
IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

Parameterized Algorithmics for Finding
Connected Motifs in Biological Networks

Nadja Betzler, René van Bevern, Michael R. Fellows, Christian Komusiewicz, and Rolf Niedermeier

F

Abstract—We study the NP-hard LIST-COLORED GRAPH MOTIF problem
which, given an undirected list-colored graph G = (V,E) and a
multiset M of colors, asks for maximum-cardinality sets S ⊆ V

and M ′ ⊆ M such that G[S] is connected and contains exactly (with
respect to multiplicity) the colors in M ′. LIST-COLORED GRAPH MOTIF

has applications in the analysis of biological networks. We study LIST-
COLORED GRAPH MOTIF with respect to three different parameterizations.
For the parameters motif size |M | and solution size |S| we present fixed-
parameter algorithms, whereas for the parameter |V |−|M | we show W[1]-
hardness for general instances and achieve fixed-parameter tractability
for a special case of LIST-COLORED GRAPH MOTIF. We implemented the
fixed-parameter algorithms for parameters |M | and |S|, developed further
speed-up heuristics for these algorithms, and applied them in the context
of querying protein-interaction networks, demonstrating their usefulness
for realistic instances. Furthermore, we show that extending the request
for motif connectedness to stronger demands such as biconnectedness or
bridge-connectedness leads to W[1]-hard problems when the parameter
is the motif size |M |.

Index Terms—parameterized complexity, color-coding, list-colored
graphs, pattern matching in graphs, protein-interaction networks

1 INTRODUCTION

W ITH the advent of network biology [1, 29] and
complex network analysis in general, the study of

pattern matching problems in graphs has become more
and more important. In this context, the term “graph
motif” plays a central role. Roughly speaking, there are
two views of graph (or network) motifs. The older is
the topological view primarily concerned with subgraph
isomorphism problems. For instance, the term “network
motif” has been used to represent patterns of interconnec-
tions that occur in a network at frequencies much higher
than those found in random networks [30, 32]. In contrast,

N. Betzler, R. van Bevern, C. Komusiewicz, and R. Niedermeier are with
Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz
2, D-07743 Jena, Germany. E-mail: {nadja.betzler, rene.bevern, c.komus,
rolf.niedermeier}@uni-jena.de.
M.R. Fellows is with the School of Engineering and Information Technology,
Charles Darwin University, Darwin, Northern Territory 0909, Australia.
E-Mail: michael.fellows@newcastle.edu.au.
Some of the results of this work appeared under the title “Parameterized
Algorithms and Hardness Results for Some Graph Motif Problems” in
the proceedings of the 19th Annual Symposium on Combinatorial Pattern
Matching (CPM ’08), 2008 [4]. While the conference version mainly deals
with motif problems on vertex-colored graphs, here the focus is on the more
general list-colored graphs. We now also study two further parameterizations
and perform experimental studies.

the second and more recent view on graph motifs takes a
more “functional approach” [9, 18, 24]. Here, topology is
of lesser importance, while the functionalities of network
nodes (expressed by colors) form the governing principle.

In this work, we concentrate on the second, functional
view of graph motifs. Typically, functional categories
that are associated to network vertices are represented
as “colors”. Hence, we consider list-colored graphs which
means that each vertex v is associated with a set of
colors col(v). A formal definition of the main problem
studied in this work, following Lacroix et al. [24], is:

LIST-COLORED GRAPH MOTIF:
Input: A list-colored undirected graph G = (V,E)
and a multiset of colors M .
Task: Find maximum-cardinality sets S ⊆ V
and M ′ ⊆ M such that the induced sub-
graph G[S] is connected and there is a one-to-
one mapping f from S to M ′ such that ∀v ∈ S :
f(v) ∈ col(v).

Fellows et al. [18] studied a restricted variant of this
problem, GRAPH MOTIF, which is the special case of LIST-
COLORED GRAPH MOTIF where each vertex is associated
with a single color, that is, | col(v)| = 1 for all v ∈ V . These
types of graphs will be called vertex-colored (instead of list-
colored) in this work. An even further restricted variant
of GRAPH MOTIF demands that the motif is a set instead
of a multiset. We call motifs that are sets colorful.

Next, we briefly describe two applications for LIST-
COLORED GRAPH MOTIF in the area of biological network
analysis.

Reaction Motifs in Metabolic Networks

The LIST-COLORED GRAPH MOTIF problem was origi-
nally defined in the context of finding motifs in metabolic
networks [24]. Here, the motif is a multiset of reaction
types and the given network is a reaction graph: vertices
correspond to reactions, and two vertices are connected if
the corresponding reactions can occur successively, that
is, the products of one reaction are the inputs of the other
reaction or vice versa. The task is to find a subgraph of the
reaction graph that is connected and has exactly the reac-
tion types specified by the motif. Since a specific reaction
may be classified as an instance of more than one reaction



type, the vertices of the reaction graph may be colored
by more than one color resulting in a list-colored graph.

Topology-free Querying of Protein-interaction Networks
Querying of networks is the task of identifying a subnet-
work of a large network that is similar (both topologically
and functionally) to a given small network (the query).
A prominent special case of this problem is the task of
finding signalling paths in protein-interaction networks
that are similar to a given path [22, 23, 27]. Extensions
of this approach can handle queries that are trees or
tree-like [6, 15]. Bruckner et al. [9] studied the querying
problem when the topology of the query is unknown.
The query is a set of proteins that is known to form
a protein complex in some species A and the task is
to identify similar complexes in a different species B.
This can be done by searching in the protein-interaction
network of species B for a subnetwork that is similar to
the query. More specifically, every protein of the query
is identified by one color and a protein in the interaction
network receives the colors of all query proteins with
similar sequence (that is, the BLAST score exceeds a
a predefined threshold). The main point is that, since
the topology of the query is unknown, no assumptions
about the topology of the subnetwork that corresponds
to this protein complex are made, with one exception: the
subnetwork should be connected or almost connected.
Furthermore, of all subnetworks meeting these criteria,
the one with maximum-weight spanning tree should be
reported: The edge weights in the network correspond to
interaction probabilities. Accordingly, a spanning tree
with large weight corresponds to a high interaction
probability among the proteins of the putative complex.
This leads to a weighted version of LIST-COLORED
GRAPH MOTIF with the further restriction that the motif
is a set because each protein of the query is identified
with a unique color.

Known Results
We first summarize the current state of the art concerning
the algorithmic complexity of GRAPH MOTIF, that is, the
special case where G is vertex-colored. GRAPH MOTIF is
computationally hard. Formulated as a decision problem,
it is NP-complete even if the input graph is a tree [24].
This can be strengthened to an NP-completeness result
even when the input multiset M actually is a set and
the input graph is a tree with maximum vertex degree
three [18]. Moreover, NP-completeness has also been
shown for the case that M consists of only two colors
and the input graph is restricted to be bipartite with
maximum degree four [18]. Given the apparent hardness
of GRAPH MOTIF, Fellows et al. [18] initiated a parame-
terized complexity analysis showing that GRAPH MOTIF,
parameterized by the motif size |M | is fixed-parameter
tractable. The algorithm with the asymptotically fastest
running time for GRAPH MOTIF is due to Guillemot
and Sikora [20], who use algebraic techniques to solve
both the problem of finding an occurrence of a motif,

and the problem of counting the number of occurrences.
Dondi et al. [13] extended these investigations for GRAPH
MOTIF by studying the case where the subgraph induced
by the chosen motif vertices does not need to be con-
nected. Furthermore, GRAPH MOTIF is hard in terms
of approximability and fixed-parameter tractability with
respect to the parameter “solution size” |S| [14]. The algo-
rithm with the best asymptotic running time for GRAPH
MOTIF and parameter |S| runs in O(4|S| · |S|2 ·m) time
on m-edge graphs [20].

Concerning LIST-COLORED GRAPH MOTIF, there are
fewer results, although the hardness results for GRAPH
MOTIF clearly hold as well. Bruckner et al. [9] presented
a fixed-parameter algorithm for LIST-COLORED GRAPH
MOTIF with a worst-case running time of O(|M |!·3|M | ·m).
They also showed that on many real-world instances the
actual running time is much smaller than this worst-
case estimate, and successfully applied their algorithm
to protein-interaction networks. Furthermore, a web-
server for solving LIST-COLORED GRAPH MOTIF (relying
on fixed-parameter algorithms and an integer linear
programming formulation) is available [8]. Blin et al. [6]
presented a further algorithm for LIST-COLORED GRAPH
MOTIF, based on a 0/1-integer programming formulation.

Our Results

This work presents fixed-parameter algorithms as well
as parameterized hardness results for several variants
of LIST-COLORED GRAPH MOTIF. In Section 3, we
consider different parameterizations for LIST-COLORED
GRAPH MOTIF. First, considering the parameter |M |, we
present an algorithm that solves LIST-COLORED GRAPH
MOTIF in O(10.88|M | ·m) time on m-edge graphs. Second,
we consider the parameter solution size |S|. Adapting
an approach of Dondi et al. [14] for GRAPH MOTIF,
we present a randomized algorithm for LIST-COLORED
GRAPH MOTIF that runs in O(29.6|S| · |S| ·m) time. Third,
we consider the dual parameter n − |M |, that is, the
minimum number of vertices that are not in a solution.
We show that in general LIST-COLORED GRAPH MOTIF
becomes W[1]-hard1 for this parameterization, and that
for the special case where M is colorful and G is vertex-
colored, LIST-COLORED GRAPH MOTIF can be solved
in O(2n−|M | ·m) time.

