
On Explaining Integer Vectors by

Few Homogeneous SegmentsI

Robert Brederecka,1, Jiehua Chena,2, Sepp Hartunga,
Christian Komusiewicza, Rolf Niedermeiera, Ondřej Suchýb,3

aInstitut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
bFaculty of Information Technology, Czech Technical University in Prague, Czech Republic

Abstract

We extend previous studies on “explaining” a nonnegative integer vector
by sums of few homogeneous segments, that is, vectors where all nonzero
entries are equal and consecutive. We study two NP-complete variants which
are motivated by radiation therapy and database applications. In Vector
Positive Explanation, the segments may have only positive integer entries;
in Vector Explanation, the segments may have arbitrary integer entries.
Considering several natural parameterizations such as the maximum vector
entry γ and the maximum difference δ between consecutive vector entries, we
obtain a refined picture of the computational (in-)tractability of these prob-
lems. For example, we show that Vector Explanation is fixed-parameter
tractable with respect to δ, and that, unless NP ⊆ coNP/poly, there is no poly-
nomial kernelization for Vector Positive Explanation with respect to
the parameter γ. We also identify relevant special cases where Vector Posi-
tive Explanation is algorithmically harder than Vector Explanation.

IAn extended abstract appeared in the Proceedings of the 13th Algorithms and Data
Structures Symposium (WADS 2013), pp. 207-218, LNCS 8037, Springer, 2013.

Email addresses: robert.bredereck@tu-berlin.de (Robert Bredereck),
jiehua.chen@tu-berlin.de (Jiehua Chen), sepp.hartung@tu-berlin.de
(Sepp Hartung), christian.komusiewicz@tu-berlin.de (Christian Komusiewicz),
rolf.niedermeier@tu-berlin.de (Rolf Niedermeier), ondrej.suchy@fit.cvut.cz
(Ondřej Suchý)

1Supported by the DFG, research project PAWS, NI 369/10.
2Supported by the Studienstiftung des Deutschen Volkes.
3The main work was done while Ondřej Suchý was at TU Berlin, supported by the DFG,

research project AREG, NI 369/9.

Preprint submitted to Journal of Computer and System Sciences January 29, 2015

Keywords: parameterized complexity, matrix and vector decomposition,
multivariate algorithmics, NP-hardness, exact algorithms

1. Introduction

In this work we study two variants of a “mathematically fundamental” [4],
NP-complete combinatorial problem motivated by cancer radiation therapy
planning [12] and database and data warehousing applications [1, 22]:

Vector (Positive) Explanation
Input: A vector A ∈ Nn

0 and k ∈ N0.
Question: Can A be explained by at most k (positive) segments?

Herein, a segment is a vector in {0, a}n for some a ∈ Z \ {0} where all
a-entries occur consecutively, and a segment is positive if a is positive. An
explanation is a set of segments that component-wise sum up to the input
vector. For example, in case of Vector Explanation (VE for short) the
vector (4, 3, 3, 4) can be explained by the segments (4, 4, 4, 4) and (0,−1,−1, 0),
and in case of Vector Positive Explanation (VPE for short) it can be
explained by (3, 3, 3, 3), (1, 0, 0, 0), and (0, 0, 0, 1). Throughout the article an
entry4 of a vector refers to a pair consisting of a position (that is, an index)
and the value of the vector at this position. Both problems have a simple
well-known geometric interpretation (see Figure 1.1).

VE occurs in the database context and VPE occurs in the radiation
therapy context. Motivated by previous work providing polynomial-time
solvable special cases [1, 4], polynomial-time approximation [5, 26] and fixed-
parameter tractability results [6, 9] (approximation and fixed-parameter
algorithms both exploit problem-specific structural parameters), we head for
a systematic parameterized and multivariate complexity analysis [15, 23, 28]
of both problems; see Table 1 for a survey of parameterized complexity results
(the parameters therein are formally defined in Definition 1.1).

4Naturally, being “consecutive”, “first”, “last”, or “next” always refers to the position
of entries and being “equal”, “positive”, “negative”, or the “difference between two entries”
refers to the value of the entries.

2

4

[4

-1

3 3

1

4

-4

] A 4 3 3 4 4 4 4 44 3 3 4

Figure 1.1: Illustration of the geometric interpretation of an input vectorA = (4, 3, 3, 4) (left-
hand side), an explanation of it using only positive segments (middle), and an explanation
with one negative segment (dotted pattern on the right-hand side). Vector A is represented
by a tower of blocks where each position i on the x-axis has A[i] many blocks. Each
segment I ∈ {0, a}n is represented by a height-a rectangle starting and ending in the
corresponding first and last a-entry of I (their different positions on the y-axis are only to
draw them in a non-overlapping fashion). A set of segments explains A if for each i the
sum of the heights of the rectangles intersecting a position i on the x-axis is A[i].

Previous work. Agarwal et al. [1] studied a polynomial-time solvable vari-
ant (“tree-ordered”) of VE relevant in data warehousing. Karloff et al. [22]
initiated a study of the two-dimensional (“matrix”) case of VE and provided
NP-completeness results as well as polynomial-time constant-factor approxi-
mations. Parameterized complexity aspects of VE and its two-dimensional
variant seem unstudied so far.

The literature on VPE is richer. For a detailed description of the motiva-
tion from radiation therapy refer to the survey of Ehrgott et al. [12]. Concern-
ing computational complexity, VPE is known to be strongly NP-complete [3]
and APX-hard [4]. A significant amount of work has been done to achieve
polynomial-time approximation algorithms for minimizing the number of
segments. For instance, Bansal et al. [4] provide a 24/13-approximation which
improves on the straightforward factor of two [26] (see also Biedl et al. [5]).

Improving a previous fixed-parameter tractability result for the parameter
“maximum value γ of a vector entry” by Cambazard et al. [9], Biedl et al. [6]
developed a fixed-parameter algorithm solving VPE in 2O(

√
γ) ·γn time with n

being the number of entries in the input vector. Moreover, the parameter “max-
imum difference between two consecutive vector entries” has been exploited
for developing polynomial-time approximation algorithms [5, 26]. Finally, we
remark that most of the previous studies also looked at the two-dimensional
(“matrix”) case, whereas we focus on the one-dimensional (“vector”) case.

3

Table 1: An overview of previous and new results. ILP-FPT refers to the fact that the
result is proven by an integer linear programming formulation and the exploitation of a
result of Lenstra [25].

Parameters Vector Explanation Vector Pos. Explanation

max. value γ

ILP-FPT (Cor. 3.2)

2O(
√
γ) · γn [6]

no poly. kernel (Thm. 3.4)

max. difference δ of
O(nδ · eπ

√
2δ/3) (Thm. 3.3)

two consecutive entries

of peaks p and δ ILP-FPT (Thm. 3.1)

number k of segments
k! · k + n (Thm. 4.1)

(2k − 1)-entry kernel (Thm. 4.1)

κ = 2k − n
κO(κ) + nO(1) (Thm. 4.5(ii)) kO(κ) + nO(1) (Thm. 4.5(i))

3κ-entry kernel (Thm. 4.5(ii)) W[1]-hard (Thm. 4.6)

n− k NP-complete for (n− k) = 1 (Thm. 4.7)

max. segment length ξ
ξ ≥ 3 : NP-complete (Thm. 4.7)

ξ ≤ 2 : O(n2) (Thm. 4.8)

max. number φ of
segments overlapping
at some position

φ = 1: trivial

φ = 2 (and ξ = 3 and n− k = 1): NP-complete (Thm. 4.7)

Parameters under Study. We observe that the combinatorial structure of
the considered problems is extremely rich, opening the way to a more thorough
study of the computational complexity landscape under the perspective of
problem parameterization. We take a closer look at these parameterization
aspects. This helps in better understanding and exploiting problem-specific
properties. To start with, note that previous work [6, 9], motivated by
the application in radiation therapy, studied the parameterization by the
maximum vector entry γ. They showed fixed-parameter tractability for VPE
parameterized by γ, which we complement by showing the nonexistence (under
a standard complexity-theoretic assumption) of a corresponding polynomial-
size problem kernel. Using an integer linear program formulation, we also
show fixed-parameter tractability for VE parameterized by γ. Moreover, for
the perhaps most obvious parameter, the number k of explaining segments,
we show fixed-parameter tractability for both problems.

Before providing a formal and comprehensive list of parameters that are

4

studied in this work, we introduce the following known data reduction rule [4].

Reduction Rule 1.1. If the input vector A has two consecutive equal entries,
then remove one of them.

The correctness of Reduction Rule 1.1 is obvious, as there is always
a minimum-size explanation such that for each segment S it holds that
S[i] = S[i + 1] in case of A[i] = A[i + 1]. For notational convenience,
we use A[0] = A[n + 1] = 0 and thus in case that A[0] = A[1] = 0 or
A[n] = A[n+1] = 0 we also apply Reduction Rule 1.1 to them. We emphasize
that we consider neither A[0] nor A[n+ 1] as part of the input vector A ∈ Nn

0 .
It is easy to observe that Reduction Rule 1.1 can be exhaustively applied
(applying it once more would not change the outcome) in O(n) time to an
input vector and we call the resulting vector reduced. A central consequence
is that in each explanation of a reduced input vector A it holds that for each
position i ∈ {0, . . . , n} there is at least one segment S such that S[i] 6= S[i+1].
This implies that if n + 1 > 2k, then the instance is a trivial no-instance.
Moreover, k ≥ n would allow to use one segment for each input vector entry
and thus the instance would be a trivial yes-instance. Hence, we may assume
throughout the rest of the paper that A[i] 6= A[i+ 1] for all 0 ≤ i ≤ n and
that k < n < 2k. We now have the ingredients to provide a formal definition
of all parameters considered in this work.

Definition 1.1. For an input vector A ∈ Nn
0 define:

• the maximum difference δ between two consecutive vector entries, that
is, δ := max0≤i≤n |A[i]−A[i+ 1]|;
• the number p of peaks where a position i ∈ {1, . . . , n} is a peak if
A[i− 1] < A[i] > A[i+ 1];

• maximum value γ := max1≤i≤nA[i];

• number k of allowed segments in an explanation;

• “distance from triviality”-parameters n− k and κ := 2k − n;

• maximum segment length ξ (number of nonzero entries) in an explana-
tion;

• maximum number φ of segments overlapping at some position, that
is, the maximum number of segments in an explanation which have a
nonzero entry at a particular vector position.

