
Enumerating Connected Induced Subgraphs:
Improved Delay and Experimental Comparison

Christian Komusiewicz and Frank Sommer

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany
{komusiewicz,fsommer}@informatik.uni-marburg.de

Abstract. We consider the problem of enumerating all connected in-
duced subgraphs of order k in an undirected graph G = (V,E). Our main
results are two enumeration algorithms with a delay of O(k2∆) where ∆
is the maximum degree in the input graph. This improves upon a previous
delay bound [Elbassioni, JGAA 2015] for this problem. In addition, we
give improved worst-case running time bounds and delay bounds for
several known algorithms and perform an experimental comparison of
these algorithms for k ≤ 10 and k ≥ |V | − 3.

1 Introduction

We study algorithms for the following fundamental graph problem.

Connected Induced Subgraph Enumeration (CISE)
Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected induced subgraphs of order k.

We call a connected subgraph of order k a solution in the following. The enu-
meration of connected subgraphs is important in many applications, such as the
identification of network motifs (statistically overrepresented induced subgraphs
of small size). A straightforward algorithm to find such motifs is to enumer-
ate all connected induced subgraphs and to count how often each subgraph of
order k occurs [6, 14]. A further application arises when semantic web data is
searched using only keywords instead of structured queries [5]. Finally, many
fixed-cardinality optimization problems can be solved by an algorithm whose
first step is to enumerate connected induced subgraphs of order k [8]. This algo-
rithm can solve for example Connected Densest-k-Subgraph, the problem
of finding a connected subgraph of order k with a maximum number of edges.
Experiments showed that enumeration-based algorithms can be competitive with
other algorithmic approaches [9].

At first sight, providing any nontrivial upper bounds on the running time of
CISE seems hopeless: As evidenced by a clique on n vertices, graphs may have up
to
(
n
k

)
CISE solutions. Even very sparse graphs may have

(
n−1
k−1
)

CISE solutions
as evidenced by a star graph with n− 1 leaves. It is maybe due to these lower
bounds that, despite its importance, CISE has not received too much attention
from the viewpoint of worst-case running time analysis.

To appear in Proceedings of the 45th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM ’19), Nový
Smokovec, Slovakia, January 2019. c© Springer.

One way to achieve relevant running time bounds is to consider degree-
bounded graphs where the number of solutions is much smaller than in general.

Lemma 1 ([3, Equation 7]). Let G be a graph with maximum degree ∆. Then
the number of connected induced subgraphs of order k that contain some vertex v is
at most (e(∆−1))(k−1). Hence, the overall number of connected induced subgraphs
of order k in G is O((e(∆− 1))(k−1) · (n/k)).

This observation can be exploited to obtain an algorithm for CISE that runs in
O((e(∆− 1))(k−1) · (∆+ k) · (n/k)) time [8].

A second approach to provide nontrivial running time bounds is to prove upper
bounds on the delay of the enumeration. The delay is the maximal time that the
algorithm spends between the output of consecutive solutions. The reverse search
framework is a general paradigm for enumeration algorithms with bounded delay.
The basic idea is to construct a tree where each node represents a unique element
of the enumeration process. By traversing this tree from the root, each element is
enumerated exactly once. By using reverse search, one can enumerate all induced
subgraphs of order at most k with polynomial delay [1]. When we are interested
only in solutions of order exactly k [4], this algorithm is not output polynomial,
that is, the running time is not bounded by a polynomial in the input and output
size. Hence, it does not achieve polynomial delay either. A different reverse search
algorithm, however, achieves delay O(kmin(n− k, k∆)(k(∆+ log k) + log n)) [4].

Thus, k and ∆ appear to be central parameters governing the complexity
of CISE. Motivated by this observation, we aim to make further progress at
exploiting small values of ∆ and k.

Related Work. Most known CISE algorithms follow the same strategy: start-
ing from an initial vertex set S := {v} for some vertex v, build successively
larger connected induced subgraphs G[S] until an order-k subgraph is found.
Wernicke [13] describes a procedure following this paradigm, which we refer to as
Simple. The idea is to branch into the different possibilities to add one vertex u
from N(S). Another popular enumeration algorithm is Kavosh [6] which also
considers adding vertices of N(S) but creates one branch for each subset of N(S)
that has size at most k − |S|.