We implemented our two fixed-parameter algorithms
for LIST-COLORED GRAPH MOTIF parameterizing in the
one case by |M | and in the other case by |S|. We de-
veloped and implemented a number of further heuristic
speed-ups of both algorithms, and we report here on their
performance for real-world instances.2 As one example
of such a heuristic speed-up, we identify cases in which
applying a different color-coding procedure helps in
decreasing the running time. Furthermore, we identify

1. This excludes hope for fixed-parameter tractability with respect to
this parameter [16, 19, 25].

2. Source code available under
http://theinf1.informatik.uni-jena.de/graph-motif/

2

http://theinf1.informatik.uni-jena.de/graph-motif/


cases in which the application of a simple (randomized)
brute force algorithm yields a speed-up.

We applied our algorithms in the context of querying
of protein-interaction networks, showing that both the
algorithm with parameter |M | and the algorithm with
parameter |S| can solve almost all of the considered
input instances within 10 minutes, and that in most
cases the algorithm with parameter |M | outperforms the
algorithm with parameter |S|. Furthermore, we examined
the quality of the solutions by testing them for enrichment
of functional annotation terms: for each solution, which
is a set of proteins, we retrieved functional annotation
terms from public databases [3, 28, 31] and applied the
GO::TermFinder tool [7] to find annotation terms that
have a statistically significant overrepresentation com-
pared to random protein sets. We found that about 78%
have a significant enrichment in at least one functional
annotation and that 100% of the solutions of size at least
four show this enrichment. Furthermore, the percentage
of solutions that have this functional enrichment is
roughly the same for solutions with |S|/|M | ≥ 40%, and
is lower when |S|/|M | < 40%.

Finally, we further chart the range of (theoretical)
tractability of LIST-COLORED GRAPH MOTIF by explor-
ing what happens if we demand “more” than simple
connectivity. We show that if one requires that the found
motif shall not only be connected but biconnected or
bridge-connected (see Section 2 for formal definitions),
then, in both cases, the corresponding LIST-COLORED
GRAPH MOTIF problem becomes W[1]-complete with
respect to the parameter motif size. Since these are the
two simplest ways of demanding more than connectivity,
this shows that the request for connected motifs is
already a topology demand close to the border between
tractability and intractability. These W[1]-hardness results
also generalize to higher connectivity demands such
as p-connectivity and p-edge connectivity (see Section 2
for formal definitions). Even further, W[1]-hardness also
holds for uncolored graphs, where one searches for a
subgraph with the specific connectivity demand, and the
parameter is the number of subgraph vertices.

Somewhat aside, we study a further variant of GRAPH
MOTIF, the MIN-CC GRAPH MOTIF problem, which,
given a vertex-colored graph G and a multiset of colors M ,
asks for a set of vertices of G that has the colors of M and
induces a graph with at most d connected components.
We answer an open question of Dondi et al. [13] by
showing that MIN-CC GRAPH MOTIF is W[1]-hard with
respect to d, even if the input graph is restricted to be
only a path.

2 PRELIMINARIES

We only consider simple undirected graphs G = (V,E),
where n := |V | and m := |E|. For a vertex set S ⊆ V
we denote by G[S] := (S, {{u, v} | {u, v} ∈ E ∧ u, v ∈ S})
the subgraph of G induced by S. A list-coloring of an
undirected graph G = (V,E) is a function col : V → 2C ,

where C is a set of colors, that is, each vertex of G is
associated with a set of colors col(v). In case | col(v)| = 1
for all v ∈ V , we say that G is vertex-colored and denote
by col(v) the (uniquely determined) color of v. Unless
stated otherwise, a motif is a multi-set of colors. In case
the motif is a set, we call the motif colorful. An occurrence
of a motif M in G is a set of vertices S ⊆ V such
that |S| = |M |, G[S] is connected, and there are x vertices
of color c in S if and only if M contains c exactly x times.
A vertex u in an undirected graph is called a cut-vertex
if there are two vertices v, w with v 6= u and w 6= u such
that every path from v to w contains u. If an undirected
graph G is connected and has no cut-vertex, then G is
biconnected. In general, if a graph G = (V,E) cannot be
disconnected by deletion of any set of p vertices, it is
called p-connected. A bridge in an undirected graph is
an edge {u, v} such that every path between u and v
contains {u, v}. If G is connected and has no bridge,
then G is bridge-connected. A graph is called p-edge-
connected if it cannot be disconnected by deletion of any
set of p edges.

We briefly introduce the relevant notions of parameter-
ized complexity theory [16, 19, 25]. Parameterized algo-
rithmics aims at a multivariate (at least two-dimensional)
complexity analysis of problems (also see the recent
surveys [17, 26]). The hope lies in confining the seemingly
inevitable combinatorial explosion of NP-hard problems
to a parameter k. A given parameterized problem (I, k) is
fixed-parameter tractable (FPT) with respect to the parame-
ter k if it can be solved within running time f(k)·poly(|I|)
for some computable function f . Not all parameterized
problems are fixed-parameter tractable. Downey and
Fellows [16] developed a theory of parameterized in-
tractability by means of devising a completeness program
with complexity classes. The first level of (presumable)
parameterized intractability is captured by the complexity
class W[1]. There is good reason to believe that problems
that are hard for W[1] are not fixed-parameter tractable.
To show this stronger form of hardness, a reduction
concept is needed. A parameterized reduction reduces a
problem instance (I, k) in f(k) · poly(|I|) time to an
instance (I ′, k′) such that (I, k) is a yes-instance if and
only if (I ′, k′) is a yes-instance and k′ only depends on
k but not on |I|. If for a given parameterized problem L
there is a parameterized problem L′ such that L′ is W[1]-
hard and there is a parameterized reduction from L′ to L,
then L is also W[1]-hard. A problem is W[1]-complete if
it is W[1]-hard and also contained in W[1]. See Chen and
Meng [11] for a recent survey on parameterized hardness.

The color-coding technique yields randomized fixed-
parameter algorithms; it was introduced for special
cases of the SUBGRAPH ISOMORPHISM problem by
Alon et al. [2]. The main idea is to randomly color the
vertices of the graph, and then to solve the corresponding
problem under the assumption that the subgraph that
is searched for obtains a colorful coloring, that is, all
of the vertices of the subgraph have pairwise different
colors. This assumption often leads to an easier problem.

3



The whole procedure of coloring and then solving the
subsequent problem on the colored graph is repeated
until the subgraph that is searched for has obtained a
colorful coloring at least once with high probability. We
say that a randomized algorithm solves a problem with
error probability ε if the probability that it fails to return
the correct answer is at most ε. Note that the randomized
algorithms in this work do not make false positive errors,
that is, if the algorithm returns that a graph has an
occurrence of a motif, then such an occurrence does
indeed exist.

3 SEARCHING FOR CONNECTED MOTIFS

In this section, we provide and analyze fixed-parameter
algorithms for LIST-COLORED GRAPH MOTIF and the
parameters motif size |M | and solution size |S|. Note
that, since |S| ≤ |M |, fixed-parameter tractability with
respect to |S| implies fixed-parameter tractability with
respect to |M |. On the contrary, the inverse is not true
since |S| can be much smaller than |M |. We provide fixed-
parameter algorithms for both parameters because for the
parameter |M | a better worst-case running time bound
can be achieved. Furthermore, we study the parameter-
ized complexity of LIST-COLORED GRAPH MOTIF for the
dual parameter n− |M |.

3.1 Parameter Motif Size
We present a color-coding algorithm that partially resem-
bles the algorithm for GRAPH MOTIF by Fellows et al.
[18]. The idea is to randomly assign to each vertex one out
of |M | labels. Then, in case all vertices of an occurrence
have received pairwise different labels (we call this event
a good labelling), we can use dynamic programming to
find this occurrence.

Theorem 1: LIST-COLORED GRAPH MOTIF can be
solved with error probability ε in O(| ln(ε)| · 10.88|M | ·m)
time.

Proof: Without loss of generality, we can assume
that M is colorful. Otherwise, we can transform M and G
as follows: For each color c that occurs occ(c) times, we
add occ(c) new colors to M and completely remove c
from G. Furthermore, for every vertex v in G with c ∈
col(v), we remove c from col(v) and add the occ(c) new
colors to col(v). Let M ′ and G′ be the thus modified motif
and graph, respectively. We now solve the problem of
finding an occurrence of M ′ in G′. Each such occurrence
clearly corresponds to an occurrence of M in G.

Let L = {l1, l2, . . . , l|M |} denote a set of |M | distinct
labels. We randomly assign the labels of L to the vertices
of the graph and solve the problem of finding an
occurrence of the motif M under the assumption that all
vertices of the occurrence have received a different label.
The problem of finding a colorful occurrence of M that
has the labels of L is solved by dynamic programming.
First, we extend our notion of occurrence. Let F ⊆ (L∪M)
be a set that contains labels as well as colors. An occurrence
of F is defined as a set of vertices S such that the vertices

of S have exactly the labels of F ∩ L, and there is an
injection f : S → F ∩M such that f(v) ∈ col(v) for each
vertex v. The idea is that with the set F we store both
the set of labels L ∩ F that we have “used” so far, and
the colors that the vertices with the labels in L ∩ F are
assigned. This way, we can find for each combination
of sets M ′ ⊆ M and L′ ⊆ L, |L′| = |M ′|, an occurrence
of M ′ that has the labels of L′.

