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Abstract. Once having classified an NP-hard problem fixed-parameter
tractable with respect to a certain parameter, the race for the most
efficient fixed-parameter algorithm starts. Herein, the attention usually
focuses on improving the running time factor exponential in the considered
parameter, and, in case of kernelization algorithms, to improve the bound
on the kernel size. Both from a practical as well as a theoretical point
of view, however, there are further aspects of efficiency that deserve
attention. We discuss several of these aspects and particularly focus on
the search for “stronger parameterizations” in developing fixed-parameter
algorithms.

1 Introduction

Efficiency is the central concern of algorithmics. In parameterized algorithmics,
one tries to solve NP-hard problems in f(k) · nO(1) time, where k is a problem-
specific parameter (such as solution size), n is the size of the overall input, and
f is an arbitrary function only depending (exponentially) on the parameter k [16,
23, 38]. Thus, the first step in parameterized algorithm design is to show that
the considered problem is fixed-parameter tractable with respect to the chosen
parameter k. Fixed-parameter algorithms are fast in case k is small and f
grows “moderately”. Consequently, once a problem is classified as fixed-parameter
tractable, the race for the smallest function f(k) starts.1 There are many success
stories in this direction, including problems such as Vertex Cover [13] and
Undirected Feedback Vertex Set [11, 14]. Accompanied by these are similar
races for the problem kernel size of the considered problem, for instance see the
problems Cluster Editing [12] and again Undirected Feedback Vertex
Set [45]. Furthermore, there is an ongoing deep theoretical effort for proving
lower bounds (under complexity-theoretic assumptions) both for the f(k) in the
running time [24, 34] and the kernel size (polynomial vs non-polynomial) [8, 26].

In the two main lines of efficiency research in parameterized algorithmics
described above, however, polynomial factors in the running time mostly are
ignored. This is somewhat contrary to the fact that some key fixed-parameter
tractability results have been termed “linear time for constant parameter value”,
basically meaning that the underlying problem can be solved in time f(k) ·n. Two
examples in this direction are the “linear-time algorithms” for Treewidth [5]

1 See the web site on FPT races: http://fpt.wikidot.com/fpt-races
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and Crossing Number [31]. As to striving for linear-time algorithms for effective
data reduction, only recently the concept of “linear-time kernelization” gained
more attention [3, 4, 29]. Altogether, these are important subjects of study besides
the established races described in the beginning.

The focus of this article, however, is on another, practically and theoretically
fruitful aspect in the race for efficiency. As an example, consider the following
NP-hard problem with applications in graph drawing.

2-Layer Planarization
Input: An undirected graph G = (V,E) and a k ≥ 0.
Question: Is there an E′ ⊆ E with |E′| ≤ k such that deleting the edges
in E′ from G results in a biplanar graph.

Herein, a graph is biplanar if the vertices can be arranged on two parallel lines
such that the edges (drawn as straight lines) do not cross. The best known
fixed-parameter algorithm with respect to solution size k is due to Suderman [44]
and runs in O(3.6k + |G|) time, improving on previous algorithms [18, 22] with
exponential factors 6k and 5.2k, respectively. Later Uhlmann and Weller [47]
followed a different improvement approach by considering the parameter “feedback
edge set number” f . The essential point here is that for the parameter feedback
edge set number f it holds that f ≤ k and f is expected to be significantly smaller
than k in many realistic settings. In other words, f is a “stronger parameter”
than k and thus the fixed-parameter tractability result with respect to the
parameter f can be considered as an improvement over the fixed-parameter
tractability result with respect to the solution size parameter k. Uhlmann and
Weller [47] showed that 2-Layer Planarization can be solved in O(6f · f2 +
f · |E|) time.2 If 1.7 · f ≤ k, which can be the case in real-world instances, this
algorithm is faster than the previous ones [18, 22].

In the spirit of the above considerations, we discuss in the following new
efficiency races in parameterized algorithmics mainly based on the concept of
stronger (and, correspondingly, weaker) parameterizations.

