi) · (σ(Vi)− 1)− (σ(u)/2) · σ(Vi \ {u})

σ(Vi)

(∗∗)
<

σ(Vi) · (σ(Vi)− 1)− (σ(u)/2) · 4s

σ(Vi)

(∗∗∗)

≤
σ(Vi) · (σ(Vi)− 1)− (σ(Vi)/4) · 4s

σ(Vi)
< σ(Vi)− s.

Inequality (*) can be obtained from the following observations: The maximum
value that can be achieved for the sum of δ and ω of G′[Vi] is σ(Vi) · (σ(Vi)− 1)
because both δ and ω are σ-limited. From this we have to subtract the missing
weight for the edges incident to u, which, as described above, have average
weight at most σ(u)/2. Inequality (**) follows from σ(Vi \ {u}) ≥ |Vi| − 1 > 4s,

12

To appear in Algorithmica, Special Issue of ISAAC 2009

and inequality (***) follows from σ(u) ≥ σ(Vi)/2.
Case 2: σ(u) < σ(Vi)/2. First, we show that there must be at least one other
vertex w ∈ Vi that has at least |Vi|− 2s neighbors in G′[Vi]. Suppose otherwise.
Then the average degree of G′[Vi] can be bounded as follows

d̄
(∗)

≤
σ(Vi) · (σ(Vi)− 1)− 2s · (σ(Vi)− σ(u))

σ(Vi)

(∗∗)
<

σ(Vi) · (σ(Vi)− s)

σ(Vi)
.

Inequality (*) can be obtained from the following observations: The maximum
possible value that can be achieved for the sum of δ and ω of G′[Vi] is σ(Vi) ·
(σ(Vi)− 1) because both δ and ω are σ-limited. From this we have to subtract
the at least 2s edges that are missing for each vertex v ∈ Vi\{u}. Inequality (**)
follows from σ(Vi)− σ(u) > σ(Vi)/2. We have thus shown that there is at least
one other vertex w that is adjacent to at least |Vi| − 2s vertices in G′. Since u
has at least |Vi| − s neighbors in G′[Vi], there must be at least |Vi| − 3s >
2k+4s− 3s = 2k+ s vertices in G′[Vi] that are common neighbors of u and w.
Clearly, more than k + s of those vertices are common neighbors of u and w
in G. This contradicts the assumption that G is reduced with respect to Rule 2.

We have thus shown that a reduced yes-instance contains at most 4k2 +8sk
vertices. We obtain a fixed-parameter algorithm for Weighted Average-s-
Plex Editing as follows. First we exhaustively apply the reduction rules,
which can clearly be done in polynomial time. If the reduced instance contains
more than 4k2 + 8sk vertices, then it is a no-instance. Otherwise, we can
solve the problem with running time only depending on s and k, for example
by brute-force generation of all possible partitions of the graph. The fixed-
parameter tractability of Average-s-Plex Editingthen directly follows from
the described reduction to Weighted Average-s-Plex Editing.

4 µ-Cliques

The main result of this section is that, in contrast to s-Defective Clique
Editing andAverage-s-Plex Editing, µ-Clique Editing is fixed-parameter
intractable with respect to the number k of allowed edge modifications. We show
the parameterized and classical intractability by a parameterized polynomial-
time reduction from the W[1]-complete Multicolored Clique problem [12]:

Input: A graph G = (V,E) with a proper k-coloring c : V 7→
{1, . . . , k} of the vertices.
Question: Is there a size-k clique in G consisting of exactly one
vertex from each color class?
Parameter: k.

First, we briefly describe the basic idea of the reduction. Construct three types
of dense connected components, all of which fulfill the condition of µ-cliques.

13

To appear in Algorithmica, Special Issue of ISAAC 2009

There are k connected components of the first type, called “color components”,
each corresponding to a color in the Multicolored Clique instance. The
components of the second type correspond to pairs of colors, called “color pair
components”. The components of the third type are the “vertex components”:
for each vertex in G, there is a vertex component. Finally, we connect the vertex
component for a vertex v to the color component corresponding to c(v) by 2(k−
1) “bridges” (the exact definition of bridges will be given in the following): For
each color c′ with c′ 6= c(v), we use two bridges between the vertex component
for v and the color component for c(v) to encode the edges in G between v and
the vertices colored by c′. Each of these bridges is sparse, that is, a bridge alone
does not satisfy the condition of µ-cliques. This is the rough construction of the
µ-Clique Editing instance.

