
Multivariate Algorithmics for
NP-Hard String Problems

Laurent Bulteau∗ Falk Hüffner† Christian Komusiewicz
Rolf Niedermeier

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Germany

l.bulteau@campus.tu-berlin.de
{falk.hueffner, christian.komusiewicz, rolf.niedermeier}@tu-berlin.de

Abstract

String problems arise in various applications ranging from text
mining to biological sequence analysis. Many string problems are NP-
hard. This motivates the search for (fixed-parameter) tractable special
cases of these problems. We survey parameterized and multivariate
algorithmics results for NP-hard string problems and identify challenges
for future research.

1 Introduction
Parameterized and its sequel multivariate algorithmics strive for a fine-grained
complexity analysis of NP-hard problems, with the hope to spot provably
tractable cases. To this end, one analyzes how problem- and data-specific
parameters influence the computational complexity of the considered prob-
lems [69, 80, 138]. So far problems from algorithmic graph theory are the main
driving force for the development of the field. Areas such as computational
geometry [86], computational social choice [21, 39], scheduling [23, 130, 134],
or string processing still lead a comparatively quiet life in this research commu-
nity. With this article, we aim to stimulate more research on NP-hard string
problems using tools of parameterized and multivariate complexity analysis.
∗Supported by the Alexander von Humboldt Foundation, Bonn, Germany.
†Supported by DFG project ALEPH (HU 2139/1).

1

String problems appear in various areas of algorithmic biology, but also in
fields such as text processing, language theory, and coding theory. Notably,
string problems typically come along with several natural parameters such as
size of the alphabet, number of input strings, or some distance bound. Hence,
it is natural to perform a multivariate complexity analysis [76, 116, 139]. In
this context, we present numerous NP-hard string problems, discuss known
results in terms of multivariate (exact) algorithmics, and feature some chal-
lenging open research questions. To keep this overview focused and within
reasonable dimensions, we mostly discuss unweighted, plain string problems.

This article is organized as follows. After introducing basic concepts and
notation in Section 2, we discuss consensus string problems in Section 3,
common sub- and superstructure problems in Section 4, distance computation
problems in Section 5, and miscellaneous NP-hard string problems in Section 6.
Each section contains concrete challenges for future research. We conclude
with some general remarks concerning potential directions for future work on
NP-hard string problems.

2 Preliminaries

Parameterized complexity basics. Parameterized algorithmics tries to
analyze problem difficulty not only in terms of the input size, but also for an
additional parameter, typically an integer p. Thus, formally, an instance of a
parameterized problem is a tuple of the unparameterized instance I and the
parameter p. A parameterized problem with parameter p is fixed-parameter
tractable if there is an algorithm that decides an instance (I, p) in f(p) · |I|O(1)

time, where f is an arbitrary computable function depending only on p.
The complexity class that contains the fixed-parameter tractable problems is
called FPT. Clearly, if the problem is NP-hard, we must expect f to grow
superpolynomially. To concentrate on the contribution of f to the running
time, we sometimes use the O∗() notation, which omits the running time part
that is polynomial in the input size.

There are parameterized problems for which there is good evidence that
they are not fixed-parameter tractable. Analogously to the concept of NP-
hardness, the concept of W[1]-hardness was developed. It is widely assumed
that a W[1]-hard problem cannot have a fixed-parameter algorithm (hardness
for the classes W[t], t ≥ 2, has the same implication). To show that a problem
is W[1]-hard, a parameterized reduction from a known W[1]-hard problem
can be used. This is a reduction that runs in f(p) · |I|O(1) time and maps the
parameter p to a new parameter p′ which is bounded by some function g(p). If
g is linear, that is, p′ = O(p), then the reduction is called linear parameterized

2

reduction.
While parameterized reductions can show that a problem is unlikely to

be fixed-parameter tractable, even tighter running time lower bounds can be
achieved by assuming the Exponential Time Hypothesis (ETH) [109]. The
ETH states that the 3-SAT problem cannot be solved in 2o(n) time, where n
is the number of variables. By combining the ETH and linear parameterized
reductions, one can obtain tight hardness results [48]. More precisely, if there
is a linear parameterized reduction from Clique parameterized by solution
size to a parameterized problem L and the ETH holds, then L cannot be
solved in |I|o(p) time. Similarly, if there is a linear parameterized reduction
from Dominating Set parameterized by solution size to L and W[1] 6= FPT,
then L cannot be solved in |I|o(p) time. For a survey on ETH-based running
time lower bounds, refer to Lokshtanov et al. [122].

The notion of a problem kernel tries to capture the existence of provably
effective preprocessing rules. More precisely, we say that a parameterized
problem has a problem kernel if every instance can be reduced in polynomial
time to an equivalent instance whose size depends only on the parameter.
It can be shown that a problem is fixed-parameter tractable if and only if
it has a problem kernel. However, the kernel derived from this might be
impractically large; of particular interest are kernelizations where the size of
the reduced instance depends only polynomially on the parameter. There are
techniques that allow to show that a problem does not have a polynomial
kernel (unless NP ⊆ coNP/poly) [69, 117].

Since single parameters often lead only to intractability, it makes sense
to look at combined parameters. For example, Longest Common Subse-
quence is W[2]-hard for the parameter “solution string length”, but fixed-
parameter tractable if additionally the alphabet size is a parameter. Depend-
ing on the application, different parameter combinations might make sense.
Thus, the goal is to explore the “parameter ecology” [76, 116] of the problem
and delineate the border between tractability and intractability.

Notation. Most problems we consider take one or more strings as input, and
have one string as solution, which sometimes needs to fulfill some distance
condition. We use the following notation for the most relevant problem
parameters:

• |Σ|: alphabet size;

• k: number of input strings;

• `: maximum length of an input string;

3

• occ: the maximum number of occurrences of any letter in the set S of
input strings, that is, occ := maxs∈S maxa∈Σ occ(a, s) where occ(a, s) is
how often letter a occurs in string s;

• m: solution string length;

• d: solution string distance.

We use the terms substring and subsequence in the standard way, that is,
a substring must contain consecutive letters, while a subsequence may not.
A p-sequence is a string in which no letter appears twice. A permutation
is a p-sequence using all letters of the alphabet, so it has length |Σ|. The
Hamming distance of two strings with equal length is the number of positions
in which they differ. We denote by s[i] the letter which is at position i of the
string s.

3 Consensus Strings
In this section, we discuss consensus or median string problems. Here one
searches for a string that best represents a given set of strings. We will in
particular discuss the NP-complete problems Closest String (Section 3.1)
and Closest Substring (Section 3.2). The main parameters are the number
of strings k, the maximum input string length `, the alphabet size |Σ|, the
allowed maximum distance d of the solution string from the input strings,
and (in the case of Closest Substring and related problems) the length m
of the solution string.

3.1 Closest String

Closest String is perhaps the most basic NP-complete consensus string
problem, with many applications in biology (motif search) [141, Section 8.6]
but also in coding theory (minimum radius problem) [81].

Closest String
Instance: A set of k length-` strings s1, . . . , sk over an alphabet Σ
and a positive integer d.
Question: Is there a length-` string s ∈ Σ∗ that has Hamming
distance at most d to each of s1, . . . , sk?

Figure 1 shows an example of an input instance of Closest String
and its solution. Note that m = ` for this problem. Closest String
is NP-complete even for binary alphabet [81]. Thus, there is no hope to

4

Input

B A R A C A D A B R A
A B R A A C D A B R A
R B R A C A D A B C A
A C R A C A D A B C A
A B R A D A D A B C A

` = 11, d = 2

Output
A B R A C A D A B R A
B A R A C A D A B R A
A B R A A C D A B R A
R B R A C A D A B C A
A C R A C A D A B C A
A B R A D A D A B C A

Figure 1: Closest String

obtain fixed-parameter tractability for the single parameter alphabet size |Σ|.
A straightforward enumerative approach (just trying all candidate closest
strings) has running time O∗(|Σ|`). This fixed-parameter tractability for
the combined parameter |Σ| and ` yields feasible running times only for
small alphabets and short strings. Two obvious parameters, which are often
small in real-world applications, are the number k of input strings and the
maximum Hamming distance d, also referred to as radius. Using integer linear
programming results [82, 115, 119], fixed-parameter tractability with respect
to k can be derived [94]. This result is of purely theoretical interest due to
a huge combinatorial explosion. Therefore, there have been efforts towards
developing direct combinatorial algorithms for constant values of k [10, 36, 93],
but a combinatorial fixed-parameter algorithm for parameter k is unknown.

Challenge 1. Is there a direct combinatorial fixed-parameter algorithm for
Closest String parameterized by the number k of input strings (thus
avoiding integer linear programming)?

The parameter d seems currently most promising in terms of obtaining
practical fixed-parameter tractability results for Closest String. A simple
search tree strategy basically employs the following idea: Assume that there
exists a closest string with maximum distance d from the input strings. Then
it must be possible to reach it from any of the input strings by changing
at most d letter positions. The corresponding search can be organized in a
tree-like fashion as follows: Choose any input string as a candidate closest
string. As long as this candidate string has distance more than d to at
least one input string, branch the search into d+ 1 cases where in each case
one picks a position in which the strings differ and changes the letter in
the candidate string to the letter of the input string. This is repeated at
most d times and it can be shown that if a closest string with maximum
Hamming distance d exists, then this procedure finds it [94]. Altogether, this

5

leads to an O∗((d + 1)d)-time algorithm for Closest String. For small
alphabets, this algorithm has been improved by employing |Σ| as a second
parameter [54, 55, 152], achieving running times of the form O∗(|Σ|O(d)).

While most results in the literature care about fixed-parameter tractability
versus W-hardness (parameterized intractability), Lokshtanov et al. [121],
provided concrete lower bounds for algorithm running times. Assuming ETH,
they showed that there is no do(d) ·(k ·`)O(1)-time and no |Σ|o(d) ·(k ·`)O(1)-time
algorithm for Closest String. Thus, assuming ETH, the above-mentioned
algorithms are basically optimal.

In applications, Closest String is often attacked using (Integer) Linear
Programming [9, 58, 154]. Exact solutions (using Integer Linear Programming)
seem practically feasible for small input lengths `. Using (relaxed and more
efficient) Linear Programming, one only may hope for approximate solutions
but one can obtain lower bounds for the Hamming distance d of an optimal
solution string. In the spirit of previous work for the Vertex Cover
problem [136] and the idea of parameterizing above guarantee [125]—the new
(and potentially much smaller—thus stronger) parameter then is the absolute
value of the difference between the LP lower bound (which can be computed
in polynomial time) and the actual distance value—this leads to the following.