A slightly different strategy is to first pick a vertex p of the current set S
whose neighbors are added in the next step and then branch on the up to (∆− 1)
possibilities for adding a neighbor of this vertex. The vertex p is called the active
vertex of the enumeration. The corresponding algorithm, which we call Pivot, has
a worst-case running time of O((4(∆− 1))k · (∆+ k) · n) [7]. A further variant of
Pivot achieves the running time of O(e((∆− 1))(k−1) · (∆+ k) · n/k) mentioned
above [8]. This variant, which we call Exgen, generates exhaustively all subsets S′

of N(p) \ S of size at most k − |S| and creates for each such set S′ one branch
in which S′ is added to S. The final variant that we consider is BDDE [11]. For
a fixed vertex v, BDDE enumerates the connected subgraphs containing v for
increasing subgraph orders. The main idea is to use two functions, one to discover
new graph edges and one to copy siblings in the enumeration tree.

2

The above-mentioned algorithms with polynomial delay [4] work differently.
They use reverse search and, more generally, the supergraph method [1]. There,
for a given graph G and parameter k, the supergraph G contains a node for each
CISE solution in G. Furthermore, two nodes in G are connected if and only if the
corresponding connected subgraphs differ in exactly one vertex. Let |G| denote
the number of vertices in G, that is, the number of CISE solutions. The basic idea
is to explore the supergraph G efficiently. The first variant, which we refer to as
RwD (Reverse Search with Dictionary) has a delay of O(kmin (n− k, k∆)(k(∆+
log k)+log n)) and requires O(n+m+k|G|) space where m is the number of edges
in the input graph G. The second variant, which we refer to as RwP (Reverse
Search with Predecessor), has a delay of O((kmin (n− k, k∆))2(∆+ log k)) and
requires O(n+m) space [4]. Hence, algorithm RwD admits a better delay but
requires exponential space, since G may grow exponentially with the size of G.

Our Results. We show how to adapt Simple and Pivot in such a way that
the worst-case delay between the output of two solutions is O(k2∆) and the
algorithms requires O(n+m) space. This improves over the previous best delay
bound of RwD [4] while requiring only linear space. As a side result, we show
that these variants of Simple and Pivot achieve an overall running time of
O(e((∆ − 1))(k−1) · (∆ + k) · n/k) and O((e(∆ − 1))k−1 · ∆ · n), respectively.
For Simple this is the first running time bound, for Pivot, this is a substantial
improvement over the previous running time bound.

Finally, we compare these algorithms experimentally with implementations
of Kavosh [6], Exgen [8], and BDDE [11]. For k ≤ 10, we observe that RwD
and RwP are significantly slower than the other algorithms. The Simple algorithm
is faster than RwD and RwP but substantially slower than the other algorithms.
Kavosh [6] is the fastest with Pivot being surprisingly competitive. For k close
to the order of the largest connected component, we observe that our adaptions
are necessary to solve these instances. Again, RwD and RwP are slower than the
other algorithms and again, Kavosh is the fastest algorithm with Simple being
second-best but not competitive with Kavosh.

Due to lack of space, several proofs are deferred to a long version of the article.

2 Preliminaries and Main Algorithm

Graph Notation. We consider undirected simple graphs G = (V,E). The or-
der n := |V | denotes the number of vertices in G and m := |E| denotes the
number of edges in G. For a vertex v, N(v) := {u | {u, v} ∈ E} denotes the
open neighborhood of v, and N [v] := N(v) ∪ {v} denotes the closed neighborhood
of v. For a vertex set W ⊆ V , N(W) :=

⋃
v∈W N(v) \ W denotes the open

neighborhood of W and N [W] := N(W) ∪W denotes the closed neighborhood
of W . The graph G[W] := (W, {{u, v} ∈ E | u, v ∈W}) is the subgraph induced
by W . For a set W the graph G−W := G[V \W] is the subgraph of G obtained by
deleting the vertices of W . A connected component of G is a maximal subgraph
where any two vertices are connected to each other by paths.

3

Algorithm 1 The main loop for calling the enumeration algorithms; Enum-Algo
can be any of Simple, Pivot, Exgen, Kavosh, and BDDE.

1: procedure Enumerate(G = (V,E))
2: while |V (G)| ≥ k do
3: choose vertex v from V (G)
4: enumerate all CISE solutions containing v with Enum-Algo
5: remove v from G

Enumeration Trees and the Main Algorithm Loop. With the exception of RwD
and RwP, the enumeration algorithms use a search tree method which is called
from a main loop whose pseudo code is given in Algorithm 1. Different algorithms,
for example Simple or Pivot, can be used as Enum-Algo in Line 4 in Algorithm 1.
For each vertex in the graph, Algorithm 1 creates a unique enumeration tree. In
other words, Algorithm 1 produces a forest consisting of |V | enumeration trees.
To avoid confusion, we refer to the vertices of the enumeration trees as nodes.
Each node represents a connected subgraph G[S] of order at most k. Roughly
speaking, a node N is a child of another node M if the subgraph corresponding
to M is a subgraph of the subgraph corresponding to N . The exact definition of
child depends on the choice of Enum-Algo. A leaf is a node without any children.
Further, a leaf is interesting if S has size k; otherwise it is boring. A node leads
to an interesting leaf, if at least one of its descendants is an interesting leaf.

