
Proc. 19th CPM, 2008

Parameterized Algorithms and Hardness Results

for Some Graph Motif Problems

Nadja Betzler1,⋆, Michael R. Fellows2,⋆⋆, Christian Komusiewicz1,⋆ ⋆ ⋆ , and
Rolf Niedermeier1

1 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{betzler,ckomus,niedermr}@minet.uni-jena.de
2 PC Research Unit, Office of DVC (Research), University of Newcastle,

Callaghan, NSW 2308, Australia
Michael.Fellows@newcastle.edu.au

Abstract. We study the NP-complete Graph Motif problem: given a
vertex-colored graph G = (V, E) and a multiset M of colors, does there
exist an S ⊆ V such that G[S] is connected and carries exactly (also
with respect to multiplicity) the colors in M? We present an improved
randomized algorithm for Graph Motif with running time O(4.32|M| ·
|M |2 · |E|). We extend our algorithm to list-colored graph vertices and
the case where the motif G[S] needs not be connected. By way of con-
trast, we show that extending the request for motif connectedness to the
somewhat “more robust” motif demands of biconnectedness or bridge-
connectedness leads to W[1]-complete problems. Actually, we show that
the presumably simpler problems of finding (uncolored) biconnected or
bridge-connected subgraphs are W[1]-complete with respect to the sub-
graph size. Answering an open question from the literature, we further
show that the parameter “number of connected motif components” leads
to W[1]-hardness even when restricted to graphs that are paths.

1 Introduction

With the advent of network biology [1, 15] and complex network analysis in
general, the study of pattern matching problems in graphs has become more
and more important. In this context, the term “graph motif” plays a central
role. Roughly speaking, there are two views of graph (or network) motifs. The
older is the topological view where one basically ends up with certain subgraph
isomorphism problems. For instance, the term “network motif” has been used
to represent patterns of interconnections that occur in a network at frequencies
much higher than those found in random networks [16, 18]. By way of contrast,

⋆ Supported by the DFG, project DARE, GU 1023/1.
⋆⋆ Supported by the Australian Research Council. Work done while staying in Jena

as a recipient of the Humboldt Research Award of the Alexander von Humboldt
Foundation, Bonn, Germany.

⋆ ⋆ ⋆ Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.

Proc. 19th CPM, 2008

the second and more recent view on graph motifs takes a more “functional ap-
proach”. Here, topology is of lesser importance but the functionalities of network
nodes (expressed by colors) form the governing principle. This approach has been
propagated by Lacroix et al. [12] and has been followed up by Fellows et al. [9],
defining the following problem.

Graph Motif: Input: A vertex-colored undirected graph G = (V, E) and a
multiset of colors M , with |M | = k. Question: Does there exist an S ⊆ V such
that the induced subgraph G[S] is connected and there is a bijection between
the colors of the vertices in S and M?

The different vertex colors are used to model different functionalities. Al-
though originally introduced in a biological context [9, 12], it is conceivable that
Graph Motif is an interesting problem not only for biological networks, but
also may prove useful when studying complex social or technical networks.

Known Results. Not surprisingly, Graph Motif is a computationally hard
problem. It is NP-complete even if the input multiset M actually is a set and
the input graph is a tree with maximum vertex degree three [9]. Moreover, NP-
completeness has also been shown for the case that M consists of only two colors
and the input graph is restricted to be bipartite with maximum degree four [9].
Given the apparent hardness of Graph Motif, Fellows et al. [9] initiated a
parameterized complexity analysis. Unfortunately, it turned out that Graph
Motif is W[1]-hard for trees when parameterized by the number of different
colors in the motif multiset M . That is, there is no hope to confine the seemingly
inevitable combinatorial explosion to the number of colors. By way of contrast,
there are good news for other parameterizations. First, when parameterized by
the motif size k := |M |, Graph Motif can be solved by a color-coding algorithm
running in O(87k ·k ·n2) time on an n-vertex graph, proving its fixed-parameter
tractability with respect to the motif size [9]3. Finally, Dondi et al. [6] extended
these investigations for Graph Motif by studying the case where the subgraph
induced by the chosen motif vertices needs not be connected.