We use two dynamic programming tables D and T . The
table D has entries for each vertex, and sets F ⊆ L ∪M .
The aim of the dynamic programming procedure is to
compute the values of D such that Dv(F ) = 0 if there
exists an occurrence of F that contains v, and Dv(F ) > 0,
otherwise. The table T has entries for each vertex v, each
color c ∈ col(v) and sets F ⊆ L ∪ M . The aim is to
compute the values of T such that Tv,c(F ) = 0 if there is
an occurrence of F ] {label(v), c} in which v receives the
color c, and Tv,c(F ) > 0, otherwise. Clearly, for each v, we
have to create Tv,c(F ), only for c with c ∈ col(v) and for F
such that c 6∈ F and v 6∈ F .

We initialize the table T with Tv,c(∅) = 0. In the
recursion, we fill in the values for increasing sizes of F
for both T and D. First, we use table T to calculate
values of D:

Dv(F ) = min
c∈col(v)

{Tv,c(F \ {label(v), c}), 1}.

The correctness of this recurrence follows from the
definition of the table entries. Then, we calculate the
value for Tv,c(F ) branching into two cases. The first
case is that there is a neighbor u of v such that there is
an occurrence of F that contains u. The second case is
that F can be partitioned into two sets F ′ and F \ F ′
such that there is an occurrence of F ′ ∪ {label(v), c} and
of (F \ F ′)∪ {label(v), c} such that in both occurrences v
is contained and has color c. The “score” for these
occurrences can be found in the table T . The recurrence
reads as follows:

Tv,c(F ) = min
u∈N(v),
F ′⊂F

{
Du(F ),

Tv,c(F
′) + Tv,c(F \ F ′)

}
.

If there is a v ∈ V such that Dv(L ∪ M) = 0, then
there is an occurrence of L ∪ M in G. A maximum-
cardinality occurrence can be found by finding a vertex v
and a maximum-cardinality set F such that Dv(F ) = 0.
The vertex set that corresponds to the occurrence can be
computed by doing a simple traceback.

For the running time consider the following.
Clearly, |L ∪ M | = 2|M |. The recurrence for table D
and the first part of the recurrence for table T can be
computed in O(22|M | · |M | · m) time overall. For the
second part of the recurrence of table T , Björklund et
al. [5] showed that recurrences of this type can be solved
in 2x · poly(x) time, when the base set over which the
table is defined has size x. Here, this base set is L ∪M
and it has size 2 · |M |. This results in a running time
of 22·|M | · poly(2|M |) = 4|M | · poly(|M |) for the dynamic
programming procedure for each table Tv,c, and thus to a

4



running time of 4|M | ·poly(|M |) ·n for all such tables. For
the random labelling, each vertex of V is labelled with
one of |M | labels under uniform distribution. Then, the
probability of a good labelling is |M |!/|M ||M | > e−|M |.
Therefore, the number of trials needed to obtain a good
labelling with probability 1 − ε is O(| ln(ε)| · e|M |). The
total running time thus amounts to O(| ln(ε)| · e|M | · 4|M | ·
poly(|M |) ·m) = O(| ln(ε)| · 10.88|M | ·m).

3.2 Parameter Solution Size

In this section, we present an algorithm for the parameter
solution size |S|, applying an idea of Dondi et al. [14]
to our algorithm from Section 3.1. The approach can be
roughly described as follows. Let S ⊆ V be a solution
of LIST-COLORED GRAPH MOTIF, and let M ′ ⊆ M be
a submotif such that there is an injection f from S
to M ′ with f(v) ∈ col(v) for each v ∈ S. Clearly, to
distinguish the vertices of S using color-coding, one
only needs to use |S| many labels. However, we do
not know in advance what colors the color set M ′

comprises. Hence, the idea is to use a further color-
coding step this time mapping the colors of M to the
colors of a newly created set M|S| of size |S| in order to
obtain an equivalent instance that has a motif of size |S|.
The problem of finding an occurrence of M|S| is fixed-
parameter tractable with respect to the parameter |S| since
we can apply our algorithm from Section 3.1. This extends
the fixed-parameter tractability result of Dondi et al. [14]
for GRAPH MOTIF with respect to the parameter |S|
to LIST-COLORED GRAPH MOTIF. In the following, we
present the details of the algorithm and bound its running
time.

Theorem 2: LIST-COLORED GRAPH MOTIF can be
solved in O(| ln(ε)| · 29.6|S| · |S| ·m) time.

Proof: The algorithm proceeds as follows. Starting
with k = 1, it finds an occurrence of size k if such an
occurrence exists. The value k will be incremented by
one as long as a solution has been found. If for some
value of k the algorithm fails to find a solution, then
with high probability no size-k solution exists and the
algorithm reports the solution of size k − 1 that was
found previously. We now describe in detail how the
algorithm works for a fixed value of k. First, create a
new set of k colors Mk := {c1, . . . , ck}. Then, construct
a mapping φ : M → Mk by mapping each color c ∈ M
uniformly at random to a color in Mk. Create a new
graph G′ from G as follows. For each vertex v and
each c ∈ col(v), remove c from col(v) and add φ(c)
to col(v). We now use the algorithm from Section 3.1
to find an occurrence of Mk in G′. If no occurrence
was found, then repeat the procedure above without
changing k until either an occurrence was found, or
we can, with sufficiently low error probability, conclude
that G contains no occurrence of a size-k subset of M .

First, we show that if there is a size-k set M ′ ⊆ M
such that there is an occurrence S of M ′ in G, then
with probability at least e−k we create an instance that

has an occurrence of Mk in G′: Since each color of M ′

is mapped uniformly at random to one of the colors
of Mk, the probability that all colors of M ′ are mapped
to pairwise different colors of Mk is at least k!/kk > e−k.
In this case, S is an occurrence of Mk in G′.

Second, we show that if the algorithm finds an occur-
rence S of Mk in G′, then there is also a size-k set M ′ ⊆M
such that S is an occurrence of M ′ in G. Let S be an
occurrence of Mk in G′, and let f be an injection from S
to Mk (which must exist since S is an occurrence of Mk).
Since f is an injection, f(v) 6= f(u) for each pair of
vertices u, v ∈ S, u 6= v. Hence, by choosing for each
vertex v of S an arbitrary color c such that φ(c) = f(v),
we obtain a set M ′ of k pairwise different colors such
that S is an occurrence of M ′ in G.

We now bound the running time of the algorithm for
some fixed k. Suppose there is a size-k set M ′ ⊆ M
such that there is an occurrence S of M ′ in G. The
probability, that each color of M ′ was mapped to a
different color in Mk is at least e−k. The problem
of finding an occurrence of Mk in G′ can be solved
with constant error probability in O(10.88k · m) time
by using the algorithm from Section 3.1. Hence, the
probability that this algorithm finds an occurrence of Mk

in G′ (and consequently an occurrence of some size-
k subset M ′ ⊆ M in G) is at least O(e−k). Repeating
the procedure of coloring M and then applying the
algorithm from Section 3.1 O(ek) times, a size-k occur-
rence of some M ′ ⊆ M , if such an occurrence exists, is
found with constant probability. Hence, for fixed ε we
can solve the problem of finding with constant error
probability an occurrence of some size-k subset of M
in O(| ln(ε)| · ek ·10.88k ·m) = O(| ln(ε)| ·29.6k ·m) time. If
no such occurrence has been found, we can conclude that
with probability at least 1− ε no such occurrence exists.

In the overall algorithm loop, we abort as soon as k =
|S| + 1, since by definition of the solutions size |S|, no
occurrence of a size-(|S| + 1) subset of M exists. The
overall running time bound follows.

3.3 Dual Parameterization

We study the parameterized complexity of LIST-COLORED
GRAPH MOTIF for the so-called dual parameter n− |M |.
At first, this parameterization appears to be uninteresting
since the motif is very small compared to the network.
However, in some applications, there are many vertices
of the input graph that can be removed by a simple data
reduction since their color-lists do not contain any color of
the motif. After this data reduction, the remaining graph
has modest size, and furthermore often contains several
connected components (this observation was also made
by Bruckner et al. [9]). For many of these components,
the motif is relatively large compared to the order of
the connected component. Then, only few vertices may
be “removed” from this component to obtain the motif.
Unfortunately, in general the LIST-COLORED GRAPH
MOTIF problem becomes W[1]-hard as we show later

5



in this section. However, for the simple case, when the
graph is vertex-colored instead of list-colored and the
motif is colorful, we obtain fixed-parameter tractability.
The idea of the corresponding search tree algorithm is to
branch on vertices in G that have the same color. Each
occurrence of the motif contains at most one of these two
vertices since the motif is colorful. In the following, we
describe this algorithm in detail.

Theorem 3: For colorful motifs and vertex-colored
graphs LIST-COLORED GRAPH MOTIF can be solved
in O(2n−|M | ·m) time.

