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Abstract Given a bipartite graph G = (Vc, Vt, E) and a nonnegative integer k,
the NP-complete Minimum-Flip Consensus Tree problem asks whether G can be
transformed, using up to k edge insertions and deletions, into a graph that does
not contain an induced P5 with its first vertex in Vt (a so-called M-graph or Σ-
graph). This problem plays an important role in computational phylogenetics, Vc
standing for the characters and Vt standing for taxa. Chen et al. [IEEE/ACM
TCBB 2006] showed that Minimum-Flip Consensus Tree is NP-complete and
presented a parameterized algorithm with running time O(6k · |Vt| · |Vc|). Subse-
quently, Böcker et al. [ACM TALG, 2012] presented a refined search tree algo-
rithm with running time O(4.42k(|Vt| + |Vc|) + |Vt| · |Vc|). We continue the study
of Minimum-Flip Consensus Tree parameterized by k. Our main contribution
are polynomial-time executable data reduction rules yielding a problem kernel
with O(k3) vertices. In addition, we present an improved search tree algorithm
with running time O(3.68k · |Vc|2|Vt|).
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Fig. 1 An M -subgraph with tl, tm, tr ∈ Vt and cl, cr ∈ Vc.

1 Introduction

The Minimum-Flip Consensus Tree problem arises in computational phylogenet-
ics in the context of supertree construction. Given a binary matrix, the task is to
“flip” a minimum number of entries of the matrix in order to obtain a binary ma-
trix that admits what is called a perfect phylogeny. These are matrices from which
a rooted phylogenetic tree can be inferred [25, 33].

In this work, we employ a graph-theoretic formulation of the problem, which
was introduced by Chen et al. [9]: the binary input matrix A is represented by
a bipartite graph G = (Vc, Vt, E) where an edge between two vertices i ∈ Vc and
j ∈ Vt is drawn if and only if Ai,j = 1. The matrix then admits a perfect phylogeny
if and only if the graph does not contain an M-graph as an induced subgraph. An
M-graph is a path of five vertices with the first vertex belonging to Vt (see Figure 1
for an example). The flipping of a matrix entry Ai,j from 0 to 1 corresponds to
the insertion of the edge {i, j}, and the flipping of Ai,j from 1 to 0 corresponds to
the deletion of the edge {i, j}.

The Minimum-Flip Consensus Tree problem (MFCT) is then defined as fol-
lows.

Instance: A bipartite graph G = (Vc, Vt, E) and an integer k ≥ 0.
Question: Can G be changed by up to k edge modifications into an M-free
graph, that is, a graph without an induced M-graph?

Chen et al. [9] showed that MFCT is NP-complete, which motivates the study
of MFCT in the context of parameterized algorithmics [13, 17, 31]. We present
new and improved results for MFCT parameterized by the number k of edge
modifications. The main focus of this work is on polynomial-time data reduction
with provable performance guarantee, that is, kernelization. In addition, we also
present an improved search tree algorithm for MFCT. In the following, we first
give a survey of previous work on MFCT and related problems and then describe
our contributions.

Known results. The MFCT problem was introduced by Chen et al. [9] who also
proved its NP-completeness and described a factor-2d approximation algorithm
for graphs with maximum degree d. Furthermore, they showed fixed-parameter
tractability with respect to the number k of flips by describing a simple O(6k ·
|Vt||Vc|)-time search tree algorithm that is based on the forbidden induced sub-
graph characterization with M-graphs. Subsequently, Böcker et al. [5] improved
the running time to O(4.42k(|Vc|+|Vt|)+|Vc|·|Vt|) by employing a refined branching
strategy. This theoretically proven running time acceleration was also confirmed
by computational experiments [5].

MFCT is a special case of the Flip Supertree problem, where the input matrix
is allowed to have “uncertain” entries [9]. Experiments have shown that Flip Su-

pertree compares favorably with other supertree-construction methods [8]. How-
ever, Flip Supertree is W[2]-hard with respect to the parameter “number of
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flips of certain entries” [4]. Chimani, Rahmann, and Böcker [11] proposed an ILP-
formulation for Flip Supertree and showed that optimal solutions can be found
for instances with up to 100 taxa. For a survey on fixed-parameter algorithms in
phylogenetics we refer to [19]. An introduction into the topic of supertree con-
struction methods is given by [3].

From a graph-theoretic point of view, MFCT is related to the class of so-
called Π-Edge Modification problems: Given a graph G, a graph property Π,
and an integer k ≥ 0, the question is whether G can be transformed by at
most k edge modifications into a graph with property Π. A lot of work has
been put into classifying Π-Edge Modification problems with respect to their
classical complexity [7, 30, 36]. Recently, parameterized algorithmics —in partic-
ular kernelizations—for Π-Edge Modification problems have attracted special
attention. For instance, there is a series of papers studying the kernelizability of
Cluster Editing and some of its variations [10, 15, 16, 18, 22, 23, 34]. Moreover,
Kratsch and Wahlström [28] showed that there is a graph H on seven vertices such
that H-free Editing does not admit a polynomial-size problem kernel, unless an
unexpected complexity-theoretic collapse takes place. This contrasts the case of
vertex deletion where for every fixed forbidden subgraph H the problem to destroy
all occurrences of H by deleting at most k vertices admits a polynomial-size prob-
lem kernel [1]. Hence, for every forbidden subgraph it is a challenging task to prove
the (non)existence of a polynomial-time problem kernel for the corresponding edge
modification problem.

Damaschke [12] investigated kernelization in the context of enumerating all
inclusion-minimal solutions of size at most k. In this scenario, when designing
reduction rules one has to guarantee that all inclusion-minimal solutions of size at
most k are preserved. Kernels that fulfill these additional constraints are called full

kernels. In this setting, Damaschke [12] presents a full kernel consisting of O(6k)
matrix entries for the following problem closely related to MFCT: Given a binary
matrix and a nonnegative integer k, enumerate all inclusion-minimal sets of at
most k flips that transform the matrix into a matrix that admits an unrooted
perfect phylogeny.

Our contributions. In this work, we provide several polynomial-time data reduc-
tion rules for MFCT that lead to a problem kernel containing O(k3) vertices.
This is the first nontrivial kernelization result for MFCT. Moreover, we present a
search-tree algorithm with running time O(3.68k · |Vc|2|Vt|). Combining our ker-
nelization algorithm with our search tree algorithm we achieve a running time
of O(3.68k+|Vc|2 ·|Vt|·|E|) instead of the previous O(4.42k ·(|Vc|+|Vt|)+|Vc|·|Vt|) [5].
Furthermore, we describe one of the data reduction rules in a fairly abstract and
general way, making it applicable to a wide range of Π-Edge Modification prob-
lems.

This work is organized as follows. In Section 2, we introduce basic notation and
the most important definitions that we make use of. In Section 3, we present a data
reduction rule that is correct for all graph properties that can be characterized
by forbidden induced subgraphs that do not have two nonadjacent vertices with
the same neighborhood. Note that these subgraphs include all paths of length at
least 4, and cycles of length at least 5. In Section 4, we present a decomposition
property which yields the basis for one of the data reduction rules and for the
identification of a polynomial-time solvable special case needed for the improved
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search tree strategy. In Section 5, we present one easy and two more intricate data
reduction rules specific to MFCT. Based on these rules, in Section 6 we can show
that MFCT admits a problem kernel with O(k3) vertices. Finally, in Section 7 we
present an O(3.68k)-size search tree for MFCT.

2 Preliminaries

Throughout this work, we use the following notation and definitions. For an
undirected graph G = (V,E), we use V (G) and E(G) to denote its vertex and
edge set, respectively. The open neighborhood NG(v) of a vertex v ∈ V is the
set of vertices that are adjacent to v in G = (V,E). Furthermore, let NG[v] :=
NG(v) ∪ {v} denote the closed neighborhood of v. For a set of vertices V ′ ⊆ V ,
we define NG(V ′) :=

⋃
v∈V ′ NG(v) \ V ′ and NG[V ′] :=

⋃
v∈V ′ NG[v]. The degree

of a vertex v, denoted by degG(v), is the cardinality of NG(v). For a set of ver-
tices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the vertex set V ′ with
edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G − V ′ as abbreviation
for G[V \ V ′], and for a vertex v ∈ V let G − v denote G − {v}. For two sets X
and Y with X ∩ Y = ∅, let EX,Y denote the set {{x, y} | x ∈ X ∧ y ∈ Y }. As an
abbreviation for E{x},Y we write Ex,Y .

For two sets E and F , define E∆F := (E \ F ) ∪ (F \ E) (the symmetric dif-

ference). Further, for a bipartite graph G = (Vc, Vt, E) and a set F ⊆ EVc,Vt
de-

fine G∆F := (Vc, Vt, E∆F ). With this notation, the definition of Minimum-Flip

Consensus Tree (MFCT) reads as follows.

Given a bipartite graph G = (Vc, Vt, E) and an integer k ≥ 0, does there
exist S ⊆ EVc,Vt

with |S| ≤ k such that G∆S is M-free?

Herein, S is called a solution. We call a solution optimal if it has minimum cardi-
nality among all solutions. The elements of S are called edge modifications. We say
that an edge modification e involves a vertex v if v ∈ e. Furthermore, a vertex v is
called affected if S contains an edge modification involving v. Sometimes we refer
to a vertex v ∈ Vc as c-vertex, and to a vertex v ∈ Vt as t-vertex.

A graph property Π is called hereditary if it is closed under vertex deletion.
That is, if a graph G fulfills a hereditary graph property Π, then all induced
subgraphs of G also fulfill Π. All graph properties that can be described by a
(not necessarily finite) set of forbidden induced subgraphs (such as M-freeness for
example) are hereditary.

For our data reduction we use a structure called critical independent set.

Definition 1 Given an undirected graph G = (V,E), a set I ⊆ V is called a critical

independent set if NG(v) = NG(w) for any two vertices v, w ∈ I and I is maximal
with respect to this property.

