
Finding Dense Subgraphs of Sparse Graphs?

Christian Komusiewicz and Manuel Sorge??

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{christian.komusiewicz,manuel.sorge}@tu-berlin.de

Abstract. We investigate the computational complexity of the Densest-
k-Subgraph (DkS) problem, where the input is an undirected graph G =
(V,E) and one wants to find a subgraph on exactly k vertices with a
maximum number of edges. We extend previous work on DkS by studying
its parameterized complexity. On the positive side, we show that, when
fixing some constant minimum density µ of the sought subgraph, DkS
becomes fixed-parameter tractable with respect to either of the parameters
maximum degree and h-index of G. Furthermore, we obtain a fixed-
parameter algorithm for DkS with respect to the combined parameter
“degeneracy of G and |V | − k”. On the negative side, we find that DkS is
W[1]-hard with respect to the combined parameter “solution size k and
degeneracy of G”. We furthermore strengthen a previous hardness result
for DkS [Cai, Comput. J., 2008] by showing that for every fixed µ, 0 <
µ < 1, the problem of deciding whether G contains a subgraph of density
at least µ is W[1]-hard with respect to the parameter |V | − k.

1 Introduction

Identifying dense regions of graphs is a fundamental computational prob-
lem with many important applications, for instance in computational
biology [19] and social network analysis [3]. There are many different
definitions of what a dense subgraph is [11, 17] and for almost all of these
formulations, the corresponding computational problems are NP-hard.

In this work, we study the problem of finding subgraphs with a fixed
number k of vertices and a maximum number of edges. This problem is
known as Densest-k-Subgraph. For fixed k, maximizing the number
of edges is the same as maximizing the density of a graph G = (V,E)
which is defined as 2|E|/(|V |(|V | − 1)). Using the notion of density, the
NP-hard Densest-k-Subgraph problem [11, 15] can be defined as follows.

Densest-k-Subgraph (DkS) :
Input: A graph G = (V,E), and a nonnegative integer k.
Task: Find a vertex set S ⊆ V of size exactly k such that G[S]
has maximum density.

? One result of this work (Thm. 4) is contained in the first author’s dissertation [16].
?? Supported by DFG projects PABI (NI 369/7-2) and DAPA (NI 369/12).

DkS is at least as hard as the well-studied Clique problem which asks
for finding a complete graph of order exactly k. In this work, our aim
is to provide a better overview of when DkS becomes computationally
hard or tractable, respectively. To this end, we consider how two types of
parameters influence the complexity of DkS. The first type of parameters
are the classical parameters “solution size k” and “parameterization by
dual |V |−k”. The second type of parameters measure the sparseness of the
input graph G: maximum degree ∆, h-index,1 and degeneracy d. Bounded
maximum degree means that all vertices have few neighbors, bounded h-
index means that most vertices have few neighbors, and bounded de-
generacy means that there is always a vertex with few neighbors. By
definition, ∆ ≥ h-index ≥ d. The study of these three parameters is
motivated by two facts: First, many real-world networks such as biological
and social networks are relatively sparse since they contain many vertices
of low degree and only few vertices of high degree (the network “hubs”).
Second, the otherwise notoriously hard Clique problem is much easier
on sparse graphs. For example, all maximal cliques can be enumerated
in O(d3/d · d · n) time on graphs with degeneracy d [9].

We study the complexity of DkS mostly by considering the following
problem which can be seen as a decision variant of DkS. Here, one asks
whether there is a k-vertex subgraph with density at least µ, where 0 ≤
µ ≤ 1 is some fixed constant. We call such subgraphs µ-cliques, that is, a
graph G = (V,E) is a µ-clique if the density of G is at least µ.

µ-Clique:
Input: A graph G = (V,E), and a nonnegative integer k.
Question: Is there a vertex set S ⊆ V of size at least k such
that G[S] is a µ-clique?

Throughout this work, we assume that µ is a fixed constant, in other words,
that it is independent of k and n. This assumption can be motivated by
the fact that in many applications, the dense subgraphs that one wants
to find should be almost complete graphs.