In the main algorithm loop, we enumerate for each vertex of the input graph
all CISE solutions containing the vertex v by calling the respective enumeration
procedures; the first call of the enumeration procedure is the root of the enumer-
ation tree and it represents the connected subgraph G[{v}]. After enumerating
all solutions containing v, the vertex v is removed from the graph.

Cleaning the Graph. The removal of v may create connected components of order
less than k. If Enumerate chooses all vertices from such connected components,
then we will not achieve the claimed delays. Hence, we show how to remove these
connected components quickly.

Lemma 2. Let G be a graph such that each connected component has order at
least k and let v be an arbitrary vertex of G. In O(k2∆) time we can delete every
vertex of G− {v} that is in a connected component of order less than k.

3 Polynomial Delay with Simple

We now adapt Simple to obtain a polynomial delay algorithm; the pseudo code
is shown in Algorithm 2. In Simple, we start with a single vertex v and find
successively larger connected subgraphs containing v. The vertex set of a subgraph
set is denoted by P . Further, the set X, called extension set, contains those
neighbors of P which can be added to P to enlarge this subgraph. When putting u
in the set P , we remove u from X and add to X each neighbor of u which is
not in N [P]. Lines 10 and 11 of Algorithm 2 are not part of the plain version of

4

Algorithm 2 The Simple algorithm; the initial call is Simple({v}, N(v)).

1: procedure Simple(P,X)
2: if |P | = k then
3: output P
4: return
5: while X 6= ∅ do
6: u := choose arbitrary vertex from X
7: delete u from X . The current set P will be extended
8: X ′ := X ∪ (N(u) \N [P])
9: Simple(P ∪ {u}, X ′)
10: if output of Simple(P ∪ {u}, X ′) was empty then
11: return . Stop recursion if no new solution found

12: return

Simple [13]. Without these two lines Simple is not a polynomial delay algorithm
for CISE.

We now present a pruning rule (Lines 10 and 11 of Algorithm 2) that will
establish polynomial delay. Consider a path T1, . . . , Ti from the root T1 to a
node Ti of an enumeration tree. We denote the subgraph set of a node Ti by Pi

and its extension set by Xi. To avoid some unnecessary recursions, we check after
each recursive call of Simple in node Ti whether this call reported a new solution.
If not, we return in Ti to its parent Ti−1. First, we prove that this pruning rule is
correct. Recall that a leaf Tj is called interesting if the corresponding subgraph
set Pj is a solution for CISE and that Tj is called boring otherwise.

Lemma 3. If the output of a recursive call of Simple in node Ti is empty, then
no subsequent recursive call of Simple in node Ti leads to an interesting leaf.

Now we prove that Simple achieves a polynomial delay. To this end, we
present a new data structure to store the extension set during the algorithm. In
the following, we denote by pi the vertex which was added to the subgraph set Pi

when Ti is created. In other words, if Ti−1 is the parent of Ti, then pi ∈ Pi \Pi−1.
First, we prove that for a node Ti in the enumeration tree we need O(∆) time to
either compute its next child Ti+1 or to restore its parent Ti−1.

Lemma 4. Simple can be implemented in such a way that for every node Ti of
the enumeration tree, we need O(∆) time to either compute the next child Ti+1

or to restore the parent Ti−1 and that the overall space needed is O(n+m).

Proof. We describe the data structures that we use to fulfill the running time and
space bounds of the lemma. To check whether a vertex is in some extension set, we
color some vertices of with k+1 colors c0, . . . , ck as follows. For a node Ti, we call
the exclusive neighbors of pi the vertices which are in N [Pi]\N [Pi−1] where Ti−1
is the parent of Ti. These are exactly the vertices that are added to Xi−1 in
Line 7 of Algorithm 2 to construct the set Xi for the node Ti. Throughout the
algorithm we maintain the following invariant: The vertex p1 has color c0. A

5

u1 u2 u3 u4 u5 u6 u7 u8 u9

π(A, 4)
π(A, 6)π(A, 3)π(A, 5)π(A, 1)

null

π(A, 2)