Proof: Given a vertex-colored graph G = (V,E) and
a colorful motif M , the algorithm proceeds as follows.
Initially, set d := n − |M |. Clearly, we can assume that
every color of M appears in G, otherwise we can simply
remove this color from M . Furthermore, let M ′ be a
maximum-cardinality subset of M such that there is an
occurrence of M ′ in G. For d > 1, the graph must contain
two vertices u and v such that col(v) = col(u). At most
one of these vertices belongs to an occurrence of M ′.
Accordingly, the algorithm recursively finds occurrences
of M ′ in G[V \ {u}] and in G[V \ {v}]. In each recursive
branch, set d := d−1. In case d = 0, the graph G contains
exactly the colors of M . Then, the largest occurrence of a
subset of M is simply the largest connected component
of G. There is at least one search tree leaf in which G has
a connected component whose colors are M ′. Hence, the
overall solution is the largest occurrence that was found
over all recursive calls in the search tree.

As to the running time, the search tree has size O(2d)
since it has depth d and branches into two cases at each
search tree node. Furthermore, the operations at each
search tree node can be performed in O(m) time.

Unfortunately, Theorem 3 does not carry over to the
general LIST-COLORED GRAPH MOTIF problem. On the
contrary, we show that the problem becomes W[1]-hard
for vertex-colored graphs and motifs that consist of two
colors, and also for colorful motifs when the input graph
is list-colored.

Theorem 4: LIST-COLORED GRAPH MOTIF is W[1]-hard
with respect to the parameter n− |M | even if the input
graph G is vertex-colored and the motif M consists of
two colors.

Proof: We reduce from the W[1]-complete INDEPEN-
DENT SET [16] problem:

Input: An undirected graph G and a nonnegative
integer k.
Question: Is there a size-k vertex set S such
that G[S] has no edges?

Given an instance (G = (V,E), k) of INDEPENDENT SET,
we build an instance of LIST-COLORED GRAPH MOTIF as
follows. The motif M is a multiset over two colors b and w
such that M contains the color b exactly |V |−k times and
the color w exactly |E| + 1 times. Each vertex v ∈ V is
colored with color b. Furthermore, each edge {u, v} ∈ E is
replaced by a path of length two, that is, we remove {u, v}
from G, add a new vertex e{u,v} to G and insert edges
between u and e{u,v} and v and e{u,v}. Each new vertex

receives the color w. Finally, we add one further vertex e∗

with color w and add edges between e∗ and every vertex
that has color b. Let G′ denote the resulting vertex-colored
graph. The construction can be clearly performed in
polynomial time. Note that n − |M | = k. We complete
the proof by showing that

G has a size-k independent set ⇔ G′ has an
occurrence of M .

“⇒” Let S be a size-k independent set in G. Consider
the graph G′′ that is obtained from G′ by removing S. We
show that G′′ is an occurrence of M . Consider the colors
of G′′. Since all k vertices that have been removed from G′

have color b there are |V | − k vertices that have color b
and |E|+ 1 vertices that have color w in G′′. It remains
to show that G′′ is connected. Since e∗ is adjacent to all
vertices of V , the subgraph that is induced by V ∪{e∗} is
connected. Furthermore, every other vertex is adjacent to
at least one vertex of V . Suppose that this is not the case,
then for some vertex e{u,v} both u and v are in S. This
contradicts the fact that S is an independent set in G.

“⇐” Let S be a vertex set such that removing S from G′

results in an occurrence of M , that is, a graph that is
connected and has the colors of M . By construction of G′

and M , S has size k and contains only vertices that have
color b. Hence, these vertices correspond to vertices of G.
We show that S is an independent set in G. Suppose that
this is not the case, then there must be two vertices u, v ∈
S such that {u, v} ∈ E. Then, however, both neighbors
of e{u,v} in G′ are in S. This contradicts the fact that
removing S from G′ results in a connected graph.

By slightly modifying the construction in the proof
of Theorem 4, we can also transfer this result to the
case that the motif is colorful. The only difference is that
instead of using two colors b and w, we use two sets of
colors B = {b1, . . . bn−k} and W = {w1, . . . wm+1}. Every
color that was colored by b now receives the color list B
and every color that was colored by w receives the color
list W . The motif is B ∪M . The correctness proof works
analogously.

Theorem 5: LIST-COLORED GRAPH MOTIF is W[1]-hard
with respect to the parameter n−|M | even if M is colorful.

Theorems 4 and 5 exclude any hope for fixed-parameter
algorithms for LIST-COLORED GRAPH MOTIF parameter-
ized by the dual parameter n−|M |. However, as we show
in Section 4.2, there are some cases in which even a brute
force algorithm for guessing the set of vertices to delete
is faster than the color-coding fixed-parameter algorithms
for parameters |M | and |S|, respectively. Hence, it seems
worthwhile to find further special cases in which LIST-
COLORED GRAPH MOTIF is fixed-parameter tractable
with respect to n−|M | or to study n−|M | in combination
with other parameters.

4 APPLICATION TO QUERYING OF PROTEIN-
INTERACTION NETWORKS

We applied our algorithms for LIST-COLORED GRAPH
MOTIF to topology-free querying of protein-interaction

6



networks. As described in the introduction, the input of
the graph motif instance here is a colorful motif and the
vertices in G are list-colored. Our program is written in
the C++ programming language, uses the Boost Graph
Library3, and consists of roughly 1000 lines of code. The
source code is publicly available.4

4.1 Implementation Details

This section describes some details that distinguish
the implemented algorithms from those specified in
Section 3. Given a graph G = (V,E) and a colorful
motif M , our implemented algorithms not only find a
maximum-cardinality subset S ⊆ V such that G[S] is
an occurrence of M , but also compute S such that the
weight of a spanning tree of G[S] is maximized. Our
implementation provides three algorithms: the first is a
simple (randomized) brute force approach. This algorithm
is not used on its own, but as a subroutine of the other two
algorithms. The second algorithm solves LIST-COLORED
GRAPH MOTIF with the parameter motif size |M | as
described in Section 3.1. The third algorithm solves LIST-
COLORED GRAPH MOTIF with the parameter solution
size |S| as described in Section 3.2. The algorithm with
parameter |M | and the algorithm with parameter |S|
resort to the brute force approach if it is expected to
outperform the dynamic programming routines described
in Section 3.1. This is, for example, the case if the dual
parameter (Section 3.3) is small.

4.1.1 Randomized Brute Force
Given a LIST-COLORED GRAPH MOTIF instance com-
prising a graph G = (V,E), a colorful motif M , and a
natural number k, this algorithm proceeds as follows:
it chooses a size-k set S ⊆ V uniformly at random
and checks whether G[S] is an occurrence of a subset
of M . This verification step is carried out by comput-
ing a maximum-cardinality matching in the bipartite
graph H = (S ]M,F ), where an edge {v, c} ∈ F with
v ∈ S and c ∈ M exists if and only if c ∈ col(v). If all
vertices in S are matched and G[S] is connected, then
G[S] is an occurrence of a size-k subset of M . The process
of randomly choosing subsets of G is repeated a sufficient
number of times so that an existing occurrence of a size-k
subset of M is found with high probability. More precisely,
the probability that a size-k occurrence is chosen is at
least 1/

(|V |
k

)
. Hence, we repeat the procedure of guessing

and verifying a solution O(| ln(ε)|·
(|V |

k

)
) times to obtain an

error probability of at most ε. For each motif occurrence
found in the progress, its maximum-weight spanning tree
is computed. The occurrence with the maximum-weight
spanning tree among all size-k occurrences is reported.
Since we have to repeat the procedure O(| ln(ε)| ·

(|V |
k

)
)

times, the algorithm works fast if k is small or close
to |V |. In the latter case, the dual parameter (Section 3.3)

3. http://www.boost.org/
4. http://theinf1.informatik.uni-jena.de/graph-motif

is small. However, Randomized Brute Force is not a fixed-
parameter algorithm with respect to the parameter k or
the parameter |V | − k.

4.1.2 Parameter Motif Size
In contrast to the algorithm described in Section 3.1, the
implemented algorithm does not employ the (theoretical)
result by Björklund et al. [5] to quickly evaluate the given
recurrences. Instead, they are straightforwardly computed
by dynamic programming. However, we implemented
heuristics to reduce the running time of the algorithm.

Overall Strategy
Each connected component of the input graph G is
processed independently. For each connected component,
the Randomized Brute Force procedure described in
Section 4.1.1 is applied if it is expected to outperform the
color-coding algorithm from Section 3.1. Otherwise, the
color-coding algorithm is invoked. Next, we describe the
implementation details of the color-coding algorithm.

Increasing the Success Probability of Color-Coding
The running time depends to a large extent on the
number of trials needed to achieve a good labelling
with sufficiently high probability. We implemented
two approaches to increase the probability of a motif
occurrence to receive a good labelling. This, in turn,
reduces the number of trials needed to achieve a
sufficiently low error probability. The two approaches
are described in the following two paragraphs.

Separating Color Sets: This approach to increase
the probability of a motif occurrence to receive a good
labelling is due to Bruckner et al. [9]. Assume that there
is a separating color subset C such that the color list of
each vertex either contains no colors from C or exclusively
colors from C. In this case, we can improve on standard
color-coding. Let V1 be the vertices that contain only
colors from C and let V2 be the vertices that contain no
colors from C. If the given motif contains k1 colors from C
and k2 colors not from C, then the occurrence of the motif
must contain k1 vertices from V1 and k2 vertices from V2.
Thus, we may draw the labels for V1 and V2 from disjoint
label sets L1 and L2, respectively. The probability for a
good labelling is the probability that the vertices in V1
and V2 receive a good labelling. This results in a good la-
belling of vertices with a probability of (k1!/kk1

1 )·(k2!/kk2
2 )

instead of (k1 + k2)!/(k1 + k2)
k1+k2 . Separating color

subsets, if they exist, can be computed in O(k ·m) time by
finding connected components in an auxiliary graph [9].