Related Work. Clique, which asks to find a complete subgraph of order k
is W[1]-hard with respect to the parameter k and fixed-parameter tractable
with respect to the dual parameter n− k [7]. Finding a densest subgraph
of order exactly k is NP-hard and W[1]-hard with respect to k, as it is
a generalization of Clique. Moreover, DkS is W[1]-hard with respect

1 The structural graph parameter h-index was introduced by Eppstein and Spiro [8] in
the context of triangle counting in dynamic graphs. For a definition, see Section 2.

2

Table 1: Summary of our results and previous results for µ-Clique and DkS. Note
that hardness transfers from µ-Clique to DkS and tractability transfers in the reverse
direction. For fixed-parameter tractability (FPT) results, we write a rough estimate
of the exponential running time factor. Herein, k denotes the order of the sought
µ-clique, ` = n− k is the number of vertices that have to be deleted in order to obtain
a µ-clique or a densest subgraph, and d denotes the degeneracy of the input graph.

parameter µ-Clique DkS

max. degree ∆ FPT: ∆O(∆) (Theorem 1), NP-hard for ∆ = 3 [10]
no poly. kernel (Theorem 7)

h-index h FPT: hO(h) (Theorem 2),
no poly. kernel (Theorem 7)

degeneracy d ∈ XP (Lemma 1(iii)) NP-hard for d = 2 [10]
(k, d) W[1]-hard (Theorem 6)
` W[1]-hard (Theorem 4) W[1]-hard [5]

(`, d) FPT: (`+ d)O(`) (Theorem 3)

to the parameter n − k [5]. It is, however, fixed-parameter tractable
with respect to the combined parameter “maximum degree ∆ and k” [6].
Holzapfel et al. [13] showed that DkS remains NP-hard, even when looking
only for subgraphs with average degree at least 2+Ω(1/k1−ε) for 0 < ε < 2.
Finding k-vertex subgraphs of average degree at least 2+O(1/k), however,
can be done in polynomial time. Furthermore, DkS is NP-hard even in
graphs with maximum degree three and degeneracy two [10]. The “densest
subgraph” in this reduction, however, has very low, non-constant density.
For an overview of computational aspects of finding dense subgraphs,
we refer to the survey of Kosub [17]. A related problem is Minimum
Subgraph of Minimum Degree, where the task is to find a subgraph
of order at most k such that each vertex has a given minimum degree.
Minimum Subgraph of Minimum Degree is W[1]-hard with respect
to the parameter k but becomes fixed-parameter tractable on graphs of
bounded local treewidth and graphs with excluded minors [2]. A further
related problem is to find a subgraph that has maximum average degree
(without constraint on the order). This problem is polynomial-time solvable
using network flow techniques [12].

Our Results. Table 1 gives an overview of our results; note that all negative
results that were obtained for µ-Clique immediately transfer to DkS.
Our results can be summarized as follows. Finding dense subgraphs is
significantly harder than finding cliques since µ-Clique and DkS are
W[1]-hard with respect to the parameter (d, k). Furthermore, we show
that the W[1]-hardness for DkS parameterized by n− k [5] can also be

3

generalized to hold for µ-Clique for all µ, 0 < µ < 1. Finally, we show
that, in contrast to DkS, µ-Clique is fixed-parameter tractable for the
parameters maximum degree ∆ and h-index h of G. In particular, we show
that the practically relevant case of finding subgraphs whose density µ
deviates not too much from the maximum density (that is, 1/µ is small)
is still tractable for bounded ∆ or h.