Note that NG(v) = NG(w) directly implies that I is an independent set. All critical
independent sets of a graph can be found in linear time [26]. Given a graph G =
(V,E) and the collection I = {I1, I2, . . . , Iq}, q ≤ n, of its critical independent sets,
the critical independent set graph of G is the undirected graph (I, E) with {Ii, Ij} ∈ E
if and only if ∀u ∈ Ii, v ∈ Ij : {u, v} ∈ E. That is, the vertices of the critical
independent set graph represent the critical independent sets and two vertices are
adjacent if and only if the corresponding critical independent sets together form
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a biclique. The critical independent set graph is defined in analogy to the critical

clique graph which plays a decisive role in a kernelization of Cluster Editing [22].
A bipartite graph G = (X,Y,E) is called a chain graph if the neighborhoods of

the vertices in X form a chain [36]. That is, there is an ordering of the vertices in X,
say x1, x2, . . . , x|X|, such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(x|X|). It is easy to see
that the neighborhoods of Y also form a chain if G is a chain graph. Moreover,
a bipartite graph is a chain graph if and only if it is 2K2-free [36] (a 2K2 is the
graph that consists of two independent edges). Since every M-graph contains an
induced 2K2, the set of chain graphs is contained in the class of M-free graphs.
One of our data reduction rules is based on identifying and reducing the size of
subgraphs of the input graphs that are chain graphs and additionally have a special
neighborhood structure.

We use the following notation concerning rooted trees. A vertex of a tree is
called node. For a rooted tree T let L(T ) denote the leaves of T (that is, the nodes
of degree one). The nodes in V (T )\L(T ) are denoted as inner nodes. The root of T
is denoted by r(T ). Moreover, for a node v ∈ V (T ), the maximal subtree rooted
at v is denoted by Tv. We refer to a child of a node v as leaf child of v if it is a leaf;
otherwise, it is called non-leaf child of v. We speak of the leaves (inner nodes) of a
forest to refer to the union of the leaves (inner nodes) of the trees of the forest.

Induced M-graphs and M-freeness. Recall that a bipartite graph G = (Vc, Vt, E) is
called M-free if it does not contain an induced M-graph. An induced M-graph
is denoted by a 5-tuple (tl, cl, tm, cr, tr), where cl, cr ∈ Vc and tl, tm, tr ∈ Vt. Two
c-vertices cl and cr are in conflict if there exists an induced M-graph containing
both cl and cr. Clearly, for an induced M-graph (tl, cl, tm, cr, tr) we have tl ∈
NG(cl) \ NG(cr), tm ∈ NG(cl) ∩ NG(cr) and tr ∈ NG(cr) \ NG(cl). Thus, two
vertices cl, cr ∈ Vc are in conflict if and only if

(NG(cl) \NG(cr) 6= ∅) ∧ (NG(cl) ∩NG(cr) 6= ∅) ∧ (NG(cr) \NG(cl) 6= ∅).

If cl, cr ∈ Vc are in conflict, we write cl⊥cr. In summary, for a bipartite graph G =
(Vc, Vt, E), the following statements are equivalent:

– G is M-free,
– no two c-vertices are in conflict, and
– for each pair of c-vertices cl and cr, it holds that N(cl)∩N(cr) = ∅ or N(cl) ⊆
N(cr) or N(cr) ⊆ N(cl).

M-free graphs and rooted phylogenetic trees are closely related. Given a con-
nected and M-free graph G = (Vc, Vt, E), one can construct a rooted tree T with
node set Vt ∪ Vc and with L(T ) = Vt such that ti ∈ Vt is a descendant of cj ∈ Vc if
and only if ti ∈ NG(cj), see [9, 25, 33] for details. An example is given in Figure 2.

Parameterized algorithmics. Parameterized algorithmics [13, 17, 31] aims at a mul-
tivariate complexity analysis of problems. This is done by studying relevant prob-
lem parameters and their influence on the computational complexity. The deci-
sive question is whether a given parameterized problem is fixed-parameter tractable

(FPT) with respect to the parameter k. In other words, we ask for the existence
of a solving algorithm with running time f(k) ·poly(n) for some computable func-
tion f . A core tool in the development of parameterized algorithms that has been
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Fig. 2 An M -free graph G and the corresponding tree. In a connected M -free graph there
exists a “universal” c-vertex, that is, a vertex adjacent to all t-vertices. In this example, c1
is a universal vertex. This universal vertex is the root of the corresponding tree. Thus, one
can build a tree by applying the above argument recursively for the connected components of
G− c1.

recognized as one of the most important contribution of parameterized algorith-
mics to practical computing [6, 14, 24, 27, 31] is polynomial-time preprocessing
by data reduction rules, often yielding a problem kernel. Herein, the goal is, given
any problem instance G with parameter k, to transform it in polynomial time into
a new instance G′ with parameter k′ such that the size of G′ is bounded from
above by some function only depending on k, k′ ≤ k, and (G, k) is a yes-instance
if and only if (G′, k′) is a yes-instance. We call a data reduction rule correct if the
new instance after an application of this rule is a yes-instance if and only if the
original instance is a yes-instance. An instance is called reduced with respect to a
set of data reduction rules if each of the data reduction rules has been exhaustively
applied.

3 A Universal Rule for Critical Independent Sets

In this section, we describe a polynomial-time data reduction rule that applies
to parameterized graph modification problems for a family of hereditary graph
properties. It is based on the modular decomposition of a graph and has been
applied to Bicluster Editing [34]. We use this reduction rule for obtaining a
kernel for MFCT, but we believe that it can be useful for other graph modification
problems as well. To this end, we show that this reduction rule can be applied to
a wide range of Π-Edge Modification problems, including MFCT.

The basic idea of the data reduction is to show that, for some graph properties,
vertices that belong to the same critical independent set are subject to the “same”
edge modifications. Therefore, large critical independent sets can be reduced. First,
we give a description of these graph properties.

Let Π be a hereditary graph property. We call Π critical independent set preserv-

ing (cisp) whenever for all forbidden induced subgraphs F of Π, there are no two
vertices u, v ∈ V (F ) that belong to the same critical independent set in F (that
is, all critical independent sets of F have size one). These forbidden subgraphs
include for example all paths of length at least four and cycles of length 6= 4. Note
that formally M-freeness is not a graph property because it is not invariant under
graph isomorphism: An M-graph has its first vertex in Vt. Therefore, exchanging Vt
and Vc may transform an M-free graph into a graph that contains an M-graph as
induced subgraph and vice versa. Nevertheless, all vertices in an induced M-graph
have different neighborhoods. Therefore, the following lemmas and reduction rule
also apply directly to MFCT.
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First, we show that cisp graph properties are closed under a certain vertex-
addition operation.

Lemma 1 Let G = (V,E) be a graph fulfilling a cisp graph property Π. Let G′ be the

graph that results by adding to G a new vertex x 6∈ V and making it adjacent to NG(v)
for an arbitrary vertex v ∈ V . Then, G′ also fulfills Π.

Proof Let G′ be the graph that is obtained by adding x to G and inserting all edges
between x and NG(v) for some v ∈ V . We prove the lemma by showing that G′

does not contain a forbidden induced subgraph.
First, since G has the graph property Π, there is no forbidden induced sub-

graph G′[S] such that x ∈ S and v 6∈ S. Otherwise, the vertex set {v} ∪ (S \ {x})
would induce a forbidden subgraph in G, contradicting the assumption that G has
property Π. Second, since v and x are part of a critical independent set and Π is
cisp, there is no forbidden induced subgraph that contains both v and x. There-
fore, G′ has property Π. ut

Using Lemma 1, we can show that for graph modification problems for cisp
graph properties there is an optimal solution that “treats” the vertices of any
critical independent set equally. This type of solution is formally defined as follows.

Definition 2 A solution S for an instance (G, k) of Π-Edge Modification is called
regular if every critical independent set of G is contained in a critical independent
set of G∆S.

In other words, if S is regular then two vertices that have an identical open neigh-
borhood in the input graph G also have an identical open neighborhood in G∆S.

Lemma 2 Let Π be a cisp graph property and let G = (V,E) denote an undirected

graph. Moreover, let S denote a solution for Π-Edge Modification on G and let X

denote the set of vertices affected by S. Then, there exists a solution S∗ such that

– |S∗| ≤ |S|,
– S∗ is regular,

– X∗ ⊆ X, where X∗ denotes the set of vertices affected by S∗.

Proof Assume that there exists a critical independent set I of G that is not con-
tained in a critical independent set in G∆S. We show that, by a local modification,
one can find a graph G′ = (V,E′) fulfilling Π such that

1. the number of edge modifications to transform G into G′ is at most the number
of edge modifications to transform G into G∆S, that is, |E∆E′| ≤ |S|,

2. I is contained in a critical independent set in G′,
3. for each critical independent set I∗ of G the number of critical independent

sets of G′ intersecting with I∗ is at most the number of critical independent
sets of G∆S intersecting with I∗, and

4. the set of affected vertices in G′ is a subset of X.

By Condition 3, this local modification step can be applied iteratively until the
solution is regular. Moreover, by Condition 4 the set of affected vertices in the
resulting graph is a subset of X.
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First, we formally specify the modification. Then, we show that the above con-
ditions are fulfilled. Let I1, I2, . . . , I` denote the critical independent sets in G∆S

with Ii ∩ I 6= ∅, 1 ≤ i ≤ `. Observe that ` > 1. For a vertex w ∈ I let Sw de-
note the set of edge modifications from S involving w and vertices in V \ I, that
is, Sw := {{w, x} ∈ S | x ∈ V \ I}. Let v ∈ I such that |Sv| is minimal and assume
without loss of generality that v ∈ I1. Build a graph G′ as follows from G∆S. First,
remove all vertices in I \ {v} from G∆S. Then, add the vertices in I \ {v} step-by-
step making each vertex adjacent to the vertices in the current open neighborhood
of v. Let S′ := E∆E′ and note that G′ = G∆S′.

By Lemma 1, G′ fulfills Π. To prove Condition 1, we show that |S′| ≤ |S|.
Note that in the construction above we “change” only edges incident with the
vertices in I and, hence, G′[V \ I] is identical to G∆S[V \ I]. Moreover, since each
vertex w ∈ I \ I1 gets the same closed neighborhood as v (more specifically, the
vertices in NG∆S(v) \ I), we have to spend at most |Sv| edge modifications for
every w ∈ I \ {v} (instead of at least |Sw|). Since |Sv| ≤ |Sw| by the choice of v, it
follows that |S′| ≤ |S|.