Let k1 and k2 be two natural numbers denoting parameters for input instances
(here, graphs) of an NP-hard problem under study. Note that often, these pa-
rameters are functions of the input graph G (such as the maximum degree of G).
We say that k1 is stronger than k2 if there is a constant c such that k1 ≤ c · k2
for all input instances of the underlying problem and furthermore there is no
constant c′ such that k2 ≤ c′ · k1 in all input instances. Correspondingly, k2 is
weaker than k1 in this case. There are several other reasonable possibilities to
define the notions of weaker and stronger parameters. Here, we choose a “linear
upper bound” for the following two reasons:

– For polynomial-size problem kernels, the main measure of effectiveness is the
degree of the polynomial function in the size bound.

– In the theoretical analysis of running times of fixed-parameter algorithms,
the most important feature is usually considered to be the function class of
the exponential factor, for example 2O(k) vs. 2O(k2).

2 Weller [48] recently reported on an improvement to O(3.8f · f2 + f · |E|) time.
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Due to the linear bounds, these results can be transferred from stronger to
weaker parameters. Note that having neither the stronger nor the weaker relation
between two parameters does not necessarily imply that they are incomparable.

In the remainder of this article we describe some findings and challenges
in the context of considering stronger and weaker parameters with respect to
questions of efficiency. Herein, we deal both with structural parameters as well
as parameterizations related to solution size.3

Preliminaries. We use n to denote the input size. A problem is called fixed-
parameter tractable (FPT) if it can be solved in f(k) · poly(n) time, where f is
a computable function only depending on k. The basic class of parameterized
intractability is called W[1]. Problems that can be solved in polynomial time
for constant parameter values are contained in the class XP. Note that these
problems are not necessarily fixed-parameter tractable since the degree of the
polynomial can be a function of the parameter k. A core tool in the development
of fixed-parameter algorithms is polynomial-time preprocessing by data reduction.
Here, the goal is for a given problem instance x with parameter k to transform
it in polynomial time into a new instance x′ with parameter k′ ≤ k such that
the size of x′ is upper-bounded by some function g only depending on k and
the instance (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance. The
reduced instance is called a problem kernel ; in case the function g is a polynomial
function it is called a polynomial-size problem kernel. Turing kernelization is a
similar approach, where the main difference is that not only one, but polynomially
many kernels can be created.

2 Structural Parameterizations or Navigating Through
Parameter Space

In this section, we give three examples for algorithmic studies of NP-hard graph
problems that have been conducted in the spirit of identifying stronger or weaker
parameters yielding tractability results. Most of the parameters considered in
these studies are shown in Figure 1. The idea behind these parameters is that they
measure the distance to easy, that is, polynomial-time solvable, input instances.
Here, these are certain classes of graphs, for instance forests or bipartite graphs.

Small-Diameter Subgraphs. The following NP-hard problem is motivated by
social and biological network analysis [1].

2-Club
Input: An undirected graph G and an integer `.
Question: Is there a subgraph G′ with at least ` vertices that has diameter
at most two?

3 While all our case studies are based on graph problems, the fundamental ideas and
concepts presented here are clearly not restricted to these.
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Fig. 1. An overview of the relation between some structural parameterizations for
undirected graphs. Herein, “distance to X” is the number of vertices that have to be
deleted in order to transform the input graph into a graph from the graph class X. For
two parameters that are connected by a line, the upper parameter is weaker than the
parameter below. For example, vertex cover is weaker than “distance to vertex-disjoint
paths” since deleting a vertex cover produces an independent set, which also belongs to
the graph class of disjoint paths. Similarly, distance to disjoint paths is weaker than
“feedback vertex set number” which is weaker than “distance to bipartite”.

By an easy polynomial-time data reduction rule it follows that 2-Club admits a
Turing kernel with O(∆2) vertices where ∆ is the maximum degree of G [42].4

This implies fixed-parameter tractability for the parameter ∆. For applications
in social network analysis, this parameterization seems not very useful, since
social networks typically contain so-called hubs, that is, vertices of high degree.
The number of hubs, however, is usually relatively small. Consequently, it is
interesting to consider parameterizations expressing that many vertices in the
graph have low degree. An established parameter in this context is the degeneracy
of a graph: A graph G has degeneracy d if for each induced subgraph of G there
is at least one vertex that has degree at most d. The concept of degeneracy was
introduced as “coloring number” by Erdős and Hajnal [20].