2 Preliminaries

We consider simple undirected graphs G = (V,E) where n := |V | and m :=
|E|. The order of a graph is the number of vertices. For a vertex set S ⊆ V
we denote by N(S) :=

⋃
v∈S N(v)\S the neighborhood of S, and by deg(v)

the degree of v. We use G[S] to denote the subgraph induced by S. The
degeneracy of a graph G is the smallest integer d such that every induced
subgraph of G has at least one vertex with degree at most d. The h-index
of a graph G is the maximum integer h such that G contains h vertices
of degree at least h. The property of being a µ-clique is not hereditary,
but has a “nestedness” property [17]: Every µ-clique G = (V,E) has an
induced subgraph G′ on |V | − 1 vertices that is also a µ-clique. For the
relevant notions from parameterized complexity, refer to [7].

3 Fixed-Parameter Algorithms

Here, we present fixed-parameter algorithms for the parameters maxi-
mum degree ∆ of G, h-index of G and the combined parameter that
comprises n− k and degeneracy of g. Before presenting these algorithms,
we observe relationships between the order of µ-cliques and the sparsity
parameters under consideration. We also give an observation about the
enumeration of certain subgraphs in degree bounded graphs, which yields
a subroutine used in our algorithms.

Preparations. The relation between the order of a µ-clique and its maxi-
mum degree, h-index and degeneracy is as follows.

Lemma 1. A µ-clique with
(i) maximum degree ∆ has order at most ∆/µ+ 1.

(ii) h-index h has order at most h·(h−1)+2·(n−h)·h
µ·(n−1) < 2·h

µ .

(iii) degeneracy d has order less than (4 · d+ µ)/2 · µ.

The upper bound h·(h−1)+2·(n−h)·h
µ·(n−1) on the order of µ-cliques is tight as a

graph consisting of a clique of order h and of n− h further vertices that

4

are an independent set but adjacent to all vertices of the clique has density
exactly µ if n is equal to the upper bound.

Continuing the preparation for our tractability results, a central obser-
vation is the following.

Lemma 2. Let G be a graph with maximum degree ∆ and let v be a
vertex in G. There are at most 4k · (∆− 1)k connected subgraphs of G that
contain v and have order at most k. Furthermore, these subgraphs can be
enumerated in O(4k · (∆− 1)k · (n+m)) time.

Proof. We describe a search tree for enumerating these subgraphs. In each
search tree node, we maintain two vertex sets P (the “pivot set”) and N ,
where N is a subset of P and the task is to enumerate all vertex sets S
such that 1) G[S] is connected, 2) P ⊆ S, and 3) the vertices of N have
no neighbors in S \P . Furthermore, in each of the search tree nodes, there
will be a distinguished active vertex v of P \N . We will consider adding
neighbors of the active vertex first. The details are as follows.

Assume that there is an arbitrary but fixed ordering of the vertices of G.
Initialize the search by setting the pivot set P := {v} and setting N = ∅
where v is the vertex with lowest index in the fixed ordering. Furthermore,
set v as active vertex. Then, in each search tree node, do the following. First,
report G[P]. Then, if |P | = k, abort this branch. Otherwise, if |P | < k
and there is no active vertex, then choose the vertex v ∈ P \ N that
has lowest index in the fixed ordering as new active vertex. Now, branch
into the following cases to add neighbors of the active vertex v: First, for
each neighbor u of v in V \ P that is not adjacent to any vertex in N
create a search tree branch with (P ∪ {u}, N) that is, one branch for each
possibility to add a neighbor of v and keep v as active vertex in these
branches. Second, create one further search tree branch with (P,N ∪ {v}),
that is, a branch in which we assume that no further neighbors of v may
be added; in this branch v will become inactive.

Since a vertex never leaves P once it has been added and only neighbors
of vertices in P are added to P , clearly, the graph G[P] is connected,
contains v and has order at most k in each search tree node. Furthermore,
each connected graph that contains v and is of order at most k is equal
to G[P] in some search tree node: for each vertex that is a neighbor of
the current pivot set and not a neighbor of N , we branch at some point
into the case that this vertex is added.