5

Our Contributions. Table 1 summarizes our and previous results with
respect to the above parameters. Note that, since we assume by the above
discussion that k < n < 2k, the parameters n − k and κ are well-defined.
Indeed, both can be interpreted as “distance from triviality” parameteriza-
tions [8, 20, 28]. We prove that, somewhat surprisingly, VE and VPE are
already NP-hard for n− k = 1. Furthermore, we show that VE and VPE are
polynomial-time solvable when κ is a constant, motivating a thorough study
of the parameter κ. Interestingly, while we show that VPE is W[1]-hard for
parameter κ, we prove that VE is fixed-parameter tractable for κ. Finally,
we show NP-completeness for VE and VPE when ξ = 3 and φ = 2.

Organization. In Section 2, we present a number of combinatorial properties
of vector explanation problems which may be of independent interest and
which are used throughout our work. In Section 3, we study the “smoothness
of input vector”-parameters γ, δ, and p. In Section 4, we present results for
further parameters as discussed above, and we conclude in Section 5 with
some challenges for future research.

Parameterized Complexity Preliminaries. A parameterized problem is
fixed-parameter tractable and belongs to the corresponding parameterized com-
plexity class FPT if each instance (I, ρ), consisting of the “classical” problem
instance I and the parameter ρ, can be solved in f(ρ) · |I|O(1) time for some
computable function f solely depending on ρ. A kernelization algorithm is a
polynomial-time algorithm that transforms each instance (I, ρ) of a problem L
into an instance (I ′, ρ′) of L such that (I, ρ) ∈ L⇔ (I ′, ρ′) ∈ L (equivalence)
and ρ′, |I ′| ≤ g(ρ) for some function g [19, 24]. The instance (I ′, ρ′) is called
a (problem) kernel of size g(ρ) and in case of g being a polynomial it is a
polynomial kernel. A kernelization algorithm is often described by a set of
data reduction rules whose exhaustive application leads to a kernel. Formally,
a data reduction rule transforms an instance (I, ρ) of a parameterized prob-
lem L into another instance (I ′, ρ′) of L such that (I, ρ) ∈ L⇔ (I ′, ρ′) ∈ L.
An instance is called reduced with respect to a data reduction rule if one
further application of the rule has no effect on the instance.

If a parameterized problem can be solved in polynomial running time
where the degree of the polynomial depends on ρ (such as |I|f(ρ)), then, for
parameter ρ, the problem is said to lie in the—strictly larger [10]—class XP.
Note that containment in XP ensures polynomial-time solvability for a con-
stant parameter ρ whereas FPT additionally ensures that the degree of the
corresponding polynomial is independent of the parameter ρ.

6

The basic class of (presumable) parameterized intractability is W [1].
A problem that is shown to be W[1]-hard by means of a parameterized
reduction from a W[1]-hard problem is not FPT, unless FPT = W[1]. A
parameterized reduction maps an instance (I, ρ) in f(ρ) · |I|O(1) time to an
equivalent instance (I ′, ρ′) with ρ′ ≤ g(ρ) for some computable functions f
and g. See the monographs [10, 16, 27] for a more detailed introduction.

We use the unit-cost RAM model where arithmetic operations on numbers
count as a single computation step.

2. Further Notation and Combinatorial Properties

We say that a segment I ∈ {0, a}n for some a ∈ Z \ {0} is of weight a
and it starts at position ` and ends at positions r if I[i] = a for all 1 ≤ ` ≤
i < r ≤ n and all other entries are zero. We will briefly write [`, r] for such a
segment and we say that it covers position i whenever ` ≤ i < r.5 Because
this notation suppresses the weight of the segment, we will associate a weight
function ω : I → Z \ {0} with a set I of segments that relates each segment
to its weight. A set I of segments with a corresponding weight function ω
forms an explanation for A ∈ Nn

0 if for each 1 ≤ i ≤ n the total sum of
weights of all segments covering position i is equal to A[i]. We also say that
(I, ω) explains A and refer to |I| as solution size. We call segments with
positive weight positive segments, and otherwise negative segments. Hence, any
explanation for a VPE-instance is allowed to contain only positive segments.

Since we assume that in a preprocessing phase Reduction Rule 1.1 is
exhaustively applied, without loss of generality it holds that A[i] 6= A[i+ 1]
for all 0 ≤ i ≤ n. Hence, the difference between two consecutive entries in A
is never zero. It will turn out that the difference between consecutive entries
in A is an important quantity.

Definition 2.1. For an input vector A ∈ Nn
0 where any two consecutive

entries are different from each other, the tick vector T ∈ Nn+1 is defined to be
T [i] = A[i]−A[i− 1] for all i ∈ {1, . . . , n+ 1}. A position i ∈ {1, . . . , n+ 1}
is an uptick if T [i] > 0 and otherwise it is a downtick. The size of the
corresponding up- or downtick is |T [i]|.

Given a tick vector T , the corresponding input vector A is uniquely
determined as A[i] =

∑i
j=1 T [j]. Thus, we will call an explanation for A also

5Note that [`, r] does not cover position r, but it covers position `.

7

an explanation for its tick vector T . Observe that the parameter maximum
difference δ between consecutive entries is the maximum absolute value in T .

We next define a structure for an explanation and subsequently prove that
there is always a minimum-size explanation of this structure.

Definition 2.2. An explanation is called regular if each positive segment
starts at an uptick and ends at a downtick, and each negative segment starts
at a downtick and ends at an uptick.

By the following theorem we can assume that each input vector admits a
regular explanation. For VPE it corresponds to Bansal et al. [4, Lemma 1].

Theorem 2.1. Let (I, ω) be a size-k explanation of an input vector A. Then,
there is a regular size-k explanation (I ′, ω′) for A. Furthermore, if (I, ω)
contains only positive segments, then (I ′, ω′) also does so.

Proof. Let A be an input vector and let (I, ω) be a non-regular explanation
of A. We say that a segment I ∈ I has a starts wrongly if I is positive and
starts at a downtick or if I is negative and starts at an uptick. We denote
such a starting position as a wrong start. Otherwise, we say the start is
correct. We define wrong and correct ends analogously. Correspondingly, we
call a position a wrong start (wrong end) if there is segment starting (ending)
wrongly at this position.

Let A = (A[n],A[n− 1], . . . ,A[1]) be the vector formed by reversing A
and let I be the set of segments formed by reversing each segment in I.
Clearly, (I, ω) is an explanation for A. Hence, we may assume that in A
there is a segment with a wrong start, as we otherwise consider A. We will
provide a restructuring procedure whose application to I does not decrease
the smallest (leftmost) wrong start, the sum of the absolute weights of the
segments starting at the smallest wrong start of I strictly decreases, and it
does not increase the number of wrong ends. Thus by iteratively applying
this restructuring one can “replace” from left to right all segments that start
wrongly with segments that start correctly. Then the reversal vector A
does not have any wrongly ending segments and thus by applying the same
procedure again to A one removes all wrongly ending segments in A without
introducing any new wrongly starting segments.

We now describe the restructuring procedure. Let I = [`i, ri] ∈ I be a
segment starting at the smallest wrong start `i. Since I is a wrongly starting
segment there is a segment J = [`j, rj] with `j ≤ `i such that either the sign

8

(i)

β

α

(iii)

α + β

−α(ii)

α + β
β

Figure 2.1: Illustration of the three configurations where two segments are messy overlap-
ping. That is, in Configuration (i), one segment with weight α and one with weight β, start
at the same position. In Configuration (ii), the first segment ends at the same position
where the second starts. In Configuration (iii), both segments end at the same position.
Given an explanation where two messy overlapping segments are in one of the three specific
configurations, one can transform them into two new segments with any of the remaining
configurations, obtaining a new explanation. Note that if the two segments in Configura-
tion (i) have opposite weight sign and the same absolute weight, that is, α+ β = 0, or if
the two segments in Configuration (ii) have the same weight, that is, α = 0, then after the
transformation, one would introduce a segment with zero weight which will then be removed.

of the weights of I and J are equal and J ends at `i (Case 1), or J has an
opposite weight sign and starts at `i (Case 2). Clearly, Case 2 occurs only
if explanation I contains negative segments. In Case 1, our restructuring
procedure only introduces segments of the same weight sign as I. (This ensures
that the restructured explanation contains negative segments only if (I, ω)
does so.) In either case, we say that I and J are in a messy overlapping
configuration, that is, either they start at the same position (configuration (i))
or one segment ends where the other starts (configuration ii)). We will
also call the configuration where two segments end at the same position
messy overlapping (configuration (iii)). See Figure 2.1 how to transform the
configurations into each other while preserving an explanation.

Case 1: ω(I) and ω(J) have the same sign, and J ends at `i (correctly).
Thus, segments I and J are in Configuration (ii), implying that ω(J) = α+β
and ω(I) = β in the terminology of Figure 2.1. If α and β have the same
sign which implies that α + β and α have the same sign, then “transform”
I, J into the two segments in Configuration (i). Otherwise, transform I, J
into the two segments in configuration (iii). We remark here that if α = 0,
then the segment I ′ will be ignored. One can verify that the constructed
set of segments is a size-k explanation which has a smaller absolute weight
sum of wrongly starting segments starting at `i than the original one (I, w),
and which does not contain a wrongly starting segment starting at a position
prior to `i. Additionally, observe that we neither introduced new wrong ends

9

nor, if ω(I) and ω(J) both are positive, created negative segments.
Case 2: ω(I) and ω(J) have different signs, and J starts at `i.