While degeneracy is an interesting parameter, it is sometimes too strong in
order to obtain fixed-parameter tractability results. An interesting alternative
is therefore the h-index of a graph G. This is the maximum number h such
that G contains h vertices of degree at least h [19]. Roughly speaking, the main
difference between h-index and degeneracy is that a low h-index captures the
global property that there are few high-degree vertices, whereas degeneracy

4 These results were presented for the parameter solution size `. They also hold for the
stronger parameter maximum degree ∆.
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can be one even if there are many high-degree vertices in the input graph. For
example, a 2012 version of the DBLP co-author graph,5 a typical social network,
has ≈ 750, 000 vertices, maximum degree 804, h-index 208, and degeneracy 113.
The 2-Club problem turns out to be solvable in nf(h) time but W[1]-hard with
respect to the h-index of the input graph which also implies W[1]-hardness for the
degeneracy of the input graph [30]. These two results now motivate the following
two questions:

– Is 2-Club solvable in nf(k) time when k is the degeneracy of the input graph?
– Is there a parameter k between maximum degree and h-index for which

2-Club has the same kernelization properties as for the parameter maximum
degree, that is, it admits an O(k2)-vertex Turing kernel?

Preprocessing for Treewidth. Computing the treewidth of a graph is a fundamental
problem in graph algorithms:

Treewidth
Input: An undirected graph G, and an integer t.
Question: Does G have treewidth at most t?

Treewidth is fixed-parameter tractable with respect to the treewidth itself [5]
but is unlikely to admit a polynomial-size problem kernel for this parameter [8, 17].
However, several data reductions for the Treewidth problem are known to be
effective in practice [6, 7]. In order to explain this effectiveness, the power of these
data reduction rules was analyzed with respect to structural parameters that
are weaker than treewidth [9]. On the one hand, it was shown that Treewidth
admits an O(k3)-vertex kernel when k is the vertex cover size, and an O(k4)-
vertex kernel when k is the size of a feedback vertex set of the input graph. On
the other hand, it was shown that no polynomial-size kernels can be obtained for
the distance to cluster graphs or the distance to chordal graphs [10]. Using the
structural parameter map in Figure 1 one can now identify parameters that are
weaker or stronger than the previously considered parameters and thus identify
the following open questions:

– Does Treewidth admit a problem kernel with O(k3) vertices when k denotes
the “distance to disjoint paths”? As shown in Figure 1, this parameter is
stronger than the vertex cover size and weaker than the feedback vertex set
number.

– Is there a parameter between feedback vertex set size and treewidth, for
example “distance to outerplanar graphs” for which Treewidth admits a
polynomial-size problem kernel [9]?

Long Path and Long Cycle. In the NP-hard problems Long Path and Long
Cycle one is given an undirected graph and asks for the existence of a simple
path (or cycle, respectively) of length at least k. Both problems do not admit
polynomial problem kernels with respect to the parameter solution size [8].

5 The graph was parsed using the data from http://dblp.uni-trier.de/xml/.

http://dblp.uni-trier.de/xml/
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Motivated by this fact, Bodlaender et al. [10] studied both problems with respect
to their kernelizability when parameterized by structural parameters. For instance,
they showed that Long Cycle

– admits an O(k2)-vertex problem kernel when parameterized by the vertex
cover size,

– admits a polynomial problem kernel when parameterized by the size of the
cluster vertex deletion set,

– does not admit a polynomial-size kernel when parameterized by the size of a
vertex set whose deletion produces an outerplanar graph.

Since all forests are outerplanar, the parameter “distance to outerplanar graphs”
is stronger than the parameter feedback vertex set number. Hence, Bodlaender
et al. [10] posed the question whether Long Cycle admits a polynomial-size
kernel when parameterized by feedback vertex set number. Assuming this question
were settled, this would immediately raise another open question:

– In case Long Cycle admits a polynomial-size problem kernel when param-
eterized by the feedback vertex set number: is there a parameter that is
stronger than feedback vertex set but for which Long Cycle still admits a
polynomial-size problem kernel?

– In case Long Cycle does not admit a polynomial-size problem kernel
when parameterized by the feedback vertex set number: is there a parameter
stronger than vertex cover and weaker than feedback vertex set number, for
which Long Cycle admits a polynomial kernel?