Condition 2 follows directly from the fact that by construction all vertices in I

have the same open neighborhood in G′ (namely, NG∆S(v) \ I).
Next, we show that Condition 3 is fulfilled. To this end, note that deleting

a vertex does not increase the number of critical independent sets of a graph.
Moreover, observe that two nonadjacent vertices with an identical neighborhood
have an identical neighborhood after adding a vertex and making it adjacent to
the neighbors of an existing vertex. Hence, for each critical independent set I∗

of G the number of critical independent sets of G intersecting with I∗ is at most
the number of critical independent sets of G′ intersecting with I∗.

Clearly, by construction a vertex w not affected by S is not affected by S′

implying Condition 4. ut

Note that since the modification operations in the proof of Lemma 2 can be per-
formed in polynomial time, we can compute a regular solution from a given (arbi-
trary) solution in polynomial time.

Protti et al. [34] devised the following data reduction rule for Bicluster Edit-

ing. With Lemma 2 at hand, we can show that this rule is correct for all cisp graph
properties.

Rule 1 Let I ⊆ V be a critical independent set. If |I| > k+1, then delete |I|− (k+1)
arbitrary vertices from I.

Lemma 3 Rule 1 is correct and can be exhaustively applied in O(|V |+ |E|) time.

Proof By Lemma 2, we know that if we modify an edge incident with a vertex in
a critical independent set I, then we must perform the same edge modification to
any other vertex in I. That is, as long as |I| > k, a solution of size at most k does
not modify any edge incident with a vertex in I. Protti et al. [34] have shown that
Rule 1 can be exhaustively applied in O(|V |+ |E|) time. ut

We can apply Rule 1 for MFCT since the graph property of being M-free
is critical independent set preserving: all vertices in an induced M-graph have
different neighborhoods. This general data reduction rule also applies to the Com-

pletion and Deletion version of a Π-Edge Modification problem for a cisp
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graph property Π. Examples for graph modification problems to which this rule
can be applied are Chain Deletion and Co-trivially Perfect Deletion.1

Bessy et al. [2] independently obtained a similar result. They considered graph
properties that are closed under “true twin addition”. More specifically, a graph
property Π is closed under true twin addition if for any graph G fulfilling Π adding
a vertex and making it adjacent to each vertex in N [v] for some vertex v ∈ V (G),
yields a graph that also fulfills Π. This true twin addition operation is similar to
the vertex addition operation applied in Lemma 1. The difference is that in the
case of “true twin addition” the new vertex is made adjacent to all vertices in the
closed neighborhood of an existing vertex, whereas in Lemma 1 the new vertex
is made adjacent to all vertices in the open neighborhood of an existing vertex.
Bessy et al. [2] showed that for graph properties closed under true twin addition
there is a solution for the corresponding edge modification problem such that two
adjacent vertices with an identical closed neighborhood in the input graph also
have an identical closed neighborhood in the modified graph2. Hence, a reduction
rule similar to Rule 1 applies for graph properties closed under true twin addition.
For a discussion on graph properties generalizing cisp graph properties and graph
properties closed under true twin addition and further corresponding generalized
data reductions rules we refer to [35, Chapter 3.4].

Note that for Bicluster Editing this data reduction rule (together with the
trivial rule to remove all connected components that are already biclusters) yields
a problem kernel with O(k2) vertices [34]. For most cisp graph properties, however,
these two rules are not sufficient to obtain a kernel. This is also the case for MFCT.
Hence, in Section 5, we present further more intricate rules specific to MFCT.

4 A Decomposition Property

In this and the following sections, we focus on the MFCT problem. Here, we
show that, given a set C of c-vertices such that no vertex in C is in conflict with
any c-vertex outside of C, the conflicts involving the vertices in C can be resolved
independently from the conflicts not involving vertices in C. This fact is used to
prove the correctness of one of our data reduction rules in Section 5 and to identify
a polynomial-time solvable special case of MFCT in Section 7 that is the basis for
an improved search tree algorithm.

For an input graph G = (Vc, Vt, E), we consider the conflict graph G⊥ = (Vc, F )
with vertex set Vc and edge set F := {{c′, c′′} | c′, c′′ ∈ Vc ∧ c′⊥c′′}. Roughly
speaking, we show that for each connected component of the conflict graph, the
conflicts can be resolved independently. To show this property, we need the fol-
lowing lemma. Throughout this section, we identify a connected component by its
vertex set.

Lemma 4 Let C1 and C2 be two connected components of G⊥ with NG(C1)∩NG(C2) 6=
∅. Then, either

1 Kernelization results for these problems have been obtained by Guo [21].
2 Note that two vertices with the same open neighborhood have the same closed neigh-

borhood in the complement graph and vice versa. In this sense, our results can be seen as
equivalent to the result of Bessy et al. [2] when considering the graph property defined by the
complements of the forbidden induced subgraphs in the complement graph.
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– for each a ∈ C1 it holds that NG(C2) ⊆ NG(a) or NG(a) ∩NG(C2) = ∅, or

– for each b ∈ C2 it holds that NG(C1) ⊆ NG(b) or NG(b) ∩NG(C1) = ∅.

Proof Since NG(C1) ∩ NG(C2) 6= ∅, there is a vertex x ∈ C1 and a vertex y ∈
C2 with NG(x) ∩ NG(y) 6= ∅. Furthermore, because x and y are in two different
connected components of G⊥, they are not in conflict, and, thus NG(x) ⊆ NG(y)
or NG(y) ⊆ NG(x). Assume without loss of generality that NG(y) ⊆ NG(x). To
simplify the notation in the remainder of the proof, we use N(v) := NG(v) to
denote the open neighborhood of a vertex v in G.

First, we show N(C2) ⊆ N(x). Assume towards a contradiction that N(C2) \
N(x) 6= ∅. Let A := {y′ ∈ C2 | N(y′) ⊆ N(x)}. Note that y ∈ A and, hence, A 6=
∅. Furthermore, let B := C2 \ A and observe that B 6= ∅ by the assumption
that N(C2) \ N(x) 6= ∅. Since C2 is a connected component of G⊥ there is a
vertex y′ ∈ A and a vertex y′′ ∈ B being in conflict with each other. That is,

N(y′) \N(y′′) 6= ∅ and N(y′) ∩N(y′′) 6= ∅ and N(y′′) \N(y′) 6= ∅.

Since N(y′) ⊆ N(x) the above directly implies N(x)∩N(y′′) 6= ∅ and N(x)\N(y′′) 6=
∅. Furthermore, y′′ ∈ B implies N(y′′)\N(x) 6= ∅. As a consequence, x is in conflict
with y′′, contradicting the fact that x and y′′ are contained in distinct connected
components of G⊥.

Next, we prove that for each a ∈ C1 it holds that N(C2) ⊆ N(a) or N(a) ∩
N(C2) = ∅. To this end, consider the following partition of C1:

C⊇,∅1 := {a ∈ C1 | N(a) ⊇ N(C2) or N(a) ∩N(C2) = ∅},

C⊂1 := {a ∈ C1 | N(a) ⊂ N(C2)},

Cr1 := C1 \ (C⊇,∅1 ∪ C⊂1 ).

Note that x ∈ C⊇,∅1 , and, thus, C⊇,∅1 6= ∅. To prove the above claim, we show
that C⊂1 ∪C

r
1 = ∅. Assume towards a contradiction that C⊂1 ∪C

r
1 6= ∅. We distinguish

two cases based on whether Cr1 = ∅ or not.

Case 1: Cr1 = ∅. From assumption C⊂1 ∪ C
r
1 6= ∅ it follows that C⊂1 6= ∅.

Furthermore, note that no vertex in C⊂1 is in conflict with a vertex in C⊇,∅1 . Since

C⊇,∅1 6= ∅ and C⊂1 6= ∅, this implies that G⊥[C1] consists of at least two connected
components; a contradiction.

Case 2: Cr1 6= ∅. Let q ∈ Cr1 be arbitrarily chosen. Since N(q) \ N(C2) 6= ∅
by the definition of Cr1 and q is not in conflict with any vertex in C2, for every
vertex y′ ∈ C2 we have either N(y′) ⊆ N(q) or N(y′) ∩ N(q) = ∅. Let Y := {y′ ∈
C2 | N(y′) ⊆ N(q)} and Z := {y′ ∈ C2 | N(y′) ∩ N(q) = ∅}. Note that C2 =
Y ∪ Z, Y 6= ∅ (since N(q) ∩ N(C2) 6= ∅), and Z 6= ∅ (since N(C2) \ N(q) 6= ∅).
Moreover, N(Y ) ∩ N(Z) = ∅ and, hence, no vertex in Y is in conflict with a
vertex in Z. Thus, graph G⊥[C2] consists of at least two connected components; a
contradiction. ut

The following proposition now states the decomposition property. Recall that
a solution S for an instance (G, k) is regular if every critical independent set of G
is contained in a critical independent set of G∆S.
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Proposition 1 Let C1, C2, . . . , C` denote the connected components of G⊥ and de-

fine Gi := G[Ci ∪NG(Ci)]. Let Si denote a regular optimal solution for Gi, 1 ≤ i ≤ `.
Then, S :=

⋃`
i=1 Si is an optimal solution for G.

Proof The proof is organized as follows. First, we show that |S| is a lower bound
for an optimal solution, then we show that S is a solution, that is, G∆S is M-free.

First, we show that
∑`
i=1 |Si| is a lower bound for the size of an optimal solution

for G (note that |S| =
∑`
i=1 |Si| since all Si’s are pairwise disjoint). To this end,

observe that for every solution S′ clearly S′i := S′∩{{vc, vt} | vc ∈ Ci, vt ∈ NG(Ci)}
is a solution for Gi. Moreover, |Si| ≤ |S′i| since Si is an optimal solution for Gi.
Since all S′i’s are pairwise disjoint, we thus have |S| ≤ |S′|.