New Results. Our work makes two sorts of contributions. First, we present
significantly faster algorithms for Graph Motif and two natural variants, now
giving hope for practically useful implementations. In all these cases, the motif
size is the governing parameter. Second, we further chart the range of tractability
of Graph Motif by exploring natural variants that become W[1]-hard (again
with respect to the parameter motif size). More specifically, we achieve the fol-
lowing results. On the positive side, we improve the randomized algorithm of Fel-
lows et al. [9] running in O(87k · k · n2) time and consuming O(4k · n) space to
a new randomized algorithm running in O(4.32k · k2 · m) time and consum-
ing O(2.47k ·n) space on an m-edge graph. Note that both algorithms are based
on the color-coding technique due to Alon et al. [2], which has recently proven
practical usefulness [5, 7, 10, 14]. Both algorithms can be derandomized, but the

3 Fellows et al. [9] do not explicitly state the running time of the randomized version
of their algorithm. Instead, they demonstrate a running time of O(25k · k · n2) per
trial. Using k colors for color-coding, O(ek) trials are needed to achieve a sufficiently
low error probability, which results in a total running time of O(87k · k · n2).

Proc. 19th CPM, 2008

current state of the art of derandomization techniques seems prohibitive from a
practical point of view (also see [10]). We extend our fixed-parameter tractabil-
ity results for Graph Motif to two variants: List-colored Graph Motif,
where each chosen vertex may allow for a list of colors that it can match, and
Min-CC Graph Motif, where we specify the number of connected components
the graph motif may have. On the negative side, we also provide several param-
eterized hardness results. First, we investigate the search for somewhat “more
robust” motifs. In other words, we show that if one requires that the found motif
shall not only be connected but biconnected or bridge-connected, then in both
cases the corresponding Graph Motif problem becomes W[1]-complete with
respect to the parameter motif size (actually, even special cases thereof do so).
Since these are the two most simple demands one may pose for more robust
motifs, this shows that the request for connected motifs is already a topology
demand close to the border of tractability and intractability.4 Finally, somewhat
aside, we answer an open question of Dondi et al. [6] by proving that the afore-
mentioned Min-CC Graph Motif problem is W[1]-hard with respect to the
number of components even if the input graph is restricted to be only a path.
Due to the lack of space, some details are deferred to the full version.

Preliminaries. We consider only simple undirected graphs G = (V, E), where n :=
|V | and m := |E| throughout the whole work. For a vertex v ∈ V , let N(v) := {u |
{u, v} ∈ E} denote the open neighborhood of v, and let N [v] := N(v) ∪ {v} de-
note the closed neighborhood of v. A coloring of an undirected graph G = (V, E)
is a function c : V → C, where C is a set of colors. Unless stated otherwise, a
motif is a multi-set of colors. In case that the motif is a set, we call the mo-
tif colorful. An occurrence of a motif M in G is a set of vertices S ⊆ V such
that |S| = |M |, G[S] is connected, and there are x vertices of color c in S iff M
contains c exactly x times. Let col(v) denote the color of a vertex v and col(S)
the multiset of colors of the vertices of S. A vertex u in an undirected graph is
called a cut vertex if there are two vertices v, w with v 6= u and w 6= u such that
every path from v to w contains u. If an undirected graph G is connected and has
no cut-vertex, then G is biconnected. In general, if a graph G = (V, E) cannot be
disconnected by deletion of any set of p − 1 vertices, it is called p-connected. A
graph is called p-edge-connected if it cannot be disconnected by deletion of any
set of p − 1 edges. A 2-edge-connected graph is called bridge-connected.