11233

Fig. 1. An example for the pointer movement: Pointer π(A, 6) points to u9, an exclusive
neighbor of p6. Before adding u9 to the subgraph set P6, we move pointer π(A, 6) to
the left to p8, an exclusive neighbor of vertex π(A, 3). Hence, we move π(A, 6) to the
position of pointer π(A, 5), since T5 is the parent of T6. Next, we create a child of T6 by
adding u9 to the subgraph set P6. The next time we are in node T6, we move π(A, 6) one
to the left to vertex u2 create a child of T6 by adding u3 to P6. After returning from this
child, we move π(A, 6) to vertex u1 which is an exclusive neighbor of vertex p1. Hence,
we move π(A, 6) to the position of π(A, 2), since T2 is the parent of T3. Afterwards, we
create a child by adding u2 to P6. The next time we come back to node T6, we delete
pointer π(A, 6), since π(A, 6) points to null, and return to the parent T5 of node T6.

vertex has color ci, i ≥ 1, if and only if it is an exclusive neighbor of pi. In a
nutshell, the colors c0, . . . , cj represent the vertices in N [Pj]. It is necessary to
use k + 1 different colors to determine in which node a vertex was added to the
extension set. Note that every vertex may have at most one color.

The extension sets of all nodes on the path from the root T1 to an enumeration
tree node Ti are represented by an array A of length k∆ with up to k pointers
pointing to positions of A. There is one pointer π(A, i) corresponding to Ti and
one pointer π(A, j) for each ancestor Tj of Ti. An entry of A is either empty
or contains a pointer to a vertex of the extension set Xi. New vertices for the
extension set replace empty entries in the back. Pointer π(A, i) points to the
vertex x in the extension set Xi which will be added to PT in the next recursive
call of Simple in node Ti. If at node Ti already all children of Ti have been created,
then π(A, i) points to null. Hence, we may check in constant time whether Ti
has further children and return to the parent of Ti if this is not the case.

In addition to A, we use two further simple data structures: The subgraph
set Pi at a node Ti is implemented as stack Q that is modified in the course of
the algorithm with the top element of the stack being pi. Also, for each node Ti,
we create a list Li of its exclusive neighbors. This list is necessary to undo some
later operations. We now describe how these data structures are maintained
throughout the traversal of the enumeration tree.

Initialization. At the root T1 of the enumeration tree, we initialize A as follows:
add all neighbors of the start vertex p1 := v to A, set pointer π(A, 1) to the last
non-empty position in A. Hence, the initial extension set is represented by all
vertices from the first vertex in A to the initial position of pointer π(A, 1). These
are precisely the vertices of the exclusive neighborhood of v. The stack Q consists
of the vertex v and L1 contains all neighbors of v.

6

Creation of new children. As discussed above, a node Ti has a further child Ti+1

if it points to an index containing some vertex x. We create child Ti+1 as follows:

1. move the pointer π(A, i) to the left,
2. check whether x is an exclusive neighbor of pi, and remove x from A if this

is the case, and
3. create the child Ti+1 with pi+1 = x and enter the recursive call for Ti+1.

We now specify how to move the pointer π(A, i) to the left when it currently
points to vertex x of color c`. Note that if x is an exclusive neighbor of pi, we
have i = `. If x is contained in the first entry of A, then redirect π(A, i) to null.
Otherwise, decrease the position of π(A, i) by one. If π(A, i) now points to a
position containing a vertex y of color cj such that π(A, j) also points to y, then
move π(A, i) to the position that π(A, `− 1) points to. Observe that if j = `− 1
this means that the pointer does not move in the second step.

We now describe how the algorithm creates a child Ti+1 of Ti after fix-
ing pi+1 := x as described above. If node Ti+1 is an interesting leaf, that is,
if i = k − 1, we output Pi+1 ∪ {x} and return to node Ti. Otherwise, we add
vertex x to the stack Q representing the subgraph set and create an initially empty
list Li+1. Then we update A so that it represents Xi+1. For each neighbor u of x,
check if u has some color cj . If this is not the case, then color u with color ci+1

and add u to Li+1. Now store the vertices of Li+1 in the left-most non-empty
entries of A. Finally, create the pointer π(A, i + 1) and let it point to the last
non-empty position in A. Observe that this procedure runs in O(∆) time.