The decisive trick of the reduction is the following: each color class of G
corresponds to a connected component that contains a color component for this
color and vertex components for the vertices with this color. This connected
component is not a µ-clique due to the sparse vertex components and it is
so large compared to our new parameter k′, that we cannot transform it into
a µ-clique by adding edges. However, cutting exactly one vertex component
corresponding to some vertex v turns this connected component into a µ-clique.
This means we have to cut 2(k − 1) bridges connecting the vertex component
for v to the color component. The construction of the bridges and the densities
of the color and vertex components again force that cutting one bridge has to
separate two small parts of the bridge, called “edge tails”, from the color and
vertex components and the bridge. An edge tail does not fulfill the condition
of µ-cliques and corresponds to an edge between v and a vertex from the color
class that the bridge represents. Finally, the separated edge tails are connected
to the color pair components by edge insertions. The density of the color pair
components allow them to be connected to exactly two edge tails which represent
an edge between the two corresponding color classes. Altogether, the vertex
components separated from the color components correspond to the vertices in
the clique sought for in Multicolored Clique, and the edge tails separated
from the vertex components and added to the color pair components correspond
to the edges between the vertices in the clique.

In our reduction, we need to ensure that some of the constructed components
are highly connected and have the property that adding a prespecified number of
edges and vertices to these graphs results in a graph that has density exactly µ.
In the following lemma, we show that the construction of these graphs is always
possible and that it can be performed in polynomial time.

Lemma 2. Given four positive integers a, b, c and d, where a < b and d ≤
c(c− 1)/2, we can construct in poly(a, b, c, d) time a graph G, such that
− G is 2(a− 1)-connected, and
− adding c vertices and d edges to G results in a graph that has density ex-
actly a/b and has average degree more than a.

Proof. Without loss of generality, assume that b − a > 1 and that a > 1.
Otherwise, we can show the claim using 2a instead of a and 2b instead of b.

14

To appear in Algorithmica, Special Issue of ISAAC 2009

We set the number of vertices of G to n := (2b − 1)c and the number of edges
to m := ac(2bc− 1)− d. First, since

2m < 2ac(2bc− 1) ≤ 2(b− 2)c(2bc− 1)

= (2bc− 4c)(2bc− 1)

< (n− 3c)(n+ c)

< n(n− 1)

there is indeed a simple graph with the claimed number of edges. Moreover,
since

m

n
=

ac(2bc− 1)− d

(2bc− 1)c
= a−

d

(2bc− 1)c
> a− 1,

G has at least (a−1)·n edges. This means that we can constructG in polynomial
time such that it is 2(a − 1)-connected [18]. The density of the graph G′ that
results from adding c vertices and d edges to G is

2(m+ d)

(n+ c)(n+ c− 1)
=

2(ac(2bc− 1)− d+ d)

(2bc− c+ c)(2bc− c− 1 + c)
=

2ac(2bc− 1)

(2bc)(2bc− 1)
=

a

b
.

The average degree of G′ follows directly.

With this “subroutine” at hand, we can show the main theorem of this
section.

Theorem 6. For any fixed 0 < µ < 1, µ-Clique Editing is NP-complete and
W[1]-hard with respect to the number k of allowed edge modifications.

Proof. Let a and b be two fixed integers such that µ := a/b and assume without
loss of generality that a > n6 and b > n6. Let C with |C| = k be the set of
colors in the Multicolored Clique instance G = (V,E). Let Vc := {v ∈ V |
c(v) = c}. Without loss of generality, assume that ∀c 6= c′, |Vc| = |Vc′ | and
let l := |Vc|. In the following, we describe in detail the construction of the com-
ponents of the µ-Clique Editing instance.We first describe the construction
of “bridges” which are used to connect vertex and color components and then
the construction of the different types of components.

Construction of Bridges. The bridges encode information about the adja-
cencies of G. This is done by adding tails of a specific length to the bridges.
To this end, we assign to each ordered vertex pair (u, v) with c(u) 6= c(v) an
integer πuv between 1 and x where x = 12n2 + 1. Herein, the following rules
should be respected:

1. No two pairs get the same number.
2. If there is an edge between u and v, then |πuv−πvu| = 1 and all numbers z

with |z−πuv| ≤ 2 or |z−πvu| ≤ 2 should be reserved, that is, they should
not be assigned to any other vertex pair.