To bound the number of search tree nodes, observe that at most k
vertices can be added to P and, hence, at most k vertices can be added
to N . Now, assume that we branch in advance into all the cases to either

5

add a neighbor of an active vertex or move an active vertex to N , that
is, we fix in advance that we add say x1 neighbors of the first vertex, x2
neighbors of the second active vertex and so on. The number of possible
branchings is 22k, since in the first branch, we add a vertex to P and
in the second branch, we add a vertex to N and the cardinality of both
sets is at most k. Now, assume that we branch for each such fixed case
into the different cases to add a neighbor of the active vertex v. Then,
this can be done by a search tree of depth at most k and in each search
tree node, we branch into at most ∆− 1 cases, to add a vertex in V \ P
to P (note that except for the first branching, every active vertex v has
at least one neighbor in P since G[P] is connected). Hence, the overall
search tree size is O(4k · (∆ − 1)k). Since the steps at each search tree
node can be performed in O(n + m) time, the search tree also gives
a O(4k · (∆− 1)k · (n+m)) running time enumeration algorithm. ut

Next, we present fixed-parameter algorithms for the parameters maxi-
mum degree ∆ and h-index. We gradually develop the algorithms starting
with the (easiest) case of finding connected µ-cliques in graphs with maxi-
mum degree ∆. Then, we present an algorithm for disconnected µ-cliques
in graphs with maximum degree ∆. Finally, we describe an algorithm
for the parameter h-index. Note that we can restrict ourselves to finding
µ-cliques of order exactly k due to the nestedness property.

Finding connected µ-cliques. We use the enumeration algorithm described
in Lemma 2. For every vertex v, we start an enumeration of all connected
graphs of order at most k that contain v and instead of reporting the
graphs, we check whether it is a µ-clique and report it or not accordingly.
Plugging in the bound for k given by Lemma 1(i), we obtain the following.

Proposition 1. All connected µ-cliques in a graph G with maximum
degree ∆ can be enumerated in O(4∆/µ+1 · (∆− 1)∆/µ+1 · n(n+m)) time.

Finding disconnected µ-cliques. The idea for finding disconnected µ-cliques
is to combine different connected subgraphs such that the sum of edges
and vertices yields a graph with density at least µ. In the process of
combining these connected µ-cliques, we have to ensure that we only
combine these numbers for disjoint graphs. Otherwise, a dense subgraph
might be counted twice. To this end, we use color coding [1] to obtain a
randomized fixed-parameter algorithm with one-sided error. The algorithm
can be derandomized using standard techniques with an additional running
time factor of 2O(k)[1]. Assume that the input graph contains a µ-clique

6

of order k, and let S be the vertex set of this µ-clique. The basic idea
of color coding is to color the vertices of the input graph uniformly at
random with a set C of k colors and to hope that S is colorful, that is,
for each color in C there is exactly one vertex in S that has received this
color. Assuming the graph is colored this way, first use the enumeration
algorithms for connected µ-cliques described above, and then “combine”
these connected graphs by applying dynamic programming. The color-
coding/enumeration/dynamic programming routine is repeated sufficiently
often to achieve constant error probability. The details are as follows.

After the coloring, first compute for every subset C ′ of C the densest
connected subgraph that has color set C ′. This can be easily achieved
by adapting the above enumeration algorithm to only report colorful µ-
cliques. Using this enumeration, we fill a table D where for each color
set C ′ ⊆ C, the entry D(C ′) contains the maximum number of edges in a
connected µ-clique in G whose vertices have exactly the colors from C ′.
Afterwards, we find the maximum density of a colorful µ-clique of order k
using another table T . Here, the entry in T (C ′) for some color set C ′ ⊆ C
contains the number of edges of a (possibly disconnected) µ-clique with
maximum density in G whose vertices have exactly the colors from C ′.
Observe that either T (C ′) = D(C ′), or there is a partition of C ′ into C ′1, C

′
2

such that T (C ′) = T (C ′1) + T (C ′2). Thus, we fill T (C ′) by the following
recurrence:

T (C ′) = max{D(C ′), max
C′′⊂C′

{T (C ′′) + T (C ′ \ C ′′)}}.