Furthermore, Bodlaender et al. [10] asked whether Long Cycle admits a
polynomial-size problem kernel when parameterized by the “distance to co-graph”.
Similar to the discussion above, the answer to this question immediately raises
a new question: either is there a parameter stronger than distance to co-graph
such that Long Cycle admits a polynomial-size problem kernel, or is there a
parameter weaker than distance to co-graph and stronger than cluster vertex
deletion for which this is the case?

To conclude, navigating through the space of structural parameters (of
which Figure 1 shows an excerpt) helps in identifying new research directions and
open questions. Many of these questions are of purely algorithmic nature in the
sense that the main question is fixed-parameter tractability (or the existence of a
polynomial-size problem kernel) for a specific parameter. Some of these questions,
however, also ask for the “discovery” of hidden parameters and are thus also
closely related to general combinatorial aspects of the considered input structure.

3 Parameterizations Related to Solution Size

In this section, we present two examples for algorithmic studies in which parame-
terizations that are stronger than the “classical” parameterization by solution
size have been proposed.
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Above-Guarantee Parameterizations. Vertex Cover is one of the best-studied
problems in parameterized algorithmics.

Vertex Cover
Input: An undirected graph G, and an integer k.
Question: Is there a vertex set S of size at most k such that deleting S
from G results in an independent set?

As mentioned in the introduction, the f(k)-race for Vertex Cover parameter-
ized by vertex cover size k has brought a significant running time improvement.
The vertex cover of a graph, however, is often relatively large. In order to ob-
tain more meaningful parameters, Mahajan and Raman [35] proposed to study
“parameterizations above guaranteed values”. For vertex cover, one such parame-
terization is “parameterization above matching lower bound”, that is, one asks
whether there is a vertex cover of size at most ` + k, where ` is the size of a
maximum matching in the input graph. Clearly one vertex has to be used to
cover each of the m matching edges and the parameter k measures the excess of
this bound. The fixed-parameter tractability of Vertex Cover for this parame-
ter follows from a fixed-parameter tractability result for Almost 2-SAT [41].
An f(k)-race for this parameter resulted in several improvements [15, 40].

Recently, Narayanaswamy et al. [36] showed that Vertex Cover is fixed-
parameter tractable with respect to the “parameterization above linear program
(LP) lower bound”, that is, one asks whether there is a vertex cover of size at
most `+ k where k is the value of an optimal solution of the LP relaxation of
an ILP formulation of Vertex Cover. Again, the excess k above the lower
bound is the parameter. Since the LP lower bound is at least as large as the
matching lower bound, the new above-guarantee parameter is stronger. The
fixed-parameter result by Narayanaswamy et al. [36] now starts a new f(k)-race
for this parameter. For all three of the above-mentioned parameters there are
algorithms that solve the problem in ck ·poly(n) time where c is a small constant.
One interesting open question is thus: Is there an even stronger parameter for
which a running time of ck · poly(n) can be achieved, where c is relatively small.

Cluster Editing. Cluster Editing is a well-studied problem with applications
in graph-based data clustering [28].

Cluster Editing
Input: An undirected graph G and an integer k.
Question: Can G be transformed into a vertex-disjoint union of cliques
(a so-called cluster graph) by at most k edge modifications?

Most investigations for Cluster Editing were concerned with the two
classical FPT-races running time and problem kernel size for the parameter
solution size k. More recently, other parameterizations for Cluster Editing
have been considered. For instance, it was shown that Cluster Editing is
fixed-parameter tractable when parameterized by the stronger parameter cluster
vertex deletion number [32, 46] but NP-hard already on graphs of bounded
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degree [25, 33]. Furthermore, a parameter called “local modification bound” was
introduced [33]. This parameter is a stronger parameter than the solution size: The
solution size is the overall number of edge modifications; the local modification
bound is the maximum of incident edge modifications over all vertices of the
graph. Cluster Editing admits a kernel with at most O(d · t) vertices where d
is an upper bound on the number of clusters in the cluster graph and t is the
local modification bound [33] .

By means of a simple dynamic programming algorithm, the above problem
kernel result implies an algorithm with running time 2O(dt) for Cluster Editing.
In contrast, for the parameter “solution size k and cluster number d”, Cluster

Editing can be solved in 2O(
√
dk) ·poly(n) time [25]. On the other hand, 2O(

√
dt) ·

poly(n) time is unlikely to be achievable [33]. Hence, is there a parameter x

between solution size k and local modification bound t for which an 2O(
√
dx) ·

poly(n)-time algorithm can be achieved? For instance, it would be interesting to
consider the parameter number ` of edge deletions performed by a solution to
Cluster Editing:

– Is Cluster Editing fixed-parameter tractable with respect to the number `
of edge deletions performed by a size-k solution?