Second, we show that G∆S is M-free. Assume towards a contradiction that
there are two c-vertices c1 and c2 that are in conflict in G∆S. Without loss of
generality, let C1 be the connected component of G⊥ containing c1 and C2 be
the connected component of G⊥ containing c2. Since NG∆S(c1) ∩ NG∆S(c2) 6= ∅
and all edge insertions of S incident with c1 and c2 are between c1 and NG(C1)
and c2 and NG(C2), respectively, it follows that NG(C1) ∩ NG(C2) 6= ∅. Thus,
according to Lemma 4, we can assume without loss of generality that for ev-
ery x ∈ C2 it holds that either NG(C1) ⊆ NG(x) or NG(x) ∩ NG(C1) = ∅. As
a consequence, NG(C1) ⊆ NG(C2). Let C2,a := {x ∈ C2 | NG(C1) ⊆ NG(x)}
and C2,b := {x ∈ C2 | NG(C1) ∩ NG(x) = ∅}. By Lemma 4, C2 = C2,a ∪ C2,b.
Hence, NG(C1) belongs to a critical independent set in G2: for every vertex t ∈
NG(C1) it holds that NG2

(t) = C2,a. Let t1, t1,2, t2 denote three t-vertices that,
together with c1 and c2, induce an M-graph in G∆S. Without loss of generality,
assume that t1 ∈ NG∆S(c1) \ NG∆S(c2), t1,2 ∈ NG∆S(c1) ∩ NG∆S(c2), and t2 ∈
NG∆S(c2) \ NG∆S(c1). Since both t1 and t1,2 are neighbors of c1 in G∆S and
all edge modifications involving vertices in C1 are between C1 and NG(C1) we
have {t1, t1,2} ⊆ NG(C1). Finally, observe that NG(C1) is not a critical indepen-
dent set in G2∆S2 since t1 6∈ NG2∆S2

(c2) but t1,2 ∈ NG2∆S2
(c2): this is a contra-

diction to the assumption that S2 is regular since NG(C1) is a critical independent
set in G2. ut

5 Specific Data Reduction Rules for Minimum-Flip Consensus Tree

In this section, we present three further polynomial-time data reduction rules that
together with Rule 1 produce an O(k3)-vertex kernel.

The first data reduction rule is obvious.

Rule 2 Remove M-free connected components from the input graph.

Applying Rule 1 and a rule that removes all isolated bicliques already yields
an O(k2)-vertex kernel for Bicluster Editing [34]. However, for Minimum-Flip

Consensus Tree we need two further, more involved data reduction rules. The
main difference here is that for M-free graphs, we have a much more compli-
cated neighborhood structure than for P4-free bipartite graphs (so-called bicluster
graphs), where each connected component is a complete bipartite graph. That is,
in contrast to bicluster graphs, where each connected component contains at most
two critical independent sets, in case of M-free-graphs each connected component
might contain an unbounded number of critical independent sets.
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The next data reduction rule removes c-vertices from G that do not appear in
any M-graph. The correctness of this rule follows from the decomposition prop-
erty introduced in Section 4: a c-vertex c′ that is not in any conflict forms a
connected component {c′} in the conflict graph G⊥ whose associated MFCT–
subinstance G[{c′}∪NG(c′)] is M-free. Thus, according to Proposition 1, the sizes
of optimal solutions for G and G− c′ are equal.

Rule 3 Let G = (Vc, Vt, E) be a bipartite graph. If there exists a vertex c ∈ Vc that is

not in conflict with any other vertex in Vc, then remove c.

Lemma 5 Rule 3 is correct and can be exhaustively applied in O(|Vc|2 · |Vt|) time.

Proof As discussed above, the correctness of Rule 3 follows directly from Proposi-
tion 1.

For the running time consider the following. To test the adjacency of two
vertices in constant time, an adjacency matrix is built prior to the application of
the rule. Then, for each pair of vertices c1, c2 ∈ Vc, we can determine in O(|Vt|)
time whether they are in conflict by checking for each vertex t ∈ Vt, whether it is
adjacent to c1, c2, or both. Each c-vertex that is in conflict with some other vertex
is marked. Finally, unmarked vertices are removed from the graph. This can be
done in O(|E|) time. The overall running time is thus O(|Vc|2 · |Vt|). Note that
every vertex that is in conflict prior to the application of the rule is also in conflict
after the application of the rule. Thus, above procedure results in an instance that
is reduced with respect to Rule 3. ut

The structurally “deepest” reduction rule shrinks induced subgraphs of the in-
put graph that resemble “local” chain graphs. We call such a subgraph P -structure:

Definition 3 Let G = (Vc, Vt, E) be a bipartite graph. A pair (Pc, Pt) of vertex
sets Pc ⊆ Vc and Pt ⊆ Vt forms a P -structure if the following three properties are
fulfilled:

1. G[Pc ∪ Pt] is a chain graph,
2. for all c′, c′′ ∈ Pc it holds that NG(c′) \ Pt = NG(c′′) \ Pt, and
3. for all t′, t′′ ∈ Pt it holds that NG(t′) \ Pc = NG(t′′) \ Pc.

For a P -structure (Pc, Pt) of a bipartite graph G the neighborhoods in G of the
vertices in Pc (and Pt) also form a chain (since “outside” of the P -structure they
have the same neighbors). Moreover, note that G[Pc ∪ Pt] is M-free.

Our last reduction rule shrinks large P -structures. See Figure 3 for an example.

Rule 4 Let (G = (Vc, Vt, E), k) denote an MFCT-instance and let (Pc, Pt) be a P -

structure in G, where Pt = {t1, t2, . . . , t`} with NG(t1) ⊆ NG(t2) ⊆ . . . ⊆ NG(t`).

If ` > 2(k + 1), then remove Rt := {tk+2, tk+3, . . . , t`−(k+1)} from G.

Next, we prove the correctness of Rule 4. Subsequently, we show that it can
be applied in polynomial time.

Lemma 6 Rule 4 is correct.
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...

...

c2 c3 cpc1

tk+2 t`−(k+1)t1
...

t`
...

tk+1 t`−k
Rt

...

...

c2 c3 cpc1

tk+1 t`−kt1 t`
... ...

Fig. 3 Illustration of the application of Rule 4. The edges within the P -structure are colored
black and the edges between a vertex of the P -structure and a vertex outside the P -structure
are colored grey. Rule 4 removes all but the first and last k + 1 t-vertices of the P -structure.

Proof Let G = (Vc, Vt, E), Pc, Pt, and Rt be specified as in Rule 4. Let Pc =
{c1, c2, . . . , cp}. Since (Pc, Pt) forms a P -structure, we can assume that NG(t1) ⊆
NG(t2) ⊆ . . . ⊆ NG(t`) and NG(c1) ⊇ NG(c2) ⊇ . . . ⊇ NG(cp). Furthermore,
let G′ := G−Rt denote the reduced graph.

For the correctness of Rule 4, we prove the following.

Claim: (G, k) is a yes-instance ⇐⇒ (G′, k) is a yes-instance.

“⇒”: This direction follows directly from the fact that M-freeness is a hereditary
graph property.
“⇐”: Given a solution S′ of size at most k for G′, we show that one can construct
a solution of size at most k for G. First, note that since |S′| ≤ k there exists an i

with 1 ≤ i ≤ k+ 1 such that ti is not involved in any edge modification in S′, that
is, NG′(ti) = NG′∆S′(ti). Analogously, there is a j with `− k ≤ j ≤ ` such that tj
is not involved in any edge modification in S′, that is, NG′(tj) = NG′∆S′(tj).
Note that NG′(ti) ⊆ NG′(tj) and, hence, NG′∆S′(ti) ⊆ NG′∆S′(tj). Furthermore,
let T := {ti+1, ti+2, . . . , tj−1} and T ′ := T \ Rt. Consider the edge modification
set S′′ := S′ \ ET ′,Vc

. In other words, S′′ contains all edge modifications from S′

except those involving a vertex from T ′. Clearly, S′′ is a solution of size at most k
for G − T = G′ − T ′. We show that from S′′ one can build a solution of size
at most k for G. To this end, we distinguish the cases that NG(ti) = NG(tj)
and NG(ti) ⊂ NG(tj).

Case 1: NG(ti) = NG(tj). This condition implies that NG(t′) = NG(ti) =
NG(tj) for every t′ ∈ T ′ ∪ Rt since NG(ti) ⊆ NG(t′) ⊆ NG(tj) and NG(ti) =
NG(tj). That is, in G∆S′′, every vertex t′ ∈ T ′ ∪ Rt has the same neighborhood
as ti and tj (since ti, tj , and t′ are not involved in any edge modification in S′′)
and, as a consequence of Lemma 1, G∆S′′ is M-free (observe that G∆S′′ results
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from (G′ − T ′)∆S′′ by adding the vertices in T step-by-step, making each vertex
adjacent to every vertex in NG(ti)). Hence, S′′ is a solution of size at most k for G.

Case 2: NG(ti) ⊂ NG(tj). We need some observations on the structure of
G′ − T ′ and (G′ − T ′)∆S′′.

First, we show thatNG(tj)\NG(ti) is part of a critical independent set in G′−T ′.
By NG(ti)\Pc = NG(tj)\Pc (Condition 3 of Definition 3), it follows that NG(tj)\
NG(ti) ⊆ Pc. Hence, all vertices from NG(tj) \NG(ti) have the same neighbors in
Vt \Pt in G′ − T ′ according to Condition 2 of Definition 3. Moreover, every vertex
in NG(tj) \ NG(ti) is nonadjacent to all vertices in {t1, . . . , ti} since NG(t1) ⊆
. . . ⊆ NG(ti) ⊂ NG(tj) and is adjacent to all vertices in {tj , . . . , t`} since NG(ti) ⊂
NG(tj) ⊆ . . . ⊆ NG(t`). Thus, all vertices in NG(tj) \ NG(ti) have an identical
neighborhood in G′ − T ′.

Thus, by Lemma 2, there is a solution S of size at most k for G′ − T ′ = G− T
such that NG(tj) \NG(ti) is contained in a critical independent set in (G− T )∆S
and neither ti nor tj are involved in any edge modification from S.

Next, we argue that GS := G∆S is M-free. Assume towards a contradic-
tion that GS contains an M-graph. We show that then GS contains an M-graph
(tl, cl, tm, cr, tr) such that

exactly one of tl and tr is contained in T and tm 6∈ T .

From the existence of such an M-graph we then derive a contradiction to the fact
that (G − T )∆S is M-free. To prove the existence of an M-graph as described
above, consider an arbitrary M-graph (t∗l , c

∗
l , t
∗
m, c
∗
r , t
∗
r) in GS . First, we show that

not both of t∗l and t∗r are contained in T . Observe that t∗l has a neighbor not
contained in NGS

(t∗r) (namely c∗l ), and, vice versa, t∗r has a neighbor not contained
in NGS

(t∗l ) (namely c∗r). Since, however, the neighborhoods of the vertices in T

form a chain in GS for any two vertices tx, ty ∈ T either NGS
(tx) ⊆ NGS

(ty) or
NGS

(ty) ⊆ NGS
(tx). Thus not both of t∗l and t∗r can be contained in T .