Challenge 2. What is the complexity of Closest String parameterized
above the Linear Programming (LP) relaxation of an Integer Linear Program-
ming formulation of the problem?

Finally, we mention in passing that Chen et al. [56] developed randomized
fixed-parameter algorithms for Closest String, obtaining improvements
(in terms of the (constant) bases of exponential functions) over previous
deterministic results exploiting small alphabet sizes.

Variants. Nishimura and Simjour [140] presented parameterized enumera-
tion algorithms for Closest String and the slightly more general Neighbor
String problem, exploiting the parameters alphabet size |Σ| and maximum
Hamming distance d. Creignou et al. [63] initiated a study of parameterized
enumeration with ordering for Closest String and other problems, propos-
ing a general strategy for this task. Boucher and Omar [35] derived results
on the hardness of counting the number of closest strings.

Boucher and Ma [34] and Boucher et al. [37] presented several parameter-
ized tractability and intractability results for the Close to Most Strings
problem. This problem generalizes Closest String by relaxing the require-
ments for the solution: the algorithm may choose to select a given number
of “outliers” among input strings, which are then simply ignored. Indeed,

6

Closest String is the special case where no outliers are allowed. For
example, Close to Most Strings is fixed-parameter tractable for the
combined parameter maximum Hamming distance d and number k of input
strings [37].

Hermelin and Rozenberg [104] introduced the Closest String with
Wildcards problem, where the input strings may contain wildcard letters ‘∗’
that match with every other letter of the alphabet Σ. The solution is required
to be without wildcard letters. Clearly, Closest String is the special case
where the input strings are without wildcards. Some results for Closest
String can be adapted, but new techniques had to be developed for this
more general problem to obtain fixed-parameter tractability results. Amir
et al. [12] introduced a generalization of Closest String more suitable for
clustering applications; here, one has to deal with determining several center
(closest) strings.

Closest String asks for a solution that has small “radius”. Amir et al.
[8] introduced the variant where one asks for small radius and small distance
sum. Their algorithms work for three-string inputs; the complexity for k ≥ 4
input strings remains open. Moreover, Lee et al. [118] developed polynomial-
time algorithms for computing the (Hamming distance) consensus of three
circular strings as motivated by biological applications.

Most research focused on the Hamming metric as a distance measure.
Several further distance measures such as edit distance, swap distance, reversal
distance, or rank distance have been proposed [11, 67, 137]. So far, there
are only few parameterized complexity results here. A further variant of
Closest String called Shared Center, motivated by applications in
haplotype inference in biology, has also been studied [57].

We conclude this subsection with a very unspecific and general challenge
based on the following observation. Consensus problems play a prominent
role not only in the context of string problems, but also in the context of
computational social choice [21, 38]. For example, compare Closest String
with the NP-hard Kemeny Rank Aggregation problem. For the latter,
given a set of permutations (in other words, every letter appears exactly once
in each input string) one seeks a consensus permutation that minimizes the
sum of inversions (that is, the number of “bubble sort operations”) to the input
permutations. Bachmaier et al. [15] started an investigation of “maximum
rank aggregation problems”, in particular including the “maximum version”
of Kemeny Rank Aggregation. Among other things they showed how
the above-mentioned search tree approach for Closest String [94] can
be extended to this setting. Similar parameterized complexity studies as
for Closest String have been performed for Kemeny Rank Aggrega-

7

Input

A B R A C A D A B R A
D A B A A C A D R
B R A B R A R A D A
R B B R A C A D R A
A B A R R A C A D

` = 11, m = 7, d = 1

Output
A B R A C A D
A B R A C A D A B R A

D A B A A C A D R
B R A B R A R A D A

R B B R A C A D R A
A B A R R A C A D

Figure 2: Closest Substring

tion [19, 20, 22], leading to the natural quest for a deeper understanding of
interactions and relations between consensus problems from both areas.

Challenge 3. What are common features (problems, methods, techniques)
that are used in deriving parameterized complexity results in computational
social choice (particularly, rank aggregation problems) and stringology (partic-
ularly, consensus string problems)?

Interestingly, Aziz et al. [14] closely connected Closest String with
minimax approval voting.

3.2 Closest Substring

Closest Substring is the computationally harder sister problem of Clos-
est String. Here, one searches for a consensus string that is close to a
fixed-length substring in every input string. Figure 2 shows an example.

Closest Substring
Instance: A set of k maximum-length-` strings s1, . . . , sk over an
alphabet Σ, and positive integers d and m.
Question: Is there a length-m string s ∈ Σ∗ such that each of
s1, . . . , sk has a length-m substring with Hamming distance at most d
to s?

Closest Substring can be trivially solved by considering (`−m+ 1)k

instances of the Closest String problem; clearly, this is inefficient if m is
significantly smaller than ` and for already moderate values of k. Another
straightforward exhaustive search algorithm is to test all possible candidate
solution strings, resulting in a running time of O(|Σ|m · k`2). On the negative
side, even for constant-size alphabets Closest Substring is W[1]-hard
for the parameters maximum Hamming distance d and number k of input

8

strings [72, 75, 127]. On the positive side, Marx [127] provided algorithms
running in |Σ|d log d+2 · (k · `)O(log d) time and running in |Σ|d · 2kd · dO(d log log k) ·
(k · `)O(log log k) time. Assuming the ETH, these algorithms again are shown
to be close to optimality [121, 127]. Moan and Rusu [135] and Ma and
Sun [124] investigated variants of Closest Substring where the pairwise
distance between input strings is bounded and showed that the (parameterized)
hardness results for Closest Substring remain valid.

Challenge 4. Given the notorious computational hardness of Closest
Substring and related problems, do there exist parameterizations that allow
for fixed-parameter tractability results? In particular, can analysis of real-
world input instances lead to useful data-driven parameterizations?

Variants. Consensus Patterns is the same as Closest Substring
except that one does not want to find a substring with small maximum
distance but a substring with a small sum of distances. Note that while
Closest String becomes trivially polynomial-time solvable when moving
to sum of distances instead of maximum distance, Consensus Patterns
is NP-complete [120]. Compared to Closest Substring, however, in
terms of fixed-parameter tractability there are more encouraging results.
While for constant-size alphabets Consensus Patterns remains W[1]-
hard for the parameter number k of input strings, for the other standard
parameters it becomes fixed-parameter tractable as long as the alphabet size
is bounded [127].

Distinguishing Substring Selection generalizes Closest Sub-
string by having “good” and “bad” input strings and searching for a solution
string that is far away from all substrings of good strings but close to at
least one substring in every bad string. The terms “good” and “bad” are
motivated by applications concerning the design of genetic markers. His-
torically, Distinguishing Substring Selection was shown W[1]-hard
(for constant alphabet size) for all standard parameters (in particular with
respect to the parameter maximum Hamming distance d) before Closest
Substring—indeed, the corresponding hardness reductions may be consid-
ered somewhat easier [95]. Notably, the special case Distinguishing String
Selection in terms of complexity is closer to Closest String than to
Distinguishing Substring Selection [152]. Note that Distinguishing
String Selection has the two special cases Closest String (here the
set of good strings is empty) and Farthest String (here the set of bad
strings is empty) [152].

Finally, Basavaraju et al. [16] provided a first systematic study on the

9

Input

G C A A G T C T A A T A

C A A G G T T A T A T A

G C A A T T C T A T A A

C A A T T G A T A T A A

G C A A T C A T A T A T

Output

G C A A G T C T A A T A

C A A G G T T A T A T A

G C A A T T C T A T A A

C A A T T G A T A T A A

G C A A T C A T A T A T

Figure 3: Longest Common Subsequence (example from Skiena [146])

kernelization complexity of many of the problems studied in Section 3. No-
tably, Hufsky et al. [107] empirically studied polynomial-time data reduction
combined with search trees for Closest String. Kernelizability studies,
however, are still underrepresented in the context of NP-hard string prob-
lems. We thus conclude with the following concrete question, also posed
by Basavaraju et al. [16].

Challenge 5. Does Closest String parameterized by the number k of
input strings have a size-kO(1) problem kernel?

4 Common Structure

In this section, we examine the problem of finding a common sub- or super-
structure of a given set of strings. The most basic problems are Longest
Common Subsequence (Section 4.1), Shortest Common Superse-
quence (Section 4.3), and Shortest Common Superstring (Section 4.4).
In addition, we cover the fairly general Multiple Sequence Alignment
problem (Section 4.2), which is of immense importance in biological sequence
analysis. The main parameters we consider are the number of strings k,
the solution string length m, the maximum input string length `, and the
alphabet size |Σ|.

4.1 Longest Common Subsequence

Longest Common Subsequence is a classic NP-complete problem [84,
SR10]. It has applications for example in computational biology, data com-
pression, or file comparison (a variant is used in the Unix diff command) [18].
Figure 3 shows an example.

10

alphabet size |Σ|
parameter unbounded parameter constant

k W[t]-hard [29] W[t]-hard [28] W[1]-hard, |Σ| = 2 [142]
m W[2]-hard [29] FPT [E] FPT [E]
k,m W[1]-hard [29, 97] FPT [E] FPT [E]
` FPT [E] FPT [E] FPT [E]

Table 1: Parameterized complexity of Longest Common Subsequence.
Results marked [E] follow from trivial complete enumeration; W[t]-hard refers
to any t ≥ 1.

Longest Common Subsequence
Instance: A set of k maximum-length-` strings s1, . . . , sk over an
alphabet Σ and a positive integer m.
Question: Is there a string s ∈ Σ∗ of length at least m that is a
subsequence of si for i = 1, . . . , k?

The case of two strings is well-studied and can be solved in O(`2) time
by dynamic programming. An alternative algorithm solves the problem in
O((r+ `) log `) time, where r is the total number of ordered pairs of positions
at which the two sequences match [108]. In the worst case, this algorithm
has a running time of O(`2 log `); however, in many applications the value
of r can be expected to be closer to ` (for example in the Unix diff command,
where each line occurring in the input is a letter of the alphabet). Thus,
this could be considered as a parameterized algorithm for a polynomial-time
solvable problem.

For an arbitrary number of strings, the problem is NP-hard even for a
binary alphabet [26, 126]. Bodlaender et al. [29] were the first to study the
parameterized complexity of Longest Common Subsequence. Currently
known results are summarized in Table 1. The problem is W[1]-hard for the
possibly most appealing parameter, the number of strings k, even with a binary
alphabet [142]. The reduction to prove this claim is a linear parameterized
reduction from Clique parameterized by solution size. Hence, assuming
ETH a (k · `)o(k)-time algorithm for Longest Common Subsequence is
impossible. Similarly, the original reduction [29] for showing W[2]-hardness
of Longest Common Subsequence parameterized by solution length m is
a linear parameterized reduction from Dominating Set. This implies that,
assuming W[1] 6= FPT, there is no (k · `)o(m)-time algorithm for Longest
Common Subsequence. The reduction, however, produces instances with
an unbounded number k of strings. Hence, the following question remains

11

open.