3. If there is no edge between u and v, then |πuv−πvu| = 2 and all numbers z
with |z − πuv| ≤ 1 or |z − πvu| ≤ 1 should be reserved.

15

To appear in Algorithmica, Special Issue of ISAAC 2009

Kc(v) Kv

u1

u1

u2

u2

u3

u3

u4

u4

Figure 1: An example of a bridge pair between a vertex component Kv and a
color componentKc(v). These two bridges correspond to a color class c′ with c′ 6=
c(v) and Vc′ = {u1, u2, u3, u4}. Thus, each bridge has four intervals. Here, for
the sake of clarity, only three length-two paths are drawn in each interval. Note
that, in the construction, there are 4k(k − 1) + 1 such paths in each interval.
To each of the bridges, two edge tails are added for u2 with πvu2

= 5, x = 11,
and y = 0.

4. If a number i is assigned to a vertex pair or reserved, then x − i should
not be assigned to any vertex pair.

Observe that, since x > 12n2, such an assignment is always computable in
polynomial time. These numbers will be needed to identify the edges in E.

For a vertex v with color c(v), we connect the vertex component Kv of v to
the color component Kc(v) with 2(k−1) bridges. For each color c′ 6= c(v) we add
a pair of bridges as illustrated in Figure 1. Each bridge consists of 4k(k−1)+1
edge-disjoint paths all of length 2l. A bridge is divided by the common vertices
of the paths into l “intervals”; each interval corresponds to a vertex in Vc′ and
consists of 4k(k−1)+1 length-two paths. The vertices lying on these paths with
the exception of the two endpoints are called “middle” vertices in this interval.
However, the orders of the vertices in Vc′ according to which they appear on
the two corresponding bridges are reversed as shown in Figure 1. Note that all
bridges have the same endpoints, one in Kv and the other in Kc(v). Since the

length of bridges can be extended to nd for an arbitrary large constant d, we
can assume that each of the bridges has density less than µ.

Next we add “edge tails” to the bridges. For each interval of a bridge which
corresponds to a vertex w, we add two edge tails that are two cycles with
length y + πvw and y + x − πvw, respectively. Herein, y is a large integer such
that each of the two cycles alone has density less than µ. This can be achieved
for example by setting y := ab. See Figure 1 for an example of a color component
and its bridges to a vertex component.

Now we describe the construction of the three types of components.

16

To appear in Algorithmica, Special Issue of ISAAC 2009

Color Pair Components. For each (unordered) pair of colors, add two color
pair components K1 and K2, where K1 should satisfy the following require-
ments:

• Adding two edges to connect two vertex-disjoint cycles that together have
length at most x + 2y + 1 with K1 results in a graph with density at
least µ.

• Connecting two cycles with total length more than x+2y+1 will decrease
the density below µ.

Lemma 2 shows that K1 can be constructed in polynomial time such that adding
two vertex-disjoint cycles that together have a length equal to x+2y+1 results
in a graph that has density exactly µ. Note that by Lemma 2 and since a > n6,
the second part of the requirement also holds: adding a cycle of length more
than x + 2y + 1 decreases—compared to adding a shorter cycle—the average
degree of the connected component while further increasing the size of the con-
nected component. Hence, such a component has density less than µ. The
same requirement should also be fulfilled by K2 with the length threshold of
the cycles being x+ 2y − 1.

Vertex Components. For each vertex v, add a component Kv satisfying the
following requirements:

• Kv is 2(a− 1)-connected.

• The graph that contains Kv and α := (k− 1)((l− 1)(4k(k− 1)+x+2y)+
8k(k−1)−2+x+2y) vertices and β := (k−1)((l−1)(8k(k−1)+x+2y+
2) + 8k(k − 1) + x + 2y) edges of the bridges incident to Kv has density
exactly µ.

• The density will decrease below µ if more than α vertices of the bridges
are included.

These requirements are needed to argue that the graph resulting from dis-
connecting Kv from the corresponding color component Kc(v) has density µ.
By Lemma 2, we can construct in polynomial time a graph that fulfills the
first two requirements. The fulfillment of the third requirement again follows
from Lemma 2 and the observation that adding more bridges decreases the av-
erage degree and increases the number of vertices in the connected component,
resulting in a graph that has density less than µ.