Restoring the parent. Finally, we describe how the algorithm returns to the
parent Ti−1 of a node Ti. Note that the case that Ti is an interesting leaf was
already handled above, hence, assume that Ti is not an interesting leaf. When
returning to Ti−1, first delete the last element of stack Q. Then, for each vertex
in Li, we remove its color ci. Finally, remove pointer π(A, i) from array A. Observe
that this can be done in O(∆) time as well. Hence, the overall running time
is O(∆) as claimed. Moreover, the size of stack Q is bounded by k, array A has a
length of min(k∆, n), and the sum of the sizes of all lists Li is at most min(k∆, n).
Hence, Simple needs O(n+m) space. The proof of the correctness of the algorithm
is deferred to a long version of the article. ut

With this running time bound to we may now prove the claimed delay.

Theorem 1. Enumerate with Simple solves CISE for any graph G where each
connected component has order at least k and the maximum degree is ∆ with
delay O(k2∆) and space O(n+m).

Proof. Enumerate chooses an arbitrary start vertex v. According to Lemma 2,
after the deletion of vertex v, we can delete every vertex of each connected
component with less than k vertices in O(k2∆) time. Thus it is sufficient to
bound the time which is needed to output the next solution within Simple.

Consider a node Ti in the enumeration tree of one call of Enumerate with
Simple and its associated sets Pi (the subgraph set of node Ti) and Xi (the

7

extension set of node Ti). Every time we call Simple recursively, we add exactly
one vertex to the subgraph set. Hence, we need at most k iterations to reach a
leaf Tj . If Tj is interesting, that is, if we find a solution for CISE, then we have
a delay of O(k∆). If Tj is boring, then according to Lemma 3 the pruning rule
applies to each node T` on the path from Tj to Ti since no other subsequent
child of node T` yields a path to an interesting leaf. Hence, we will return in
altogether O(k∆) time to the parent Ti−1 of node Ti. Now, we are in the same
situation as above. Either the first path from node Ti−1 to a leaf leads to a
solution for CISE or the pruning rule applies and we return to the parent of Ti−1.
The crucial difference is that the depth of node Ti−1 in the enumeration tree
is one less than the depth of node Ti. Since the depth of the enumeration tree
is bounded by k, we can go up at most k times until we return from the root
(which finishes this call to Simple). Each time, we either report a new solution
in O(k∆) time or go up once more. Hence, the overall delay is O(k2∆). The
space complexity follows from Lemma 3. ut

We can use Lemma 4 also to bound the overall running time of the algorithm.

Proposition 1. Enumerate with Simple has running time O((e(∆ − 1))k−1 ·
(∆+ k) · n/k).

4 Polynomial Delay with Pivot

We now adapt Pivot of Komusiewicz and Sorge [7] to obtain polynomial delay and
a better running time bound. In Pivot, in each enumeration tree node, the vertex
set of the subgraph set is partitioned into two sets P and S. The set P contains
those vertices whose neighbors may still be added to extend the subgraph set and
set S contains the other vertices of this subgraph, that is, no neighbor of S may
be added to the subgraph. Moreover, we have a set F containing further vertices
that may not be added to the connected subgraph. In the original algorithm [7]
each node in the enumeration tree has an active vertex of the set P whose
neighbors will be added to the subgraph. After adding each possible neighbor,
the vertex becomes inactive and is added to set S. This version of the algorithm
has a running time of O(4k(∆− 1)kn(n+m)) [7] and no polynomial delay.

We improve this algorithm such that the number of enumeration tree nodes
will be worst-case optimal and the algorithm has polynomial delay. The pseudo
code of Pivot with improved running time and with pruning rule can be found
in Algorithm 3. Consider a path T1, . . . , Ti from the root T1 to a node Ti of
the enumeration tree. We will not associate enumeration tree nodes with active
vertices. Instead, with each node Ti we associate Pi which is the subset of
the subgraph set which can have further neighbors, Si which is the remaining
subgraph set, and Fi which is the set of forbidden vertices. Hence, we are using a
Line 5 instead of creating a new child for each new active vertex. Now we do the
following until Pi is empty: Pick an arbitrary p ∈ Pi. Next, for each neighbor v
of p that is not in Pi ∪Si ∪Fi, create a child node Ti+1 in which v is added to Pi.
After recursively solving the subproblem of Ti+1, move v to Fi. Consequently,

8

Algorithm 3 The Pivot algorithm; the initial call is Pivot({v}, ∅, ∅).
1: procedure Pivot(P, S, F)
2: if |P ∪ S| = k then
3: output P ∪ S
4: return
5: while P 6= ∅ do
6: p := choose element of P
7: for each z ∈ N(p) \ (P ∪ S ∪ F) do
8: Pivot(P ∪ {z}, S, F)
9: F := F ∪ {z}
10: if output of Pivot(P ∪ {z}, S, F) was empty then
11: return . Stop recursion if no solution was found

12: P := P \ {p}
13: S := S ∪ {p}
14: return

v is contained in Fi in all subsequent children of Ti. Finally, after creating a child
for each neighbor of p, remove p from Pi and put it into Si. With this simple
improvement, the number of enumeration tree nodes is now exactly the number
of connected subgraphs of order at most k.