The color-coding technique yields randomized fixed-parameter algorithms [2].
The main idea is to randomly color the vertices of the graph, and then to solve the
corresponding problem under the assumption that the subgraph that is searched
for obtains a colorful coloring, that is, all of the vertices of the subgraph have
pairwise different colors. This assumption often leads to a problem solvable more
efficiently. The procedure of coloring and then solving the subsequent problem
on the colored graph is repeated as often as necessary to obtain a sufficiently

4 Our results also generalize to higher connectivity demands. Even further, they hold
for uncolored graphs, where one searches for a subgraph with the specific connectivity
demand, and the parameter is the number of subgraph vertices.

Proc. 19th CPM, 2008

low error probability. We say that a randomized algorithm solves a problem with
error probability ǫ if the probability that it fails to return the correct answer is
at most ǫ.

Parameterized algorithmics aims at a multivariate complexity analysis of
problems [8, 13]. The hope lies in accepting the seemingly inevitable combina-
torial explosion for NP-hard problems, but to confine it to a parameter k. A
given parameterized problem (I, k) is fixed-parameter tractable (FPT) with re-
spect to the parameter k if it can be solved within running time f(k) · poly(|I|)
for some computable function f . Downey and Fellows [8] developed a theory of
parameterized intractability by means of devising a completeness program with
complexity classes. The first level of (presumable) parameterized intractability
is captured by the complexity class W[1]. A parameterized reduction reduces a
problem instance (I, k) in f(k) · poly(|I|) time to an instance (I ′, k′) such that
(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and k′ only depends
on k but not on |I|. If for a given parameterized problem L there is a parameter-
ized problem L′ such that L′ is W[1]-hard and there is a parameterized reduction
from L′ to L, then L is also W[1]-hard.

2 Fixed-Parameter Algorithms

Our accelerated algorithm for Graph Motif, as the previous one [9], is based
on the color-coding technique [2]. However, we make use of the following new
observation on colorful motifs.

Lemma 1. Let (G, M) be a Graph Motif instance such that M is colorful.
Then, Graph Motif can be solved in O(3k · m) time.

Proof. We describe a dynamic programming algorithm that finds an occurrence
of M . In the dynamic programming table, entry Dv,C stores the “minimum
score” of a color set C for a vertex v, where a score of 0 means that an occurrence
of C that includes v exists. We initialize the entries of the dynamic programming
table with

Dv,C =

{

0, C = {col(v)},
1, otherwise.

In the recurrence, we look for the combination of subsets of a color set such that
the sum of the entries is minimum:

Dv,C = min
u∈N(v), C′⊂C

{

Du,C\{col(v)},

Dv,C′∪{col(v)} + Dv,(C\C′)∪{col(v)}

}

.

Since the motif M is colorful, we can restrict attention to joining sets of vertices
that have disjoint color sets. Therefore, we never join vertex sets that have ver-
tices in common. If a colorful motif M occurs in G, then for some v ∈ V , Dv,M =
0. Furthermore, during the dynamic programming procedure we only need to
consider color sets C that are subsets of M . Therefore, we have O(2k) entries

Proc. 19th CPM, 2008

per vertex, which results in a table size of O(2k · n). Overall, the first part of
the recursion can be executed in O(2k ·m) time, since for each color set C ⊆ M
and for every vertex v we have to scan once through the adjacency list of v and
for each neighbor the corresponding table entry can be found in constant time.
The second part of the recursion can be executed in O(3k · n) time overall: for
each vertex v the number of combinations that have to be considered is bounded
by O(3k), since we have to consider all possible subsets of M and for each subset
we have to consider all possibilities to split this subset. Overall this amounts
to O(3k) combinations, since there are 3k possibilities to split a subset of size k
into three disjoint subsets (in our case these subsets are M \ C, C′ , and C′′).
For each combination the computation of the recursion can be performed in con-
stant time. Overall, the running time amounts to O(3k · m). An occurrence of
the motif can be computed by traceback within the same asymptotic running
time bound. ⊓⊔

The above dynamic programming procedure is basically a simplified version
of the procedure for the related problem of finding a minimum-weight tree of
size k [14]. The main difference is that for Graph Motif, we do not have
additional weights that are associated with the graph vertices.