Next, assume that t∗m ∈ T . We show that then c∗l , c
∗
r , t
∗
l , t
∗
r and tj (instead

of t∗m) induce an M-graph. Since t∗m ∈ T it holds that NGS
(t∗m) ⊆ NGS

(tj), imply-
ing t∗r 6= tj and t∗l 6= tj . Thus, since tj is adjacent to c∗l and c∗r in GS (this follows
from NGS

(t∗m) ⊆ NGS
(tj)) the vertices c∗l , c

∗
r , t
∗
l , t
∗
r , and tj (instead of t∗m) induce

an M-graph in GS .
In summary, there is an M-graph (tl, cl, tm, cr, tr) in GS such that not both tl

and tr are contained in T and tm 6∈ T . Since (G− T )∆S is M-free, every M-graph
in GS contains at least one vertex from T . Thus, either tl ∈ T or tr ∈ T . Without
loss of generality assume that tl ∈ T .

Finally, note that cr 6∈ NGS
(ti) because cr 6∈ NGS

(tl) ⊇ NGS
(ti). Moreover,

note that cl ∈ NGS
(tj), since NGS

(tl) ⊆ NGS
(tj). We distinguish the two cases cl ∈

NG(ti) and cl ∈ NG(tj) \NG(ti) and in each case derive a contradiction.
Case 2.1: cl ∈ NG(ti). Then, {ti, cl, tm, cr, tr} induces an M-graph not con-

taining a vertex from T because cl ∈ NGS
(ti) (since cl ∈ NG(ti) by the case condi-

tion) but {ti, cr} 6∈ E(GS) (since cr 6∈ NGS
(ti)). This contradicts the assumption

that (G− T )∆S is M-free.
Case 2.2: cl ∈ NG(tj) \NG(ti). Recall that by the discussion above tr, tm 6∈ T

and cr 6∈ NG(ti). Further, we can assume that cr is not contained in NG(tj)\NG(ti);
otherwise, since NG(tj) \ NG(ti) forms a critical independent set in (G − T )∆S
and tr, tm 6∈ T , it would follow that cl and tr are adjacent (however, tr ∈ NGS

(cr)\
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NGS
(cl)). Hence, cr 6∈ NG(tj) and, since cr is adjacent to both tm and tr, it follows

that tm 6= tj and tr 6= tj . Thus, since cl ∈ N(tl) ⊆ N(tj) (by the case condition)
but cr 6∈ NG(tj) the vertex set {tj , cl, tm, cr, tr} induces an M-graph in GS not
containing any vertex from T . This contradicts the M-freeness of (G− T )∆S. ut

Finally, we show that Rule 4 can be applied in polynomial time.

Lemma 7 A P -structure (Pc, Pt) such that |Pt| is maximal can be found in O(|Vc|2 ·
|E|) time.

Proof Assume that G contains a P -structure (Pc, Pt) where Pc = {c1, c2, . . . , cp}
and N(c1) ⊇ N(c2) ⊇ . . . ⊇ N(cp). We show that given the two vertices c1, cp ∈
Pc we can find a P -structure (C, T ) with C = Pc such that |T | is maximal in
O(|E|) time. Hence, by trying all pairs c′, c′′ ∈ Vc we find a P -structure (Pc, Pt) for
which |Pt| is maximal in O(|Vc|2 ·|E|) time. We distinguish the cases N(c1) = N(cp)
and N(c1) ⊃ N(cp).

Case 1: N(c1) = N(cp). Any two vertices in Pc have an identical neighbor-
hood. Hence, we can assume that Pc = I, where I denotes the critical independent
set containing c1 and cp. Furthermore, since Pc is a critical independent set, Def-
inition 3 implies that Pt is a critical independent set, too. Moreover, it is not
hard to verify that I together with any critical independent set in N(c1) forms
a P -structure. Note that the set of all critical independent sets of a graph can
be computed in O(|E|) time [29]. Hence, one can find a P -structure (I, Pt) such
that |Pt| is maximal in O(|E|) time.

Case 2: N(c1) ⊃ N(cp). We use the following notation. For two c-vertices c′, c′′

with N(c′′) ⊆ N(c′) let

S(c′, c′′) := {x ∈ Vc | N(c′′) ⊆ N(x) ⊆ N(c′)},

T ′(c′, c′′) := N(c′) \N(c′′),

Cout(c
′, c′′) := N(T ′(c′, c′′)) \ S(c′, c′′),

T ′′(c′, c′′) := {t ∈ N(c′′) | N(t) = (S(c′, c′′) ∪ Cout(c′, c′′))}.

Let (Pc, Pt) denote a P -structure of G where Pc = {c1, c2, . . . , cp} with N(c1) ⊇
N(c2) ⊇ . . . ⊇ N(cp) and N(c1) ⊃ N(cp). We show that in this case, (Pc, Pt) is
uniquely determined by c1 and cp. More precisely, we show the following.

Claim: If (Pc, Pt) is a P -structure where |Pt| is maximal, then Pc = S(c1, cp)
and Pt = T ′(c1, cp) ∪ T ′′(c1, cp).

First, we show that Pc = S(c1, cp). From the definition of a P -structure, it follows
directly that Pc ⊆ S(c1, cp). Hence, it remains to show that S(c1, cp) ⊆ Pc. Assume
towards a contradiction that there exists a vertex x ∈ S(c1, cp) \ Pc. Note that
since N(c1)\Pt = N(cp)\Pt (Condition 2 of Definition 3) it holds that T ′(c1, cp) ⊆
Pt. Furthermore, we can assume that x has not the same neighborhood as c1
or cp: since (Pc, Pt) is maximal, every vertex with the same neighborhood as c1
or cp belongs to Pc. Thus, N(c1) ⊃ N(x) ⊃ N(cp), and, consequently, there is a
vertex t′ ∈ N(x) \N(cp) and a vertex t′′ ∈ N(c1) \N(x). Clearly, t′, t′′ ∈ T ′(c1, cp)
and, thus, t′, t′′ ∈ Pt. Since by assumption x 6∈ Pc, it holds that x ∈ N(t′) \ Pc but
x 6∈ N(t′′) \ Pc; a contradiction to Condition 3 of Definition 3.

Second, we show that Pt = T ′(c1, cp)∪T ′′(c1, cp). As argued above, T ′(c1, cp) ⊆
Pt and, thus, it remains to show that Pt \ T ′(c1, cp) = T ′′(c1, cp). Observe that
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Cout(c1, cp) = N(t) \ Pc for each vertex t ∈ Pt since T ′(c1, cp) ⊆ Pt, Pc = S(c1, cp),
and due to Condition 3 of Definition 3. Hence, Pt \ T ′(c1, cp) ⊆ T ′′(c1, cp), since
each vertex in Pt \ T ′(c1, cp) is adjacent to all vertices in Cout(c1, cp) ∪ S(c1, cp).
Finally, note that (Pc, T

′(c1, cp)∪T ′′(c1, cp)) is a P -structure. Thus, Pt = T ′(c1, cp)∪
T ′′(c1, cp) by the maximality of (Pc, Pt). This concludes the proof of the above
claim.

By the above claim, a P -structure (Pc, Pt) where Pc = {c1, c2, . . . , cp} with
N(c1) ⊇ N(c2) ⊇ . . . ⊇ N(cp) and N(c1) ⊃ N(cp) is uniquely determined by c1
and cp. Thus, it remains to show that computing the sets C := S(c′, c′′) and
T := T ′(c′, c′′)∪T ′′(c′, c′′) and testing whether the found subgraph is a P -structure
are doable in O(|E|) time.

To compute the set S(c′, c′′) proceed as follows. First, compute the sets N(c′)
and N(c′′) and check whether N(c′′) ⊆ N(c′). If so, in one iteration over E compute
for every c-vertex x the values a(x) := |N(c′) ∩ N(x)|, b(x) := |N(c′′) ∩ N(x)|,
and c(x) := |N(x) \ N(c′)|. Clearly, exactly if a(x) ≤ |N(c′)|, b(x) = |N(c′′)|,
and c(x) = 0, then x ∈ S(c′, c′′). Using similar ideas, it is straightforward to verify
that the sets T ′(c′, c′′) and T ′′(c′, c′′) can be computed in O(|E|) time.

Finally, we show that, given a tuple (Pc, Pt), it can be decided in O(|E|) time
whether it forms a P -structure. To this end, proceed as follows. First, compute the
sets T ′ := N(Pc) \Pt and C′ := N(Pt) \Pc. Note that then in one iteration over E
it is possible to check whether N(c) \ Pt = T ′ for each c ∈ Pc. Analogously, check
whether N(t) \ Pc = C′ for each t ∈ Pc. If this test is passed without conflicts it
remains to verify that the neighborhoods of the vertices in Pc form a chain. To this
end, sort the vertices in Pc in decreasing order of their degrees using bucket sort (in
linear time). Let Pc = {c1, . . . , cp} where deg(c1) ≥ . . . ≥ deg(cp). Clearly, by first
marking the neighbors of ci and then iterating over ci−1’s neighbors, it is possible to
test whether N(ci) ⊆ N(ci−1) in time O(deg(ci−1)). Hence, checking whether the
neighborhoods of the vertices in Pc form a chain is doable in O(

∑
deg(ci)) = O(|E|)

time. ut

Lemma 8 In O(|Vc|2|E|) time, Rule 4 can be applied once or it can be decided that

the instance is reduced with respect to Rule 4.

Proof By Lemma 7, a P -structure (Pc, Pt) such that |Pt| is maximal can be com-
puted in O(|Vc|2 · |E|) time. Note that only the size of |Pt| is important for the
decision whether Rule 4 applies. Thus, if |Pt| ≤ 2(k + 1) the instance is reduced
with respect to Rule 4. Otherwise, Rule 4 can be applied in O(|E|) time. Thus,
the overall running time is O(|Vc|2|E|). ut

6 Analysis of the Problem Kernel Size

In this section, we bound the maximum number of vertices in an instance that is
reduced with respect to Rules 1–4.