Injective Color-Coding: Assume that C is a sepa-
rating color set, as described above, such that the sought
colorful motif M contains k colors from C. Moreover,
let VC be the vertices that contain only colors of C.
Observe that the probability that VC receives a good
labelling is k!/kk while the probability of guessing a
vertex subset of VC that is part of a motif-occurrence is
1/
(|VC |

k

)
. As a result, if the latter probability is higher

7

http://www.boost.org/
http://theinf1.informatik.uni-jena.de/graph-motif


than the former, then we avoid the standard color-coding
technique. Instead, we choose a random subset of VC
and label its vertices injectively.

Our experiments (see Section 4.2) showed that the
combination of these two heuristics reduces the number
of color-coding trials tremendously.

4.1.3 Parameter Solution Size
As described in Section 3.2, the algorithm works by
iterating over all possible solution sizes from k := 1 to
|S| + 1. Color-coding is applied repeatedly to obtain a
colorful motif M ′ ⊆M with |M ′| = k. In each repetition,
the algorithm for the parameter motif size (Section 4.1.2)
is applied to M ′ and G (with new color lists, as described
in Section 3.2). We use the following two approaches to
heuristically improve the running time of this algorithm:

Injective Color-Coding: Similar to Section 4.1.2,
Injective Color-Coding may be applied to increase the
probability that a size-k subset of M with an occurrence
in G receives a good coloring. This applies if k!/kk is less
than 1/

(|M |
k

)
. In this case, we reduce the number of trials

needed to obtain good colorings for the subsets of M by
injectively coloring a randomly chosen size-k subset of M .

Lower Bounds for Solution Size: The algorithm for
the parameter solution size checks whether size-k subsets
of M have occurrences in G, iterating over increasing
values of k and starting with k = 1. A lower bound on the
solution size allows us to skip many of these iterations by
not increasing k by only one, but setting it to the currently
best known lower bound. Such a lower bound on the
solution size can be obtained using Random Occurrence
Guessing (see Section 4.1.1). We also use Randomized
Brute Force to find size-(|M | − k+ 1) occurrences in G if
this approach is expected to outperform the color-coding
algorithm for finding size-k occurrences.

As for the algorithm for parameter |M |, these two
heuristics reduce the number of color-coding trials needed
before a solution is found (see Section 4.2). However, the
overall number of trials needed is usually higher than for
the algorithm with parameter |M |. The reason is that we
have to perform color-coding twice: once for the motif
colors and once for the vertex labels.

4.2 Experiments
Data Acquisition
We tested our algorithms on three weighted protein-
interaction networks (the weights denote interaction
probabilities) from yeast (5430 proteins, 39936 interac-
tions), fly (6650 proteins, 21275 interactions), and human
(7915 proteins, 28972 interactions) that were assembled
by Bruckner et al. [9]; the queries were complexes from
the same three species. Each query protein was identified
with a unique color, the proteins of the networks received
the colors of all query proteins whose sequence similarity
to the network protein exceeded a predefined threshold.
This threshold was set to a BLAST score of 10−7. We
considered the following four combinations of network

and complexes (for which pairwise BLAST scores were
available to us): we queried yeast complexes in the human
network and in the fly network, human complexes in the
yeast network, and fly complexes in the yeast network.
Table 1 shows the total number of instances (grouped
into categories of small, medium, and large motif size).

Computational Setting
The experiments have been executed on a standard
desktop PC with 2.2 GHz Athlon64 CPU and 1 GiB of
RAM. For each network-motif pair, we aborted execution
after 10 minutes or if the memory limit of 900 MiB was
exceeded.

For each pair of complex (equivalently, motif) and
network, we computed the largest subset of the motif that
has an occurrence in the network. Of these, we output
the occurrence with the spanning tree of maximum
weight. This implies that we cannot stop the color-coding
process after a motif occurrence has been found. Instead,
we have to execute all color-coding trials in order to find
the maximum-weight motif occurrence with the given
error probability.

Experimental results
Table 1 summarizes the results. The average running
time of the solved instances is lower for the algorithm
with parameter |S| (Section 4.1.3) than for the algorithm
with parameter motif size |M | (Section 4.1.2). However,
the algorithm with parameter |M | is able to solve more
instances within the running time limit of 10 minutes. As
one would expect, these are the instances where the motif
occurrences were large. This is also the reason why the
average size of the occurrences found by the algorithm
with parameter |S| is smaller. It is notable that, while we
set an upper limit of 10 minutes to solve an instance, all
instances solved within this time limit were solved in
a few seconds. Most instances could be solved within
milliseconds. We conclude that usually the algorithm
with parameter |M | should be applied instead of the
algorithm with parameter |S|, since it was able to solve
more instances and is outperformed by the algorithm for
parameter |S| only for “easier” instances.

The effect of the heuristics for reducing the number
of color-coding trials (see Sections 4.1.2 and 4.1.3) is
also shown in Table 1. For both algorithms, there is
a difference of several orders of magnitude between
the number of color-coding trials that are needed with
and without heuristics, and this difference is especially
pronounced for the more difficult instances with large
motifs. Furthermore, we examined how the inclusion of
the Randomized Brute Force algorithm helps in reducing
the overall running time for both algorithms. The running
times of the algorithms without the Randomized Brute
Force subprocedure are shown in Table 1 c) and d),
respectively. For both algorithms there is a decrease in
the number of solved instances and an increase in the
average running times, demonstrating the usefulness of
Randomized Brute Force for some instances. Furthermore,

8



# instances avg. size time (secs) avg. # coloring trials # instances with occ. size

|M | solved unsolved |M | |S| avg. max. standard improved 100% 99%-50% 49%-25% 25%-0%

1–7 1089 0 2.20 1.27 0.00 0.07 36.43 1.07 539 345 169 36
8–14 47 2 10.55 4.09 2.62 59.08 9.7 · 104 22.23 0 15 12 20
≥ 15 18 3 21.28 5.33 0.43 7.59 4.1 · 1012 8.28 0 4 2 12

(a) Results for the algorithm with parameter |M | (Section 4.1.2).

# instances avg. size time (secs) avg. # coloring trials # instances with occ. size

|M | solved unsolved |M | |S| avg. max. standard improved 100% 99%-50% 49%-25% 25%-0%

1–7 1089 0 2.20 1.27 0.00 0.08 416.35 0.82 539 345 169 36
8–14 43 6 10.55 3.63 1.50 55.05 2.8 · 108 65.44 0 11 12 20
≥ 15 14 7 21.28 3.43 0.02 0.07 1.1 · 1013 41.72 0 0 2 12

(b) Results for the algorithm with parameter |S| (Section 4.1.3)

# instances avg. size time (secs)

|M | solved unsolved |M | |S| avg. max.

1–7 1089 0 2.20 1.27 0.00 0.44
8–14 42 7 10.45 3.43 8.12 113.82
≥ 15 14 7 21.71 3.43 0.10 0.72

(c) Algorithm for parameter |M | without Randomized Brute Force

# instances avg. size time (secs)

|M | solved unsolved |M | |S| avg. max.

1–7 1089 0 2.20 1.27 0.00 0.60
8–14 41 8 10.39 3.27 6.71 159.17
≥ 15 14 7 21.71 3.43 0.18 1.75

(d) Algorithm for parameter |S| without Randomized Brute Force

TABLE 1: Experimental results. Unsolved instances needed either more than 10 minutes of time or more than
900 MiB of space. All values shown are for the set of solved instances only. All instances were processed with a
maximum error probability of 0.1%.

since the average occurrence size of the solved instances
is smaller when Randomized Brute Force is not used, we
conclude that Randomized Brute Force is useful when |S|
is relatively large.

4.3 Related implementations

Bruckner et al. [8, 9] developed a web-service tool
(TORQUE) to solve an extension of our problem allowing
for insertions of vertices that are not part of the motif.
They combine several algorithms: a color-coding proce-
dure for small motifs, an Integer Linear Programming
formulation for large motifs, and a shortest-path based
heuristic. The main difference of our implementation
compared to TORQUE is that TORQUE allows for
insertion of additional/uncolored vertices in order to
establish the connectivity of the solution set. That is,
TORQUE reports solutions that contain uncolored vertices
that connect different connected components of colored
vertices if this results in a larger overall occurrence size.
Furthermore, the number of deletions, that is, the number
of motif colors that are not in an occurrence, is limited
for TORQUE (for example, for motifs/queries of size
10, the occurrence has to contain at least 6 vertices that
are not colored). In summary, the solutions of TORQUE
are usually larger than our solutions, and not all of the
uncolored vertices of the network can be removed by data
reduction, since some of them might be needed to connect
colored vertices. Hence, we solve a different problem, and
our running times do not compare directly to the ones
of Bruckner et al. [9]. Blin et al. [6] provide a Cytoscape
plug-in (based on a Linear Pseudo-Boolean optimization
solver) for LIST-COLORED GRAPH MOTIF with insertions.

Again, this makes a comparison of running times difficult,
since our algorithm solves a more restricted problem.