We now show how to use Lemma 1 in order to obtain an algorithm in case
that the motif is a multiset of colors. The main idea is to use the technique of
color-coding [2] in order to transform any instance that has a multiset of col-
ors as motif into an instance that has a colorful motif. To this latter instance
then Lemma 1 applies. In the following, we describe this transformation in de-
tail. Let M be the motif and let occ(c) denote the number of occurrences of a
color c in M . For each color c with occ(c) ≥ 2 we introduce occ(c) new col-
ors c1, c2, . . . , cocc(c). Then, we randomly recolor each vertex that has color c
with one of the new colors, where the probability for each color is exactly 1/
occ(c) (uniform distribution). Let M ′ be the set of colors that contains the col-
ors that occurred only once in M together with the colors {c1, c2, . . . , cocc(c)} for
every color c with occ(c) ≥ 2. Furthermore, let S be an occurrence of M . We
say that S achieves a colorful recoloring if col(S) is colorful after the recoloring
procedure. Clearly, if S achieves a colorful recoloring, then col(S) = M ′. An
occurrence of M ′ can be found via dynamic programming by Lemma 1. This
procedure of recoloring with subsequent dynamic programming is repeated until
either an occurrence of M is found, or the probability that there is an S that
has not achieved a colorful recoloring is acceptably low.

Proposition 1. Graph Motif can be solved with error probability ǫ within
O(| ln(ǫ)| · 8.16k · m) time.

Proof. By Lemma 1, we can find an occurrence of a colorful motif in O(3k · m)
time. Therefore, the total running time of the algorithm is O(t(ǫ) · 3k · m),
where t(ǫ) denotes the number of trials that is needed in order to achieve
a colorful recoloring of the vertices of the motif in at least one of the tri-
als with a probability of at least 1 − ǫ. For each color c ∈ M , the prob-
ability Pc that the occ(c) vertices in S that have color c receive a colorful

Proc. 19th CPM, 2008

recoloring is (occ(c))!/occ(c)occ(c), because each coloring has the same prob-
ability and (occ(c))! colorings of the occ(c)occ(c) possible colorings are color-
ful. Using Stirling’s approximation for factorials we can show that occ(c)!/
occ(c)occ(c) >

√

2 · π · occ(c) · e− occ(c). For two colors c1 and c2 the probabil-
ities Pc1 and Pc2 are independent. Therefore, the probability Pc1∧c2 that the
vertices of both color classes achieve a colorful recoloring is

Pc1∧c2 = Pc1 · Pc2 >
√

2 · π · (occ(c1) + occ(c2)) · e−(occ(c1)+occ(c2)).

The probability PM that an occurrence of M receives a colorful recoloring thus
is

PM =
∏

c∈col(M)

Pc >
√

2 · π · k · e−
P

c∈col(M) occ(c) > e−k.

After t trials the error probability, that is, the probability that a colorful recolor-
ing was not achieved, is (1−PM)t. Therefore, the number of trials t(ǫ) to achieve
an error probability of at most ǫ is t(ǫ) = ⌈| ln(ǫ)|/ln(1 − PM)⌉ = | ln(ǫ)| ·O(ek).
Hence, the total running time of the algorithm when an error probability of at
most ǫ is allowed is O(| ln(ǫ)| · ek · 3k · m) = O(| ln(ǫ)| · 8.16k · m). ⊓⊔

Applying two speed-up techniques, we can further improve the running time
of the algorithm. First, as proposed by Hüffner et al. [10], we can increase the
number of colors that are used for color-coding in order to increase the probabil-
ity of an occurrence of M to receive a colorful recoloring5. Second, we can speed
up the dynamic programming procedure of Lemma 1 by using the technique
of fast subset convolution. This novel technique was developed by Björklund
et al. [3], who used it to speed up several dynamic programming algorithms in-
cluding the algorithm by Scott et al. [14] for computing minimum weight size k
trees in signalling networks.