Lemma 5. For each connected induced subgraph G[U] of order at most k contain-
ing v, there is exactly one node T of the enumeration tree created by Pivot({v}, ∅, ∅)
such that PT ∪ ST = U .

To obtain polynomial delay we add in Lines 10 and 11 a similar pruning rule
to Pivot as for Simple: After each recursive call of Pivot in node Ti we check
whether the call of node Ti+1 outputs at least one solution for CISE. If not, we
return in node Ti to its parent Ti−1 of the enumeration tree. These two lines
were not part of the original algorithm.

Lemma 6. Let Ti be a node in the enumeration tree in a call of Pivot. If the
output of a recursive call of Pivot in node Ti is empty, then no subsequent recursive
call of Pivot in node Ti yields a path to an interesting leaf.

Next, we prove that with suitable data structures for maintaining the sets P , S,
and F during the enumeration, we can quickly traverse the enumeration tree.

Lemma 7. Pivot can be implemented in such a way that for every node Ti of
the enumeration tree, we need O(k∆) time to either compute the next child Ti+1

or to restore the parent Ti−1 and that the overall space needed is O(n+m).

Proof. To check in constant time whether a vertex belongs to Pi, Si, or Fi at an
enumeration tree node Ti, we color some vertices of the graph with colors cF , cP ,
and cS . For a node Ti the set of cF -colored vertices represents the forbidden
vertices Fi, the set of cP -colored vertices represents the set of vertices Pi which
can have new neighbors, and the set of cS-colored vertices represents the set of

9

vertices Si which have no new neighbors. At the root of the enumeration tree, no
vertex has color cF or cS . Only the single vertex v in P has color cP . Testing if a
vertex has color cP , cS , or cF can be done in constant time.

To represent the partition of the subgraph set of node Ti into Pi and Si we
use an array A of length k. The array A contains i = |Pi∪Si| nonempty elements.
In A, we first save all vertices of Si. Then the vertices of Pi follow. Further, a
pointer π(A, i) points to the vertex p of Pi with minimal index in A. Vertex p is
the vertex which was chosen in Line 6 of Pivot and the vertex one position to
the right of p will be chosen next. Hence, in node Ti altogether |Pi ∪ Si| many
pointers (one for node Ti and one for each of its ancestors) point to positions
of A. To represent the set of forbidden vertices, we use a list Li for each node Ti.
The union of all vertices in lists L1, . . . , Li represents the set Fi of forbidden
vertices in node Ti. List Li contains all vertices in Fi \ Fi−1. List Li is used to
restore Fi−1 when we return from node Ti to its parent Ti−1.

Initialization. If we call Pivot with the chosen start vertex v we create
the root T1 of the enumeration tree. The first and only non-empty entry of A
contains v, pointer π(A, 1) points to v, and list L1 is empty. Now, we describe
how to update these data structures in order to the next child Ti+1, or restore
the parent Ti−1 of any node Ti in O(k∆) time.

Determining the next child of Ti. Do the following while π(A, i) points to a
vertex p. Check in O(∆) time whether p has a neighbor u which has none of the
colors cP , cS , or cF . If yes, we have determined that by adding u to Pi we can
create a new child Ti+1 of node Ti. Otherwise, all neighbors of p have some color,
and we remove color cP from p, recolor p with cS , and move pointer π(A, i) one
position to the right. If pointer π(A, i) points to an empty entry of A, then Pi

is empty and Ti contains no more children. Overall, we need O(k∆) time to
determine the vertex to add for the next child Ti+1 of Ti.

Creating a new child. To create Ti+1, we update the data structure to represent
the sets Pi+1, Si+1, and Fi+1: We replace the empty entry with minimal index
in A by vertex u, we color u with cP , and create pointer π(A, i+ 1) which points
to the same vertex as π(A, i). Further, we create the list Li+1. This list is empty
since Fi+1 = Fi. Thus, the child can be created in constant time.