Color components. For each color c the color component Kc has to fulfill
the following requirements. Herein, v is an arbitrary vertex from Vc.

• Kc is 2(a− 1)-connected.

17

To appear in Algorithmica, Special Issue of ISAAC 2009

Kc(v) Kv

u1

u1

u2

u2

u3

u3

u4

u4

Figure 2: Illustration of the situation where the second requirement for the
vertex components applies. The dashed lines represent edge deletions. Here,
the two bridges between Kv and Kc(v) are destroyed by deleting the edges in the
intervals corresponding to u2. Moreover, the middle vertices of these intervals
belong to the connected component containing Kv with the only exception of
two middle vertices of the first bridge. Observe that two edge tails corresponding
to the vertex pair (v, u2) are separated from Kv and Kc(v).

• The graph that consists of 1) Kc, 2) the l − 1 vertex components corre-
sponding to the vertices of Vc \ {v} together with all bridges that connect
these vertex components with Kc, and 3) further γ := (k−1)(l−1)(4k(k−
1) + x+2y) vertices and δ := (k− 1)(l− 1)(8k(k− 1) + x+2y+2) edges
from the bridges between Kc and Kv has density exactly µ.

• Adding more vertices from the bridges between Kc and Kv to this graph
results in a graph with density less than µ.

By Lemma 2, we can construct in polynomial time a graph that fulfills the first
two requirements. The fulfillment of the third requirement again follows from
the observation that adding more than γ vertices from the bridges between Kc

and Kv decreases the average degree while increasing the number of vertices.
Hence, the graph has density less than µ in this case.

We complete the construction of the µ-Clique Editing instance by setting
its parameter to k′ := 2k(k−1)(4k(k−1)+3). Let (H, k′) denote the constructed
instance of µ-Clique Editing. We prove the theorem by showing the following
claim:

(G, k) is a yes-instance of Multicolored Clique ⇔ (H, k′) is a
yes-instance of µ-Clique Editing.

⇒: Given a size-k clique X := {v1, v2, . . . , vk} of the Multicolored
Clique instance, we disconnect the vertex components which correspond to
the vertices in X from their color components.

Observe that, in order to disconnect a vertex component from a color compo-
nent, one needs 2(k−1)(4k(k−1)+1) edge deletions, that is, the edge deletions

18

To appear in Algorithmica, Special Issue of ISAAC 2009

to cut every bridge at some interval. More precisely, to disconnect the vertex
component Kvi from Kc(vi), we cut the bridges incident to Kvi at the intervals
corresponding to the vertices in X \ {vi} as shown in Figure 2. Note that in
Figure 2 we use two additional edge deletions to separate two edge tails from
the vertex component and the color component. Altogether, we use 2(k − 1)
additional edge deletions to separate 2(k−1) edge tails which correspond to the
edges between vi and X \ {vi}. By the construction of Kvi and Kc(vi) we can
conclude that the resulting two connected components, one containing Kvi and
the other containing Kc(vi) fulfill the condition of µ-cliques. Further, we add
edges between the separated edge tails and the color pair components. Accord-
ing to the assignment of integers from the interval [1, x] to the ordered vertex
pairs, the edge tails can be pairwise put together such that each pair has a total
length of either x + 2y − 1 or x + 2y + 1. Then, we connect each pair with a
total length of x+ 2y+ 1 to one color pair component K1 and each pair with a
total length of x+2y− 1 to one K2. According to the construction of the color
pair components, all resulting components are µ-cliques. Here, we need alto-
gether 2k(k−1) edge insertions. Putting edge deletions and insertions together,
we have made 2k(k − 1)(4k(k − 1) + 1) + 4k(k − 1) = 2k(k − 1)(4k(k − 1) + 3)
edge modifications.

⇐: By construction, the connected components of the µ-Clique Editing
instance that contain l vertex components and one color component have density
less than µ. We cannot transform these connected components into µ-cliques
by splitting the vertex or color components, since these components are 2(a−
1)-connected and a > n6 > k4. By the same reason, we cannot transform
such a connected component into a µ-clique with at most k′ edge insertions.
Therefore, at least one vertex component has to be disconnected from each
color component.

Since there are 2(k− 1)(4k(k− 1) + 1) edge-disjoint paths between a vertex
component and a color component, we need at least 2(k−1)(4k(k−1)+1) edge
deletions for each color. This means that from a solution for (H, k′) only 4k(k−
1) modifications remain to be specified. Therefore, for at least one color, we
have at most 4(k − 1) edge modifications.