For the analysis of the problem kernel size, we make use of the representation of
M-free graphs as rooted trees. Recall that given a connected and M-free graph G =
(Vc, Vt, E), one can construct a rooted tree T with node set Vt∪Vc and with L(T ) =
Vt such that ti ∈ Vt is a descendant of cj ∈ Vc if and only if ti ∈ NG(cj), see [9, 25,
33] for details.
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c0 c2 c3 c4 c5 c6 c7 c8 c9c1

t0 t1 t2 t3 t4 {t0, t1}

{c3, c4}

{c8, c9}
{c6, c7}

{t2} {t3} {t4}

{c5}
{c0, c1, c2}

Fig. 4 An M -free graph G and the corresponding tree Tcis(G).

Note that the critical independent set graph of an M-free graph is M-free.
Hence, we can find a tree with the property that every leaf one-to-one corresponds
to a critical independent set of the t-vertices and every inner vertex one-to-one
corresponds to a critical independent set of the c-vertices. For a connected and
M-free graph G, we denote this tree by Tcis(G). Figure 4 shows an M-free graph G
together with Tcis(G).

The following easy observations are helpful in the analysis of the kernel size.

Observation 1 For an M-free graph G the following holds.

1. Every inner node of Tcis(G) has at most one leaf child.

2. Every inner node of Tcis(G) with at most one non-leaf child has exactly one leaf

child.

Now, we arrive at our main result.

Theorem 1 MFCT admits an O(k3)-vertex problem kernel. The kernelization runs

in O(|Vc|2 · |Vt| · |E|) time.

Proof Consider an instance (G = (Vc, Vt, E), k) that is reduced with respect to
Rules 1–4. We show that if (G, k) is a yes-instance, then the number of vertices
in Vc ∪ Vt is O(k3).

Assume that (G, k) is a yes-instance and let S denote an optimal solution of
size at most k for G. Moreover, let GS := G∆S. Recall that the vertices that are
involved in any edge modification of S are called affected. All other vertices are
called nonaffected. Let Xc denote the set of affected c-vertices and let Yc denote the
set of nonaffected c-vertices. Analogously, define Xt and Yt as the sets of affected
and nonaffected t-vertices, respectively. Since every edge modification involves a
c-vertex and a t-vertex, we have |Xc| ≤ k and |Xt| ≤ k. Hence, it remains to
bound |Yc ∪ Yt|.

Let GS,1, GS,2, . . . , GS,p denote the connected components of GS . For each i,
1 ≤ i ≤ p, let Tcis(GS,i) be the rooted tree corresponding to the critical independent
set graph of GS,i. Moreover, let T denote the forest comprising all Tcis(GS,i)’s.
Recall that the leaves of T one-to-one correspond to the critical independent sets
of Vt in GS and that the inner nodes of T one-to-one correspond to the critical
independent sets of Vc in GS . For a node z ∈ V (T ), let C(z) denote the set of
vertices contained in the critical independent set corresponding to z. Moreover,
for Z ⊆ V (T ), define C(Z) :=

⋃
z∈Z C(z). Finally, let T ′ := T − L(T ) denote the

subforest of T induced by the critical independent sets corresponding to the c-
vertices.
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For the analysis of the kernel size, we partition the set of inner nodes into three
sets A, B, and Q. The set A contains all inner nodes z of T for which at least one
of the following two holds: C(z)∩Xc 6= ∅ or z has a leaf child w with C(w)∩Xt 6= ∅.
Note that |A| ≤ 2k since there are at most 2k affected vertices. Moreover, let B be
the set of the inner nodes that are not contained in A and that have at least two
non-leaf children. Further, Q contains all inner nodes not contained in A ∪B. For
a set of inner nodes Z, let LZ denote the set of leaves incident with a vertex in Z.

First, we bound the number of the vertices contained in the critical independent
sets corresponding to the nodes in A ∪ B and LA ∪ LB . To this end, we show the
following.

1. For every inner node x ∈ B ∪Q , there exists at least one node y ∈ V (Tx) with
y ∈ A (recall that Tx denotes the maximal subtree of T rooted at v).

2. The cardinality of B is at most 2k.
3. The number of vertices contained in the critical independent sets corresponding

to the nodes in A ∪B ∪ LA ∪ LB is O(k2).

1.) Assume towards a contradiction that there is an inner node x ∈ B ∪Q such
that V (Tx)∩A = ∅. That is, no vertex in C(V (Tx)) is affected. Consider a vertex c′ ∈
C(x). We show that c′ is not contained in any conflict in G, contradicting the fact
that G is reduced with respect to Rule 3. First, for every c-vertex y in C(V (Tx)) it
holds that NG(y) ⊆ NG(c′) since NGS

(y) ⊆ NGS
(c′) and S does not affect c or y.

Second, for every c-vertex y in C(V (T )\V (Tx)) it holds that NGS
(c′)∩NGS

(y) = ∅
orNGS

(c′) ⊆ NGS
(y). As a consequence, since neither c′ nor any t-vertex inNGS

(c′)
is affected, it follows that NG(c′) ∩ NG(y) = ∅ or NG(c′) ⊆ NG(y). This means
that c′ is not contained in any conflict in G.

2.) Recall that the forest T ′ results from deleting all leaves of T . Since each
node of B has at least two non-leaf children in T , it has at least two children in T ′.
From 1.) it follows directly that the leaves of T ′ are contained in A and, hence,
their number is at most 2k. Since the number of inner nodes with at least two
children is bounded by the number of leaves, we arrive at the bound |B| ≤ 2k.

3.) First, note that |A∪B| ≤ 4k since A and B each have cardinality at most 2k.
Moreover, |LA ∪ LB | ≤ 4k since every inner node has at most one leaf child (see
Observation 1). For every node y ∈ A∪B∪LA∪LB , define C′(y) := C(y)\(Xc∪Xt)
and observe that C′(y) is part of a critical independent set in G since no vertex
in C′(y) is affected. Thus, since G is reduced with respect to Rule 1, it follows
that |C′(y)| ≤ k + 1. Putting all together, we obtain

|C(A ∪B ∪ LA ∪ LB)| ≤ |Xc|+ |Xt|+
∑

y∈A∪B∪LA∪LB

|C′(y)| ≤ 2k + 8k(k + 1).

So far, we have bounded the number of vertices in Xc∪Xt and C(A∪B∪LA∪LB)
by O(k2). It remains to bound the number of vertices contained in C(Q ∪ LQ).

Observe that each inner node contained in Q (and hence not contained in
A ∪ B) has exactly one non-leaf child since L(T ′) ⊆ A (see 2.) above). That is,
in the forest T ′ = T − L(T ) these vertices have degree two. Moreover, by Ob-
servation 1, each node contained in Q has exactly one leaf child. Recall that all
leaves of T ′ are contained in A and hence |L(T ′)| ≤ 2k. Consider a path P =
({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl, z}) in T ′ with yi ∈ Q for all 1 ≤ i ≤ l and x, z ∈
A ∪ B. Such a path is called a degree-two-path in the following since by the above
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{t1, t2}
{t3, t4}

{t5}

x

{c1, c2}
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{c4, c5}
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y2

y3

r

z

Tz
t1 t2 t3 t4 t5

c1 c2 c3 c4 c5

Fig. 5 A degree-two-path P and the corresponding chain graph. Herein, C(y1) = {c1, c2},
C(y2) = {c3}, C(y3) = {c4, c5}, and C(y4) = {c6}.

discussion degT ′(yi) = 2 for all 1 ≤ i ≤ l. Further, for every yi, let wi denote the
leaf child of yi in T . Note that in the forest T ′, there are at most 8k degree-two-
paths since L(T ′) ⊆ A and |A ∪ B| ≤ 4k. In the following, we bound the length of
each degree-two-path by 2(k + 1). Hence, for each such path we have

l∑
i=1

(|C(yi)|+ |C(wi)|) ≤ l · (2(k + 1)) ≤ (2(k + 2)) · 2(k + 1)

vertices in G. Adding up over the at most 8k degree-two-paths, this amounts
to 8k · 2(k+ 1)(2(k+ 2)) ≤ 32k(k+ 1)(k+ 2) vertices, yielding the bound of O(k3)
vertices in total.

Next, we bound the length of each degree-two-path. To this end, consider such
a degree-two-path P = ({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl, z}) in T ′, that is, x, z ∈
A∪B and yi ∈ Q for all 1 ≤ i ≤ l. Without loss of generality, we assume that yl is a
descendant of y1. For each yi let wi denote the one and only leaf child adjacent to yi.
See Figure 5 for an example. Let Pc :=

⋃l
i=1 C(yi) and Pt :=

⋃l
i=1 C(wi). We show

that (Pc, Pt) forms a P -structure in G. First, note that Pc ⊆ Vc and Pt ⊆ Vt. Recall
that by definition all vertices in Pc∪Pt are unaffected. Next, observe that G[Pc∪Pt]
forms a chain graph. This can be seen as follows. In GS a vertex in C(y1) is
clearly adjacent to all vertices in Pt, a vertex in C(y2) is adjacent to all vertices
in Pt \C(w1), a vertex in C(y3) is adjacent to all vertices in Pt \C({w1, w2}), and so
on. Hence, GS [Pc ∪Pt] is a chain graph and, since no vertex in Pc is involved in an
edge modification, we have that G[Pc∪Pt] forms a chain graph, too (see Figure 5).
Next, we show that Pc and Pt fulfill the second and third property of a P -structure.
First, every vertex in Pc is adjacent in GS to all vertices contained in the critical
independent sets corresponding to the leaves in Tz and, hence, for all c, c′ ∈ Pc,
we have NGS

(c) \ Pt = NGS
(c′) \ Pt. Since no vertex in Pc is affected, this implies

that NG(c)\Pt = NG(c′)\Pt for all c, c′ ∈ Pc. Second, every vertex t ∈ Pt is adjacent
in GS (and hence in G) to all c-vertices contained in a critical independent set on
the path from the root r to z. Hence, for any two vertices t, t′ ∈ Pt it holds
that NG(t) \ Pt = NG(t′) \ Pt. In summary, (Pc, Pt) forms a P -structure.

Finally, we show that l ≤ 2(k + 1). Assume towards a contradiction that l >
2(k + 1). This implies that |Pt| > 2(k + 1), too, since every yi has exactly one leaf
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child that corresponds to a critical independent set of Vt. Hence, |Pt| > 2(k + 1)
and thus all conditions to apply Rule 4 are fulfilled: a contradiction to the fact
that G is reduced.