Restoring a parent. Now, we prove that we can restore the parent Ti−1
in O(k∆) time when we have determined that Ti has no further children: We
need to restore the sets Pi−1, Si−1, and Fi−1 of the parent Ti−1 of node Ti. All
vertices in list Li are forbidden vertices which were added in node Ti. In other
words: Li = Fi \Fi−1. Removing color cF from these vertices and deleting list Li

afterwards needs O(k∆) time, since the set Pi can have at most k∆ neighbors
and hence, node Ti can have at most k∆ children. Next, we remove pointer π(A, i)
from A in constant time. Afterwards, we remove the last non-empty vertex x
from A, add x to list Li−1, and change the color of x to color cF . To restore the
coloring of Pi−1 and Si−1 we use the position of pointer π(A, i−1). More precisely,
all vertices from π(A, i− 1) to the last non-empty entry of A get color cP , and
all other vertices of A get color cS . Overall, we need O(k∆) time for this step.

10

As shown above, the algorithm has the claimed running time. Moreover,
array A has length k and the sum of the list sizes is min(k∆, n). Hence, the
algorithm needs O(n+m) space. ut

Together with the pruning rule, the above gives a delay of O(k3∆).

Proposition 2. Pivot can be implemented in such a way that Enumerate with
Pivot solves CISE for any graph G where each connected component has order
at least k and the maximum degree is ∆ with delay O(k3∆) and space O(n+m).

Next, we will improve the delay to O(k2∆). The bottleneck in the delay
provided by Proposition 2 is that when we have a node Ti that does not lead to
an interesting leaf, we may have to go up Θ(k) levels before reaching a node that
leads to an interesting leaf, each time needing Θ(k2∆) time to check if the current
node Ti leads to an interesting leaf. We will do the following: Before generating
child Ti+1 of node Ti, we invest O(k∆) time to check if the next child T ′i+1 of Ti
yields a path to an interesting leaf. This will be done by coloring at most k − i
vertices with a new color ct. If and only if k − i vertices received color ct the
next child T ′i+1 yields a path to an interesting leaf. Afterwards, color ct will be
removed from each vertex to use color ct for the next node in the enumeration
tree. With this we can prove the following delay bound.

Theorem 2. Pivot can be implemented in such a way that Enumerate with Pivot
solves CISE for any graph G where each connected component has order at
least k and the maximum degree is ∆ with delay O(k2∆) and space O(n+m).

Finally, we can prove a better running time bound for Pivot.

Proposition 3. Enumerate with Pivot has running time O((e(∆−1))k−1 ·∆ ·n).

5 An Experimental Comparison

We implemented Simple, Pivot, Exgen, and Kavosh with and without the pruning
rules. Note that adding the pruning rule to Exgen and Kavosh does not make them
polynomial delay algorithms. We also implemented BDDE [11], the Reverse Search
with dictionary (RwD Old), and the Reverse Search with predecessor (RwP Old)
algorithm [4]. For reverse search-based algorithms we also implemented another
method to determine neighbors in the supergraph (RwD New and RwP New).

Each experiment was performed on a single thread of an Intel(R) Xeon(R) Sil-
ver 4116 CPU with 2.1 GHz, 24 CPUs and 128 GB RAM running Python 2.7.14
with igraph (http://igraph.org/python/) as the general graph data struc-
ture and NetworkX (https://networkx.github.io/) as the data structure for
maintaining the enumeration tree in BDDE. 1 As benchmark data set we used
30 sparse social, biological, and technical networks obtained from the Network
Repository [12], KONECT [10], and the 10th DIMACS challenge [2] and 20

1 The source code of our program Enucon is available at www.uni-marburg.de/fb12/
arbeitsgruppen/algorithmik/software/.

11

http://igraph.org/python/
https://networkx.github.io/
www.uni-marburg.de/fb12/arbeitsgruppen/algorithmik/software/
www.uni-marburg.de/fb12/arbeitsgruppen/algorithmik/software/

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
te

re
st

in
g

in
st

an
ce

s

BDDE
RwD New
RwD Old
RwP New
RwP Old
Exgen
Kavosh
Pivot
Simple

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
te

re
st

in
g

in
st

an
ce

s

BDDE
RwD New
RwD Old
RwP New
RwP Old
Exgen
Kavosh
Pivot
Simple

Fig. 2. Comparison for k ∈ {3, . . . , 10} (left) and k ∈ {nc − 1, nc − 2, nc − 3} (right) on
interesting instances.

random graphs generated in the Gn,p model with n ∈ {100, 200, . . . , 1000}
and p ∈ {0.1, 0.2}. The real-world networks range from very small (up to 500
vertices) to very large networks (up to 500 000 vertices).