From the construction of vertex and color components, we know that when
separating a vertex component Kv from a color component Kc(v), there have to
be exactly (k − 1)(x+ 2y) vertices that are separated from both the connected
component that contain Kv and the connected component that contains Kc(v).
Since Kv and Kc(v) are inseparable, these vertices come from the bridges be-
tween Kv and Kc(v) and edge tails attached to the bridges. Note that, since
each bridge consists of 4k(k − 1) + 1 edge-disjoint paths, we cannot separate
enough vertices by deleting at most 4(k − 1) edges of bridges. The only choice
is to separate some edge tails from the bridges. From Figure 2 we can observe
that by deleting two edges we can separate at most x + 2y vertices from the
bridges, namely, separating the two edge tails, one having length y + i and the
other having length x+ y− i, attached to the intervals whose length-two paths
are destroyed while separating Kv from Kc(v) (in Figure 2, this is the interval
corresponding to u2). Separating other edge tails or separating only a part of an

19

To appear in Algorithmica, Special Issue of ISAAC 2009

edge tail requires at least two edge deletions and leaves less than x+2y vertices
separated. Thus, all separated edge tails come from the intervals where Kv is
separated from Kc(v).

Moreover, observe that these separated edge tails are not µ-cliques and con-
necting them to each other by at most 2k(k − 1) edge insertions cannot trans-
form them into µ-cliques, because their sizes are at least y + 1 for a large
integer y. Then, the only possibility is to connect them to the 2k(k − 1) color
pair components. This means one edge insertion for each edge tail. From the
construction of color pair components, vertex-disjoint cycles with a total length
at most x+ 2y + 1 can be attached to K1’s, while vertex-disjoint cycles with a
total length at most x+2y− 1 can be attached to K2’s. Thus, we are forced to
group the edge tails into at most k(k − 1) groups such that the groups can be
partitioned to two same-size subsets; in one, each group has a total length at
most x + 2y + 1 and, in the other, each has a total length at most x+ 2y − 1.
According to the assignment for the ordered vertex pairs described above, this
is only possible when each group consists of two edge tails, one corresponding
to the vertex pair (u, v) and the other corresponding to the vertex pair (v, u),
and there is an edge between u and v in the original instance. This means that
the k vertices whose corresponding vertex components are separated from the
color components form a clique.

The reduction used in the proof of Theorem 6 does not work for the edge
deletion case, because we need the color pair components to check whether the
separated edge tails for each pair of colors correspond to the same edge. The
check requires edge insertions between edge tails and color pair components.

However, we can establish the NP-hardness of µ-Clique Deletion by a
reduction from Equal-Size Clique Deletion which is NP-hard by Lemma 1.

Theorem 7. For any fixed 0 < µ < 1, µ-Clique Deletion is NP-complete.

Proof. Let (G = (V,E), k, d) be an instance of Equal-Size Clique Deletion
and let ℓ := |V |/d denote the size of the cliques that shall be obtained. We
construct an instance of µ-Clique Deletion for µ = a/b as follows. Assume
without loss of generality that b > a > |V |4. We add d new graphsGi = (Vi, Ei),
1 ≤ i ≤ d, to G. Each of these graphs is constructed such that it fulfills the
following properties:

• Gi is a-connected.

• Adding ℓ vertices and e := |V |2 · ℓ+
(

ℓ
2

)

edges to Gi results in a graph that
has density exactly µ.

In analogy to the construction in the proof of Lemma 2, we can construct eachGi

in poly(a, b, ℓ, e) time such that it contains n := (2b − 1)ℓ vertices and m :=
aℓ(2bℓ− 1)− e edges, and fulfills both requirements.

For each Gi, we choose an arbitrary subset of |V |2 vertices Si ⊂ Vi and insert
an edge between every vertex in Si and every vertex in V . Let G′ denote the
graph that results from this construction. We set the number of allowed edge
deletions to k′ := |V |3 · (d− 1) + k. It remains to show the following:

20

To appear in Algorithmica, Special Issue of ISAAC 2009

(G, k) is a yes-instance of Equal-Size Clique Deletion⇔ (G′, k′)
is a yes-instance of µ-Clique Deletion.