– Does Cluster Editing admit a problem kernel that is polynomial in `?

– Can Cluster Editing be solved in 2O(`) · poly(n) or in 2O(
√
d`) · poly(n)

time?

Summarizing, a very natural way of obtaining parameterizations that are
stronger than the solution size is the approach of “parameterizing above guarantee”
as discussed in the Vertex Cover example. The identification of stronger
parameters, however, is not limited to this approach as demonstrated by Cluster
Editing where simple combinatorial considerations have been used to identify
parameters that are stronger than the solution size parameterization.

4 Conclusion

With the advent of parameterized algorithmics from single-parameter studies to
multi-parameter studies, investigating the relation between parameters becomes
more and more important. In this line, studying the “stronger”-relation between
parameters as proposed in this paper is a natural and fruitful undertaking, directly
leading to numerous challenges on designing efficient and practically relevant
fixed-parameter algorithms. This is encompassed by challenging combinatorial
questions related to the “parameter space” (cf. Figure 1) associated with a specific
problem. The study of the relationship between structural parameters measuring
the input complexity should not be limited to graph problems. Indeed, obtaining
analogous parameter spaces for “string parameters and problems” or “set system
parameters and problems” is an open field.

The topic of alternative races in parameterized algorithmics is closely related
to multivariate algorithm design and analysis [21, 39] in at least two ways. First,
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in both approaches it is essential that various parameters come into play. Second,
when combining parameters as done in the multivariate design of fixed-parameter
algorithms, then this usually happens in order to either improve the running time
of a fixed-parameter tractability result towards practical relevance (by adding
parameters one clearly further restricts the generality of the result, hopefully for
the benefit of improved efficiency) or to turn W[1]-hardness with respect to a
specific parameterization into fixed-parameter tractability by further adding one
or more parameters. In this spirit, a parameter k1 is likely to be stronger than
a combined parameter (k1, k2), whatever k2 is. So, parameter addition gives a
way to generate weaker parameters. Let us describe one specific open questions
in this context: It is open whether the NP-hard arc routing problem Rural
Postman is fixed-parameter tractable with respect to the number of weakly
connected components of the graph induced by the “required arcs” [27, 43]. As
a step towards answering this long-standing open problem, it is interesting to
identify weaker parameters making the problem fixed-parameter tractable.

To conclude, let us only briefly mention two further efficiency races in the
context of parameterized algorithmics. First, there are many further problems
that can be studied along the lines of this article. In particular, it is a challenge
to extend the presented approaches for graph-theoretic problems to more com-
plex real-world problems. For instance, the NP-hard Target Set Selection
(modeling the spread of influence) is a prominent graph problem occurring in
social networks. It is known to be W[1]-hard with respect to the parameters
treewidth and also the weaker parameter feedback vertex set size [2] while it
becomes fixed-parameter tractable for the still weaker parameter vertex cover
number [37]. Second, a standard way of starting races is instead of making the
parameter stronger is to make the underlying classes of input instances larger.
For instance, not changing the parameter, does a result holding for planar graphs
generalize to bounded-genus graphs and further to certain classes of minor-free
graphs? This is closer to our approach than it might appear at first sight since
many structural graph parameters basically also restrict the allowed graph types,
thus also defining a specific graph class.

Finally, from a more applied point of view, the most natural way of spotting
relevant parameterizations is to make measurements in the (real-world) input
data. Quantities that turn out to be small particularly qualify for parameterized
complexity studies. To this end, tools for data analysis are needed.6 After having
performed the data analysis task, one may set up the parameter navigation map
and perform algorithmic studies as sketched in this article.

Acknowledgments. We thank André Nichterlein, Manuel Sorge, and Mathias
Weller for their comments which have improved this article.

6 We have implemented the Graphana tool, which can be used to compute or estimate
graph parameters as shown in Figure 1. The software is available from
http://fpt.akt.tu-berlin.de/graphana.

http://fpt.akt.tu-berlin.de/graphana
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