Thus, the segments I and J are in configuration (i), implying that, when using
the terminology of Figure 2.1, α and β have different signs. If |β| ≥ |α|, then
we transform I, J into the two segments in Configuration (iii). If α + β = 0,
then we just remove the segment with weight α + β. One can verify that
the constructed set of segments is a size-k explanation that, due to α and β
having different signs, has a smaller absolute weight sum of wrongly starting
segments at position `i than the original explanation (I, ω). Furthermore,
as |β| ≥ |α| and thus the signs of α + β (if it is not zero) and −α are the
same as of β, we neither introduce new wrong ends nor new wrongly starting
segments starting at a position prior to `i. If |α| > |β|, then transform
I, J into configuration (ii). Again, since α and β have different signs, the
thus-constructed set of segments is a size-k explanation that has a smaller
absolute weight sum of wrongly starting segments starting in `i than the
original explanation (I, ω). Further, because |α| > |β|, the two segments with
weights α+ β and β have the same sign as α and β, respectively. Hence, this
transformation does not introduce new wrong ends.

Remark: Theorem 2.1 implies containment of VE in NP as it upper-bounds
the segment weights in an explanation in the numbers occurring in the instance.
For VPE this directly follows from the problem definition.

The following corollary summarizes the consequences of Theorem 2.1. To
state them, we introduce the following terminology.

Definition 2.3. An input vector is single-peaked if it contains only one peak.
A single-peaked instance is an instance with a single-peaked vector.

Corollary 2.2. (i) For any Vector Positive Explanation or Vec-
tor Explanation instance there is a minimum-size explanation such
that there is only one segment that covers the first position, it is positive,
and it ends at a downtick. Symmetrically, there is a minimum-size
explanation such that there is only one segment that covers the last
position and it is positive and starts at an uptick.

(ii) Any single-peaked Vector Explanation instance (A, k) is an equiv-
alent Vector Positive Explanation instance.

Proof. (i): Since position 1 is an uptick and position n + 1 is a downtick,
by Theorem 2.1 it directly follows that in a regular explanation all segments

10

covering the first or last position are positive and thus start in upticks and end
in downticks. Moreover, if there are two positive segments covering the first
position, then they are messy overlapping as they are in Configuration (i) (Fig-
ure 2.1). Hence, transforming them into the two segments in Configuration (ii)
results in an explanation where one segment less covers the first position.
Analogously, two segments covering the last position are in Configuration (iii)
and can be transformed into the two segments in Configuration (ii).

(ii): By Theorem 2.1 if there is any size-k explanation, then there is also
a regular size-k explanation which starts negative segments in downticks and
ends them in upticks. However, in single-peaked instances all upticks precede
the first downtick.

The following theorem states that for VE one can arbitrarily permute the
entries of a tick vector without changing the solution size for the corresponding
input vectors.

Theorem 2.3. Let T ∈ Nn+1 be an arbitrary tick vector and let T ′ ∈ Nn+1

be a tick vector that results from T by arbitrarily permuting the entries in T .
For Vector Explanation it holds that there is a size-k explanation for T
if and only if there is a size-k explanation for T ′.

Proof. We prove Theorem 2.3 for two tick vectors T and T ′ where, for some i,
T ′[i] = T [i+ 1], T ′[i+ 1] = T [i], and T [j] = T ′[j] for all other entries j. It is
clear that one can arbitrarily permute the entries in T by applying these “flips”
to consecutive entries. Let A be the input vector corresponding to T and
let A′ be the input vector corresponding to T ′. It follows that A′[j] = A[j]
for every j 6= i and A′[i] = A[i− 1] +A[i+ 1]−A[i]. For any k, we prove that
(A′, k) is a yes-instance if and only if (A, k) is a yes-instance. However, as
“flipping” T ′[i] and T ′[i+1] in T ′ results in T , the equivalence is symmetric and
it is thus sufficient to prove that if (A, k) is a yes-instance, then so is (A′, k).

Let (I, ω) be an explanation for A. We construct (I ′, ω′) by replacing
some segments in I. The general idea is that if a segment started or ended at
position i, then it is modified such that it starts or ends at i+1 and vice versa.
The only exception are the segments which start at i and end at i + 1, for
which we swap the endpoints and negate the weight. Formally, I ′ is defined

11

as follows:

I ′ = I ′0 ∪′ I ′1 ∪ I ′2 ∪ I ′3 ∪ I ′4 ∪ I ′5 ∪ I ′6,where

I ′0 = {[a, b] ∈ I | a, b < i ∨ a, b > i+ 1},
I ′1 = {[a, b] ∈ I | a < i ∧ b > i+ 1},
I ′2 = {[a, i+ 1] | [a, i] ∈ I},
I ′3 = {[a, i] | [a, i+ 1] ∈ I ∧ a < i},
I ′4 = {[i+ 1, b] | [i, b] ∈ I ∧ b > i+ 1},
I ′5 = {[i, b] | [i+ 1, b] ∈ I},
I ′6 = {[i, i+ 1]} ∩ I.

Let ω′([i, i+ 1]) = −ω([i, i+ 1]) if [i, i+ 1] ∈ I, and for the other segments
of I ′ set the weight ω′ to be equal to the weight of the corresponding segment
in I.

Obviously, |I ′| = |I| and, hence, it remains to show that (I ′, ω′) ex-
plains A′. As a segment of I ′ covers a position j 6= i if and only if the
corresponding segment in I of the same weight covers j, it is clear that
(I ′, w′) explains every position A′[j] = A[j] with j 6= i. To prove that it also
explains position i, let sx =

∑
I∈I′x

ω′(I) for all x ∈ {1, . . . , 6}. Since (I, ω)

explains A and the weight of the segments (except those potentially in I ′6)
are equal, it holds that

A[i− 1] = s1 + s2 + s3,

A[i] = s1 + s3 + s4 − s6, and

A[i+ 1] = s1 + s4 + s5.

The sum of the weights of segments covering A′[i] is s1 + s2 + s5 + s6 and
thus, together with A′[i] = A[i − 1] +A[i + 1] − A[i], the equations above
prove that (I ′, w′) also explains A′[i].

The following corollary summarizes combinatorial properties of VE which
can be directly deduced from Theorem 2.3 as it allows to arbitrarily order
the entries of a tick vector. They are used throughout the paper and may be
of independent interest for future studies.

Corollary 2.4. Let (A, k) be an instance of Vector Explanation. Then,
the following holds.

12

(i) The instance (A, k) can be transformed in O(n) time into an equivalent
single-peaked Vector Explanation-instance (A′, k) such that the
maximum difference between two consecutive entries is the same in A
and A′.

(ii) The instance (A, k) can be transformed in O(n) time into an equivalent
Vector Explanation-instance (A′, k) such that the maximum value
in A′ is less than two times the maximum difference between consecutive
entries in A.

Proof. (i): By Theorem 2.3, permuting the entries of the tick vector of A
such that all upticks precede all downticks, that is, the new input vector is
single-peaked, results in an equivalent instance. Clearly, this can be done in
O(n) time.

(ii): Let δ be the maximum difference between any two consecutive entries
in A, or equivalently, the maximum absolute value in the tick vector T of A.
Start creating a permuted tick vector T ′ of T by assigning to T ′[1] an arbitrary
positive entry from T . Next, whenever T ′[1], . . . , T ′[i−1] are already assigned,
if
∑i−1

j=1 T
′[j] < δ and there is a positive entry in T that is not yet assigned to

one of T ′[1], . . . , T ′[i− 1], then assign T ′[i] to be this entry. In this way, we
ensure that every entry of the input vector corresponding to T ′ is less than
twice of δ. Otherwise set it to one of the remaining negative entries of T that
is not yet assigned. Clearly, a partition of T ’s entries in positive and negative
entries can be computed in O(n) time, and using it one can easily achieve
the above assignment.

3. Parameterization by Input Smoothness

In this section, we examine how the computational complexity of VE
and VPE is influenced by parameters that measure how “smooth” the input
vector A ∈ Nn

0 is. We assume that A is reduced with respect to Reduction
Rule 1.1 and thus all consecutive entries in A have different values. We
consider the following three measurements:

• the maximum difference δ between two consecutive entries in A,

• the number p of peaks, and

• the maximum value γ occurring in A.

Our main results are fixed-parameter algorithms for the combined parame-
ter (p, δ) in case of VPE and for the parameter δ in case of VE. For the

13

parameter maximum value γ, we show that VPE does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

Next, relying on a deep result by Lenstra [25] and providing an integer
linear programming formulation where the number of variables is upper-
bounded in the number of peaks p and the maximum difference δ, we prove
fixed-parameter tractability with respect to (p, δ).

Theorem 3.1. Vector Positive Explanation is fixed-parameter tractable
with respect to the combined parameter number p of peaks and maximum dif-
ference δ.

Proof. We provide an integer linear program (ILP) formulation for VPE where
the number of variables is a function of p and δ. This ILP decides whether
there is a regular size-k explanation (restricting to regular explanations is
sufficient by Theorem 2.1). In a regular explanation the multiset of weights
of segments that start at an uptick sum up to the uptick size. Analogously,
this holds for segments ending at a downtick. Motivated by this fact, we
introduce the following notion: For a positive integer x, we say that a
multiset X = {x1, x2, . . . , xr} of positive integers partitions x if x =

∑r
i=1 xi.

Similarly, we say that X partitions an uptick (downtick) i of size x if X
partitions x. Let P(x) denote the set of all multisets that partition x.

In the ILP formulation for VPE, we describe a solution by “fixing” for
each position i a multiset Xi of positive integers which partitions the uptick
(downtick) at i. The crucial observation for our ILP is that if a set of
consecutive upticks contains more than one uptick of size x, then it is sufficient
to fix how many of these upticks were partitioned in which way. In other words,
one does not need to know the partition for each position; instead one can
distribute freely the partitions of x onto the upticks of size x. This also holds
for consecutive downticks. Since each peak is preceded by consecutive upticks
and succeeded by consecutive downticks, and since we introduce variables in
the ILP formulation to “model” how many upticks (downticks) exist between
two consecutive peaks, the number of variables in the formulation is upper-
bounded by a function of p and δ. We now give the details of the formulation.
Herein, we assume that the peaks are ordered from left to right; we refer to
the i-th peak in this order as peak i.

For an integer x ∈ {1, . . . , δ}, let occ(x, i) denote the number of upticks of
size x that directly precede peak i, that is, the number of upticks succeeding
peak i−1 and preceding peak i. Similarly, let occ(−x, i) denote the number of
downticks of size x that directly succeed i. For two positive integers y and x

14

with y ≤ x and a multiset P ∈ P(x) let mult(y, P) denote how often y
appears in P . We use mult(y, P) to “model” how many segments of weight y
start (end) at some uptick (downtick) that is partitioned by P .