⇒: Let S ⊆ E be a size-k edge set whose removal transforms G into a graph
that consists of d vertex-disjoint cliques Ki, 1 ≤ i ≤ d, each of size ℓ. A size-
k′ solution for the µ-Clique Deletion instance (G′, k′) can be constructed
by performing the edge deletions of S to G′[V] and removing for each Vi the
edges between Vi and V \ Ki. Let G′′ be the graph that is obtained from G′

by these edge deletions. Observe that G′′ consists of d connected components
whose vertex sets are exactly Ki ∪ Vi, 1 ≤ i ≤ d. The constructed solution
has size |V |3 · (d − 1) + k = k′ since we first perform k edge deletions in G′[V]
and then for each vertex v ∈ V we perform (d − 1) · |V |2 edge deletions (v is
“cut” from d − 1 of the Gi’s and has exactly |V |2 neighbors in each Gi). Each
of the connected components of G′′ has density exactly µ, which can be seen as
follows: Each Ki is a size-ℓ clique and there are |V |2 ·ℓ edges between Vi and Ki.
The density of G′′[Ki ∪Vi] then follows directly from the second requirement of
the construction of Gi.

⇐: Let S be a size-k′ edge set whose removal transforms G′ into a µ-
clique-cluster graph G′′. First, note that each of the Gi’s is a-connected and
that k′ < |V |4 < a. Therefore, each of the Gi’s is completely contained in
one connected component of G′′. Second, a connected component that contains
two or more Gi’s is not µ-dense which can be shown as follows. Let G∗ be a
connected component of G′′ that contains t > 1 of the Gi’s and x vertices of V .
The number of edges in G∗ is at most t · (m+ |V |2 · x) +

(

x

2

)

and the number of
vertices in G∗ is exactly t · n+ x. The density of G∗ is thus at most

2t · (m+ |V |2 · x) + 2
(

x

2

)

(t · n+ x)(t · n+ x− 1)

(∗)
<

2 · (m+ |V |2 · x+
(

x

2

)

)

(2n) · n

=
2 · (aℓ(2bℓ− 1)− e + |V |2 · x+

(

x
2

)

)

2(2b− 1)ℓ · (2b− 1)ℓ

(∗∗)
<

2 · (aℓ(2bℓ))

2(2b− 1)ℓ · (2b− 1)ℓ

(∗∗∗)
<

2a · (ℓ+ 1)

2(2b− 1)ℓ

<
a · (ℓ + 1)

(2b − 1)ℓ
<

3a

4b− 2
<

a

b
= µ

Inequality (∗) follows from t > 1 and x ≥ 1 (which can be assumed since there
are no edges between theGi’s). Inequality (∗∗) follows from aℓ+e > |V |2·x+

(

x

2

)

.
Inequality (∗ ∗ ∗) follows from 2b > ℓ + 1. It thus follows that G∗ has density
less than µ if it contains more than one of the Gi’s. Hence, each connected
component of G′′ contains at most one of the Gi’s. Therefore, each vertex v ∈ V
is in G′′ adjacent to vertices of at most one Gi. In other words, for each v ∈ V
we need to delete the edges to at least d− 1 of the Gi’s. Overall, this amounts
to at least (d− 1) · |V |3 edge deletions. This, however, means that there cannot

21

To appear in Algorithmica, Special Issue of ISAAC 2009

be a vertex v ∈ V that is cut from all Gi’s: then at least (d− 1) · |V |3+ |V |2 are
necessary, which cannot be afforded since k < |V |2. In summary, each connected
component of G′′ contains exactly one of the Gi’s.

We now show that each connected component contains exactly ℓ vertices
from V and that these vertices form a clique. First, if there is a connected
component that contains more than ℓ vertices from V , then this connected
component has density less than µ since compared to the graph that contains Gi

and ℓ vertices from V (which has, by the second requirement its construction,
density exactly µ if the ℓ vertices form a clique) we add vertices that have lower
average degree (which reduces the density). Second, if the ℓ vertices from V
do not form a clique, then the number of edges that are added to Gi is less
than d. By the second requirement of the construction of Gi, the density of the
connected component is then less than µ. Hence, we can conclude that each of
the connected components of G′′ contains ℓ vertices from V that form a clique.
By observing that the number of edge deletions that are performed in G′[V]
is at most k, it follows that (G, k) is a yes-instance of Equal Size Clique
Deletion.