The maximum density of a colorful µ-clique of order k is then found in T (C).
The table T can be filled in O(3k) time, since there are at most this many
triples (C ′, C ′1, C

′
2) such that C ′ ⊂ C and (C ′1, C

′
2) partitions C ′ (each

color in C either has to be in C ′1, C
′
2, or C \C ′); for each such triple there

is only one table lookup. Adding the running time for filling T , we obtain a
running time of O(3k+4k ·(∆−1)k ·n(n+m)) = O(4k ·(∆−1)k ·n(n+m)),
where ∆ is the maximum degree of G.

The error probability can be bounded as follows [1]. When coloring
the vertices with k colors uniformly at random, the probability of a
µ-clique S being colorful is exactly k!/kk, since there are kk distinct
colorings of S and k! colorful ones. By Stirling’s approximation, this
probability is at least e−k and by repeating ek times the random coloring
and the algorithm above, the probability of missing a feasible µ-clique is
at most (1− e−k)ek ≤ 1/e. Using Lemma 1(i) we obtain the following.

7

Theorem 1. µ-Clique can be solved in time O((4e · (∆− 1))∆/µ+1n(n+
m)), reporting a yes-instance as a no-instance with probability at most 1/e,
where ∆ is the maximum degree in the input graph.

It has previously been shown that, using random separation, DkS can
be solved in 2O(∆k) time with one-sided error and constant error probabil-
ity [6]. Our algorithm above applied to DkS runs in 2O(log(∆)k) time.

Parameterization by h-index. We now describe how to adapt the algorithm
from Theorem 1 to obtain a fixed-parameter algorithm for the parameter h-
index of the input graph. In many practical applications the h-index is
much smaller than the maximum degree. For instance, social and biological
networks have few so-called hubs, that is, vertices of very high degree, and
many low-degree vertices. Hence, the h-index is much smaller than the
maximum degree for these graphs.

The main idea of the algorithm is as follows. Let H be the set of the
at most h vertices with degree at least h, and assume that S is a vertex
set of size k such that G[S] is a µ-clique. First, by trying all 2h partitions
of H, guess the set HS of vertices that are in S ∩H. We annotate every
vertex v ∈ V \ H with the number of neighbors it has in HS . Let the
weight of a subgraph G′ of the input graph G = (V,E) be the sum of
the vertex annotations in G′ and the number of edges in G′. Now the
task is to find a subgraph in G[V \ H] of order at most k − |HS | that
has maximum weight. If we have such subgraphs for all possible choices
of HS , we can compare them, also accounting for the edges in G[HS],
to obtain a densest subgraph of order at most k. To find the maximum
weight subgraphs in G[V \H], we proceed analogously to the algorithm
given above for Theorem 1; we omit the details. Using the size bound
for k from Lemma 1(ii), we obtain the following running time.

Theorem 2. µ-Clique can be solved in time O(2h · (4e · (h− 1))h/µ+1 ·
h · n(n+m)), reporting a yes-instance as no-instance with probability at
most 1/e where h is the h-index of the input graph.

Degeneracy and Dual Parameter. In this section we show that DkS is fixed-
parameter tractable with respect to the combined parameter degeneracy
and ` := n − k, where n is the number of vertices in the input graph.
Remember that in µ-Clique we fix some constant minimum density µ
of the sought graph. This is necessary to bound the maximum value of k
and, ultimately, obtain feasible running time bounds. For the combined
parameter (d, `) this constraint can be dropped. The algorithm is based
on the following observation.

8

Lemma 3. Let G = (V,E) be a graph and let S ⊆ V such that G[S] is
densest possible and S has size k. Then, there is no vertex in V \ S that
has degree at least `+ d, where ` = n− k.