To prove the running time bound, we assume that the data reduction rules are
applied as follows. First, we show that an instance reduced with respect to the
Rules 3 and 4 can be computed in O(|Vc|2 · |Vt| · |E|) time. To this end, proceed as
follows. Apply Rule 3 exhaustively. Then, check whether Rule 4 can be applied. If
not, the instance is reduced with respect to both rules. Otherwise, apply Rule 3
exhaustively again and subsequently check whether Rule 4 can be applied, and so
on. Note that Rule 4 is applied O(|Vt|) times since each time (except for the last
time) at least one t-vertex is removed. Hence, by Lemmas 5 and 8 one obtains a
graph that is reduced with respect to Rules 3 and 4 in O(|Vt|·(|Vc|2|Vt|+|Vc|2|E|)) =
O(|Vc|2|Vt||E|) time.

Finally, observe that applying Rule 2 and subsequently Rule 1 to a graph
reduced with respect to Rules 3 and 4 leaves a graph reduced with respect to
Rules 3 and 4. Thus, the running time is dominated by the application of Rules 3
and 4. Hence, the kernelization runs in O(|Vc|2 · |Vt| · |E|) time. ut

7 An O(3.68k)-size search tree

In this section, we present an improved search tree algorithm for Minimum-Flip

Consensus Tree. Basically, we use the same branching strategy as Böcker et
al. [5]. Our main achievement is that exploiting Proposition 1 allows us to stop
the branching process at an earlier stage.

For the presentation of our results, we use the following notation. Following
Böcker et al. [5], for two c-vertices ci, cj ∈ Vc we define X(ci, cj) := N(ci) \N(cj),
Y (ci, cj) := N(ci) ∩ N(cj), and Z(ci, cj) := N(cj) \ N(ci). Note that ci⊥cj if and
only if all three sets are nonempty. We use the concept of branching rules for the
presentation of our search tree algorithm. Given an instance (G, k), a branching
rule creates ` ≥ 1 subinstances (G1, k1), . . . , (G`, k`). A branching rule is correct
if (G, k) is a yes-instance if and only if (Gi, ki) is a yes-instance for some 1 ≤ i ≤ `.
Branching rules lead to a search algorithm by solving each of the created subin-
stances recursively, terminating the recursion when k ≤ 0 or none of the branching
rules applies. For a branching rule creating ` ≥ 2 subinstances, a branching vec-
tor is an `-tuple describing how the parameter is decreased in each subinstance.
Using standard branching analysis tools, a branching number can be computed
from the branching vector [31]. The branching number describes the base of the
(exponential) search tree size.

Böcker et al. [5] introduced a branching rule that, for two conflicting c-vertices ci
and cj , branches into all possibilities to make one of the sets X(ci, cj), Y (ci, cj),

and Z(ci, cj) empty. To this end, they branch into 2|X(ci,cj)|+2|Y (ci,cj)|+2|Z(ci,cj)|

cases. In each of the first 2|X(ci,cj)| branches, parameter k is decreased by |X(ci, cj)|,
in the each of the subsequent 2|Y (ci,cj)| branches parameter k is decreased by
|Y (ci, cj)|, and in each of the last 2|Z(ci,cj)| cases parameter k is decreased by
|Z(ci, cj)|. See [5] for any details and the correctness of this branching strategy. For
example, if |X(ci, cj)| = 3, |Y (ci, cj)| = 2 and |Z(ci, cj)| = 1 the branching vector
is (3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1) leading to a branching number of 3.68. Indeed,
using standard branching analysis tools it is easy to verify that the branching
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Fig. 6 The three cases for which new branching rules are designed.

number is at most 3.68 if the size of one of these sets is at least 3 and the size of
two of these sets is at least 2. Moreover, if |X(ci, cj)| = |Y (ci, cj)| = |Z(ci, cj)| = 2,
then the branching vector is (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) giving a branching number
of 3.47. Further, one can verify that the branching number is at most 3.47 if all of
these sets have size at least two.

The basic idea behind the improved search tree algorithm is as follows. We
will show that if for all conflicting c-vertices ci and cj it holds that |X(ci, cj)| =
|Z(ci, cj)| = 1, then MFCT can be solved in polynomial time. Moreover, for all
other cases we present branching rules with corresponding branching numbers
better than 3.68. To this end, we use the branching strategy introduced by Böcker
as long as it yields a branching number better than 3.68. For the remaining cases
we devise new, refined branching strategies.

Altogether, we use the following branching rules.

1. If there are two conflicting c-vertices ci, cj such at least one of the three sets
X(ci, cj), Y (ci, cj), and Z(ci, cj) has cardinality three and at least two of the
three sets X(ci, cj), Y (ci, cj), and Z(ci, cj) have cardinality at least two, or if
all three sets X(ci, cj), Y (ci, cj), and Z(ci, cj) have cardinality at least two,
then apply the branching strategy by Böcker et al. [5].

2. If there are two conflicting c-vertices ci, cj with |X(ci, cj)| = |Y (ci, cj)| = 1
and |Z(ci, cj)| > 1 (that is, ci has degree two), then proceed as follows. See
Figure 6 a) for notation. First, branch into the case to delete the edge {x1, ci}.
Second, branch into the case to add the edge {x1, cj}. Third, branch into the
case to delete the edge {y1, cj}. Fourth, branch into the case to delete all
edges {{zp, ci} | 1 ≤ p ≤ `}.

3. If there are two conflicting c-vertices ci, cj with |X(ci, cj)| = 1 and |Y (ci, cj)| =
|Z(ci, cj)| = 2, then proceed as follows. See Figure 6 b) for notation. First,
branch into the case to delete {x1, ci}. Second, branch into the case to add {x1, cj}.
Third, branch into the three cases to delete each time the two edges Sr,s :=
{{y1, cr}, {y2, cs}} for r ∈ {i, j} and s ∈ {i, j} with r = j or s = j. Fourth, branch
into the three cases to modify each time the two edges Sr,s := {{z1, cr}, {z2, cs}}
for r ∈ {i, j} and s ∈ {i, j} with r = j or s = j.

4. If there are two conflicting c-vertices ci, cj with |X(ci, cj)| = 2, |Y (ci, cj)| =
1, and |Z(ci, cj)| = 2, then proceed as follows. See Figure 6 c) for notation.
First, branch into the case to delete {y1, ci}. Second, branch into the case
to delete {y1, cj}. Third, branch into the two cases to modify each time the
two edges Sr,s := {{x1, cs}, {x2, cr}} for r ∈ {i, j} and s ∈ {i, j} with r 6= s.
Fourth, branch into the two cases to modify each time the two edges Sr,s :=
{{z1, cs}, {z2, cr}} for r ∈ {i, j} and s ∈ {i, j} with r 6= s.

In all branching rules, the parameter is decreased by the number of modified edges
in each branch.



22 Christian Komusiewicz, Johannes Uhlmann

The correctness of the new branching rules is based on the simple observation
that a degree-one c-vertex is not part of any induced M-graph, and, hence, can be
deleted according to Rule 3. This observation implies two important properties of
optimal solutions. First, every c-vertex c′ is involved in at most deg(c′) − 1 edge
modifications. Second, if a c-vertex c′ is involved in deg(c′)−1 edge modifications,
then we can assume that all these edge modifications are edge deletions and,
moreover, one can delete deg(c′)−1 arbitrary edges incident with c′. Summarizing,
we obtain the following.

Observation 2 Let c′ ∈ Vc and let t ∈ N(c′). Every optimal solution contains at

most degG(c′)− 1 edge modifications that are incident with c′. If there is a solution S

containing at least degG(c′) − 1 edge modifications incident with c′, then there is a

solution S′, |S′| ≤ |S| with {c′, t} ∈ S.

Lemma 9 The above branching rules are correct. The branching number of all branch-

ing rules is bounded from above by 3.68.

Proof For the correctness of Branching Rule 1 see Böcker et al [5]. The correct-
ness of the other three branching rules is based on Observation 2. If |X(ci, cj)| =
|Y (ci, cj)| = |Z(ci, cj)|, the branching number is at most 3.47 and if one of these
sets has cardinality three, one has cardinality two, and the one has cardinality
one, then the branching number is at most 3.68. Hence, the branching number of
Branching Rule 1 is at most 3.68.

Correctness of Branching Rule 2. By Observation 2, if there is a solution that
contains an edge modification involving ci, then we can assume that {ci, x1} is
deleted. The correctness follows by the fact that the branching rule branches into
all cases to make one of the sets X(ci, cj), Y (ci, cj), and Z(ci, cj) empty, omitting
the cases that ci is involved into a edge modification other than the deletion
of {ci, x1}. The branching vector of Branching Rule 2 is (1, 1, 1, x) with x > 1.
Hence, the branching number is bounded by 3.31.

Correctness of Branching Rule 3. By Observation 2, if there is a solution con-
taining {{y1, ci}, {y2, ci}} or {{z1, ci}, {z2, ci}}, then there exists a solution contain-
ing {x1, ci}. The case to that {x1, ci} is contained in the solution is considered by
the rule. Hence, the correctness of the rule follows from the fact that the branching
rule branches into all cases to make one of the sets X(ci, cj), Y (ci, cj), and Z(ci, cj)
empty, omitting the cases that ci is involved into two edge modification (not con-
taining {ci, x1}). The branching vector of Branching Rule 3 is (1, 1, 2, 2, 2, 2, 2, 2),
giving a branching number of 3.65.

Correctness of Branching Rule 4. By Observation 2, if there is a solution con-
taining {{x1, ci}, {x2, ci}}, {{z1, ci}, {z2, ci}}, {{x1, cj}, {x2, cj}}, or {{z1, cj}, {z2, cj}},
then there is a solution containing either {y1, ci} or {y1, cj}. Hence, these four cases
must not considered by branching rule 4. The branching vector of Branching Rule 4
is (1, 1, 2, 2, 2, 2), leading to a branching number of 3.24. ut

Next, we show that, by exploiting Proposition 1, an instance to which none
of these branching rules applies can be solved in polynomial time. A graph fulfilling
the property that for any two conflicting c-vertices ci and cj it holds that |X(ci, cj)| =
1 and |Z(ci, cj)| = 1, is called conflict regular in the following. It is easy to observe
that if none of the four branching rules applies, then the instance is conflict regu-
lar. We show that for conflict regular graphs MFCT can be solved in polynomial
time.
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An easy observation is that in a conflict regular graph any two conflicting
vertices have the same degree. The next lemmas describe the structure of conflict
regular graphs in more detail.