Challenge 6. Does Longest Common Subsequence admit a (k ·`)o(k+m)-
time algorithm?

Note that when the alphabet size |Σ| and the length m of the string to
be found are parameters, we get a trivial FPT algorithm from enumerating
all |Σ|m possible solutions. It would be interesting to see if this parameteriza-
tion also yields a small kernel.

Challenge 7. Does Longest Common Subsequence have a polynomial-
size problem kernel for binary alphabet and parameter m, or more generally
for the combined parameter (m, |Σ|)?

A different brute-force algorithm is to enumerate all possible ways in which
individual letter positions can be matched exactly over all input strings to
generate common subsequences, using a dynamic programming table with
O(`k) entries, yielding a running time of O∗(`k) [71]. If we consider as
parameter only the maximum input string length `, we can also get a simple
brute-force FPT algorithm: For each of the 2` subsequences of the first string,
check whether it is also a subsequence of the other strings, and return the
longest common subsequence thus found.

Challenge 8. Does Longest Common Subsequence admit a (2− ε)` ·
kO(1)-time algorithm for some ε > 0?

Further parameters. Timkovskii [148] shows that Longest Common
Subsequence remains NP-hard even when the input strings have length 2
and the maximum number of occurrences occ of a letter over all input strings
is 3; several more related results are given. If in addition to occ we use the
number of strings k as a parameter, we obtain fixed-parameter tractability [99]:
the problem can be reduced to finding a longest path in a directed acyclic
graph with O(` · occk) vertices.

Blin et al. [26] study Longest Common Subsequence with fixed
alphabet size |Σ| and unbounded number of strings k, but fixed run-length
(that is, maximum number of consecutive identical letters). They show that
the problem remains NP-complete even when restricted to strings with run-
length at most 1 over an alphabet of size 3 or strings with run-length at
most 2 over an alphabet of size 2 (both results are tight).

Extending the approach of Hunt and Szymanski [108], Hsu and Du [105]
present an algorithm running in O(k|Σ|(`+ r)) time, where r is the number
of tuples (i1, i2, . . . , ik) such that s1[i1] = s2[i2] = · · · = sk[ik]. This clearly

12

will be most effective for very large alphabets. Irving and Fraser [110] give
an algorithm running in O(k`(`−m)k−1) time. This can be seen as a fixed-
parameter algorithm for the combined parameter k and number ` − m of
omitted letters.

Challenge 9. Is Longest Common Subsequence fixed-parameter tractable
for the parameter number `−m of omitted letters?

Relaxed versions. Motivated by biological applications, several variants
of Longest Common Subsequence have been studied where the input
strings do not simply consist of letters, but each position is a probability mass
function that describes how likely each letter is here (position weight matrix
in biological literature). In this way, one can talk about the probability of a
subsequence. Finding the longest string such that the product of its probability
in each of two input strings exceeds some threshold can be done in polynomial
time [6]; if however a threshold probability needs to be exceeded in both input
strings, the problem becomes NP-hard [6], even for a binary alphabet [65].
The same dichotomy holds for Shortest Common Supersequence [7].

Challenge 10. Analyze the parameterized complexity of the “most probable
subsequence” version of Longest Common Subsequence.

Guillemot [97] studies the Longest Compatible Sequence problem
which can be seen as a variant of Longest Common Subsequence. The
input strings are p-sequences, that is, occ = 1, and the task is to compute a
length-m string s such that for each input string si the string s restricted to
the alphabet of si is a subsequence of si. Longest Compatible Sequence
is W[1]-hard for the combined parameter (k, `) and fixed-parameter tractable
for the parameter |Σ| −m (note that |Σ| ≥ `) [97].

Constrained versions. A number of variants of Longest Common Sub-
sequence have been examined where the output string needs to have an
additional property. Most works consider only two input strings, so we assume
this in this paragraph except when noted otherwise.

The Constrained Longest Common Subsequence problem is the
generalization where the output must contain each of a given set of f restriction
strings as subsequence. It has applications in computational biology. The
problem can be solved in polynomial time for a single restriction string (f =
1) [149], but is NP-hard in general [90]. Chen and Chao [52] give a dynamic
programming algorithm with running time O(`2 ·

∏f
i=1 ρi), where ρ1, . . . , ρf are

the lengths of the restriction strings; thus, this is a fixed-parameter algorithm
for the parameter “total length of the restriction strings t”. Bonizzoni et al.

13

[32] show that the problem is W[1]-hard for the combined parameter (f, |Σ|),
using a reduction from Shortest Common Supersequence.

The Restricted Longest Common Subsequence problem is the
generalization where the output must not contain any of a given set of
f restriction strings as subsequence. The problem is NP-hard already for
two input strings and restriction strings of length two, but can be solved
with dynamic programming also for more than two input strings in O(`k+f)
time [91]. A different analysis of this algorithm yields O(2t ·`k) time, where t is
the total length of the restriction strings; thus, the problem is fixed-parameter
tractable with respect to t. A different dynamic programming algorithm
solves the problem with running time O(`2 ·

∏f
i=1 ρi), where ρ1, . . . , ρf are

the lengths of the restriction strings [52]; this also implies fixed-parameter
tractability with respect to t.

In the Repetition-free Longest Common Subsequence problem [3],
each letter must appear at most once in the solution string. The application is
to uncover a genome rearrangement where at most one representative of each
family of duplicated genes is taken into account. The problem is NP-hard
even if occ = 2 [3]. It can be solved in polynomial-time when the number of
letters that appear multiple times in the input is a constant [3]. The problem
can be solved in randomized O∗(2m) time and polynomial space [25], that
is, it is fixed-parameter tractable with respect to the solution size m. The
algorithm uses the multilinear detection technique, an algebraic approach;
the idea is to exploit that we can efficiently detect a multilinear monomial of
a given degree in an arithmetic circuit, which is a compressed encoding of a
multivariate polynomial. On the negative side, the problem does not have a
polynomial-size kernel for parameter m unless NP ⊆ coNP/poly [25].

The Doubly-Constrained Longest Common Subsequence [32]
generalizes both Constrained Longest Common Subsequence and
Repetition-free Longest Common Subsequence by demanding both
constraints at the same time. Moreover, the repetition-free constraint is
generalized by requiring that the number of occurrences of each letter a in the
solution is bounded by some function τ(a). This models a sequence comparison
problem from computational biology. It is NP-complete already with a ternary
alphabet but can be solved in time O∗(mm2O(m)) [32]. This algorithm is based
on the color-coding technique, which was introduced by Alon et al. [5] for
graph problems. The idea is to color each possible occurrence of a letter in
the solution (that is, each pair (σ, i) with σ ∈ Σ, i ∈ {1, . . . , τ(σ)}) randomly,
and then to look only for solutions that fulfill a certain colorfulness property
with respect to this coloring; this restriction makes the task much easier. If
we repeat the process frequently enough, we can ensure that the colorfulness
property is fulfilled at least once with high probability. By choosing the

14

Input

GCAAGTCTAATA

CAAAGTTATTA

GCAAGTCCATAAC

GCCAGACTCATA

GCTTCTAATA

Output

G C A A ∆ G T C ∆ ∆ T A A T A

∆ C A A A G T ∆ ∆ ∆ T A T T A

G C A A ∆ G T C C A T A A C ∆

G C C A ∆ G A C ∆ ∆ T C A T A

G C ∆ ∆ ∆ T T C ∆ ∆ T A A T A

4 0 7 4 4 4 4 4 4 4 0 4 4 4 4
∑

: 55

Figure 4: Multiple Sequence Alignment with unit cost function φ.

colorings from a perfect hash family, it can also be ensured deterministically
that at least one coloring makes the solution colorful. An alternative algorithm
based on finite automata has running time O(mf+|Σ| · |Σ|`2) where f is the
number of restriction strings that the solution must contain [73].

Finally, in the Exemplar Longest Common Subsequence problem
the alphabet consists of mandatory and optional letters and one is asked
to find a longest common subsequence that contains each mandatory letter
at least once [31]. On the negative side, it is NP-hard to check whether
there is any common subsequence (without maximizing its length) even if
each mandatory symbol occurs at most three times in each input string.
On the positive side, Exemplar Longest Common Subsequence is
fixed-parameter tractable for the parameter number of mandatory letters.

4.2 Multiple Sequence Alignment

From the viewpoint of biological applications, the class of multiple sequence
alignment problems form arguably the most relevant class of NP-hard string
problems. From an alignment of protein, RNA, or DNA sequences, one
may infer facts about the evolutionary history of biological species or of the
sequences themselves. These problems have as input a set of k strings and
the task is to find an alignment of these strings that has minimum cost (see
Figure 4 for an example). Herein, an alignment is a rectangular array whose
rows correspond to the input strings and may also contain an additional gap
symbol ∆. Informally, the goal of any multiple sequence alignment problem
is to maximize the total amount of similarity within the alignment columns.
There is a variety of possible cost functions to achieve this vaguely defined
task. For example, one may only count a column if it does not contain any
gap symbol and all its letters are equal. For this scoring function, Multiple

15

Sequence Alignment is equivalent to Longest Common Subsequence.
In this section, we focus on the so-called sum of pairs score. While it is

difficult to give a biological justification for this score, it is relatively easy to
work with and has been used in many studies. The sum of pairs score, or
rather cost, as the problems are often formulated as minimization problems,
is simply the sum of pairwise alignment costs over all pairs of input sequences.
The pairwise alignment cost is computed by summing pairwise “mutation”
costs over all columns of the alignment. The cost function is a problem-specific
symmetric function φ : (Σ ∪ {∆})× (Σ ∪ {∆})→ R+ where φ(σ, σ) = 0 for
each σ ∈ Σ ∪ {∆}.

Multiple Sequence Alignment (MSA) with SP-Score
Instance: A set S of k maximum-length-` strings s1, . . . , sk over an
alphabet Σ, a cost function φ and a positive integer m.
Question: Is there an alignment of S that has cost at most m?

Multiple Sequence Alignment is NP-complete for a wide range of cost
functions that fulfill the triangle inequality [30, 114]. In particular, Multiple
Sequence Alignment is NP-hard for all metric cost functions even for
binary input strings [70]. This includes the most simple cost function, the
unit cost function, that assigns a cost of 0 for aligning identical letters and a
cost of 1 for aligning a letter with a different letter or with the gap symbol ∆.