To formulate the ILP, we introduce for each peak i, each x ∈ {1, . . . , δ},
and each P ∈ P(x) two nonnegative variables varx,P,i and var−x,P,i. The
variables respectively correspond to the number of upticks directly preceding
peak i and downticks directly succeeding peak i of size x that are partitioned
by P in a possible explanation of A. To enforce that a particular assignment to
these variables corresponds to a valid explanation, we introduce the following
constraints.

First, for each peak i and each 1 ≤ x ≤ δ we ensure that the number
of directly preceding size-x upticks (succeeding size-x downticks) that are
partitioned by some P ∈ P(x) is equal to the number of directly preceding
size-x upticks (succeeding size-x downticks):

∀i ∈ {1, . . . , p}, ∀x ∈ {−δ, . . . , δ} \ {0} :
∑

P∈P(x)

varx,P,i = occ(x, i). (1)

Second, we ensure that for each peak i and each value y ∈ {1, . . . , δ} the
number of segments of weight y that end directly after peak i is at most
the number of segments of weight y that start at positions (not necessarily
directly) preceding peak i minus the number of segments of weight y that end
at positions succeeding some peak j < i. Informally, this means that we only
“use” the available number of segments of weight y. To enforce this property,
for each peak 1 ≤ i ≤ p and each possible segment weight 1 ≤ y ≤ δ we add:

i∑
j=1

δ∑
x=y

∑
P∈P(x)

(mult(y, P) · varx,P,j︸ ︷︷ ︸
of started weight-y segments

− mult(y, P) · var−x,P,j︸ ︷︷ ︸
of ended weight-y segments

) ≥ 0 (2)

Finally, we ensure that the total number of segments is at most k:

p∑
i=1

δ∑
x=1

∑
P∈P(x)

x∑
y=1

mult(y, P) · varx,P,i ≤ k. (3)

Correctness: The equivalence of the ILP instance and (A, k) can be seen
as follows. Assume that there is a size-at-most-k explanation (I, ω) for (A, k),
where the segments start at upticks and end at downticks. Recall that by
definition of P(x), for any uptick i of size x there is a partition in P(x) that

15

corresponds to the weights of the segments starting in i. For each peak i, for
any value 1 ≤ x ≤ δ and each P ∈ P(x), count how many upticks of size x
that directly precede peak i are explained by segments in I (segments that
start in this uptick) whose weights correspond to P(x) and set varx,P,i to this
value. Symmetrically, do the same for the downticks succeeding peak i and
set var−x,P,i accordingly. It is straightforward to verify that Constraint set (1)
and Constraint set (2) and constraint (3) hold.

Conversely, assume that there is an assignment to the variables such that
Constraint sets (1) and (2) and Constraint (3) are fulfilled. We form an
explanation (I, ω) as follows: For any peak i and any value 1 ≤ x ≤ δ with
occ(x, i) > 0 let Pi,x be the multiset of elements from P(x) that contains
each P ∈ P(x) exactly varx,P,i times. By Constraint set (1), |Pi,x| = occ(x, i).
For an arbitrary ordering of Pi,x and the upticks of size x directly preceding
peak i, add to I for the jth element Pj of Pi,x exactly |Pj| segments with
weight corresponding to Pj and let them start at the jth uptick with size x
that directly precedes peak i. By Constraint (3) we added at most k segments.
It remains to specify the end of the segments. Symmetrically to the upticks,
for each downtick directly succeeding peak i of size x let Pi,x be the multiset of
elements from P(x) containing each P ∈ P(x) exactly var−x,P,i times. For the
jth element Pj of Pi,x and the jth downtick directly succeeding peak i (again
both with respect to any ordering) and for each α ∈ Pj pick any weight-α
segment from I (so far without end) and let it at the jth downtick. Observe
that the existence of this segment is ensured by Constraint set (2). Finally,
it remains to argue that the end of each segment in I is determined. This
follows from the fact that Constraint set (1) and Constraint set (2) together
imply for each 1 ≤ y ≤ δ that

p∑
i=1

δ∑
x=y

∑
P∈P(x)

(mult(y, P) · varx,P,i−mult(y, P) · var−x,P,i) = 0,

and thus the total number of opened weight-y segments is equal to the number
of ended weight-y segments.

Running time: The number of variables in the constructed ILP instance is

p ·
∑

x∈{−δ,...,δ}\{0}

|P(|x|)| = 2p
δ∑

x=1

|P(x)| ≤ 2δp · |P(δ)| ≤ 2δp ·eπ
√

2
3
δ =: f(δ, p),

where the last inequality is due to de Azevedo Pribitkin [2]. Then, due to
a deep result in combinatorial optimization, the feasibility of the ILP can

16

be decided in O(f(δ, p)2.5f(δ,p)+o(f(δ,p)) · |L|) time, where |L| is the size of the
instance [17, 21, 25]. Moreover, as we have O(δp) constraints, we also have

|L| = O(δ2p2 · eπ
√

2
3
δ).

Observe that Theorem 3.1 implies that VE is fixed-parameter tractable
with respect to the maximum difference δ: By Corollary 2.2(ii) & Corol-
lary 2.4(i), in linear time one can transform input instances of VE into
equivalent single-peaked instances of VPE without increasing the maximum
difference δ.

Corollary 3.2. Vector Explanation parameterized by the maximum
difference δ is fixed-parameter tractable.

It remains open whether VPE is fixed-parameter tractable with respect
to δ. Note that the argumentation for VE (Corollary 3.2) cannot be trans-
ferred, since there may be more than one peak in an instance. However,the
following theorem shows that VPE is in XP for the parameter maximum
difference δ.

Theorem 3.3. Vector Positive Explanation is solvable in O(nδ ·
eπ
√

2δ/3) time.

Proof. We describe a dynamic programming algorithm that finds a regular
minimum-size explanation. Every explanation for a size-n vector A can be
interpreted as an extension of an explanation for the same vector without the
last entry, where some segments that originally only covered position n− 1
may be stretched to also cover position n and some new length-one segment
may start at position n.

Our algorithm uses the above relation between explanations for the vec-
tor A[1, . . . , n] and explanations for the vector A[1, . . . , n− 1]. Due to Theo-
rem 2.1, it only considers regular explanations, implying that each segment
starts at an uptick and ends at a downtick. Since all upticks and downticks
have size at most δ, the algorithm furthermore only considers solutions in
which all segments have weight at most δ.

We fill a table T which has entries of type T (i, d1, . . . , dj, . . . , dδ) where
0 ≤ i ≤ n and 0 ≤ dj ≤ k with 1 ≤ j ≤ δ. An entry T (i, d1, . . . , dj, . . . , dδ)
contains the minimum number of segments explaining vector A[1, . . . , i] such
that dj segments of weight j cover position i. If no such explanation exists,

17

then the entry is set to ∞. By definition of the table entries, there is a
solution for VPE if and only if

min
(d1,...,dδ)∈{0,...,k}δ

T (n, d1, . . . , dδ) ≤ k.

In the following, we show how to fill the table. As initialization, set
T (0, d1, . . . , dδ)←∞ if there is some dj > 0 and set T (0, 0, . . . , 0)← 0.

For increasing i ≤ n, compute the table for each (d1, . . . , dδ) ∈ {0, . . . , k}δ
as follows. If A[i] =

∑δ
j=1 dj · j and A[i] > A[i− 1], then set

T (i, d1, . . . , dδ)← min
d′1≤d1,...,d′δ≤dδ

(
T (i− 1, d′1, . . . , d

′
δ) +

δ∑
j=1

(dj − d′j)

)
. (4)

If A[i] =
∑δ

j=1 dj · j and A[i] < A[i− 1], then set

T (i, d1, . . . , dδ)← min
d′1≥d1,...,d′δ≥dδ

T (i− 1, d′1, . . . , d
′
δ). (5)

Otherwise, set

T (i, d1, . . . , dδ)←∞. (6)

The correctness of the initialization follows directly from the table defini-
tion. For the remaining computation we can thus assume that there is some i
such that all entries T (i′, d1, . . . , dδ) with (d1, . . . , dδ) ∈ {0, . . . , k}δ and i′ < i
were computed correctly.

As discussed above, we interpret an explanation of A[1, . . . , i] as extension
of an explanation for A[1, . . . , i−1]. There are exactly two groups of segments
covering position i: those also covering position i − 1 and those starting
at position i. Let the set of segments covering position i be described
by (d1, . . . , dδ) such that A[i] =

∑δ
j=1 dj · j and A[i] > A[i − 1]. Due to

Theorem 2.1, no segment ends at position i, but since A[i] > A[i − 1] at
least one new segment has to start at position i. By setting (d′1, . . . , d

′
δ)

such that d′j ≤ dj, 1 ≤ j ≤ δ, one considers all possible extensions for
explanations of A[i − 1] such that no segment ends at position i. Clearly,∑δ

j=1(dj − d′j) further segments have to start at position i to explain A[i].
Hence, Assignment (4) is correct.

Now, describe the set of segments covering position i by (d1, . . . , dδ) such
that A[i] =

∑δ
j=1 dj · j and A[i] < A[i− 1]. By Theorem 2.1 no new segment

18

starts at position i. The algorithm considers all possible explanations where
some segments end at position i and the other segments survive to explain A[i].
Thus, Assignment (5) is correct.

For a given (d1, . . . , dδ) ∈ {0, . . . , k}δ, to find an explanation for A[1, . . . , i]
such that A[i] 6=

∑δ
j=1 dj · j is impossible because such an explanation does

not explain position i. Thus Assignment (6) is correct.
The size of the table is upper-bounded by nδ since we only have to consider

table entries T [i, d1, . . . , dδ] with A[i] =
∑δ

j=1(dj · j). The trivial upper bound

of O(nδ) for computing each table entry already leads to a running time
of O(n2δ). However, the number of entries that have to be considered is
smaller. For Assignment (4), one only has to consider those entries of Table T
that do not have value ∞. Hence,

∑δ
j=1 |dj − d′j| ≤ |A[i] − A[i − 1]| ≤

δ. This implies that for each table entry the number of previous entries
that have to be considered in the minimization is upper-bounded by the
number of different multisets that sum up to δ and thus is upper-bounded

by O(eπ
√

2
3
δ) [2]. A similar argument applies for Assignment (5). The overall

running time follows.