Lemma 10 Let G = (Vc, Vt, E) denote a conflict regular graph. Let c1 and c2 denote

two conflicting c-vertices of degree at least three. Let c′ ∈ Vc with N(c′) 6= N(c1). If c′

is in conflict with c2, then c′ is in conflict with c1.

Proof Consider a vertex c′ with c′⊥c2. Assume towards a contradiction that c′ is
not in conflict with c1. Since G is conflict regular, all three vertices have the same
degree and N(c′) ∩ Y (c1, c2) 6= ∅. Thus, since c′ is not in conflict with c1, it holds
that N(c′) ⊆ N(c1) or N(c1) ⊆ N(c′). Since N(c′) 6= N(c1), this is a contradiction
to the fact that all three vertices have the same degree. ut

Lemma 11 Let G = (Vc, Vt, E) denote a conflict regular graph and let C denote a

connected component of G⊥ with |C| ≥ 2 and degG(c) ≥ 3 for all c ∈ C. Then, one of

the following statements holds.

1. There is a set Y ⊆ NG(C) such that for any two vertices c, c′ ∈ C with NG(c) 6=
NG(c′) it holds that Y = Y (c, c′).

2. For all c ∈ C, it holds that |NG(C) \NG(c)| = 1.

Proof Let X1, . . . , X` denote the critical independent sets of G formed by the ver-
tices in C. Note that Lemma 10 implies that any two vertices from different Xi’s
are in conflict. Moreover, observe that if ` = 2, then the first statement of the
lemma holds. Hence, in the following, we focus on the case ` > 2.

Let c1 ∈ X1, c2 ∈ X2. Moreover, let C′ := {c ∈ C \ (X1 ∪ X2) | Y (c, c1) =
Y (c, c2) = Y (c1, c2)}.

First, consider the case that C′ 6= ∅. Assume without loss of generality that C′ =⋃s
i=3Xi for some s ≥ 3. We show that s = ` and, hence, the first statement

of the lemma holds for Y = Y (c1, c2). To this end, let c3 ∈ X3 and observe
that |NG(ci) \ (NG(cj) ∪ NG(ck))| = 1 for any three distinct i, j, k ∈ {1, 2, 3}.
Hence, |N(c1) ∪N(c2) ∪N(c3)| ≥ d+ 2, where d is the degree of the vertices in C

(recall that all vertices in C have the same degree). Assume towards a contra-
diction that s < ` and let c` ∈ X`. By inductively applying Lemma 10 it follows
that c` is in conflict with each of c1, c2, and c3. Note that since c` 6∈ C′ and G is
conflict regular it holds that |Y (c1, c2) \N(c`)| = 1 and, except for this vertex, c`
is adjacent to all vertices in N(c1) ∪ N(c2) ∪ N(c3); a contradiction to the fact
that degG(c`) = d.

Second, consider the case that C′ = ∅. That is, for every vertex c′ ∈
⋃`
i=3Xi it

holds that Y (c1, c2)\NG(c′) 6= ∅. By Lemma 10, c′ is in conflict with both c1 and c2
and, hence, deg(c1) = deg(c2) = deg(c′). Moreover, since G is conflict regular, c′

is adjacent to all but one vertex in NG(c1) and NG(c2). Altogether, this implies
that N(c′) ⊆ N(c1) ∪ N(c2) since c′ is nonadjacent to a common neighbor of c1
and c2. Hence, NG(C) ⊆ NG(c1)∪NG(c2) and since all vertices in C have the same
degree, the second statement of the lemma holds. ut

Proposition 2 MFCT can be solved in O(|Vc|2 · |Vt|) time for conflict regular graphs.

Proof Let (G = (Vt, Vc, E), k) denote an MFCT-instance where G is a conflict
regular graph. Moreover, let G⊥ denote the conflict graph of G. By Proposition 1,
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we can resolve the conflicts for every connected component of G⊥ independently.
Let C denote a connected component of G⊥. Clearly, all vertices of C have the
same degree in G. If all vertices have degree two, one can resolve all conflicts
between vertices in C by the computation of a maximum weight matching [5].

Hence, in the following we focus on the case that degG(c) = d ≥ 3 for all c ∈ C.
We use the following notation. Let G′ := G[C ∪NG(C)]. Moreover, let X1, . . . , X`
denote the critical independent sets of G′ formed by the vertices in C and assume
without loss of generality that |X1| ≤ . . . ≤ |X`|. We distinguish the cases that
either the first or the second statement of Lemma 11 is true. In both cases we
show how to construct a regular optimal solution for G′.

Case 1: The first statement of Lemma 11 holds. That is, there is a set Y

of t-vertices such that for any two vertices c, c′ ∈ C with NG(c) 6= NG(c′), we
have Y (c, c′) = Y . Note that |Y | = d − 1 > 1 and |N(c) \ Y | = 1 for all c ∈ C.
The structure of G′ is depicted in Figure 7. To resolve the conflicts between the
vertices in C delete the edges S′ :=

⋃`−1
i=1 EXi,N(Xi)\Y . Note that |S′| =

∑`−1
i=1 |Xi|

since |N(Xi) \ Y | = 1. Since NG′∆S′(Xi) = Y for all 1 ≤ i ≤ ` − 1 and Y ⊂
NG′∆S′(X`), all M-graphs in G′ := G[C ∪ N(C)] are destroyed by S′. Finally, we
argue that S′ is a regular optimal solution for G′. Observe that by construction for
each Xi any two vertices of Xi have an identical neighborhood in G′∆S′. In this
sense, S′ applies the “same” edge modifications to all vertices in Xi and, hence,
is regular. Moreover, since two vertices from different Xi’s are in conflict, we have
to modify the neighborhood structure of all but one Xi. Hence, for any Xi that is
affected, one has to spend at least |Xi|modifications (recall that each Xi is a critical
independent set and, hence, there is an optimal solution that applies the “same”
edge modifications to all vertices in Xi, see Lemma 2). Thus,

∑`−1
i=1 |Xi| = |S

′| is
a lower bound for the solution size since |X`| ≥ |Xi| for all 1 ≤ i ≤ `− 1.

Case 2: The second statement of Lemma 11 holds. That is, |N(C) \N(c)| = 1
for all c ∈ C. To resolve the conflicts between the vertices in C, add the edges S′ :=⋃`−1
i=1 EXi,N(C)\N(Xi). Note that |S′| =

∑`−1
i=1 |Xi| since |N(C) \N(Xi)| = 1. Since

NG′∆S′(Xi) = NG(C) for all 1 ≤ i ≤ ` − 1 and NG′∆S′(X`) ⊂ NG(C) all conflicts
within C are resolved. Analogously to Case 1, one can show that S′ is a regular
optimal solution for G′: Since two vertices from different Xi’s are in conflict, we
have to modify the neighborhood structure of all but one Xi (requiring at least |Xi|
edge modifications). Thus,

∑`−1
i=1 |Xi| is a lower bound for the solution size.

For the running time note the following. The conflict graph G⊥ can be built
in O(|Vc|2 · |Vt|) time. Moreover, when building G⊥ one can simultaneously check
whether the input graph is conflict regular.

Clearly, G⊥ has |Vc| vertices and at most |Vc|2 edges. Hence, the connected com-
ponents of G⊥ can be found in O(|Vc|2) time. Let C1, . . . , C` denote the connected
components of G⊥. Clearly, for each Ci all changes can be applied in O(|Ci| · |Vt|)
time. Hence, the total running time is bounded by O(|Vc|2 · |Vt|). ut

Combining Lemma 9 and Proposition 2 we arrive at the main result of this
section.

Theorem 2 Minimum-Flip Consensus Tree can be solved in O(3.68k · |Vc|2|Vt|)
time.

Proof To solve MFCT apply the above branching rules as long as possible. Note
that in O(|Vc|2 · |Vt|) time one can check whether one of the branching rules applies
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Y

. . .

t1 t2 t3 t`

C

X1 X2 X3 X`

Fig. 7 The structure of G′ := G[C ∪ N(C)] if the first statement of Lemma 11 holds. The
rectangular vertices represent critical independent sets of G′, the circular vertices represent
single vertices, and an edge represents all edges between the (sets) of vertices. Clearly, it is
optimal to delete the edges between Xi and ti for all but one Xi for which |Xi| is maximal to
destroy all M -graphs in G′.

and to apply the respective rule. Moreover, if none of the branching rules apply,
then the instance is conflict regular and, hence, can be solved in O(|Vc|2 · |Vt|)
time according to Proposition 2. Hence, for each search-tree node, all changes can
be applied in O(|Vc|2 · |Vt|) time. According to Lemma 9 this leads to a search-
algorithm with running time O(3.68k · |Vc|2|Vt|). ut

Applying the technique of interleaving [32] to our kernelization and the search
tree algorithm, we obtain an “additive FPT” algorithm for MFCT.

Corollary 1 MFCT can be solved in O(3.68k + |Vc|2 · |Vt| · |E|) time.

8 Outlook

There are numerous tasks for future research. Improving the polynomial running
time of our data reduction rules is desirable. Obviously, obtaining data reduction
rules that lead to a quadratic-vertex or linear-vertex kernel remains as an open
question. Moreover, studying edge-weighted problem variants would be theoreti-
cally interesting. Furthermore, it would be interesting to adapt our data reduction
to yield a full kernel (see [12]) for Minimum-Flip Consensus Tree.

Finally, recall that Minimum-Flip Consensus Tree is the problem to destroy—
by a minimum number of edge modifications—all induced paths on five vertices
(so-called P5’s) with the first vertex from Vt. For general graphs it has been recently
shown that the problem to destroy all P4’s, called P4-free Editing (also known
as Cograph Editing), admits a cubic vertex kernel whereas for l ≥ 7 it is very
unlikely that Pl-free Editing admits a polynomial-size problem kernel [20]. To
the best of our knowledge it is open whether P5-free Editing in general graphs
and P6-free Editing in bipartite graphs admit polynomial-size problem kernels.

Acknowledgments. We are grateful to Rolf Niedermeier, Jiong Guo, and to the
anonymous reviewers of FSTTCS ’08 and Algorithmica for discussions and com-
ments improving the presentation of this work.
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