Notably, none of the reductions behind these hardness results shows W[1]-
hardness for the number of strings k while an `O(k)-time algorithm can be
achieved by standard dynamic programming. Focusing on the algorithmically
most fundamental cost function leads to the following challenge.

Challenge 11. Can Multiple Sequence Alignment with unit cost func-
tion be solved in `o(k) time?

An `o(k)-time lower bound was presented for the somewhat harder Local
Multiple Alignment problem [1].

4.3 Shortest Common Supersequence

Shortest Common Supersequence is another classic NP-hard prob-
lem [84, SR10]. Bodlaender et al. [28] mention applications in biology and
suggest examining the parameterized complexity for various parameters and
problem variants. Figure 5 shows an example.

Shortest Common Supersequence
Instance: A set of k maximum-length-` strings s1, . . . , sk over an
alphabet Σ and a positive integer m.
Question: Is there a string s ∈ Σ∗ of length at most m that is a
supersequence of si for i = 1, . . . , k?

16

Input

A A C T A A

C A A T C A A

G A A A A T A

G C A G T A A

G A G C A T

Output

G C A A G T C T A A T A

A A C T A A

C A A T C A A

G A A A A T A

G C A G T A A

G A G C A T

Figure 5: Shortest Common Supersequence

alphabet size |Σ|
parameter unbounded parameter constant

k W[1]-hard [102] W[1]-hard [102] W[1]-hard [142]
m FPT [E] FPT [E] FPT [E]
` NP-hard ` = 2 [148] FPT [E] FPT [E]

Table 2: Parameterized complexity of Shortest Common Supersequence.
Results marked [E] follow from trivial complete enumeration.

The case of two strings is easily solved in polynomial time by reducing
to Longest Common Subsequence. For an arbitrary number of strings,
the problem is NP-hard even when all input strings have length two [148], or
with a binary alphabet where each string contains exactly two 1’s [132].

Known results for the basic parameters are summarized in Table 2. We
can trivially enumerate all solutions in O(|Σ|m) time, and with |Σ| ≤ m
and m ≤ ` · |Σ|` the other results marked [E] follow. Parameterized by the
number of strings k, the problem is W[1]-hard, even when the alphabet size is
fixed [142]. As for Longest Common Subsequence, there is no `o(k)-time
algorithm for Shortest Common Supersequence [49].

Further parameters. Shortest Common Supersequence with occ =
1 and parameter m− ` (number of extra letters) is parameterized equivalent
to the Directed Feedback Vertex Set problem [74]. Thus, using the
FPT algorithm for the latter [50], we obtain fixed-parameter tractability.

Challenge 12. Extend the fixed-parameter tractability of Shortest Com-
mon Supersequence for parameter m− ` to larger classes of inputs.

17

Input

A G T A C

A C A T A

A T A G T

T A G T A

T A C A T

Output

A T A G T A C A T A

A T A G T

T A G T A

A G T A C

T A C A T

A C A T A

Figure 6: Shortest Common Superstring

Constrained version. Dondi [68] examines a generalization of Shortest
Common Supersequence that he calls Constrained Shortest Com-
mon Supersequence. The requirement is that in the solution string, each
letter a must occur at least τ(a) times. Only two input strings are considered.
Constrained Shortest Common Supersequence is NP-complete even
when occ = 2 and τ(a) ≤ 3 for each a ∈ Σ, but is polynomial-time solvable
when τ(a) ≤ 2 for each a ∈ Σ [68]. Note that in a shortest common superse-
quence s, letters must be part of the subsequence s1 or the subsequence s2

or both (matching letters). If we know the matching letters, the solution is
easy to construct. Thus, we can solve the problem in O∗(2|s1|) = O∗(2m) time
by trying all subsets of s1 that might form the matching letters. By case
distinction, this can be improved to O∗(1.733m) [68].

4.4 Shortest Common Superstring

Shortest Common Superstring is NP-complete [84, SR9]. It has appli-
cations in DNA assembly (see e. g. [71]) and data compression (see e. g. [83]).
For a survey, see Gevezes and Pitsoulis [85]. Figure 6 shows an example.

Shortest Common Superstring
Instance: A set S of k length-` strings s1, . . . , sk over an alphabet Σ
and a positive integer m.
Question: Is there a string s ∈ Σ∗ of length at most m that is a
superstring of si for i ∈ {1, . . . , k}?

Again, the case of two input strings is polynomial-time solvable, but for an
arbitrary number of sequences, the problem is NP-complete even when |Σ| = 2
or the maximum input string length ` is 3 [83].

18

alphabet size |Σ|
parameter unbounded parameter constant

k FPT [TSP] FPT [TSP] FPT [TSP]
m FPT [E] FPT [E] FPT [E]
` NP-hard ` = 3 [132] FPT [E] FPT [E]

Table 3: Parameterized complexity of Shortest Common Superstring.
Results marked [TSP] follow from a reduction to Traveling Salesman;
results marked [E] follow from trivial complete enumeration.

Bodlaender et al. [28] suggest examining the parameterized complexity
of this problem and variants. Evans and Wareham [71] give a survey on
parameterized results from the viewpoint of applications in molecular biology,
including generalizations based on the applications. The results for the basic
parameters are summarized in Table 3. The problem remains NP-complete if
the given strings have length 3 and the maximum letter occurrence over all
strings is 8 [132], or if all strings are of the form 10p10q with p, q ≥ 0 [133].
Again, we can trivially enumerate all solutions in O(|Σ|m) time, and with
|Σ| ≤ m and m ≤ ` · |Σ|` the other results marked [E] follow.

Any superstring can be created by concatenating the input strings in some
order and then merging overlaps, that is, if there is some string s that is both
a suffix of an input string and a prefix of the next input string in the ordering,
then we need s only once in the superstring. In a solution superstring, two
adjacent strings will always have maximum overlap. The maximum overlap
can be calculated in linear time. Thus, after O(k2`) time preprocessing, we
can simply try all k! possible orders of the input strings in the common
superstring, and solve Shortest Common Superstring in O(k! + k2`)
time. Alternatively, we can reduce to the Traveling Salesman problem
(TSP) by creating a vertex for each of the k input strings and weighing an arc
(s1, s2) by the number of nonmatched letters in s1 in the maximum overlap
with s2 (Figure 7). A minimum-weight path that visits all vertices then
corresponds to a shortest common superstring. (Note that we do not seek
a round-trip, that is, we can start at any vertex and do not need to return
to the start after having visited all other vertices.) For TSP, we can use a
classic exponential-space dynamic programming algorithm [17, 103] to solve
the problem in O(k22k + k2`) time. No algorithm for TSP that is faster than
O∗(2k) is known. Note that the edge weights in the TSP instances resulting
from this reduction are not symmetric, which unfortunately makes many
popular solution approaches for TSP inapplicable. For the special case where

19

AGTAC

ACATA

ATAGT TAGTA

TACAT

3

5 5

2

2 3

3

4

1

4

2

5 3

1

4

4

5

1

3 4

Figure 7: TSP instance for the Shortest Common Superstring instance
from Figure 6

the length of the input strings ` is three, Shortest Common Superstring
can be solved in O∗(3k/3) = O∗(1.443k) time [88]; more generally, when `
is bounded by some constant c, the problem can be solved in randomized
O∗(2(1−f(c))`) time, where f(c) = 1/(1 + 2c2) [89].

Challenge 13. Does Shortest Common Superstring admit a (2− ε)k ·
kO(1)-time algorithm for some ε > 0?

Note that the challenge does not become any easier when assuming a
binary alphabet [150].

Variants. Bonizzoni et al. [33] consider two variations of Shortest Com-
mon Superstring, where in addition to the set of strings we are given
extra input that restricts possible solutions; the aim is not to cover all strings
anymore, but a maximum-size subset. In Swapped Common Superstring,
we are additionally given a string t, and the solution string must be a swap
order of t, that is, it must be obtainable from t by nonoverlapping swaps
of adjacent letters. This problem is NP-complete [92], but fixed-parameter
tractable with respect to the number of input strings covered in the solu-
tion [33]. In Restricted Common Superstring, we are additionally
given a multisetM of letters from the same alphabet, and the solution string
must be an ordering ofM. This problem is NP-complete, even with binary
alphabet or input string length bounded by 2 [60]. For the number of input
strings covered in the solution, the problem is W[1]-hard; however, with
the additional parameter of the maximum input string length `, it becomes

20

Input

d = 2

A B R A C A D A B R A
A D A C A R R B A B A

Output

A B R A C A D A B R A

A D A C A R B A B R A

A D A C A R R B A B A

Figure 8: Sorting By Reversals

fixed-parameter tractable [33]. Both fixed-parameter algorithms are based
on the color-coding technique. On the negative side, the authors show that
the parameterizations that yield fixed-parameter tractability do not admit a
polynomial kernel, unless NP ⊆ coNP/poly [33].

5 Distances

The problems in this section aim at answering a common question: how
similar are two given strings? Easy answers can be obtained by counting the
number of local operations that are necessary to transform one string into
the other. The most important examples here are the Hamming distance and
the Levenshtein distances. More generally, for any combination of insertions,
deletions, single-letter changes, and adjacent swaps, the edit distance can be
computed in polynomial time, a notable exception being the edit distance
where deletions and adjacent swaps are allowed. Computing this distance
is doable in polynomial time for constant-size alphabets [131] but NP-hard
in general [151], and fixed-parameter tractable if parameterized by the dis-
tance [2]. Some models, however, require nonlocal operations. Usually, this
nonlocality makes the distance computation more challenging.

5.1 Reversal and Transposition Distances

A rearrangement is a large-scale operation that transforms a string. The
study of rearrangements is motivated by the evolution of genomes during
which different types of rearrangements occur [79]. One of the most-studied
rearrangement operation is the reversal, where the order of the letters in a
substring is reversed. The reversal distance between two strings is the number
of reversals needed to transform one string into the other; see Figure 8 for an
example.

21

String Reversal Distance
Instance: Two strings s1 and s2 of length ` and an integer d.
Question: Is the reversal distance between s1 and s2 at most d?

The problem is nontrivially posed only if each letter occurs with the same
frequency in s1 and s2; such strings are called balanced. For occ = 1, String
Reversal Distance is equivalent to transforming one permutation into
another: the two input strings are balanced and thus |Σ| = `. Since one may
assume without loss of generality that s2 = 12 . . . `, the problem is called
Sorting by Reversals in this case. Sorting by Reversals is NP-hard
[47]. String Reversal Distance is NP-hard even if |Σ| = 2 [59]. Moreover,
it remains hard even if |Σ| = 2 and the run-length (that is, maximum number
of subsequent identical letters) is two for one letter and one for the other
letter [46]. Besides the alphabet size |Σ|, the distance d is the most natural
parameter. Sorting by Reversals is trivially fixed-parameter tractable for
parameter d: If s1 contains substrings of the form i(i+1)(i+2) or (i+2)(i+1)i,
then these substrings and their counterparts in s2 can be replaced by smaller
ones. This reduces input instances to equivalent ones of length O(d). This
approach, however, does not extend to general strings. Thus, fixed-parameter
tractability with respect to d remains open.