VPE is known to be fixed-parameter tractable when parameterized by
the maximum value γ [6]. We complement this result by showing a lower
bound on the kernel size, and thus demonstrate limitations on the power of
polynomial-time preprocessing.

Theorem 3.4. Unless NP ⊆ coNP/poly, there is no polynomial kernel for
Vector Positive Explanation parameterized by the maximum value γ.

Proof. We provide an AND-cross-composition [7, 11] from the 3-Partition
problem [18, SP15]. This is a polynomial-time algorithm that gets as input a
set of 3-Partition-instances and computes an instance (A, k) of VPE such
that the maximum value γ occurring in (A, k) is polynomially bounded in
the maximum of sizes of the input 3-Partition instances and (A, k) is a
yes-instance if and only if all given 3-Partition instances are yes-instances.

3-Partition
Input: A multiset S = {a1, . . . , a3m} of positive integers and an
integer bound B with m ·B =

∑3m
i=1 ai and B/4 < ai < B/2 for every

i ∈ {1, . . . , 3m}.
Question: Is there a partition of S into m subsets P1, . . . , Pm with
|Pj| = 3 and

∑
ai∈Pj ai = B for every j ∈ {1, . . . ,m}?

19

3-Partition is NP-complete even if B (and thus all ai’s) is bounded by a
polynomial in m [18]. We show that this variant of 3-Partition AND-cross-
composes to VPE parameterized by the maximum value γ. Then, results
of Bodlaender et al. [7] and Drucker [11] imply that VPE does not have a
polynomial kernel with respect to parameter γ, unless NP ⊆ coNP/poly.

First, let (S,B) be a single instance of 3-Partition. We show that it
reduces to an instance (A′, 3m) of VPE. This reduction is similar to a previous
NP-hardness reduction for VPE due to Bansal et al. [4]. We define A′ as
length-(4m− 1) vector:(

a1, a1 + a2, . . . ,

j∑
i=1

ai, . . . ,
3m∑
i=1

ai = mB, (m− 1)B, (m− 2)B, . . . , B

)
.

If a partition P1, . . . , Pm of S forms a solution, then the set of segments
{[i, 3m+ j] | ai ∈ Pj} each with weight w([i, 3m+ j]) = ai is an explanation
for the vector A′. Conversely, let (I, ω) be a regular explanation for (A′, 3m).
Since every segment starts at an uptick and ends at a downtick, I contains 3m
segments and the segment starting at position i has weight ai. Since B/4 <
ai < B/2 for each integer ai ∈ S, exactly three segments end at a downtick
whose size is exactly B. Thus, grouping the segments according to the
position they end at, we get the desired partition of S, solving the instance
of 3-Partition.

Now let (S1, B1), . . . , (St, Bt) be instances of 3-Partition such that Sr =
{ar1, . . . , ar3mr} and Br ≤ mr

c for every r ∈ {1, . . . , t} and some constant c.
We build an instance (A, k) of VPE by first using the above reduction for
each (Sr, Br) separately to produce a vector A′r, and then concatenating the
vectors A′r one after another, leaving a single position of value 0 in between.
The total length of the vector A is 4(

∑t
r=1mr)− 1 and we set k = 3

∑t
r=1mr.

Due to the argumentation for the single instance case, on the one hand,
if each of the instances is a yes-instance, then there is an explanation us-
ing 3mr segments per instance (Sr, Br), that is 3

∑t
r=1mr segments in total.

Conversely, we need at least 3mr segments to explain A′r and there is an
explanation with 3mr segments if and only if (Sr, Br) is a yes-instance. Since
all segments are positive and the subvectors A′r are separated by an entry
with value zero, no segment can span over two subvectors. In other words,
no segment can be used to explain more than one of the A′r’s. Therefore,
an explanation for A with 3

∑t
r=1mr segments implies that (Sr, Br) is a

yes-instance for every r ∈ {1, . . . , t}.

20

Finally, observe that the maximum value γ in the vector A is equal
to maxtr=1mrBr ≤ maxtr=1mr

c+1 and, thus, it is polynomially bounded
in maxtr=1 |Sr|. Hence, 3-Partition AND-cross-composes to VPE parame-
terized by the maximum value γ, and there is no polynomial kernel for this
problem unless NP ⊆ coNP/poly.

4. Parameterizations of the Size and the Structure of Solutions

We now provide fixed-parameter tractability and (parameterized) hardness
results for further natural parameters. Specifically, we consider the number k
of segments in the solution, so-called “above-guarantee” and “below-guarantee”
parameterizations (which are smaller than k), the maximum segment length ξ,
and the maximum number φ of segments covering a position.

For the parameter k we develop a search tree algorithm for VPE and VE
where the depth and the branching degree of the search tree are bounded
by the solution size k. This is achieved by combining Reduction Rule 1.1,
Corollary 2.2, and Corollary 2.4. The first part of Theorem 4.1 follows directly
from exhaustively applying Reduction Rule 1.1.

Theorem 4.1. Any instance of Vector Positive Explanation or Vec-
tor Explanation can be reduced in O(n) time to an equivalent one with at
most (2k − 1) entries. Furthermore, Vector Positive Explanation and
Vector Explanation can be solved in O(k! · k + n) time.

Proof. We start with the algorithm for VPE which works as follows. After
exhaustive application of Reduction Rule 1.1 branch over all possible segments
covering the last entry. Due to Corollary 2.2(i), it suffices to search for exactly
one segment starting at one of the upticks and ending at the last entry. For
each branch assign the value A[n] as weight to the segment and solve the
instance consisting of the remaining entries recursively. To this end, decrease
each of the entries covered by the segment by A[n], and decrease k by one. If
some entry becomes negative or if k < 0, then discard the branch.

The exhaustive application of Reduction Rule 1.1 can be performed in O(n)
time, afterwards n ≤ 2k − 1 (this also implies the first part of the theorem).
The search tree produced by the branching algorithm has depth at most k. In
the i-th level of the search tree, one branches over at most k + 1− i upticks.
The steps performed in each search tree node take O(k) time since n ≤ 2k−1.
The overall running time thus is O(k! · k + n).

21

For VE we first apply Corollary 2.4(i) to transform our instance into a
single-peaked instance (this is necessary to avoid negative entries). The rest
works analogously to VPE.

The first part of Theorem 4.1 implies that for a reduced instance every
explanation needs at least bn/2c+1 segments. Hence, it is interesting to study
parameters that measure how far we have to exceed this lower bound for the
solution size: such above-guarantee parameters can be significantly smaller
than k. For this reason, we study a parameter that measures k− (bn/2c+ 1).
For ease of presentation, we define this parameter as κ := 2k − n. The
concepts of “clean” and “messy” positions, which are defined as follows, are
crucial for the design of our algorithms.

Definition 4.1. Let (A, k) be an instance of Vector Explanation or
Vector Positive Explanation and let I be an explanation for A. A
segment I = [i, j] ∈ I is clean if all other segments start and end at positions
different from i and j. A position i is clean with respect to I if it is the start
or endpoint of a clean segment in I. A position or segment that is not clean
is called messy.

Remark: Note that a segment is messy if and only if it is in one of the messy
overlapping configurations shown in Figure 2.1.

Messy positions and segments have the following useful relation to the
parameter κ: if κ is small, then there are only few messy positions and
segments.

Lemma 4.2. Let (A, k) be a yes-instance of Vector Positive Expla-
nation that is reduced with respect to Reduction Rule 1.1. Then, every
explanation of (A, k) of size at most k has at most 2κ messy segments and at
most 3κ messy positions.

Proof. Let x denote the number of messy segments in some arbitrary expla-
nation for (A, k). Since (A, k) is reduced with respect to Reduction Rule 1.1,
every position of A is the starting point or endpoint of some segment. In
particular, every messy segment shares at least one endpoint with another
messy segment. Hence, there are at most 3x/2 messy positions in the explana-
tion. Furthermore, since there are at most k − x clean segments there are at
most 2(k−x) clean positions. Thus, n ≤ 2(k−x)+3x/2 which implies x ≤ 2κ,
and the number of messy positions is at most (3x/2) ≤ 3κ.

22

H

h `

I

i j

H ′
h j

I ′
i `

H

h `

I

i j

H ′
h j

I ′
i `

Figure 4.1: Illustration of the proof of Lemma 4.3. The two equal-weight segments H = [h, `]
and I = [i, j] with i < ` < j are replaced by I ′ = [i, `] and H ′ = [h, j] without changing
the weight. The case h < i is shown on the left, and the case h > i is shown on the right.

In order to exploit a small value of κ algorithmically, the main challenge is
to identify clean segments as their number is not bounded in the parameter κ.
For VPE, we can identify clean segments if the set of clean positions is known:
In this case, one may greedily add for any clean uptick a clean segment that
starts at this uptick and ends at the next downtick of the same size. The
following lemma gives a formal proof of this claim.

Lemma 4.3. Let (A, k) be a Vector Positive Explanation instance and
let I be an explanation for it. Furthermore, let [i, j] ∈ I be a clean segment
and let ` be a clean position such that i < ` < j and ` and j are downticks
of the same size. Then, there is an explanation I ′ for (A, k) containing the
clean segment [i, `] such that |I ′| = |I|.

Proof. Since ` is clean, there is a clean segment H = [h, `] whose weight equals
the downtick size of ` and hence the weight of I = [i, j]. Consider a segment
set I ′ obtained from I by replacing I with I ′ = [i, `] and H with H ′ = [h, j].
The weights remain unchanged. In particular, the weights of I ′ and H ′ are
the same as the weights of I and H. It is straightforward to verify, by a case
distinction whether h > i or not, that I ′ with the adjusted weight function is
still an explanation. See Figure 4.1 for an illustration of the two cases.

For single-peaked instances of Vector Positive Explanation, the
situation is even more favorable: we can directly identify clean positions and
the segments starting and ending at these clean positions.