Proof. Assume that there is a vertex v of degree at least `+ d in V \ S.
Since v has at most `−1 neighbors in V \S, it has at least d+ 1 neighbors
in S. However, because G is d-degenerate, there is a vertex u of degree at
most d in G[S]. Thus, G[(S \ {u})∪ {v}] is a graph with at least one edge
more than G[S]. This contradicts the fact that G[S] is densest possible. ut

Note that we can regard DkS as the problem of deleting a set of ` vertices
whilst removing the least possible number of edges. Let us call such a vertex
set sparsest `-deletion set. To exploit Lemma 3, first mark every vertex
with degree at least ` + d undeletable. Then, find a sparsest `-deletion
set in the degree-bounded graph induced by the deletable vertices. To
find this deletion set, we employ, much in the spirit of the algorithms for
maximum degree and h-index, color coding and use dynamic programming
to first find connected sparsest (≤ `)-deletion sets and then combine them
to an optimum one; we omit the details. By the same argument as for the
algorithm for µ-Clique and maximum degree, it suffices to repeat e` times
the random coloring and dynamic programming procedure to obtain an
error probability of at most 1/e. In summary, we have the following.

Theorem 3. Densest-k-Subgraph can be solved in O((4e · (` + d −
1))`n(n+m)) time, reporting a yes-instance as no-instance with probability
at most 1/e, where ` = n− k and d is the degeneracy of the input graph.

4 Hardness Results

In this section, we present two reductions that show the limits of the
approach presented above.

4.1 W[1]-hardness for Parameterization by Dual

First, we show that considering only the dual parameter ` leads to W[1]-
hardness also in the case of µ-Clique.

Theorem 4. For any fixed µ, 0 < µ < 1, µ-Clique is W[1]-hard with
respect to the parameter ` = n− k.

Somehow counter-intuitively, the reduction used in Theorem 4 suggests
that in order to obtain a graph with density µ it might be of advantage to

9

delete a clique from the input graph. Hence, one cannot expect that the set
of removed vertices induces a sparse graph. From the above reduction, we
also obtain a lower bound on the running time of algorithms for µ-Clique.
This bound is based on the exponential-time hypothesis (ETH) which
implies that 3SAT cannot be solved in O∗(2o(n)) time [14, 18].

Theorem 5. µ-Clique cannot be solved in time O∗(2o(∆/µ)) for every
0 < µ ≤ 1 unless the exponential time hypothesis (ETH) fails. Here, h is
the h-index of the input instance.

Clearly, Theorem 5 also excludes algorithms with running time O∗(2o(h/µ)).

4.2 W[1]-hardness for Parameterization by Degeneracy and
Solution Size

Next, we show that the parameter h-index cannot be replaced by the
smaller parameter degeneracy.

Theorem 6. For any fixed µ, 0 < µ < 1, µ-Clique is W[1]-hard param-
eterized by (d, k), where d denotes the degeneracy of the input graph.

We can use the reduction behind Theorem 6 to also exclude polynomial-
size problem kernels for the parameters maximum degree and h-index.

Theorem 7. µ-Clique does not admit polynomial-size problem kernels
with respect to either maximum degree or h-index unless NP ⊆ coNP/poly.

Proof. It suffices to prove the statement for the larger maximum degree pa-
rameter. For this, we observe that the reduction used in Theorem 6 implies
a cross-composition [4] from Clique into µ-Clique parameterized by max-
imum degree. A cross-composition from a language L ⊆ Σ∗ into a parame-
terized problem P is an algorithm that, given t strings x1, x2, . . . , xt ∈ Σ∗,
computes an instance x∗ of P with parameter value k such that its
running time is bounded by a polynomial in

∑t
i=1 |xi|, k is bounded

by a polynomial in maxti=1 |xi|, and x∗ ∈ P if and only if xi ∈ L for
some 1 ≤ i ≤ t.2 If a parameterized problem that has a cross-composition
from an NP-hard language also admits a polynomial-size problem kernel,
then NP ⊆ coNP/poly [4].

Let a number of instances of Clique be given and without loss of
generality, assume that each instance asks for a clique of order k′.3 Merge

2 For readability, we simplified the more general definition of cross-composition here.
3 If an instance asks for a smaller clique, simply add a new vertex and connect it to

all other vertices of this instance.