Challenge 14. Is String Reversal Distance fixed-parameter tractable
for the parameter d?

Another natural parameter which obviously yields fixed-parameter tractabil-
ity is the string length `. A trivial search tree algorithm is to branch into
all `2 possibilities for the first reversal and then solve the problem recursively
with d− 1 for each of the resulting permutations. This gives a running time
of `O(`). Obviously, a significant improvement of this running time is desirable.

Challenge 15. Does String Reversal Distance admit a 2O(`)-time
algorithm?

A further parameter that was proposed for String Reversal Distance
is the number b of blocks, that is, maximal substrings in which only one
letter occurs. This parameter is motivated by the hardness for |Σ| = 2; for
such strings the block number can be much smaller than the string length `.
String Reversal Distance can be solved in O∗((6b)2b) time [46]. The
core idea is to first guess how the blocks get rearranged by the successive
reversals: Which block is inside, outside, or split by each reversal? Since the
reversal distance between two strings with at most b blocks is O(b), the search
tree size depends only on b. Then, the precise end-points of the reversals
within each block are computed with a network flow algorithm.

22

Input

A B R A C A D A B R A

C A D R A A B A B R A

A B R A C A D A B R A

Output

C A D R A A B A B R A

Figure 9: Minimum Common String Partition

Further rearrangement distances. The transposition operation is to
exchange two consecutive substrings. In the String Transposition Dis-
tance problem one asks whether one string can be transformed into an-
other by at most d transpositions. Similarly to the reversal case, String
Transposition Distance is NP-hard even if occ = 1 [43] or |Σ| = 2
[144]. A further variant of rearrangement operations are prefix reversals and
transpositions, where the first letter of the string must be affected by the
rearrangement. Motivated by applications in genomics one may also take into
account the orientation (or sign) of the elements of the string when perform-
ing a reversal. Notably, the signed version of Sorting By Reversals is
solvable in polynomial time. However, for occ = 2 [144] the problem becomes
NP-hard. Moreover, Signed String Reversal Distance and Signed
String Transposition Distance are NP-hard even for unary alphabet,
that is, |Σ| = 1 [46]. The above-mentioned fixed-parameter algorithm for the
parameter block number b can be extended (with different running times) to
many other rearrangement distances, including transposition distance, and
signed and prefix variants of reversal distance and transposition distance.

5.2 Minimum Common String Partition

The Minimum Common String Partition problem aims at splitting one
input string into few substrings which can be rearranged to obtain the other
substring. Formally, a common string partition of two strings s1 and s2 is a
partition P of s1 into s1 = s1

1·s2
1·. . .·sd−1

1 ·sd1 and of s2 into s2 = s1
2·s2

2·. . .·sd−1
2 ·sd2

such that there exists a permutationM of {1, . . . , d} where each si1 is the same
string as sM(i)

2 ; see Figure 9. Here, d represents the size of the partition, and
the substrings sji are called blocks. The problem, introduced independently
by Chen et al. [51], Goldstein et al. [87], and Swenson et al. [147] (who call it
Sequence Cover) is defined as follows.

23

Minimum Common String Partition
Instance: Two strings s1 and s2 of length ` and an integer d.
Question: Is there a common string partition of s1, s2 of size at
most d?

Similar to reversal distance, two strings have a common string partition only
if they are balanced, that is, each letter appears with the same frequency in
both strings.

The problem can be seen as a relaxation of problems like Sorting By
Transpositions, where one aims only at identifying conserved regions
without building a precise evolution scenario. In particular, the number of
blocks is a good approximation of the actual transposition distance. Minimum
Common String Partition can also be seen as a way of creating a bijection
between elements of each string. This can be used to identify similar genes
across different genomes [51].

Minimum Common String Partition is NP-hard even if |Σ| = 2
or if occ = 2 [87]. Damaschke [66] identified Minimum Common String
Partition as a challenging problem for parameterized algorithmics. He
described a fixed-parameter algorithm for the combined parameter block
number d and repetition number r, defined as the maximum power of any
substring of s1 or s2. Herein, the power of a string w is a number r such that
there is a string u with w = ur. Minimum Common String Partition can
also be solved in O((2x)dd!`) time where x is the maximum difference between
a block size and the average block size `/d [112]. A further fixed-parameter
algorithm has running time O∗((occ)!d). This running time was subsequently
improved to O∗(occ2d) [44]. The main idea behind the improved algorithm
is as follows. Assume that some elements of both strings, called seeds, are
already matched across the two strings. Draw a graph over the set of elements
of both strings as follows. Add an edge between any pair of elements (one in
each string) which may be matched if they are in the same block as a seed. If
the resulting graph admits a perfect matching, then there exists a common
string partition with as many blocks as seeds. Otherwise, some connected
component does not have a perfect matching. A new seed can be found using
one of the elements of this component and an element with the same letter in
the other sequence. The overall number of options for this new seed is occ2.
The running time bound follows from the fact that at most d seeds need to
be considered which bounds the depth of the search tree.

Finally, Minimum Common String Partition is fixed-parameter
tractable for the parameter d [41]. The corresponding algorithm, however, has
an impractical running time of O∗(d21d2). This algorithm uses the following
framework, also proposed by Damaschke [66]. First split the input strings
into O(d) pieces. Then guess which pieces are completely contained in a

24

block. Continue recursively on the remaining pieces, until all blocks have
been discovered. The main technical difficulty is to reduce the size of the
remaining pieces in order to find at least one new block in each splitting
round.

Variants. A signed variant where each element is given a sign (+ or −)
and a block of s1 may be matched either to an identical block in s2, or to
its reverse (where both the order and the signs of the elements are inverted)
has also been considered [51]. To deal with unbalanced strings, the following
model has been proposed [44]: some elements may be deleted from each input
string, but only between two consecutive blocks and only as few as necessary
so that the resulting strings are balanced (that is, the same letter may not be
deleted from both strings). An efficient algorithm that solves both of these
extensions would be desirable. Towards this goal, one could first address the
following problem.

Challenge 16. Is Signed Minimum Common String Partition fixed-
parameter tractable for the parameter d?

A generalization of Minimum Common String Partition, where blocks
are allowed to have a small number of mismatches, and may additionally
not partition exactly the input strings is studied by Lopresti and Tomkins
[123] under the name Block edit distance. Most variants of Block
edit distance are NP-hard; some interesting special cases can be solved in
polynomial-time. Gu et al. [96] consider the one-sided Minimum Common
String Partition problem, termed Exact Block Cover: Here one
sequence is already partitioned into d blocks and the task is to partition the
other sequence accordingly. Exact Block Cover is NP-complete even
with binary alphabet, but polynomial-time solvable when occ ≤ 3. Further,
it can be solved in O∗(2d) time.

5.3 Other Distances

The following string distances are particularly complex. They have been the
subject of very little or no studies in terms of fixed-parameter tractability. In
the first of these distances, the task is to find common subsequences of input
strings which are permutations that are close with respect to some distance
measure on permutations.

25

Exemplar δ Distance (where δ is a given distance function over
permutations)
Instance: Two strings s1 and s2 over an alphabet Σ and an integer d.
Question: Are there p-sequences s′1, s′2 of length |Σ| such that s′1 is
a subsequence of s1, s′s is a subsequence of s2, and δ(s′1, s′2) ≤ d?

For each distance function δ, we obtain a different problem. When d = 0,
these problems coincide, thus leading to the 0-Exemplar Distance problem,
which has a straightforward formulation.

0-Exemplar Distance
Instance: Two strings s1 and s2 over an alphabet Σ.
Question: Is there a p-sequence s of length |Σ| which is a common
subsequence of s1 and s2?

0-Exemplar Distance is NP-hard [113] even if occ = 2. This implies NP-
hardness of Exemplar δ Distance for all distance functions δ. Furthermore,
for many distance functions, including Hamming distance and breakpoint
distance, NP-hardness can be shown even if one of the two input strings is a
permutation [13, 40].

The last problem we consider, Maximal Strip Recovery, aims at
grouping elements of each string into nonoverlapping strips [153]. Here, a
strip is a common subsequence of length at least 2; see Figure 10. In the
proposed application, “single” elements which cannot be attached to any strip
are considered as noise which can be deleted. The number d of such elements
gives a measure of dissimilarity between the two input strings.

Maximal Strip Recovery
Instance: Two strings s1, s2 of length ` and an integer d.
Question: Are there q strings (wi)1≤i≤q, each of length at least 2, and
a permutation σ of {1, . . . , q} such that: w1 · . . . ·wq is a subsequence
of s1, wσ(1) · . . . · wσ(q) is a subsequence of s2, and

∑q
i=1 |wi| ≥ `− d?

Maximal Strip Recovery is NP-hard, even if occ = 1 [53] or if we force
the strips wi to actually be substrings instead of subsequences [45]. The
problem restricted to permutations is fixed-parameter tractable for d [42, 111],
the current best running time being O∗(2.36d) [42]. It is unclear whether this
result extends to strings.

Challenge 17. Is Maximal Strip Recovery fixed-parameter tractable for
the parameter d?

26

Input

A B R A C A D A B R A
A C D A D B A C A B A

Output
d = 3

A B R A C A D A B R A

A C D A D B A C A B A

Figure 10: Maximum Strip Recovery

6 Miscellaneous
In this section, we point to some further NP-hard string problems which do
not fit into the above classification but nevertheless yield interesting research
questions.

String problems with variables. The NP-hard String Morphism prob-
lem is to generate from a source string s1 over alphabet Σ1 a target string s2

over an alphabet Σ2 by uniformly replacing letters in Σ1, called variables,
by strings from Σ∗2. The task is to decide whether such a replacement exists.
String Morphism is NP-hard even for very restricted inputs [77]. Fernau
et al. [78] consider different parameters such as |Σ1|, |Σ2|, the maximum
length ω of the strings substituted for the variables in Σ1, and the maximum
number occ1 of occurrences of a letter in s1. For a wide range of combined
parameters, for example for the combined parameter (|Σ1|, |Σ2|, occ1), the
problem becomes W[1]-hard; a fixed-parameter algorithm exists for example
for the combined parameter (|Σ1|, ω) [78]. String Morphism is a special
case of the problem of deciding whether a word equation [143] is solvable;
further investigations could thus address this more general problem.