Lemma 4.4. Let (A, k) be a single-peaked instance of Vector Positive
Explanation. If vector A has an uptick i and a downtick j of the same
sizes, then there is a minimum-size explanation for (A, k) containing the
segment [i, j] with weight equal to the size of the uptick i.

23

Proof. Let (A, k) be a single-peaked VPE instance and let T be the tick
vector of A. By Corollary 2.2(ii) (A, k) is an equivalent VE instance and
thus by Theorem 2.3 we may assume that j = i+ 1. Furthermore, let (I, ω)
be a regular minimum-size explanation of (A, k). Let Is be all segments in I
starting in i and let Ie be all segments in I ending in i+ 1 and, additionally,
do not start in i. Hence Is ∩ Ie = ∅.

Let T ′ be a copy of T and “subtract” the segments in I \(Is∪Ie): For each
segment [`, r] ∈ I \ (Is ∪ Ie) of weight a decrease T ′[`] by a and increase T ′[r]
by a. Additionally, subtract [i, i + 1] with weight T [i], meaning that we
set T ′[i] and T ′[i + 1] from ±T [i] to zero. Observe that if there is a size-
(|Is| + |Ie| − 1) explanation for the input vector corresponding to T ′, then
combining this explanation with the segments from I \ (Is ∪ Ie) and the
segment [i, i+ 1] of weight T [i] gives a minimum-size explanation for (A, k).
Thus, it remains to show that there is a size-(|Is| + |Ie| − 1) explanation
for the input vector corresponding to T ′. Since we subtracted all segments
in I \(Is∪Ie), all positions in T ′ that have nonzero entries are the start or end
of a segment in Is ∪ Ie. Moreover, since we additionally subtracted [i, i+ 1]
with weight T [i], there are at most |Ie| upticks and at most |Is| downticks
in T ′. Hence, the corresponding input vector of T ′ has, after an application of
Reduction Rule 1.1, at most |Ie|+ |Is| − 1 entries. Therefore, it has a trivial
explanation of size at most |Ie|+ |Is| − 1.

We now have all ingredients to provide our two tractability results with
respect to the parameter κ. More precisely, we show membership in XP for
VPE and fixed-parameter tractability for VE and single-peaked VPE. The
main approach of the algorithms is as follows: For VPE, we guess all messy
positions, then we greedily identify the clean segments (using Lemma 4.3),
and then we solve the remaining instance (which now has size bounded in κ).
For single-peaked VPE and VE, we can directly reduce the instance to one
that has only messy positions (using Lemma 4.4).

Theorem 4.5. (i) Vector Positive Explanation can be solved in
O((2k)3κ · (2κ)! · κ · k + k log k + n) time.

(ii) Any single-peaked instance of Vector Positive Explanation and
any instance of Vector Explanation can be reduced in O(n +
k log k) time to an equivalent instance with at most 3κ entries. More-
over, Vector Explanation and single-peaked Vector Positive
Explanation are solvable in O((2κ)! · κ+ k log k + n) time.

24

Proof of Theorem 4.5(i). We prove that VPE can be solved in O((2k)3κ ·
(2κ)! · κ · k + k log k + n) time. Let (A, k) be an instance of VPE and let T
be the tick vector corresponding to A. We may assume via a preprocessing
step running in O(n) time that Reduction Rule 1.1 has been exhaustively
applied and thus the number of positions is at most 2k.

The algorithm works as follows. Let U (D) be the set of all upticks
(downticks) in T . Sort the values in U and D in ascending order according
to their absolute sizes and use their position in T as a tie-breaker (smaller
positions come first). This can be done in O(k log k) time. Next, branch
into the at most (2k)3κ possibilities for choosing all of the at most 3κ messy
positions (Lemma 4.2). If the guess was correct, then for each clean uptick
there is a clean downtick of equal size.

By Lemma 4.3 there is a minimum-size explanation that contains a segment
starting in any clean uptick position i and ending at the first clean downtick
position j > i with the same size. We next find and remove these segments:
Initialize k̃ by the value of k and also T ′ by T . Iterate over all clean upticks
in the order of U and find for each of them the first clean downtick in D
which starts to its right. Delete the up- and downtick from T ′ and decrease
parameter k̃ by one. Clearly, by using two pointers, one for U and one for D,
iterating over U and finding the downtick in D can be done in O(k) time
as by the order of U and D one has to move the pointers only to the right.
Moreover, if at some point of the iteration we do not find any “matching”
downtick or at the end there remain some clean downticks in D, then we
abort this branch as the guess of clean positions was incorrect. Let A′ be
the input vector corresponding to the final T ′. Note that since all positions
in A′ are messy, by Lemma 4.2 it follows that |A′| ≤ 2κ and k̃ ≤ 3κ. Hence,
Theorem 4.1 solves the remaining instance (A′, k̃) in O((2κ)! · κ) time. The
overall running time is O((2k)3κ · (2κ)! · κ · k + k log k + n).

Proof of Theorem 4.5(ii): Due to Corollary 2.4(i), we can assume that
the given instance of VE is single-peaked. Also, because of Corollary 2.2(ii),
we only need to investigate whether the given single-peaked instance is a
yes-instance for VPE. We first apply Reduction Rule 1.1 exhaustively. After
that, if there is an uptick and a downtick of the same size, then by Lemma 4.4
there is an optimal solution containing a segment starting at the uptick and
ending at the downtick of weight equal to the size of the uptick. Hence,
by applying a similar procedure as in the proof of Theorem 4.5(i) (sort up-
and downticks by their size) one finds and eliminates all these segments in
O(k log k) time. Note that by removing such a segment from the input vector

25

the length of the vector is reduced by two, while k is reduced by one, so κ
stays the same.

In the remaining instance all positions are messy and thus by Lemma 4.2
there are at most 3κ messy positions and 2κ messy segments explaining
them. Thus, one ends up with a problem kernel having at most 3κ positions.
By Theorem 4.1, this kernel can be solved in O((2κ)! · 2κ+ 3κ) time.

Theorem 4.5(ii) implies that single-peaked VPE and VE are fixed-
parameter tractable with respect to κ. For VPE, we obtained a polynomial-
time algorithm for every fixed value of κ but not a fixed-parameter algorithm
for κ. As we show in the following, such an algorithm is unlikely.

Theorem 4.6. Vector Positive Explanation is W[1]-hard with respect
to κ.

Proof. We present a parameterized reduction from the Subset Sum problem.

Subset Sum [18, SP13]
Input: A multiset X = {x1, . . . , x`} of positive integers and two
positive integers y and Φ.
Question: Is there a size-Φ subset X ′ of X such that

∑
xi∈X′ xi = y?

Subset Sum is W[1]-hard with respect to the solution size Φ [13]. In the
following, we use t :=

∑
1≤i≤` xi to denote the total sum of the integers in X.

Note that by modifying the xi’s we can assume that for every size-(Φ − 1)
subset X ′ the sum

∑
xi∈X′ xi is less than y: adding t to each input integer,

and Φ · t to y results in an instance for which this holds. Next, we describe
the parameterized reduction.

The input vector A has length 2`+ 1. For i ≤ `, we set A[i] :=
∑i

j=1 xj.
Let A[`+ 1] = t−y. For i ≥ `+ 2, we set A[i] = A[2`+ 2− i]. The number of
allowed segments is set to `+Φ. Consequently, κ = 2(`+Φ)−(2`+1) = 2Φ−1.

We complete the proof by showing that for this construction the following
equivalence holds.

(X, y,Φ) is a yes-instance of Subset Sum ⇔ (A, ` + Φ) is a
yes-instance of VPE.

“⇒”: Let X ′ be a size-Φ subset of X whose values sum up to y. Then,
consider the following set I of segments.

For each xi /∈ X ′, add the segment Ji = [i, 2` + 3 − i]. There are
` − Φ such segments. For each xi ∈ X ′, add two segments Ii = [i, ` + 1]

26

and I ′i = [` + 2, 2` + 3 − i]. For each of these two types of segments there
are Φ of them. Hence, |I| = ` + Φ. For each 1 ≤ i ≤ ` set the weights of
the segments Ji, Ii and I ′i to xi. Now, I explains A: First, for each i ≤ `,
A[i] =

∑
j≤i xj is explained by {Jj | j ≤ i∧ xj /∈ X ′} ∪ {Ij | j ≤ i∧ xj ∈ X ′}.

Second, A[`+ 1] = t− y is explained by exactly the segments Jj with xj /∈ X ′.
Finally, for i > ` + 1, A[i] = A[2` + 2 − i] =

∑
j≤2`+2−i xj is explained by

{Jj | j ≤ 2`+ 2− i ∧ xj /∈ X ′} ∪ {I ′j | j ≤ 2`+ 2− i ∧ xj ∈ X ′}.
“⇐”: Let I be a set of `+ Φ segments that explain A. By Theorem 2.1

we can assume that I is regular. First, note that for each position i ≤ `,
there is at least one segment that starts at i. Also, each of these segments
has a weight of at most the maximum value in X. Since for any X ′ with
|X ′| < Φ it holds that

∑
xi∈X′ xi < y and the size of downtick `+ 1 is y, at

least Φ segments end at `+ 1. Similarly, for each i ≥ `+ 3 there is at least
one segment that ends at position i, and each of these segments has a weight
of at most xj for some xj ∈ X. Further, since the size of uptick `+ 2 is y, at
least Φ segments start at `+ 2. This implies that there are exactly ` segments
starting in the first ` positions and exactly Φ segments ending at position `+1.
Therefore, for each i ≤ ` there is exactly one segment starting at i which has
weight xi. Since Φ of these segments end at position `+ 1, they correspond
to a size-Φ set X ′ ⊆ X. Finally, since A[`] = t and A[` + 1] = t − y the
sum

∑
xi∈X′ xi of the integers in this set is exactly y.