Let f and g be functions defined on the power set of a finite set N with
|N | = n, that is, f, g : P(N) → I. For any ring over I that defines addition and
multiplication on elements of I, the subset convolution of f and g, denoted by
f ∗ g, is defined for each S ⊆ N as

f ∗ g : P(N) → I, (f ∗ g)(S) =
∑

T⊆S

f(T)g(S \ T).

To calculate the subset convolution means to determine the value of f ∗ g
for all 2n possible inputs, assuming that f and g can be evaluated in constant
time (typically by being stored in a table). A naive algorithm that calculates
each value independently needs O(

∑n
i=0

(

n
i

)

2i) = O(3n) ring operations. The
following result shows a substantial improvement.

Theorem 1 (Björklund et al. [3]). The subset convolution over an arbitrary
ring can be computed with O(2n · n2) ring operations.

5 Increasing the number of colors has been independently examined by Deshpande
et al. [5]. Hüffner et al. [10] derive a better bound on the worst-case running time.

Proc. 19th CPM, 2008

Björklund et al. [3] showed how to apply Theorem 1 to also calculate the subset
convolution for the integer min-sum semiring

f ∗ g : P(N) → Z, (f ∗ g)(S) = min
T⊆S

f(T) + g(S \ T)

by embedding it into the standard integer sum-product ring.6 Recall the recur-
rence of the dynamic programming procedure for colorful motifs:

Dv,C = min
u∈N(v), C′⊂C

{

Du,C\{col(v)},

Dv,C′∪{col(v)} + Dv,(C\C′)∪{col(v)}

}

.

The first part of the recurrence can be evaluated in O(2k ·m) time. For the second
part we can use fast subset convolution and can thus compute the recurrence
in O(2k · k2 · n) time, because each ring operation can be performed in constant
time, since the maximum weight that is used for the basic table entries is 1.
Clearly, the graph G has an occurrence of M if there is a table entry Dv,M = 0 in
the final table. The actual occurrence of the motif can be computed in O(2k ·k·m)
time by traceback. In the following theorem, we upper-bound the running time
of the algorithm that is obtained from combining the two described speed-up
techniques.

Theorem 2. Graph Motif can be solved with error probability ǫ in O(| ln(ǫ)| ·
4.32k · k2 · m) time.

Proof. Hüffner et al. [10] showed that when using 1.3 · k colors, the number of
trials that is needed to obtain error probability ǫ is O(| ln(ǫ)| · 1.752k). However,
this increases the running time of the dynamic programming procedure, since
now the color set has size 1.3 ·k. The modified dynamic programming procedure
then has a running time of O(21.3·k · k2 ·m). Overall, the running time amounts
to O(| ln(ǫ)| · 1.752k · 21.3·k · k2 · m) = O(4.32k · k2 · m). ⊓⊔

A drawback of using 1.3 · k colors is that the memory requirement increases
from O(2k · m) to O(21.3k · m) = O(2.47k · m). However, it was shown that
the running time improvement is enormous in practice [10]. In some special
cases, we need even less trials to achieve an exponentially low error probabil-
ity. For example, if every color in the motif occurs at most twice, then we have
to use at most two colors per vertex. Furthermore, there can be at most k/2
colors that appear twice in the motif. Using two colors for each color c that
appears twice in M , the two vertices in an occurrence of M that have a color c
receive different colors with probability 1/2. Hence, the probability that a re-
coloring is a colorful recoloring is 2−k/2 = (

√
2)−k. The number of trials needed

to achieve exponentially low error probability then is O((
√

2)k) and the total
running time O((

√
2)k · 2k · k2 · m) = O(2.83k · k2 · m).

6 Björklund et al. [3] also considered the variant where we do not have disjoint sets T

and S\T but allow one element occurring in both sets (as we make use of in the
following).