Our color-coding algorithm can handle larger motifs
than the color-coding algorithm of Bruckner et al. [9] who
use Integer Linear Programming to handle queries/motifs
of size > 10. Furthermore, our algorithm almost always
terminates within few seconds which is not the case for
the algorithm of Bruckner et al. [9]. This encourages both
the application of our algorithm in case insertions are
explicitly forbidden and the extension of our algorithm to
the more general problem that allows for insertions. One
advantage of our approach is that the overall number
of solutions is much larger than for TORQUE since we
always report the largest occurrence that was found, that
is, we allow an arbitrary number of deletions. Hence, it
can be applied in case TORQUE does not yield a solution.

4.4 Functional Enrichment of Predicted Complexes

We examine the quality of the solutions that were found
by our algorithm, by assessing the enrichment of func-
tional terms in the protein sets of the solutions. For each
solution, we retrieved functional annotation terms from
the SGD database [28] (for the yeast network), the GOA
database [3] (for the human network), or FlyBase [31]
(for the fly network). Then, we used the GO::TermFinder
tool [7] to find functional annotation terms that have a
statistically significant overrepresentation compared to
random protein sets. This is done by computing for each
functional annotation term the p-value of its abundance
in the solution under the hypothesis that the solution
does not show an overrepresentation of this functional
annotation term. The reported p-values are corrected for

9



Fig. 1: Comparison of the number of solutions with the number of solutions that showed a significant enrichment
of at least one functional annotation term. Along the x-axis, the solutions are grouped into five categories, according
to the value of solution size/query size.

multiple hypotheses testing using the Bonferroni method
and the threshold for considering an enrichment as
significant was set to p < 0.05. Since the solutions should
be complexes, they are expected to have a common
function. Hence, the percentage of solutions that have a
common function is a measure of the solution quality.

First, we examined how the percentage of functionally
enriched solutions correlates with solution sizes. We
found that of the solutions with size two or three,
which make up roughly 85% of the solutions, more
than 78% have a significant enrichment of at least one
functional annotation term. Of the solutions of size at
least four, 100% had a significant enrichment of at least
one functional annotation term. We therefore examined
how the relation between query size and solution size
influences the solution quality. Our results are shown in
Figure 1. For solutions whose size is more than 40% of the
query, the ratio of enriched vs non-enriched is roughly
the same. For solutions whose size is less than 40% of
the query, the percentage of enriched solutions drops.
We thus conjecture that the number of allowed deletions
should be set to roughly 50% of the query size. For some
instances, this is more than the number of deletions that
are allowed by TORQUE, and possibly the percentage
of instances that have a solution in TORQUE could
be increased without a drop-off in solution quality by
allowing more deletions. However, our results also show
that by excluding insertions, the number of vertices in
the solution is often very small. Hence, a limited number
of insertions should be permitted. So far, however, the
precise number of insertions that should be allowed
seems to be unexplored.

5 ON FINDING MORE ROBUST MOTIFS

Lacroix et al. [24] motivated the study of (variants) of
the GRAPH MOTIF problem by considerations comparing
“topological motifs” with “functional motifs”. The GRAPH
MOTIF problem only poses a minimal demand on the
motif topology by requiring connectedness. The question
arises what happens if we ask for somewhat “more
robust” motifs, replacing the connectedness demand
by standard graph-theoretic demands for biconnectivity,

bridge-connectivity, and the like. Surprisingly, as we will
show in this section, these seemingly small steps towards
topologically more constrained motifs already lead to
W[1]-hardness results, destroying the hope for fixed-
parameter algorithms for these GRAPH MOTIF variants.
Indeed, we will prove even stronger results, probably
of independent interest, by showing that the problems
of deciding on the existence of fixed-size biconnected or
bridge-connected subgraphs, parameterized by the size of
the subgraphs, are W[1]-hard. Moreover, we extend these
results to higher connectivity demands. Furthermore, we
answer an open question of Dondi et al. [13] by showing
that the parameter “number of connected components”
in a graph motif leads to a W[1]-hard problem.

5.1 Biconnected Subgraphs of Size Exactly k

Originally, the GRAPH MOTIF problem was suggested,
because it imposes the least possible restriction on the
topology of the occurrence of the motif [24]. One way of
extending the GRAPH MOTIF problem in this spirit is to
search for biconnected occurrences instead of connected
occurrences of the motif. Recall that a graph is bicon-
nected if it has no cut-vertex. For example in the scenario
of protein-interaction network querying, demanding
biconnectivity could be used to demand occurrences with
higher interaction probabilities, without restricting the
actual topology of the occurrence too much. The decision
version of the problem can be formulated as follows:

BICONNECTED GRAPH MOTIF
Input: A vertex-colored undirected graph G =
(V,E) and a multiset of colors M .
Question: Does there exist an S ⊆ V such that
the induced subgraph G[S] is biconnected and
there is a bijection between the colors of the
vertices in S and M?

We will show that BICONNECTED GRAPH MOTIF is W[1]-
complete when parameterized by the size of the motif M .
In fact, we prove an even stronger result. Consider the
special case that M contains only one color c, |M | = k,
and all vertices in G have color c. Then, the resulting prob-
lem is to find a biconnected subgraph of size exactly k:

10



G G′

Fig. 2: An example of the transformation of a CLIQUE
instance with k = 3 into a BICONNECTED SUBGRAPH
instance with k′ = 15. White vertices in G′ belong to V1,
black vertices to V2.

BICONNECTED SUBGRAPH:
Input: An undirected graph G = (V,E) and a
nonnegative integer k.
Question: Does there exist an S ⊆ V of size k
such that the induced subgraph G[S] is bicon-
nected?

In the following, when talking about the order of a
subgraph, we always refer to the number of vertices
it contains. Note that looking for a biconnected subgraph
of order at least k is solvable in polynomial time by
removing all cut-vertices of the graph and then finding
the largest component. However, restricting the order of
the biconnected subgraph to exactly k makes the problem
surprisingly hard. We prove the parameterized hardness
by reduction from the CLIQUE problem, which is known
to be W[1]-complete [16] with respect to the order of the
clique searched for.

CLIQUE
Input: An undirected graph G and a nonnegative
integer k.
Question: Is there a complete subgraph of order k
in G?

Theorem 6: BICONNECTED SUBGRAPH is W[1]-complete
with respect to the parameter k.

Proof: To show the W[1]-hardness, we give a param-
eterized many-one reduction from CLIQUE to BICON-
NECTED SUBGRAPH.

Let (G, k) be a CLIQUE instance. We construct a
graph G′ from G by replacing every edge e of G with a
simple path pe that has

(
k
2

)
+1 internal new vertices. The

vertex set of G′ can be partitioned into two vertex sets V1
and V2, where V1 contains the vertices that correspond to
vertices of the original graph G and V2 contains the new
internal path vertices. An example of this transformation
is shown in Figure 2. Note that the reduction works for
arbitrary path length greater than

(
k
2

)
. For reasons of

simplicity, we choose the path length to be
(
k
2

)
+ 1.

We prove in the following that G has a clique of order k
if and only if G′ has a biconnected subgraph of order k′ =
k+

(
k
2

)
· (
(
k
2

)
+1). If G has a clique C of order k, then the

subgraph that is induced by the k vertices of C and by the
vertices on the

(
k
2

)
paths that were created from the

(
k
2

)
clique edges of C in G has order exactly k+

(
k
2

)
· (
(
k
2

)
+1).

Clearly, this subgraph is also biconnected.
It remains to show that if G′ has a biconnected sub-

graph of order k′ = k+
(
k
2

)
· (
(
k
2

)
+1), then G has a clique

of order k. Let G′ have a biconnected subgraph G′[S] of

order k. If S contains one vertex of a path pe, then it
must contain all vertices from pe, because otherwise G′[S]
would not be biconnected. Hence, the number of ver-
tices k′ in S can be expressed as k′ = a + b · (

(
k
2

)
+ 1),

where a = |S ∩ V1| and b denotes the number of paths
in G′ that correspond to edges of G.

We show that b must be
(
k
2

)
. First, if b >

(
k
2

)
, then,

since we can assume without loss of generality that k ≥ 3,
k′ > (

(
k
2

)
+1) ·(

(
k
2

)
+1) > k+

(
k
2

)
·(
(
k
2

)
+1), a contradiction.

Second, we consider the case that b <
(
k
2

)
. Since it must

hold that k+
(
k
2

)
·(
(
k
2

)
+1) = a+b·(

(
k
2

)
+1), in this case one

must have that a >
(
k
2

)
. This means that there are more

than
(
k
2

)
vertices in V1 which must form a biconnected

graph by inserting less than
(
k
2

)
paths from V2. Clearly,

this it not possible. Hence, we have shown that b =
(
k
2

)
and thus also a = k.

Since G′[S] contains exactly
(
k
2

)
paths consisting of

vertices from V2 and each path must connect two vertices
of A, all vertices of A are pairwise connected via a path
of length

(
k
2

)
. Hence, the subgraph G[A] must be a clique

of order k since it contains exactly k vertices and exactly(
k
2

)
edges.

Using a characterization of W[1] by Chen et al. [12], the
containment of BICONNECTED SUBGRAPH in W[1] can be
shown in complete analogy to Guo et al. [21, Theorem 12].