Collision-aware string partitioning. This new family of string problems
is motivated by applications in biotechnology [62]. Informally, these problems
are defined as follows: partition a string into substrings such that no two
substrings of the partition are similar. For example, one may demand that all
substrings of the partition are unequal or that no substring of the partition is
a prefix of another substring. All of the considered problems remain hard even
for binary strings [61, 62]. The parameterized complexity of the problems is
open.

Local search for hard string problems. A common heuristic for hard
optimization problems is local search. This approach works as follows. Each
problem is equipped with a set of feasible solutions and each solution has

27

an objective value. Start with some some solution. Then, check whether
there is a better solution that is in a suitably defined neighborhood of
the current solution. If yes, then continue the process with this solution.
Otherwise, output the current, locally optimal solution. For the four string
problems Closest String, Longest Common Subsequence, Shortest
Common Supersequence, and Shortest Common Superstring the
set of feasible solutions are strings on the input alphabet Σ. One possible
neighborhood of a string s is the set of strings with Hamming distance at
most d. This neighborhood has size |s|O(d). Thus, an interesting question is
whether this neighborhood can be efficiently searched, for example in f(d) ·
|s|O(1) time. For all four problems it is W[1]-hard to decide for a given
solution string whether there is a better solution string within Hamming
distance d [101]. Moreover, if the ETH is true, then for all problems except
Shortest Common Superstring it is impossible to find an algorithm
with running time `o(d) [101]. Despite this initial set of negative results, local
search should still be a worthwhile research direction in the realm of string
problems. The following challenge for Shortest Common Superstring
demonstrates how diverse the questions in this area can be. Recall that
Shortest Common Superstring may be reduced to finding an optimal
tour in a TSP instance. Thus, the set of feasible solutions can be also seen as
a permutation of the set of input strings. Now the neighborhood of a solution
is defined by a suitable distance between permutations, for example swap
distance which counts the number of pairwise exchanges of (not necessarily
adjacent) elements needed to transform one permutation into the other.

Challenge 18. Is the following problem fixed-parameter tractable with respect
to d? Given a set of k strings {s1, . . . , sk} and a permutation π of {s1, . . . , sk}
such that the superstring corresponding to π has length m, is there a per-
mutation π′ of {s1, . . . , sk} such that the superstring corresponding to π′ has
length m′ < m and the swap distance between π and π′ is at most d?

To answer the challenge it might be useful to exploit known results on
the parameterized complexity of local search variants of TSP [100, 129].

7 Outlook
NP-hard string problems offer a rich working area for multivariate algorithmics
research. In particular, compared to graph-theoretic problems there are several
issues that so far have been widely neglected:

• Kernelization issues [98, 117] including topics such as Turing kerneliza-
tion [117] or partial kernelization [20].

28

• Parameter hierarchies [116] for gaining an even more refined view of
parameterized complexity. To identify new nontrivial parameters and
parameter relationships, one might draw from the rich set of results on
combinatorics on words [64].

• Algorithm engineering and empirical validation [106] of fixed-parameter
string algorithms.

• Parameterized approximation algorithms [128] for string problems.

• Distance to triviality [99] and width-based parameterizations (such as
treewidth) are very successful in algorithmic graph theory—are there
analogous types of parameterizations for string problems? A first step
in this direction was undertaken by Reidenbach and Schmid [145] who
study a width-based parameterization for the NP-complete membership
problem for pattern languages.

Finally, we clearly did not cover all relevant research on multivariate algo-
rithmics for (unweighted) string problems. In particular, certain types of
“annotated” and more general problems such as arc-annotated string prob-
lems [4, 24, 27] as motivated by applications in analyzing RNA sequences
have been completely omitted.

Acknowledgment. We thank Henning Fernau (Universität Trier) and
Stéphane Vialette (Université Paris-Est Marne-la-Vallée) for reading a previ-
ous draft of the manuscript and providing us with their constructive feedback.

References
[1] A. Abboud, V. V. Williams, and O. Weimann. Consequences of faster

alignment of sequences. In Proceedings of the 41st International Collo-
quium on Automata, Languages, and Programming (ICALP ’14), volume
8572 of LNCS, pages 39–51. Springer, 2014.

[2] F. N. Abu-Khzam, H. Fernau, M. A. Langston, S. Lee-Cultura, and
U. Stege. Charge and reduce: A fixed-parameter algorithm for string-
to-string correction. Discrete Optimization, 8(1):41–49, 2011.

[3] S. S. Adi, M. D. V. Braga, C. G. Fernandes, C. E. Ferreira, F. V. Mar-
tinez, M.-F. Sagot, M. A. Stefanes, C. Tjandraatmadja, and Y. Wak-
abayashi. Repetition-free longest common subsequence. Discrete Applied
Mathematics, 158(12):1315–1324, 2010.

29

[4] J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the
similarity of two sequences with nested arc annotations. Theoretical
Computer Science, 312(2-3):337–358, 2004.

[5] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM,
42(4):844–856, 1995.

[6] A. Amir, Z. Gotthilf, and B. R. Shalom. Weighted LCS. Journal of
Discrete Algorithms, 8(3):273–281, 2010.

[7] A. Amir, Z. Gotthilf, and B. R. Shalom. Weighted shortest common
supersequence. In Proceedings of the 18th International Symposium on
String Processing and Information Retrieval (SPIRE ’11), volume 7024
of LNCS, pages 44–54. Springer, 2011.

[8] A. Amir, G. M. Landau, J. C. Na, H. Park, K. Park, and J. S. Sim.
Efficient algorithms for consensus string problems minimizing both
distance sum and radius. Theoretical Computer Science, 412(39):5239–
5246, 2011.

[9] A. Amir, H. Paryenty, and L. Roditty. Approximations and partial
solutions for the consensus sequence problem. In Proceedings of the
18th International Symposium on String Processing and Information
Retrieval (SPIRE ’11), volume 7024 of LNCS, pages 168–173. Springer,
2011.

[10] A. Amir, H. Paryenty, and L. Roditty. Configurations and minority in
the string consensus problem. In Proceedings of the 19th International
Symposium on String Processing and Information Retrieval (SPIRE ’12),
volume 7608 of LNCS, pages 42–53. Springer, 2012.

[11] A. Amir, H. Paryenty, and L. Roditty. On the hardness of the consensus
string problem. Information Processing Letters, 113(10-11):371–374,
2013.

[12] A. Amir, J. Ficler, L. Roditty, and O. S. Shalom. On the efficiency
of the Hamming c-centerstring problems. In Proceedings of the 25th
Annual Symposium on Combinatorial Pattern Matching (CPM ’14)),
volume 8486 of LNCS, pages 1–10. Springer, 2014.

[13] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. On
the approximability of comparing genomes with duplicates. Journal of
Graph Algorithms and Applications, 13(1):19–53, 2009.

30

[14] H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, and
T. Walsh. Computational aspects of multi-winner approval voting.
In Proceedings of the 8th Multidisciplinary Workshop on Advances in
Preference Handling. AAAI Press, 2014.

[15] C. Bachmaier, F.-J. Brandenburg, A. Gleißner, and A. Hofmeier. On
maximum rank aggregation problems. In Proceedings of the 24th Inter-
national Workshop on Combinatorial Algorithms (IWOCA ’13), volume
8288 of LNCS, pages 14–27. Springer, 2013.

[16] M. Basavaraju, F. Panolan, A. Rai, M. S. Ramanujan, and S. Saurabh.
On the kernelization complexity of string problems. In 20th International
Conference on Computing and Combinatorics (COCOON ’14), volume
8591 of LNCS, pages 141–153. Springer, 2014.

[17] R. Bellman. Dynamic programming treatment of the travelling salesman
problem. Journal of the ACM, 9(1):61–63, 1962.

[18] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common
subsequence algorithms. In Proceedings of the 7th International Sym-
posium on String Processing and Information Retrieval (SPIRE ’00),
pages 39–48. IEEE, 2000.

[19] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond.
Fixed-parameter algorithms for Kemeny rankings. Theoretical Computer
Science, 410(45):4554–4570, 2009.

[20] N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. Average pa-
rameterization and partial kernelization for computing medians. Journal
of Computer and System Sciences, 77(4):774–789, 2011.

[21] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in com-
putational aspects of voting—a parameterized complexity perspective.
In The Multivariate Algorithmic Revolution and Beyond, volume 7370
of LNCS, pages 318–363. Springer, 2012.

[22] N. Betzler, R. Bredereck, and R. Niedermeier. Theoretical and empir-
ical evaluation of data reduction for exact Kemeny rank aggregation.
Autonomous Agents and Multi-Agent Systems, 28(5):721–748, 2014.

[23] R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller. Interval
scheduling and colorful independent sets. Journal of Scheduling, 2014.
Available online.

31

[24] G. Blin, M. Crochemore, and S. Vialette. Algorithmic aspects of arc-
annotated sequences. In Algorithms in Molecular Biology: Techniques,
Approaches, and Applications. Wiley, 2011.

[25] G. Blin, P. Bonizzoni, R. Dondi, and F. Sikora. On the parameterized
complexity of the repetition free longest common subsequence problem.
Information Processing Letters, 112(7):272–276, 2012.

[26] G. Blin, L. Bulteau, M. Jiang, P. J. Tejada, and S. Vialette. Hardness
of longest common subsequence for sequences with bounded run-lengths.
In Proceedings of the 23rd Annual Symposium on Combinatorial Pattern
Matching (CPM ’12), volume 7354 of LNCS, pages 138–148. Springer,
2012.

[27] G. Blin, M. Jiang, and S. Vialette. The longest common subsequence
problem with crossing-free arc-annotated sequences. In Proceedings of
the 19th International Symposium on String Processing and Information
Retrieval (SPIRE ’12), volume 7608 of LNCS, pages 130–142. Springer,
2012.

[28] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and
H. T. Wareham. Parameterized complexity analysis in computational
biology. Computer Applications in the Biosciences, 11(1):49–57, 1995.

[29] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham.
The parameterized complexity of sequence alignment and consensus.
Theoretical Computer Science, 147(1&2):31–54, 1995.

[30] P. Bonizzoni and G. D. Vedova. The complexity of multiple sequence
alignment with SP-score that is a metric. Theoretical Computer Science,
259(1):63–79, 2001.

[31] P. Bonizzoni, G. D. Vedova, R. Dondi, G. Fertin, R. Rizzi, and
S. Vialette. Exemplar longest common subsequence. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 4(4):535–543,
2007.