Each algorithm was run on each instance with a time limit of 600 seconds.
An instance is interesting if at least one of the 14 algorithms solved it within
the time limit. For Simple, Pivot, Exgen, and Kavosh only the variant with the
pruning rule is plotted in Fig. 2 since these variants were the fastest. Fig. 2 shows
the result for k ∈ {3, . . . , 10}. Both versions of RwD and RwP only solve half as
many instances as the other algorithms. All instances solved by RwD were solved
by the remaining algorithms in 20 seconds. Simple is a factor 2 slower than Pivot,
BDDE, Exgen, and Kavosh; Kavosh is slightly faster than Pivot, BDDE, and
Exgen. Hence, for small k, one should use Kavosh.

Fig. 2 shows the result for k ∈ {nc − 1, nc − 2, nc − 3} where nc is the
order of the largest connected component in the graph. Since BDDE stores the
enumeration tree, it produced many memory errors and solved only the smallest
instances. All instances solved by RwD or RwP were solved by Pivot, Simple,
Exgen, and Kavosh with pruning rules in less than 100 seconds. The versions of
the algorithms without the pruning rule only solved the same number of instances
as BDDE. Hence, adding these pruning rules was necessary to solve CISE for
large k. Again, Kavosh is the fastest algorithm, despite the fact that adding the
pruning rule to Kavosh does not yield polynomial delay. Hence, for large k, also
Kavosh should be used. It seems that Pivot is slower for large k because it may
spend Θ(k∆) time before creating the next child.

12

References

[1] Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied
Mathematics 65(1-3), 21–46 (1996)

[2] Bader, D.A., Kappes, A., Meyerhenke, H., Sanders, P., Schulz, C., Wagner,
D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of
Social Network Analysis and Mining, pp. 73–82. Springer (2014)

[3] Bollobás, B.: The Art of Mathematics – Coffee Time in Memphis. Cambridge
University Press (2006)

[4] Elbassioni, K.M.: A polynomial delay algorithm for generating connected
induced subgraphs of a given cardinality. Journal of Graph Algorithms and
Applications 19(1), 273–280 (2015)

[5] Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: Proceedings
of the 20th ACM Conference on Information and Knowledge Management,
(CIKM ’11). pp. 237–242. ACM (2011)

[6] Kashani, Z.R.M., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E.S.,
Asadi, S., Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new
algorithm for finding network motifs. BMC Bioinformatics 10, 318 (2009)

[7] Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In:
Proceedings of the 7th International Symposium on Parameterized and Exact
Computation (IPEC ’12). Lecture Notes in Computer Science, vol. 7535, pp.
242–251. Springer (2012)

[8] Komusiewicz, C., Sorge, M.: An algorithmic framework for fixed-cardinality
optimization in sparse graphs applied to dense subgraph problems. Discrete
Applied Mathematics 193, 145–161 (2015)

[9] Komusiewicz, C., Sorge, M., Stahl, K.: Finding connected subgraphs of
fixed minimum density: Implementation and experiments. In: Proceedings of
the 14th International Symposium on Experimental Algorithms (SEA ’15).
Lecture Notes in Computer Science, vol. 9125, pp. 82–93. Springer (2015)

[10] Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings
of the 22nd International World Wide Web Conference (WWW ’13). pp.
1343–1350. International World Wide Web Conferences Steering Committee
/ ACM (2013)

[11] Maxwell, S., Chance, M.R., Koyutürk, M.: Efficiently enumerating all con-
nected induced subgraphs of a large molecular network. In: Proceedings of
the First International Conference on Algorithms for Computational Biology
(AlCoB ’14). Lecture Notes in Computer Science, vol. 8542, pp. 171–182.
Springer (2014)

[12] Rossi, R.A., Ahmed, N.K.: The network data repository with interactive
graph analytics and visualization. In: Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI ’15). pp. 4292–4293. AAAI Press
(2015), http://networkrepository.com

[13] Wernicke, S.: A faster algorithm for detecting network motifs. In: Proceed-
ings of the 5th International Workshop on Algorithms in Bioinformatics
(WABI ’05). Lecture Notes in Computer Science, vol. 3692, pp. 165–177.
Springer (2005)

13

http://networkrepository.com

[14] Wernicke, S.: Combinatorial algorithms to cope with the complexity of
biological networks. Ph.D. thesis, Friedrich Schiller University of Jena (2006),
http://d-nb.info/982598882

14

http://d-nb.info/982598882

	Enumerating Connected Induced Subgraphs: Improved Delay and Experimental Comparison