5.2 Bridge-connected Motifs and Motifs of Higher
Connectivity
Another way to augment the connectivity demands
is to search for bridge-connected motifs. We define
BRIDGE-CONNECTED SUBGRAPH in complete analogy to
BICONNECTED SUBGRAPH, simply replacing the demand
for biconnectivity by the demand for bridge-connectivity.
Recall that a graph is bridge-connected when it has
no bridge, that is, an edge {u, v} such that every path
between u and v contains {u, v}. The reduction from
CLIQUE as used in the proof of Theorem 6 works also
for bridge-connected subgraphs. Since W[1]-membership
also follows in complete analogy to [21, Theorem 12]
for bridge-connected motifs as well, we can state the
following theorem.

Theorem 7: BRIDGE-CONNECTED SUBGRAPH is W[1]-
complete with respect to the parameter “number of
subgraph vertices”.

In addition, we can generalize the hardness results to
higher-connected graph motifs. To this end, consider the
following problem.

p-CONNECTED SUBGRAPH:
Input: An undirected graph G and a nonnegative
integer k.
Question: Does there exist an S ⊆ V of size k
such that the induced subgraph G[S] is p-
connected?

Observe that p-CONNECTED SUBGRAPH is non-trivially
posed only if p ≤ k—otherwise, the answer is clearly
always “No”.

11



Theorem 8: p-CONNECTED SUBGRAPH is W[1]-
complete with respect to the parameter k.

Proof: We further extend the construction used for
the proof of Theorem 6 as follows: We add a set A of
p−2 additional vertices to G′ = (V ′, E′), that is, we have
V ′ := V1 ∪ V2 ∪ A. Furthermore, for every vertex a ∈ A
we have an edge from a to every vertex of V ′\{a}. The
desired motif size is increased by p−2, that is, we set k′ :=
k+
(
k
2

)
·(
(
k
2

)
+1)+p−2. As a p-connected component must

consist of at least p vertices, we have p ≤ k and, thus, the
new parameter k′ can be expressed as a function of k.

In the following, we prove that G contains a clique of
order k if and only if there is a p-connected subgraph of
order k′ in G′.

Given a clique of order k in G, as argued in the proof
of Theorem 6, we can find a biconnected subgraph of
order k+

(
k
2

)
·(
(
k
2

)
+1) that contains only vertices of V1∪V2.

Adding the vertices of A to this subgraph obviously
results in a p-connected subgraph of order k′.

Given a p-connected subgraph G′[S] of order k′ :=
k+
(
k
2

)
·(
(
k
2

)
+1)+p−2, we show that the vertex set S∩V1

corresponds to vertices that form a clique in G. We start by
proving that A must be a subset of S. Assume that there is
an a ∈ A with a /∈ S. Then, in G′[V ′\{a}] all vertices vj ∈
V2 have degree p− 1 and, hence, cannot be part of a p-
connected subgraph. In addition, since G[V ′\({a}∪V2)] is
not p-connected, it cannot contain a p-connected subgraph.
Thus, we know that A ⊆ S and, hence, all motif vertices
are exactly (p−2)-connected via vertices of A. Hence, we
have to choose k +

(
k
2

)
· (
(
k
2

)
+ 1) vertices of V1 ∪ V2 that

increase the connectivity by two. As argued in the proof
of Theorem 6, this can only be achieved by choosing
vertices of V1 that correspond to a clique.

W[1]-membership can be shown in complete analogy
to Guo et al. [21, Theorem 12], and is therefore omitted.

In complete analogy, we obtain the following result,
where p-EDGE CONNECTED SUBGRAPH is defined in a
similar way as p-CONNECTED SUBGRAPH, replacing the
demand for p-connectedness with the demand for p-edge
connectedness.

Theorem 9: p-EDGE CONNECTED SUBGRAPH is W[1]-
complete with respect to the parameter k.

5.3 Min-CC Graph Motif in Paths
We consider the following variant of GRAPH MOTIF
which was proposed by Dondi et al. [13] for instances pos-
sessing no connected occurrence of the complete motif M :

MIN-CC GRAPH MOTIF:
Input: A vertex-colored undirected graph
G = (V,E), a multiset of colors M with |M | = k,
and a nonnegative integer d.
Question: Does there exist an S ⊆ V such
that G[S] has at most d components, and there
is a bijection between the colors of the vertices
in S and M?

Answering an open question of Dondi et al. [13], MIN-
CC GRAPH MOTIF is W[1]-hard when parameterized
by the number of the connected components of the
occurrence of the motif, even if the input graph is a path.

Theorem 10: MIN-CC GRAPH MOTIF on paths is W[1]-
hard with respect to the number of components.

Proof: We apply a reduction from the PERFECT CODE
problem:

Input: An undirected graph G = (V,E) and a
positive integer k.
Question: Is there a size-k subset V ′ ⊆ V such
that for every vertex v ∈ V there is exactly one
vertex in N [v] ∩ V ′?

PERFECT CODE is W[1]-complete with respect to the
parameter k [10].

Given a PERFECT CODE instance (G = (V,E), k), we
construct a MIN-CC GRAPH MOTIF instance consisting
of a path P and a motif M . It asks for the existence of
a solution consisting of k connected components. The
vertex set of P consists of one vertex pv with color cv
for every v ∈ V , n− 1 “separator vertices” with color s
each, and 2n “end vertices” with color e each. Now, we
describe the ordering of the vertices in the path P . For
every vertex v ∈ V there is a subpath containing vertices
that correspond to the vertices of N [v] in an arbitrary
order. At both ends of every subpath we add an end
vertex with color e. Finally, we connect all subpaths in
an arbitrary order such that two neighboring subpaths
are connected through a separator vertex with color s.
See Figure 3 for an example. The motif set M consists of
2k times the color e and {cv | v ∈ V }.

Next, we show that G has a perfect code of size k if
and only if the there are k subpaths P1, . . . , Pk such that
there is a bijection between the colors of their vertices
and the colors of M .

Given a perfect code V ′ ⊆ V , our motif consists of the
subpaths that correspond to the vertices of V ′ including
the end vertices on both sides. As V ′ is a perfect code for
every v ∈ V , the color cv appears in the subpaths exactly
once and the end vertices of all subpaths give 2k further
vertices with color e.

For the reverse direction, observe that because of
the separator vertices, one connected component in the
solution can contain at most two vertices with color e.
Since we have 2k vertices of color e in the k connected
subpaths of the solution, every subpath must correspond
to the whole neighborhood of a vertex of V . Since every
color cv corresponding to a vertex v ∈ V appears exactly
once in the motif, the vertices that correspond to the
subpaths of a solution for the MIN-CC GRAPH MOTIF
instance must form a perfect code in G.

6 CONCLUSION

LIST-COLORED GRAPH MOTIF is a natural graph-theoretic
pattern matching problem with applications in the analy-
sis of biological networks. In this work, we propose new
fixed-parameter algorithms for solving LIST-COLORED

12



v1

v3 v4

v5v2

e c1 c2 c3 e s e c1 c2 c4 e s e c1 c3 c4 c5 e s e c2 c3 c4 e s e c3 c5 e
N [v1] N [v2] N [v3] N [v4] N [v5]

Fig. 3: Example for the reduction presented in the proof of Theorem 10. The PERFECT CODE instance has
vertices v1, . . . , v5 with solution {v2, v5}. The first row of the table on the bottom displays the corresponding
path in the MIN-CC GRAPH MOTIF instance. Herein, the color corresponding to vi is denoted by ci. The shaded
vertices belong to a solution for MIN-CC GRAPH MOTIF.

GRAPH MOTIF. We also implemented these algorithms
and tested them in the area of topology-free querying of
protein-interaction networks. Our experiments showed
that realistic LIST-COLORED GRAPH MOTIF instances
can be solved efficiently by our implementations of
our algorithms. However, we also encountered some
instances where our color-coding based algorithm fails.
On the positive side, some of the heuristic speed-up
tricks that we used, such as the injective coloring of some
color subsets and the Randomized Brute Force procedure
could also prove useful for the more general problem
in which insertions are allowed. Furthermore, it should
be investigated how a variant of LIST-COLORED GRAPH
MOTIF that finds a largest occurrence with a bounded
number of edge-insertions compares to TORQUE [9] and
to our results. This could be an appropriate way to deal
with networks in which many edges are missing, without
adding vertices to the solution that are not similar to any
query proteins. Finally, it would be interesting to study
the enumeration variant of LIST-COLORED GRAPH MOTIF
that reports all occurrences of a motif. This problem is
not fixed-parameter tractable with respect to |M |, since
there could be more than f(|M |) · poly(n) occurrences of
a motif M . Consequently, other parameters need to be
considered for this enumeration variant.

From the theoretical side, it would be interesting to
extend the result from Section 3.3 concerning fixed-
parameter tractability with respect to the parameter n−
|M |, since only very few of the considered instances were
vertex-colored instead of list-colored. One approach could
be to consider additional parameters such as the size of
the color lists in the list-colored graphs.

ACKNOWLEDGMENTS

We are grateful to Sharon Bruckner, Falk Hüffner, and
Roded Sharan for making their protein-interaction net-
works, protein complex data, and BLAST score data
available to us. We are furthermore grateful to Jiong Guo
and Frances Rosamond for helpful comments. In partic-
ular, Jiong Guo hinted to the proof of Theorem 10. We
also thank the anonymous referees for their constructive
feedback.