Proc. 19th CPM, 2008

Two Natural Graph Motif Variants. We extend our randomized algorithm for
the basic Graph Motif problem to two practically interesting problem variants.
The original formulation of Graph Motif allows multiple colors per vertex [12].
This makes sense in a biological context in order to model multiple functionalities
of one element. The input graph can then be formalized as a list-colored graph,
in which a list of colors is attached to every vertex of the graph. In other words,
for a vertex v ∈ V of a list-colored graph, col(v) denotes a set of colors instead
of a single color.

List-colored Graph Motif: Input: A list-colored undirected graph G =
(V, E) and a multiset of colors M . Question: Does there exist a vertex subset S ⊆
V such that the induced subgraph G[S] is connected and there is a bijection f :
S → M such that ∀v ∈ S : f(v) ∈ col(v)?

Unfortunately, we cannot use our above algorithm for List-colored Graph
Motif. The difficulty is that in list-colored graphs we do not have a one-to-one
correspondence between vertices and colors; hence, two disjoint color sets do not
imply two disjoint vertex sets. However, we can apply a different color-coding
procedure, partially resembling the algorithm by Fellows et al. [9].

Theorem 3. List-colored Graph Motif can be solved with error probabil-
ity ǫ in O(| ln(ǫ)| · 10.88k · m) time.

Proof. We use color-coding. To avoid ambiguities, we call the random colors
assigned by the color-coding procedure labels, and the term color only refers to
the colors of the list-colored graph. Let L = {l1, l2, . . . , lk} denote a set of k
distinct labels. We randomly assign (uniformly distributed) the labels of L to
the vertices of the graph and solve the problem of finding an occurrence of the
motif M under the assumption that all vertices of the occurrence have received a
different label. Without loss of generality, assume that M is colorful. Otherwise,
we transform M and G as follows: For each color c that occurs occ(c) times, we
add occ(c) new colors to M and completely remove c from G. Furthermore, for
every vertex v in G with c ∈ col(v), we remove c from col(v) and add the occ(c)
new colors to col(v). Let M ′ and G′ be the thus modified motif and graph,
respectively. We now solve the problem of finding an occurrence of M ′ in G′.
Each such occurrence clearly corresponds to an occurrence of M in G.

The problem of finding a colorful occurrence of M that has the labels of L
is solved by dynamic programming. First, we extend our notion of occurrence.
Let F ⊆ (L ∪ M) be a set that contains labels as well as colors. An occurrence
of F is defined as a set of vertices S such that the vertices of S have exactly
the labels of F ∩ L, and there is a bijection f : S → F ∩ M , such that for
each vertex v f(v) ∈ col(v). An entry Dv,F of the dynamic programming table
denotes the “score” of an occurrence of F that contains v. We initialize the table
as follows:

Dv,{c,l} =

{

0, c ∈ col(v) ∧ l = label(v),

1, otherwise.

Proc. 19th CPM, 2008

Furthermore, we assign weight 1 to all entries Dv,{c} and D{l}. The recurrence
reads

Dv,F = min
u∈N(v), c∈col(v), F ′⊂F

{

Du,F\{c,label(v)},

Dv,F ′∪{c,label(v)} + Dv,(F\F ′)∪{c,label(v)}

}

.

We calculate the score for sets F ⊆ M of increasing cardinality. Note that
by initializing the entries Dv,{c} and Dv,{l} with 1, we make sure that a score
of 0 of an “occurrence” of F can only be achieved when there is a one-to-one
correspondence between labels and colors of the occurrence. Therefore, if there
is a v ∈ V such that Dv,L∪M = 0, then there is an occurrence of L ∪ M in G.
An actual occurrence then can be computed by traceback.