[32] P. Bonizzoni, G. D. Vedova, R. Dondi, and Y. Pirola. Variants of con-
strained longest common subsequence. Information Processing Letters,
110(20):877–881, 2010.

[33] P. Bonizzoni, R. Dondi, G. Mauri, and I. Zoppis. Restricted and
swap common superstring: A multivariate algorithmic perspective.
Algorithmica, 2014. Available online.

32

[34] C. Boucher and B. Ma. Closest string with outliers. BMC Bioinformatics,
12(S-1):S55, 2011.

[35] C. Boucher and M. Omar. On the hardness of counting and sampling
center strings. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 9(6):1843–1846, 2012.

[36] C. Boucher, D. G. Brown, and S. Durocher. On the structure of small
motif recognition instances. In Proceedings of the 15th International
Symposium on String Processing and Information Retrieval (SPIRE ’08),
volume 5280 of LNCS, pages 269–281. Springer, 2008.

[37] C. Boucher, G. M. Landau, A. Levy, D. Pritchard, and O. Weimann.
On approximating string selection problems with outliers. Theoretical
Computer Science, 498:107–114, 2013.

[38] F. Brandt, V. Conitzer, and U. Endriss. Computational social choice.
In Multiagent Systems, pages 213–283. MIT Press, 2013.

[39] R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and
G. J. Woeginger. Parameterized algorithmics for computational social
choice: nine research challenges. Tsinghua Science and Technology, 19
(4):358–373, 2014.

[40] L. Bulteau and M. Jiang. Inapproximability of (1, 2)-exemplar distance.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
10(6):1384–1390, 2013.

[41] L. Bulteau and C. Komusiewicz. Minimum common string partition
parameterized by partition size is fixed-parameter tractable. In Proceed-
ings the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
(SODA ’14), pages 102–121. SIAM, 2014.

[42] L. Bulteau, G. Fertin, M. Jiang, and I. Rusu. Tractability and ap-
proximability of maximal strip recovery. Theoretical Computer Science,
440-441:14–28, 2012.

[43] L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is difficult.
SIAM Journal on Discrete Mathematics, 26(3):1148–1180, 2012.

[44] L. Bulteau, G. Fertin, C. Komusiewicz, and I. Rusu. A fixed-parameter
algorithm for minimum common string partition with few duplications.
In Proceedings of the 13th International Workshop on Algorithms in
Bioinformatics (WABI ’13), pages 244–258, 2013.

33

[45] L. Bulteau, G. Fertin, and I. Rusu. Maximal strip recovery problem
with gaps: Hardness and approximation algorithms. Journal of Discrete
Algorithms, 19(0):1 – 22, 2013.

[46] L. Bulteau, G. Fertin, and C. Komusiewicz. Reversal distances for
strings with few blocks or small alphabets. In Proceedings of the 25th
Annual Symposium on Combinatorial Pattern Matching (CPM ’14),
volume 8486 of LNCS, pages 50–59. Springer, 2014.

[47] A. Caprara. Sorting by reversals is difficult. In Proceedings of the
1st Annual International Conference on Research in Computational
Molecular Biology (RECOMB ’97), pages 75–83. ACM, 1997.

[48] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj,
and G. Xia. Tight lower bounds for certain parameterized NP-hard
problems. Information and Computation, 201(2):216–231, 2005.

[49] J. Chen, X. Huang, I. A. Kanj, and G. Xia. On the computational
hardness based on linear FPT-reductions. Journal of Combinatorial
Optimization, 11(2):231–247, 2006.

[50] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the
ACM, 55(5), 2008.

[51] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. As-
signment of orthologous genes via genome rearrangement. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2(4):302–
315, 2005.

[52] Y.-C. Chen and K.-M. Chao. On the generalized constrained longest
common subsequence problems. Journal of Combinatorial Optimization,
21(3):383–392, 2011.

[53] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks
from comparative maps. Journal of Combinatorial Optimization, 18(3):
307–318, 2009.

[54] Z.-Z. Chen and L. Wang. Fast exact algorithms for the closest string and
substring problems with application to the planted (l, d)-motif model.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
8(5):1400–1410, 2011.

34

[55] Z.-Z. Chen, B. Ma, and L. Wang. A three-string approach to the
closest string problem. Journal of Computer and System Sciences, 78
(1):164–178, 2012.

[56] Z.-Z. Chen, B. Ma, and L. Wang. Randomized and parameterized
algorithms for the closest string problem. In Proceedings of the 25th
Annual Symposium on Combinatorial Pattern Matching (CPM ’14),
volume 8486 of LNCS, pages 100–109. Springer, 2014.

[57] Z.-Z. Chen, W. Ma, and L. Wang. The parameterized complexity of
the shared center problem. Algorithmica, 69(2):269–293, 2014.

[58] M. Chimani, M. Woste, and S. Böcker. A closer look at the closest string
and closest substring problem. In Proceedings of the 30th Workshop on
Algorithm Engineering and Experiments (ALENEX ’11), pages 13–24.
SIAM, 2011.

[59] D. A. Christie and R. W. Irving. Sorting strings by reversals and by
transpositions. SIAM Journal on Discrete Mathematics, 14(2):193–206,
2001.

[60] R. Clifford, Z. Gotthilf, M. Lewenstein, and A. Popa. Restricted com-
mon superstring and restricted common supersequence. In Proceedings
of the 22nd Annual Symposium on Combinatorial Pattern Matching
(CPM ’11), volume 6661 of LNCS, pages 467–478. Springer, 2011.

[61] A. Condon, J. Maňuch, and C. Thachuk. Complexity of a collision-
aware string partition problem and its relation to oligo design for gene
synthesis. In Proceedings of the 14th Annual International Conference
on Computing and Combinatorics (COCOON ’08), volume 5092 of
LNCS, pages 265–275. Springer, 2008.

[62] A. Condon, J. Maňuch, and C. Thachuk. The complexity of string
partitioning. In Proceedings of the 23rd Annual Symposium on Com-
binatorial Pattern Matching (CPM ’12), volume 7354 of LNCS, pages
159–172. Springer, 2012.

[63] N. Creignou, R. Ktari, A. Meier, J.-S. Müller, F. Olive, and H. Vollmer.
Parameterized enumeration with ordering. CoRR, abs/1309.5009, 2013.

[64] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific,
2002.

35

[65] M. Cygan, M. Kubica, J. Radoszewski, W. Rytter, and T. Waleń.
Polynomial-time approximation algorithms for weighted LCS problem.
In Proceedings of the 22nd Annual Symposium on Combinatorial Pattern
Matching (CPM ’11), volume 6661 of LNCS, pages 455–466. Springer,
2011.

[66] P. Damaschke. Minimum common string partition parameterized. In
Proceedings of the 8th International Workshop on Algorithms in Bioin-
formatics (WABI ’08), volume 5251 of LNCS, pages 87–98, 2008.

[67] L. P. Dinu and A. Popa. On the closest string via rank distance. In
Proceedings of the 23rd Annual Symposium on Combinatorial Pattern
Matching (CPM ’12), volume 7354 of LNCS, pages 413–426. Springer,
2012.

[68] R. Dondi. The constrained shortest common supersequence problem.
Journal of Discrete Algorithms, 21:11–17, 2013.

[69] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[70] I. Elias. Settling the intractability of multiple alignment. Journal of
Computational Biology, 13(7):1323–1339, 2006.

[71] P. A. Evans and T. Wareham. Efficient restricted-case algorithms for
problems in computational biology. In Algorithms in Computational
Molecular Biology: Techniques, Approaches and Applications, Wiley
Series in Bioinformatics, pages 27–49. Wiley, 2011.

[72] P. A. Evans, A. D. Smith, and H. T. Wareham. On the complexity of
finding common approximate substrings. Theoretical Computer Science,
306(1-3):407–430, 2003.

[73] E. Farhana and M. S. Rahman. Doubly-constrained LCS and hybrid-
constrained LCS problems revisited. Information Processing Letters,
112(13):562–565, 2012.

[74] M. R. Fellows, M. T. Hallett, and U. Stege. Analogs & duals of the
MAST problem for sequences & trees. Journal of Algorithms, 49(1):
192–216, 2003.

[75] M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized
intractability of motif search problems. Combinatorica, 26(2):141–167,
2006.

36

[76] M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully
multivariate algorithmics: Parameter ecology and the deconstruction of
computational complexity. European Journal of Combinatorics, 34(3):
541–566, 2013.

[77] H. Fernau and M. L. Schmid. Pattern matching with variables: A
multivariate complexity analysis. In Proceedings of the 24th Annual
Symposium on Combinatorial Pattern Matching (CPM ’13), volume
7922 of LNCS, pages 83–94. Springer, 2013.

[78] H. Fernau, M. L. Schmid, and Y. Villanger. On the parameterised
complexity of string morphism problems. In Proceedings of the 33rd
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS ’13), volume 24 of LIPIcs,
pages 55–66. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013.

[79] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combina-
torics of Genome Rearrangements. Computational Molecular Biology.
MIT Press, 2009.

[80] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer
Verlag, 2006.

[81] M. Frances and A. Litman. On covering problems of codes. Theory of
Computing Systems, 30(2):113–119, 1997.

[82] A. Frank and É. Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):
49–65, 1987.

[83] J. Gallant, D. Maier, and J. A. Storer. On finding minimal length
superstrings. Journal of Computer and System Sciences, 20(1):50–58,
1980.

[84] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[85] T. P. Gevezes and L. S. Pitsoulis. The shortest superstring problem.
In Optimization in Science and Engineering, pages 189–227. Springer,
2014.

[86] P. Giannopoulos, C. Knauer, and S. Whitesides. Parameterized com-
plexity of geometric problems. The Computer Journal, 51(3):372–384,
2008.

37

[87] A. Goldstein, P. Kolman, and J. Zheng. Minimum common string
partition problem: Hardness and approximations. Electronic Journal
of Combinatorics, 12, 2005.

[88] A. Golovnev, A. S. Kulikov, and I. Mihajlin. Solving 3-superstring
in 3n/3 time. In Proceedings of the 38th International Symposium on
Mathematical Foundations of Computer Science (MFCS ’13), volume
8087 of LNCS, pages 480–491. Springer, 2013.

[89] A. Golovnev, A. S. Kulikov, and I. Mihajlin. Solving SCS for bounded
length strings in fewer than 2n steps. Information Processing Letters,
114(8):421–425, 2014.

[90] Z. Gotthilf, D. Hermelin, and M. Lewenstein. Constrained LCS: Hard-
ness and approximation. In Proceedings of the 19th Annual Symposium
on Combinatorial Pattern Matching (CPM ’08), volume 5029 of LNCS,
pages 255–262. Springer, 2008.