Nadja Betzler was supported by the DFG, projects
DARE, GU 1023/1, and PAWS, NI 369/10. René van

Bevern was supported by the DFG, project AREG,
NI 369/9. Michael R. Fellows was supported by the
Australian Research Council, a main part of this work
was done while he was staying in Jena as a recipient
of the Humboldt Research Award of the Alexander
von Humboldt Foundation, Bonn, Germany. Christian
Komusiewicz was supported by a PhD fellowship of the
Carl-Zeiss-Stiftung and the DFG, project PABI, NI 369/7.

REFERENCES

[1] E. Alm and A. P. Arkin. Biological networks. Current
Opinion in Structural Biology, 13(2):193–202, 2003.

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding.
Journal of the ACM, 42(4):844–856, 1995.

[3] D. Barrell, E. Dimmer, R. P. Huntley, D. Binns,
C. O’Donovan, and R. Apweiler. The GOA database
in 2009 - an integrated gene ontology annotation
resource. Nucleic Acids Research, 37(Database-Issue):
396–403, 2009. (3/19/2010).

[4] N. Betzler, M. R. Fellows, C. Komusiewicz, and
R. Niedermeier. Parameterized algorithms and
hardness results for some graph motif problems.
In Proceedings of the 19th Annual Symposium on
Combinatorial Pattern Matching (CPM’08), volume
5029 of LNCS, pages 31–43. Springer, 2008.

[5] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Fourier meets Möbius: fast subset convolution. In
Proc. 39th STOC, pages 67–74. ACM, 2007.

[6] G. Blin, F. Sikora, and S. Vialette. GraMoFoNe:
a Cytoscape plugin for querying motifs without
topology in Protein-Protein Interactions networks. In
2nd International Conference on Bioinformatics and Com-
putational Biology (BICoB’10), pages 38–43, Honolulu,
USA, 2010. International Society for Computers and
their Applications (ISCA).

[7] E. I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein,
J. M. Cherry, and G. Sherlock. GO::TermFinder–
open source software for accessing gene ontology
information and finding significantly enriched gene
ontology terms associated with a list of genes.
Bioinformatics, 20(18):3710–3715, 2004.

[8] S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir, and
R. Sharan. Torque: Topology-free querying of protein

13



interaction networks. Nucleic Acids Research, 37(Web
Server issue):W106-W108, 2009.

[9] S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir,
and R. Sharan. Topology-free querying of protein
interaction networks. Journal of Computational Biology,
17(3):237–252, 2010.

[10] M. Cesati. Perfect code is W[1]-complete. Information
Processing Letters, 81:163–168, 2002.

[11] J. Chen and J. Meng. On parameterized intractability:
Hardness and completeness. The Computer Journal,
51(1):39–59, 2008.

[12] Y. Chen, J. Flum, and M. Grohe. Machine-based
methods in parameterized complexity theory. Theo-
retical Computer Science, 339(2-3):167–199, 2005.

[13] R. Dondi, G. Fertin, and S. Vialette. Weak pat-
tern matching in colored graphs: Minimizing the
number of connected components. In Proceedings
of the 10th Italian Conference on Theoretical Computer
Science (ICTCS’07), volume 4596 of WSPC, pages
27–38. World Scientific, 2007.

[14] R. Dondi, G. Fertin, and S. Vialette. Maximum motif
problem in vertex-colored graphs. In Proc. 20th CPM,
volume 5577 of LNCS, pages 221–235. Springer, 2009.

[15] B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna,
and R. Sharan. Qnet: A tool for querying protein
interaction networks. Journal of Computational Biology,
15(7):913–925, 2008.

[16] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, 1999.

[17] M. R. Fellows. Towards fully multivariate algorith-
mics: Some new results and directions in parameter
ecology. In Proceedings of the 20th International
Workshop on Combinatorial Algorithms (IWOCA’09),
volume 5874 of LNCS, pages 2–10. Springer, 2009.

[18] M. R. Fellows, G. Fertin, D. Hermelin, and S. Vialette.
Upper and lower bounds for finding connected mo-
tifs in vertex-colored graphs. Journal of Computer and
System Sciences, 2010. doi: 10.1016/j.jcss.2010.07.003.

[19] J. Flum and M. Grohe. Parameterized Complexity
Theory. Springer, 2006.

[20] S. Guillemot and F. Sikora. Finding and counting
vertex-colored subtrees. In Proceedings of the 35th In-
ternational Symposium on Mathematical Foundations of
Computer Science (MFCS’10), volume 6281 of LNCS,
pages 405–416. Springer, 2010.

[21] J. Guo, R. Niedermeier, and S. Wernicke. Parameter-
ized complexity of vertex cover variants. Theory of
Computing Systems, 41(3):501–520, 2007.

[22] F. Hüffner, S. Wernicke, and T. Zichner. FASPAD:
fast signaling pathway detection. Bioinformatics, 23
(13):1708–1709, 2007.

[23] F. Hüffner, S. Wernicke, and T. Zichner. Algorithm
engineering for color-coding with applications to
signaling pathway detection. Algorithmica, 52(2):114–
132, 2008.

[24] V. Lacroix, C. G. Fernandes, and M.-F. Sagot. Motif
search in graphs: Application to metabolic networks.
IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 3(4):360–368, 2006.
[25] R. Niedermeier. Invitation to Fixed-Parameter Algo-

rithms. Oxford University Press, 2006.
[26] R. Niedermeier. Reflections on multivariate algorith-

mics and problem parameterization. In Proceedings of
the 27th International Symposium on Theoretical Aspects
of Computer Science (STACS’10), volume 5 of LIPIcs,
pages 17–32. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2010.

[27] J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Effi-
cient algorithms for detecting signaling pathways in
protein interaction networks. Journal of Computational
Biology, 13(2):133–144, 2006.

[28] SGD project. Saccharomyces genome database.
http://downloads.yeastgenome.org/ (3/20/2010).

[29] R. Sharan and T. Ideker. Modeling cellular machinery
through biological network comparison. Nature
Biotechnology, 24:427–433, April 2006.

[30] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon.
Network motifs in the transcriptional regulation
network of escherichia coli. Nature Genetics, 31(1):
64–68, 2002.

[31] S. Tweedie, M. Ashburner, K. Falls, P. Leyland, P. Mc-
Quilton, S. Marygold, G. H. Millburn, D. Osumi-
Sutherland, A. Schroeder, R. Seal, and H. Zhang.
Flybase: enhancing Drosophila Gene Ontology anno-
tations. Nucleic Acids Research, 37(Database-Issue):
555–559, 2009. (3/22/2010).

[32] S. Wernicke. Efficient detection of network motifs.
IEEE/ACM Transactions of Computational Biology and
Bioinformatics, 3(4):347–359, 2006.

Nadja Betzler studied Bioinformatics at
Eberhard-Karls-Universität Tübingen, Germany,
where she obtained her diploma in 2006. Since
November 2006 she is a Ph.D. student in the
group of Prof. Rolf Niedermeier at Friedrich-
Schiller-Universität Jena, Germany. Her research
interests include parameterized algorithmics,
computational complexity, and computational
social choice with particular focus on voting
systems.

René van Bevern studied Computer Science
at Friedrich-Schiller-Universität Jena, Germany,
specializing in Theoretical Computer Science and
concluding with a diploma degree. Being with the
algorithms and complexity group of Prof. Rolf
Niedermeier, he is currently working towards his
Ph.D. His main research interests include the
multivariate complexity analysis of graph and
data mining problems.

14



Michael Fellows received an M.A. in Mathemat-
ics and a Ph.D. in Computer Science from the
University of California, San Diego. He holds
the rank of Professor, and is an Australian Pro-
fessorial Fellow, with the School of Engineering
and Information Technology at Charles Darwin
University, in Darwin, Northern Territory, Australia.
His main research interests are in algorithms
and complexity, where he is known for his foun-
dational work in parameterized complexity and
algorithmics. He serves as an Associate Editor

with the Journal of Computer and System Sciences, and the ACM
Transactions on Algorithms.

Christian Komusiewicz studied Bioinformatics
at Friedrich-Schiller-Universität Jena, Germany.
Currently, he is working towards his Ph.D. (topic
“Algorithmics of Biological Networks”) in the group
of Prof. Rolf Niedermeier. His research interests
are biological network analysis and multivariate
algorithmics for NP-hard graph problems. This
also includes experimental evaluation of the
found algorithms.

Rolf Niedermeier received his diploma de-
gree in Computer Science from TU München
and his Ph.D. and habilitation degree from
Eberhard-Karls-Universität Tübingen, Germany.
He is currently chair for Theoretical Computer
Science/Computational Complexity at Friedrich-
Schiller-Universität Jena, Germany. His main re-
search interests include algorithms and complex-
ity, with a special focus on multivariate complexity
analysis. Application fields of interest include
bioinformatics, computational social choice, and

graph and network problems in general.

15


	Introduction
	Preliminaries
	Searching for Connected Motifs
	Parameter Motif Size
	Parameter Solution Size
	Dual Parameterization

	Application to Querying of Protein-Interaction Networks
	Implementation Details
	Randomized Brute Force
	Parameter Motif Size
	Parameter Solution Size

	Experiments
	Related implementations
	Functional Enrichment of Predicted Complexes

	On Finding More Robust Motifs
	Biconnected Subgraphs of Size Exactly k
	Bridge-connected Motifs and Motifs of Higher Connectivity
	Min-CC Graph Motif in Paths

	Conclusion
	Biographies
	Nadja Betzler
	René van Bevern
	Michael Fellows
	Christian Komusiewicz
	Rolf Niedermeier