Parameter κ used in Theorems 4.5 and 4.6 measures to what extent
the solution exceeds the lower bound bn/2c + 1. Another bound on the
solution size is n: If k = n, then any instance of VPE or VE is a trivial yes-
instance. Hence, it is interesting to consider the parameter n−k. Furthermore,
it is natural to consider explanations with restricted segment length ξ or
the maximum number φ of segments overlapping at some position. The
following theorem shows that VPE and VE are already NP-complete even if
k = n− 1, ξ ≥ 3, and φ = 2. To this end, we reduce from the NP-complete
Partition problem [18, SP12]. In terms of parameterized complexity this
implies that, unless P=NP, VPE is not fixed-parameter tractable with respect
to the “maximum segment length ξ”, the “maximum number φ of segments
overlapping at some position”, and the “below guarantee parameter” n− k.

Theorem 4.7. Vector Positive Explanation and Vector Explana-
tion are weakly NP-complete even if k = n− 1 and every yes-instance has an
explanation of at most k segments where each position is covered by at most
two segments and each segment has length at most three.

27

Proof. We reduce from the weakly NP-complete Partition problem.

Partition [18, SP12]
Input: A multiset of positive integers S = {a1, . . . , at}.
Question: Is there a subset S ′ ⊆ S such that

∑
ai∈S′ ai =∑

ai∈S\S′ ai?

Given an instance S = {a1, . . . , at} of Partition, we create an input
instance (A, k), where A is a vector of length 3t + 1 and k = 3t. More
specifically, AT is the vector

1
2
2 + (t+ 1) · a1
3 + (t+ 1) · a1
4 + (t+ 1) · a1
4 + (t+ 1) · (a1 + a2)

...

2j − 1 + (t+ 1) ·
∑j−1

i=1 ai
2j + (t+ 1) ·

∑j−1
i=1 ai

2j + (t+ 1) ·
∑j

i=1 ai
...

2t− 1 + (t+ 1) ·
∑t−1

i=1 ai
2t + (t+ 1) ·

∑t−1
i=1 ai

2t + (t+ 1) ·
∑t

i=1 ai
t + 1

2
(t+ 1) ·

∑t
i=1 ai

Obviously, the reduction runs in polynomial time. It remains to show that

S = {a1, . . . , at} is a yes-instance of Partition ⇔ (A, k = 3t) is
a yes-instance of VPE and VE.

“⇒”: Let S ′ ⊆ S be a solution for the Partition instance, meaning
that

∑
ai∈S′ ai =

∑
ai∈S\S′ ai. Further, let S ′j := S ′ ∩ {a1, . . . , aj}, Sj :=

{a1, . . . , aj} \ S ′, and S ′0 = S0 := ∅. We construct the set I of segments
consisting of six subsets and their weights as follows (we use the notation
[`, r; a] for a weight-a segment that starts at `, ends at r and does not
include r):

28

I1 = {[3j − 2, 3j + 1; j + (t+ 1) ·
∑

ai∈S′j−1

ai] | aj /∈ S ′},

I2 = {[3j − 1, 3j; j + (t+ 1) ·
∑

ai∈Sj−1

ai] | aj /∈ S ′},

I3 = {[3j, 3j + 2; j + (t+ 1) ·
∑
ai∈Sj

ai] | aj /∈ S ′},

I4 = {[3j − 1, 3j + 2; j + (t+ 1) ·
∑

ai∈Sj−1

ai] | aj ∈ S ′},

I5 = {[3j − 2, 3j; j + (t+ 1) ·
∑

ai∈S′j−1

ai] | aj ∈ S ′},

I6 = {[3j, 3j + 1; j + (t+ 1) ·
∑
ai∈S′j

ai] | aj ∈ S ′}.

As there are exactly three segments for each aj, there are 3t segments in
total. Note that if aj /∈ S ′, then S ′j−1 = S ′j . Otherwise aj /∈ S ′ and Sj−1 = Sj .

Now, we show that I with weight function ω explains vector A. Let j ∈
{1, . . . , t}. At position 3j − 2 = 3(j − 1) + 1 we have A[3j − 2] = 2j −
1 + (t+ 1)

∑j−1
i=1 ai. If aj /∈ S ′, then segment [3j − 2, 3j + 1] from I1 covers

3j − 2 and if aj ∈ S ′, then segment [3j − 2, 3j] from I5 covers 3j − 2. Both
segments have weight j + (t+ 1)

∑
ai∈S′j−1

ai. Additionally, if aj−1 /∈ S ′, then

segment [3(j − 1), 3(j − 1) + 2] from I3 also covers 3j − 2 and if aj−1 ∈ S ′,
then segment [3(j − 1)− 1, 3(j − 1) + 2] from I4 also covers 3j − 2. In both
cases the weight of the segment is (j − 1) + (t+ 1)

∑
ai∈Sj−1

ai. In the former

case this holds by definition. In the latter case, since aj−1 ∈ S ′, it holds that
aj−1 /∈ S ′ and, thus, S ′j−2 = S ′j−1. Summarizing, in each case the weights of
the two segments covering position 3j − 2 sum up toj + (t+ 1) ·

∑
ai∈S′j−1

ai

+

(j − 1) + (t+ 1) ·
∑

ai∈Sj−1

ai

= 2j − 1 + (t+ 1) ·

j−1∑
i=1

ai

=A[3j − 2].

29

In the same way, at position 3j−1, we have A[3j−2] = 2j+(t+1)
∑j−1

i=1 ai.
If aj /∈ S ′, then only segments [3j − 2, 3j + 1] from I1 and [3j − 1, 3j] from I2
cover and explain this position, sincej + (t+ 1) ·

∑
ai∈S′j−1

ai

+

j + (t+ 1) ·
∑

ai∈Sj−1

ai

= 2j + (t+ 1) ·

j−1∑
i=1

ai

=A[3j − 1].

Otherwise, only segments [3j − 1, 3j + 2] from I4 and [3j − 2, 3j] from I5
cover and explain this position, sincej + (t+ 1) ·

∑
ai∈Sj−1

ai

+

j + (t+ 1) ·
∑

ai∈S′j−1

ai

= 2j + (t+ 1) ·

j−1∑
i=1

ai

=A[3j − 1].

Also, at position 3j, we have A[3j] = 2j +
∑j

i=1 ai. If aj /∈ S ′, then only
segments [3j − 2, 3j + 1] from I1 and [3j, 3j + 2] from I3 cover and explain
this position since the sum of their weights equalsj + (t+ 1) ·

∑
ai∈S′j

ai

+

j + (t+ 1) ·
∑
ai∈Sj

ai

= 2j + (t+ 1) ·

j∑
i=1

ai

=A[3j].

This also holds for the case that aj ∈ S ′. Finally, we have only one segment

30

covering the position 3t+ 1 with weight

t+ (t+ 1)
∑
ai∈St

ai = t+ (t+ 1) ·
∑

ai∈S\S′
ai

= t+
1

2
(t+ 1) ·

t∑
i=1

ai

= A[3t+ 1].

“⇐”: Let I with weights ω be a regular explanation for vector A with
at most k segments. As all upticks precede all downticks, all segments in I
are positive. More precisely, as there are exactly k = 3t upticks, exactly one
positive segment starts at every uptick and ends either at position 3t+ 1 or
3t+ 2.

We denote the segment of I starting at position 3i by Ii. Obviously,
ω(Ii) = (t+ 1) · ai. Furthermore, there are 2t segments of weight one. Now
set S ′ := {ai | Ii ends at position 3t + 2}. We show that S ′ is a solution of
the Partition instance S: Let x ∈ {0, . . . , 2t} be the number of segments of
weight 1 that cover position 3t+1. We have x+(t+1)

∑
ai∈S′ ai = A[3t+1] =

t+ 1
2
(t+ 1) ·

∑t
i=1 ai. As |t− x| ≤ t, we have

∑
ai∈S′ ai = 1

2

∑t
i=1 ai. Hence,

S ′ is a solution for the Partition instance S.
As we can see from the reduction, every yes-instance of Partition is

reduced to a yes-instance that can be explained by segments with ξ = 3
and φ = 2 and every no-instance is reduced to an instance that cannot be
explained by segments of any size. The statement of Theorem 4.7 follows.

Next, we show that, in contrast to the NP-completeness for ξ ≥ 3 (Theo-
rem 4.7), VPE and VE are polynomial-time solvable for ξ ≤ 2.

Theorem 4.8. Vector Explanation and Vector Positive Explana-
tion can be solved in O(n2) time for maximum segment length ξ = 2.

Proof. We devise a dynamic programming algorithm for VPE. Afterwards,
we show how to extend our algorithm to VE.

Let (A, k) be an input instance, whereA is a vector of length n. Since ξ = 2
we may assume that the last position is only covered by either one length-two
segment or one length-one segment, but not both: otherwise, there are two
length-two segments covering the last position which can be transformed into
a solution with two length-one segments. Due to this, if we have an optimal

31

solution for a vector of length x, then we can find an optimal solution for a
vector of length x+ 1 which contains either an additional length-one segment
or a length-two segment covering the last position.

Based on this idea, we use dynamic programming with a table D indexed
by 1, . . . , n: For each j ≤ n, we store in D(j) the minimum number of
segments needed to explain the subvector A[1, . . . , j]. Let D(0) = 0 for
simplicity. For j = 1, we set D(1) = 1 which is obviously correct. Now
assume that for an index j ≤ n, D(i) was already computed for each i < j
and we now compute D(j). We begin with i := j and aji := A[j]. We set

aji−1 := A[i− 1]− aji and i := i− 1

as long as
aji > 0 and i > 1. (*)

The idea behind this computation is that we can assume that each chain
of q overlapping length-two segments fully explains all positions covered
by segments from the chain. In particular, this includes the last covered
position j and the first position j − q and the latter implies that ajj−q = 0.
If this is not the case, then the explanation uses at least q + 1 segments
to explain q + 1 positions which could also be achieved with q + 1 length-
one segments. If Condition (*) does not hold, then there are two cases: If
aji = 0, then let D(j) ← min{D(j − 1) + 1, D(i − 1) + j − i}; otherwise
let D(j) := D(j − 1) + 1. Finally, once the table is completed, we answer yes
if D(n) ≤ k, and no otherwise.

As the algorithm obviously works in O(n2) time, it remains to show
that the algorithm fills the table correctly. The proof is by induction on j.
Obviously D(1) is computed correctly. For j ≤ n, assume D(i) is computed
correctly for all i < j. We show that D(j) is also computed correctly.