10

the instances into one instance of Clique by taking the disjoint union of
the graphs. It is clear that this graph contains a clique of given order if and
only if one of its connected components does. Then, apply the reduction
used in Theorem 6 to the resulting graph. To obtain that this procedure is
a cross-composition, it remains to show that the maximum degree in the
created instance is bounded by a polynomial in the maximum size of the
input instances. This follows since the reduction used for Theorem 6 does
not merge any connected components and the introduced gadget graph
has size polynomial in k′. Thus, there is cross-composition from Clique
into µ-Clique parameterized by the maximum degree. ut

5 Outlook

Several research tasks remain. First, it would be interesting to improve
the presented algorithms. We conjecture, however, that it is not possible
to achieve a running time of O∗(2o((∆/µ) log∆)), but have no proof for this
at the moment. Furthermore, it would be interesting to obtain nontrivial
Turing kernels for µ-Clique and any of the considered parameters. Also, is
there a better polynomial-time algorithm for µ-Clique on planar graphs
than the XP-algorithm for degeneracy? Finally, a further restriction that
can be made in the area of community detection is to bound the size of
the neighborhood of the µ-cliques. Efficient algorithms exploiting such
bounds would be interesting and also practically relevant.

Bibliography

[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):
844–856, 1995.

[2] O. Amini, I. Sau, and S. Saurabh. Parameterized complexity of the
smallest degree-constrained subgraph problem. In Proc. 3rd IWPEC,
volume 5018 of LNCS, pages 13–29. Springer, 2008.

[3] B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in
social network analysis: The maximum k-plex problem. Oper. Res.,
59(1):133–142, 2011.

[4] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition:
A new technique for kernelization lower bounds. In Proc. 28th STACS,
volume 9 of LIPIcs, pages 165–176. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2011.

[5] L. Cai. Parameterized complexity of cardinality constrained opti-
mization problems. Comput. J., 51(1):102–121, 2008.

11

[6] L. Cai, S. M. Chan, and S. O. Chan. Random separation: A
new method for solving fixed-cardinality optimization problems. In
Proc. 2nd IWPEC, volume 4169 of LNCS, pages 239–250. Springer,
2006.

[7] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[8] D. Eppstein and E. S. Spiro. The h-index of a graph and its application
to dynamic subgraph statistics. In Proc. 11th WADS, volume 5664
of LNCS, pages 278–289. Springer, 2009.

[9] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques
in sparse graphs in near-optimal time. In Proc. 21st ISAAC, volume
6506 of LNCS, pages 403–414. Springer, 2010.

[10] U. Feige and M. Seltser. On the densest k-subgraph problem. Tech-
nical report, The Weizmann Institute, Department of Applied Math
and Computer Science, 1997.

[11] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem.
Algorithmica, 29(3):410–421, 2001.

[12] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput., 18(1):
30–55, 1989.

[13] K. Holzapfel, S. Kosub, M. G. Maaß, and H. Täubig. The complexity
of detecting fixed-density clusters. Discrete Appl. Math., 154(11):
1547–1562, 2006.

[14] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[15] S. Khuller and B. Saha. On finding dense subgraphs. In
Proc. 36th ICALP, volume 5555 of LNCS, pages 597–608. Springer,
2009.

[16] C. Komusiewicz. Parameterized Algorithmics for Network Analysis:
Clustering & Querying. PhD thesis, Technische Universität Berlin,
Berlin, Germany, 2011.

[17] S. Kosub. Local density. In Network Analysis, volume 3418 of LNCS,
pages 112–142. Springer, 2004.

[18] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on
the exponential time hypothesis. Bulletin of the EATCS, 105:41–72,
2011.

[19] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang. Dense sub-
graphs with restrictions and applications to gene annotation graphs.
In Proc. 14th RECOMB, volume 6044 of LCNS, pages 456–472.
Springer, 2010.

12

	Finding Dense Subgraphs of Sparse Graphs