[91] Z. Gotthilf, D. Hermelin, G. M. Landau, and M. Lewenstein. Restricted
LCS. In Proceedings of the 17th International Symposium on String
Processing and Information Retrieval (SPIRE ’10), volume 6393 of
LNCS, pages 250–257. Springer, 2010.

[92] Z. Gotthilf, M. Lewenstein, and A. Popa. On shortest common super-
string and swap permutations. In Proceedings of the 17th International
Symposium on String Processing and Information Retrieval (SPIRE ’10),
volume 6393 of LNCS, pages 270–278. Springer, 2010.

[93] J. Gramm, R. Niedermeier, and P. Rossmanith. Exact solutions for clos-
est string and related problems. In Proceedings of the 12th International
Symposium on Algorithms and Computation (ISAAC ’01), volume 2223
of LNCS, pages 441–453. Springer, 2001.

[94] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter al-
gorithms for closest string and related problems. Algorithmica, 37(1):
25–42, 2003.

[95] J. Gramm, J. Guo, and R. Niedermeier. Parameterized intractability of
distinguishing substring selection. Theory of Computing Systems, 39
(4):545–560, 2006.

[96] Q. Gu, P. Hell, and B. Yang. On the exact block cover problem. In
Proceedings of the 10th International Conference on Algorithmic Aspects

38

in Information and Management (AAIM ’14), volume 8546 of LNCS,
pages 13–22. Springer, 2014.

[97] S. Guillemot. Parameterized complexity and approximability of the
longest compatible sequence problem. Discrete Optimization, 8(1):
50–60, 2011.

[98] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007.

[99] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on pa-
rameterizing problems: Distance from triviality. In Proceedings of the
1st International Workshop on Parameterized and Exact Computation
(IWPEC ’04), volume 3162 of LNCS, pages 162–173. Springer, 2004.

[100] J. Guo, S. Hartung, R. Niedermeier, and O. Suchý. The parameterized
complexity of local search for TSP, more refined. Algorithmica, 67(1):
89–110, 2013.

[101] J. Guo, D. Hermelin, and C. Komusiewicz. Local search for string
problems: Brute force is essentially optimal. Theoretical Computer
Science, 525:30–41, 2014.

[102] M. T. Hallett. An Integrated Complexity Analysis of Problems from
Computational Biology. PhD thesis, University of Victoria, Canada,
1998.

[103] M. Held and R. M. Karp. A dynamic programming approach to se-
quencing problems. Journal of the Society for Industrial and Applied
Mathematics, 10(1):196–210, 1962.

[104] D. Hermelin and L. Rozenberg. Parameterized complexity analysis for
the closest string with wildcards problem. In Proceedings of the 25th
Annual Symposium on Combinatorial Pattern Matching (CPM ’14),
volume 8486 of LNCS, pages 140–149. Springer, 2014.

[105] W. J. Hsu and M. W. Du. Computing a longest common subsequence
for a set of strings. BIT Numerical Mathematics, 24(1):45–59, 1984.

[106] F. Hüffner, R. Niedermeier, and S. Wernicke. Techniques for practical
fixed-parameter algorithms. The Computer Journal, 51(1):7–25, 2008.

[107] F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, and S. Böcker. Swiftly
computing center strings. BMC Bioinformatics, 12:106, 2011.

39

[108] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing
longest common subsequences. Communications of the ACM, 20(5):
350–353, 1977.

[109] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63
(4):512–530, 2001.

[110] R. W. Irving and C. B. Fraser. Two algorithms for the longest common
subsequence of three (or more) strings. In Proceedings of the 3rd Annual
Symposium on Combinatorial Pattern Matching (CPM ’92), volume
644 of LNCS, pages 214–229. Springer, 1992.

[111] H. Jiang, Z. Li, G. Lin, L. Wang, and B. Zhu. Exact and approximation
algorithms for the complementary maximal strip recovery problem.
Journal of Combinatorial Optimization, 23(4):493–506, 2012.

[112] H. Jiang, B. Zhu, D. Zhu, and H. Zhu. Minimum common string
partition revisited. Journal of Combinatorial Optimization, 23(4):519–
527, 2012.

[113] M. Jiang. The zero exemplar distance problem. Journal of Computa-
tional Biology, 18(9):1077–1086, 2011.

[114] W. Just. Computational complexity of multiple sequence alignment
with SP-score. Journal of Computational Biology, 8(6):615–623, 2001.

[115] R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12(3):415–440, 1987.

[116] C. Komusiewicz and R. Niedermeier. New races in parameterized
algorithmics. In Proceedings of the 37th International Symposium on
Mathematical Foundations of Computer Science (MFCS ’12), volume
7464 of LNCS, pages 19–30. Springer, 2012.

[117] S. Kratsch. Recent developments in kernelization: A survey. Bulletin
of the EATCS, 113:58–97, 2014.

[118] T. Lee, J. C. Na, H. Park, K. Park, and J. S. Sim. Finding consensus
and optimal alignment of circular strings. Theoretical Computer Science,
468:92–101, 2013.

[119] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8(4):538–548, 1983.

40

[120] M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences.
Journal of Computer and System Sciences, 65(1):73–96, 2002.

[121] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential
parameterized problems. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’11), pages 760–776. SIAM,
2011.

[122] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
Exponential Time Hypothesis. Bulletin of the EATCS, 105:41–71, 2011.

[123] D. P. Lopresti and A. Tomkins. Block edit models for approximate
string matching. Theoretical Computer Science, 181(1):159–179, 1997.

[124] B. Ma and X. Sun. More efficient algorithms for closest string and
substring problems. SIAM Journal on Computing, 39(4):1432–1443,
2009.

[125] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31(2):335–354, 1999.

[126] D. Maier. The complexity of some problems on subsequences and
supersequences. Journal of the ACM, 25(3):322–336, 1978.

[127] D. Marx. Closest substring problems with small distances. SIAM
Journal on Computing, 38(4):1382–1410, 2008.

[128] D. Marx. Parameterized complexity and approximation algorithms.
The Computer Journal, 51(1):60–78, 2008.

[129] D. Marx. Searching the k-change neighborhood for TSP is W[1]-hard.
Operations Research Letters, 36(1):31–36, 2008.

[130] D. Marx. Fixed-parameter tractable scheduling problems. In Packing
and Scheduling Algorithms for Information and Communication Services
(Dagstuhl Seminar 11091). 2011.

[131] D. Meister. Using swaps and deletes to make strings match. Technical
Report 14-1, Fachbereich IV, Universität Trier, May 2014.

[132] M. Middendorf. More on the complexity of common superstring and
supersequence problems. Theoretical Computer Science, 125(2):205–228,
1994.

41

[133] M. Middendorf. Shortest common superstrings and scheduling with
coordinated starting times. Theoretical Computer Science, 191(1–2):
205–214, 1998.

[134] M. Mnich and A. Wiese. Scheduling and fixed-parameter tractability. In
17th International Conference on Integer Programming and Combinato-
rial Optimization (IPCO ’14), volume 8494 of LNCS, pages 381–392.
Springer, 2014.

[135] C. Moan and I. Rusu. Hard problems in similarity searching. Discrete
Applied Mathematics, 144(1-2):213–227, 2004.

[136] N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh.
LP can be a cure for parameterized problems. In Proceedings of the
29th International Symposium on Theoretical Aspects of Computer
Science (STACS ’12), LIPIcs, pages 338–349. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2012.

[137] F. Nicolas and E. Rivals. Hardness results for the center and median
string problems under the weighted and unweighted edit distances.
Journal of Discrete Algorithms, 3(2-4):390–415, 2005.

[138] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, February 2006.

[139] R. Niedermeier. Reflections on multivariate algorithmics and problem
parameterization. In Proceedings of the 27th International Symposium
on Theoretical Aspects of Computer Science (STACS ’10), volume 5 of
LIPIcs, pages 17–32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2010.

[140] N. Nishimura and N. Simjour. Enumerating neighbour and closest
strings. In Proceedings of the 7th International Symposium on Param-
eterized and Exact Computation (IPEC ’12), volume 7535 of LNCS,
pages 252–263. Springer, 2012.

[141] P. A. Pevzner. Computational Molecular Biology: An Algorithmic
Approach. The MIT Press, 2000.

[142] K. Pietrzak. On the parameterized complexity of the fixed alphabet
shortest common supersequence and longest common subsequence prob-
lems. Journal of Computer and System Sciences, 67(4):757–771, 2003.

42

[143] W. Plandowski. Satisfiability of word equations with constants is in
PSPACE. Journal of the ACM, 51(3):483–496, 2004.

[144] A. Radcliffe, A. Scott, and E. Wilmer. Reversals and transpositions
over finite alphabets. SIAM Journal on Discrete Mathematics, 19(1):
224–244, 2005.

[145] D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth.
Information and Computation, 2014. Available online.

[146] S. S. Skiena. The Algorithm Design Manual. Springer, 2nd edition,
2010.

[147] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. E.
Moret. Approximating the true evolutionary distance between two
genomes. ACM Journal on Experimental Algorithmics, 12, 2008.

[148] V. G. Timkovskii. Complexity of common subsequence and superse-
quence problems and related problems. Cybernetics, 25(5):565–580,
1989.

[149] Y.-T. Tsai. The constrained longest common subsequence problem.
Information Processing Letters, 88(4):173–176, 2003.

[150] V. Vassilevska. Explicit inapproximability bounds for the shortest
superstring problem. In Proceedings of the 30th International Symposium
on Mathematical Foundations of Computer Science (MFCS ’05), volume
3618 of LNCS, pages 793–800. Springer, 2005.

[151] R. A. Wagner. On the complexity of the extended string-to-string
correction problem. In Proceedings of the 7th ACM Symposium on
Theory of Computing (STOC ’75), pages 218–223. ACM, 1975.

[152] L. Wang and B. Zhu. Efficient algorithms for the closest string and
distinguishing string selection problems. In Proceedings of the 3rd
International Workshop on Frontiers in Algorithmics (FAW ’09), volume
5598 of LNCS, pages 261–270. Springer, 2009.

[153] C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from
comparative maps in rearrangement analysis. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 4(4):515–522, 2007.

[154] P. Zörnig. Improved optimization modelling for the closest string and
related problems. Applied Mathematical Modelling, 35(12):5609–5617,
2011.

43

	Introduction
	Preliminaries
	Consensus Strings
	Closest String
	Closest Substring

	Common Structure
	Longest Common Subsequence
	Multiple Sequence Alignment
	Shortest Common Supersequence
	Shortest Common Superstring

	Distances
	Reversal and Transposition Distances
	Minimum Common String Partition
	Other Distances

	Miscellaneous
	Outlook