We first show that there is an explanation for A[1, . . . , j] with D(j) seg-
ments. We have two cases: If D(j) = D(j−1)+1, then we use the explanation
for A[1, . . . , j−1] with D(j−1) segments and add a single length-one segment
with weight A[j] to explain A[j]. Otherwise, there is an i ∈ {1, j − 1} such
that D(j) = D(i − 1) + j − i. Let ajj := A[j], and ajx := A[x] − ajx+1 for

i ≤ x ≤ j − 1. Note that aji = 0 because of Condition (*). Then, we use
the explanation for A[1, . . . , i− 1] with D(i− 1) segments and add a set I
of j − i length-two segments such that for each z ∈ {i, . . . j − 1}, we have a
segment Iz = [z, z + 2] with weight ajz+1. Clearly, positions from 1 to i− 1

are already explained. Since aji equals zero, we have A[i] = aji+1 which is also

32

the weight of Ii. Thus, I explains A[i]. For z ∈ {i+ 1, . . . , j − 1}, we have
A[z] = ajz + ajz+1 and A[j] = ajj. Hence, the subvector A[i+ 1, . . . , j] is also
explained by I.

Next, we show that D(j) is minimal. Suppose that there is an explanation
(I, ω) of A[1, . . . , j] with r segments. We will show that r ≥ D(j). Without
loss of generality, we can assume that every length-one segment exclusively
covers a position, since otherwise we can either merge two length-one segments
or split one length-two segment into two length-one segments and merge one
of them with the original length-one segment. We also assume that entry A[j]
is positive as otherwise D(j) = D(j − 1) ≤ r. Let i be the last position such
that all segments in I covering i start at i. If i = j, then I \ {[j, j + 1]} is
an explanation for A[1, . . . , j − 1], and r ≥ D(j − 1) + 1 ≥ D(j) as D(j − 1)
is optimal. If i < j, then I contains a chain of j − i overlapping length-two
segments Ii+1 = [i, i+2], . . . , Ij = [j−1, j+1] starting at i and ending at j+1.
Since these are the only segments explaining positions i, . . . , j, their weights
are ω(Ij) = A[j] and ω(Iz) = A[z] − ω(Iz+1), j − 1 ≥ z ≥ i + 1. Position i
is only explained by Ii+1, so we have A[i] = ω(Ii+1) = A[i + 1] − ω(Ii+2).
Hence, it follows from the definition of the dynamic programming algorithm
that ajz = ω(Iz), i + 1 ≤ z ≤ j. This means that the algorithm stops at
position i with aji = ω(Ii+1)−aji+1 = 0. Thus, D(j) = min{D(j−1)+1, D(i−
1) + j − i} ≤ D(i− 1) + j − i. Furthermore, I \ {Iz | z ∈ {i+ 1, . . . j}} is an
explanation for A[1, . . . , i− 1]. Hence, r ≥ D(i− 1) + j − i ≥ D(j) because
D(i− 1) is optimal.

To solve VE, it is sufficient to change Condition (*) in the loop of the
above algorithm to “. . . as long as aji 6= 0 and i > 1.” The rest of the proof
remains the same.

5. Conclusion and Open Questions

We explored the parameterized complexity of Vector Explanation and
Vector Positive Explanation with respect to various parameterizations.
By considering the tick vector concept, we gained further combinatorial
insights into Vector Explanation and Vector Positive Explanation.
In particular, we showed that for Vector Explanation the tick vector
can be arbitrarily permuted. Several of our fixed-parameter algorithms for
Vector Explanation and Vector Positive Explanation are based
on this observation. Furthermore, we found that, surprisingly, Vector

33

Positive Explanation is presumably harder than Vector Explanation,
for example concerning the distance from triviality parameter κ = 2k − n.

It would be interesting to significantly improve on several of the running
time upper bounds of our (theoretical) tractability results (cf. Table 1 for
an overview). In particular, obtaining tight lower and upper running time
bounds for the parameter number k of segments seems to be a challenging and
interesting research task. Moreover, we also left open a number of concrete
problems. We conclude with three of them:

• Is Vector Positive Explanation fixed-parameter tractable with
respect to the maximum difference δ?

• Does Vector Explanation parameterized by δ or parameterized
by γ admit a polynomial kernel?

• Is Vector (Positive) Explanation fixed-parameter tractable with
respect to the parameter “number of different values in the input vec-
tor A”? This parameter would be a natural version of “parameterization
by the number of numbers” [14].

Last but not least, we would like to point to the challenging task to
transfer our study to the case of a 2-dimensional (“matrix”) input [22].

Acknowledgment. We are very grateful for the very detailed and construc-
tive feedback provided by the WADS 2013 reviewers.

References

[1] D. Agarwal, D. Barman, D. Gunopulos, N. Young, F. Korn, and D. Sri-
vastava. Efficient and effective explanation of change in hierarchical
summaries. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’07), pages
6–15. ACM, 2007. Cited on pp. 2 and 3.

[2] W. de Azevedo Pribitkin. Simple upper bounds for partition functions.
The Ramanujan Journal, 18:113–119, 2009. Cited on pp. 16 and 19.

[3] D. Baatar, H. W. Hamacher, M. Ehrgott, and G. J. Woeginger. Decom-
position of integer matrices and multileaf collimator sequencing. Discrete
Applied Mathematics, 152(1–3):6–34, 2005. Cited on p. 3.

34

[4] N. Bansal, D. Z. Chen, D. Coppersmith, X. S. Hu, S. Luan, E. Misiolek,
B. Schieber, and C. Wang. Shape rectangularization problems in intensity-
modulated radiation therapy. Algorithmica, 60(2):421–450, 2011. Cited
on pp. 2, 3, 5, 8, and 20.

[5] T. C. Biedl, S. Durocher, H. H. Hoos, S. Luan, J. Saia, and M. Young.
A note on improving the performance of approximation algorithms for
radiation therapy. Information Processing Letters, 111(7):326–333, 2011.
Cited on pp. 2 and 3.

[6] T. C. Biedl, S. Durocher, C. Engelbeen, S. Fiorini, and M. Young. Faster
optimal algorithms for segment minimization with small maximal value.
Discrete Applied Mathematics, 161(3):317–329, 2013. Cited on pp. 2, 3,
4, and 19.

[7] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower
bounds by Cross-Composition. SIAM Journal on Discrete Mathematics,
28(1):277–305, 2014. Cited on pp. 19 and 20.

[8] L. Cai. Parameterized complexity of Vertex Colouring. Discrete Applied
Mathematics, 127(1):415–429, 2003. Cited on p. 6.

[9] H. Cambazard, E. O’Mahony, and B. O’Sullivan. A shortest path-based
approach to the multileaf collimator sequencing problem. Discrete Applied
Mathematics, 160(1–2):81–99, 2012. Cited on pp. 2, 3, and 4.

[10] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013. Cited on pp. 6
and 7.

[11] A. Drucker. New limits to classical and quantum instance compression.
In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’12), pages 609–618. IEEE, 2012. Cited on
pp. 19 and 20.

[12] M. Ehrgott, C. Güler, H. Hamacher, and L. Shao. Mathematical opti-
mization in intensity modulated radiation therapy. Annals of Operations
Research, 175(1):309–365, 2010. Cited on pp. 2 and 3.

[13] M. R. Fellows and N. Koblitz. Fixed-parameter complexity and cryptog-
raphy. In Applied Algebra, Algebraic Algorithms and Error-Correcting

35

Codes, 10th International Symposium (AAECC ’93), volume 673 of
LNCS, pages 121–131. Springer, 1993. Cited on p. 26.

[14] M. R. Fellows, S. Gaspers, and F. A. Rosamond. Parameterizing by the
number of numbers. Theory of Computing Systems, 50(4):675–693, 2012.
Cited on p. 34.

[15] M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully
multivariate algorithmics: Parameter ecology and the deconstruction of
computational complexity. European Journal of Combinatorics, 34(3):
541–566, 2013. Cited on p. 2.

[16] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006. Cited on p. 7.

[17] A. Frank and É. Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49–65,
1987. Cited on p. 17.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979. Cited on pp. 19, 20,
26, 27, and 28.

[19] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007. Cited on p. 6.

[20] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on param-
eterizing problems: Distance from triviality. In Proceedings of the 1st
International Workshop on Parameterized and Exact Computation (IW-
PEC ’04), volume 3162 of LNCS, pages 162–173. Springer, 2004. Cited
on p. 6.

[21] R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12(3):415–440, 1987. Cited on
p. 17.

[22] H. Karloff, F. Korn, K. Makarychev, and Y. Rabani. On parsimonious
explanations for 2-d tree- and linearly-ordered data. In Proceedings of
the 28th International Symposium on Theoretical Aspects of Computer
Science (STACS ’11), volume 9 of LIPIcs, pages 332–343. IBFI Dagstuhl,
Germany, 2011. Cited on pp. 2, 3, and 34.

36

[23] C. Komusiewicz and R. Niedermeier. New races in parameterized al-
gorithmics. In Proceedings of the 37th International Symposium on
Mathematical Foundations of Computer Science (MFCS ’12), volume
7464 of LNCS, pages 19–30. Springer, 2012. Cited on p. 2.

[24] S. Kratsch. Recent developments in kernelization: A survey. Bulletin of
the EATCS, 113:58–97, 2014. Cited on p. 6.

[25] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983. Cited on pp. 4,
14, and 17.

[26] S. Luan, J. Saia, and M. Young. Approximation algorithms for minimizing
segments in radiation therapy. Information Processing Letters, 101(6):
239–244, 2007. Cited on pp. 2 and 3.

[27] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006. Cited on p. 7.

[28] R. Niedermeier. Reflections on multivariate algorithmics and problem
parameterization. In Proceedings of the 27th International Symposium
on Theoretical Aspects of Computer Science (STACS ’10), volume 5 of
LIPIcs, pages 17–32. IBFI Dagstuhl, Germany, 2010. Cited on pp. 2
and 6.

37

	Introduction
	Further Notation and Combinatorial Properties
	Parameterization by Input Smoothness
	Parameterizations of the Size and the Structure of Solutions
	Conclusion and Open Questions