5 Outlook

There are numerous topics for future research, we only point out some of them.
For s-Defective Clique Editing and Average-s-Plex Editing clearly
further algorithmic improvements are necessary. For instance, s-Defective
Clique Editing is still missing a nontrivial kernelization algorithm, whereas
for Average-s-Plex Editing a solution algorithm other than the brute-force
one that can be applied to the reduced instance is needed. As a next step, ex-
perimental studies should then be undertaken regarding the running time of the
algorithms and the quality of the produced clusterings. For µ-Clique Edit-
ing, other parameterizations should be studied. Moreover, the parameterized
complexity of µ-Clique Deletion remains open. Finally, it is also interest-
ing to consider other density measures that are useful in practice, and study
the classical and parameterized complexity of the cluster editing problem with
respect to these measures.

Acknowledgment We thank the anonymous referees of Algorithmica for sev-
eral comments that have improved the presentation of this work.

References

[1] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection.
In Proceedings of the 5th Latin American Symposium on Theoretical Informatics
(LATIN ’02), volume 2286 of Lecture Notes in Computer Science, pages 598–612.
Springer, 2002.

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:

22

To appear in Algorithmica, Special Issue of ISAAC 2009

Ranking and clustering. Journal of the ACM, 55(5), 2008. Article 23 (October
2008), 27 pages.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,
56(1–3):89–113, 2004.

[4] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. Going weighted: Param-
eterized algorithms for cluster editing. Theoretical Computer Science, 410(52):
5467–5480, 2009.

[5] L. Cai. Fixed-parameter tractability of graph modification problems for heredi-
tary properties. Information Processing Letters, 58(4):171–176, 1996.

[6] Y. Cao and J. Chen. Weighted cluster editing: Kernelization based on edge-cuts.
In Proceedings of the 5th International Symposium on Parameterized and Exact
Computation (IPEC ’10), Lecture Notes in Computer Science. Springer, 2010.

[7] J. Chen and J. Meng. A 2k kernel for the cluster editing problem. In Proceedings
of the 16th Annual International Conference on Computing and Combinatorics
(COCOON ’10), volume 6196 of Lecture Notes in Computer Science, pages 459–
468. Springer, 2010.

[8] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D. Mountz,
N. E. Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly, and R. W.
Williams. Complex trait analysis of gene expression uncovers polygenic and
pleiotropic networks that modulate nervous system function. Nature Genetics, 37
(3):233–242, 2005.

[9] F. K. H. A. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang.
The cluster editing problem: Implementations and experiments. In Proceedings
of the 2nd International Workshop on Parameterized and Exact Computation
(IWPEC ’06), volume 4169 of Lecture Notes in Computer Science, pages 13–24.
Springer, 2006.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[11] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient parame-
terized preprocessing for Cluster Editing. In Proceedings of the 16th International
Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639 of
Lecture Notes in Computer Science, pages 312–321. Springer, 2007.

[12] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the param-
eterized complexity of multiple-interval graph problems. Theoretical Computer
Science, 410(1):53–61, 2009.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[14] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clus-
tering: Exact algorithms for clique generation. Theory of Computing Systems, 38
(4):373–392, 2005.

23

To appear in Algorithmica, Special Issue of ISAAC 2009

[15] D. L. Greenwell, R. L. Hemminger, and J. B. Klerlein. Forbidden subgraphs. In
Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory
and Computing, pages 389–394, 1973.

[16] J. Guo. A more effective linear kernelization for Cluster Editing. Theoretical
Computer Science, 410(8–10):718–726, 2009.

[17] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. A more relaxed model
for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete
Mathematics, 24(4):1662–1683, 2010.

[18] F. Harary. The maximum connectivity of a graph. Proceedings of the National
Academy of Science of the United States of America, 48(7):1142–1146, 1962.

[19] S. Kosub. Local density. In Network Analysis, volume 3418 of Lecture Notes in
Computer Science, pages 112–142. Springer, 2004.

[20] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Informatica, 23(3):311–323, 1986.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[22] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical Sociology, 6:139–154, 1978.

[23] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1–2):173–182, 2004.

[24] H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein. Predicting interactions in
protein networks by completing defective cliques. Bioinformatics, 22(7):823–829,
2006.

[25] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research,
34(3):594–620, 2009.

24

	Introduction
	Defective Cliques
	Average-s-Plexes
	-Cliques
	Outlook