For the running time consider the following. Clearly |L ∪ M | = 2 · k. The
recursion is similar to the recursion in the proof of Theorem 2. Hence, we can
also apply subset convolution and obtain a running time of O(22·k · (2 ·k)2 ·m) =
O(4k ·k2 ·m) for the dynamic programming procedure. The number of trials that
is needed to obtain a good labelling with probability at least 1−ǫ is O(| ln(ǫ)|·ek).
The total running time thus amounts to O(| ln(ǫ)| · ek · 4k · k2 · m) = O(10.88k ·
k2 · m). ⊓⊔

Our second variant of Graph Motif has been introduced by Dondi et al. [6],
who proposed a generalization of Graph Motif in which it is no longer de-
manded that the motif is connected.

Min-CC Graph Motif: Input: A vertex-colored undirected graph G =
(V, E), a multiset of colors M with |M | = k, and a nonnegative integer d.
Question: Does there exist an S ⊆ V such that G[S] has at most d components,
and there is a bijection between the colors of the vertices in S and M?

Clearly, Graph Motif is Min-CC Graph Motif with d = 1. Among other
results, Dondi et al. [6] showed that the algorithms for Graph Motif by Fellows
et al. [9] can be adapted to solve Min-CC Graph Motif. We can also modify
our Graph Motif algorithm to solve Min-CC Graph Motif.

Theorem 4. Min-CC Graph Motif can be solved with error probability ǫ
in O(| ln(ǫ)| · 4.32k · k2 · m) time.

3 Parameterized Hardness Results

Lacroix et al. [12] motivated the study of (variants) of the Graph Motif prob-
lem by considerations comparing “topological motifs” with “functional motifs”.
The Graph Motif problem only poses a minimal demand on the motif topol-
ogy by requiring connectedness. The natural question arises what happens if we
ask for somewhat “more robust” motifs, replacing the connectedness demand by
demands for biconnectivity, bridge-connectivity and the like. As we will show in
this section, these seemingly small steps towards topologically more constrained
motifs already lead to W[1]-completeness. Finally, the only time considering a
parameter other than motif size, we answer an open question of Dondi et al. [6]

Proc. 19th CPM, 2008

G : G′ :

Fig. 1: An example of the transformation of a Clique instance with k = 3 into
a Biconnected Subgraph instance with k′ = 15. White vertices in G′ belong
to V1, black vertices to V2.

by showing that the parameter “number of connected components” in a graph
motif leads to a W[1]-hard problem.

Biconnected Graph Motif: Input: A vertex-colored undirected graph G =
(V, E) and a multiset of colors M . Question: Does there exist an S ⊆ V such
that the induced subgraph G[S] is biconnected and there is a bijection between
the colors of the vertices in S and M?

We will show that Biconnected Graph Motif is W[1]-complete when
parameterized by the size of the motif M . In fact, we prove an even stronger
result. Consider the special case that M contains only one color c, |M | = k,
and that all vertices in G have color c. Then, the remaining problem to find a
biconnected subgraph of size exactly k is denoted as:

Biconnected Subgraph: Input: An undirected graph G = (V, E) and a
nonnegative integer k. Question: Does there exist an S ⊆ V of size k such that
the induced subgraph G[S] is biconnected?

Note that looking for a biconnected subgraph of size at least k is solvable
in linear time [17]. However, restricting the size of the biconnected subgraph
to exactly k makes the problem surprisingly hard. We prove the parameterized
hardness by reduction from the Clique problem, which is known to be W[1]-
complete [8] with respect to the size of the clique searched for.

Clique: Input: An undirected graph G and a nonnegative integer k. Ques-
tion: Is there a complete subgraph of size k in G?

Theorem 5. Biconnected Subgraph is W[1]-complete with respect to k.

Proof. To show the W[1]-hardness, we give a parameterized reduction from
Clique to Biconnected Subgraph. Let (G, k) be a Clique instance. We
construct a graph G′ from G by replacing every edge e of G with a simple
path pe that has

(

k
2

)

+ 1 internal new vertices. The vertex set of G′ can be
partitioned into two vertex sets V1 and V2, where V1 contains the vertices that
correspond to vertices of the original graph G and V2 contains the new internal
path vertices. An example of this reduction is shown in Figure 1.

We prove in the following that G has a clique of size k iff G′ has a biconnected
subgraph of size k′ = k +

(

k
2

)

· (
(

k
2

)

+ 1). If G has a clique C of size k, then
the subgraph that is induced by the k vertices of C and by the vertices on
the

(

k
2

)

paths that were created from the
(

k
2

)

clique edges of C in G has size

exactly k +
(

k
2

)

· (
(

k
2

)

+ 1). Clearly, this subgraph is also biconnected.

Proc. 19th CPM, 2008

It remains to show that if G′ has a biconnected subgraph of size k′ = k+
(

k
2

)

·
(
(

k
2

)

+1), then G has a clique of size k. Let G′ have a biconnected subgraph G′[S]
of size k. If S contains one vertex of a path pe, then it must contain all vertices
from pe, because otherwise G′[S] would not be biconnected. Hence, the number
of vertices k′ in S can be expressed as k′ = a + b · (

(

k
2

)

+ 1), where a = |S ∩ V1|
and b denotes the number of paths in G′ that correspond to edges of G.

We distinguish two main cases. In the first case, let a = k. Then, G′[S] must
contain exactly

(

k
2

)

paths that correspond to edges in G. Let e = {u, v} be
an edge of G, and let A := S ∩ V1. Since G′[S] is biconnected, if a path pe is
contained in S, then {u, v} ⊆ A. Since G′[S] contains exactly

(

k
2

)

paths consisting
of vertices from V2 and each path must connect two vertices of A, all vertices
of A are pairwise connected via a path of length

(

k
2

)

. Hence, the subgraph G[A]

must be a size-k clique since it contains exactly k vertices and exactly
(

k
2

)

edges.
We now consider the case a 6= k and show that in this case, either a + b ·

((

k
2

)

+ 1
)

6= k +
(

k
2

)

·
((

k
2

)

+ 1
)

= k′ or G′[S] cannot be biconnected. Clearly,

if b =
(

k
2

)

, then

a + b ·
((

k

2

)

+ 1

)

= a +

(

k

2

)

·
((

k

2

)

+ 1

)

6= k +

(

k

2

)

·
((

k

2

)

+ 1

)

= k′.

Therefore, we can assume that b 6=
(

k
2

)

. In the following, we list all remaining

cases and show that either a + b ·
(

k
2

)

6= k′ or G′[S] is not biconnected.

Case 1: b >
(

k
2

)

.

a + b ·
((

k

2

)

+ 1

)

≥ a +

((

k

2

)

+ 1

)

·
((

k

2

)

+ 1

)

> k +

(

k

2

)

·
((

k

2

)

+ 1

)

Case 2.1 : b <
(

k
2

)

and a <
(

k
2

)

.

a + b ·
((

k

2

)

+ 1

)

<

(

k

2

)

+

((

k

2

)

− 1

)

·
((

k

2

)

+ 1

)

< k +

(

k

2

)

·
((

k

2

)

+ 1

)

Case 2.2 : b <
(

k
2

)

and a ≥
(

k
2

)

.

In this case, G′[S] cannot be biconnected: S consists of at least a ≥
(

k
2

)

vertices

from V1 and less than
(

k
2

)

paths that correspond to edges of G. Therefore, at

least one of the
(

k
2

)

vertices from V1 is connected to at most one path. By
construction, vertices in V1 may only be adjacent to vertices in V2. Hence, G′[S]
is not biconnected.

Summarizing, G has a clique of size k iff G′ has a biconnected subgraph of
size k ·

(

k
2

)

·(
(

k
2

)

+ 1). The reduction can be clearly performed in polynomial time.
We omit the proof for containment in W[1]. ⊓⊔

A second natural way to heighten the robustness demands for Graph Motif
is to search for bridge-connected motifs. We define Bridge-Connected Sub-
graph in complete analogy to Biconnected-Connected Subgraph, simply
replacing the demand for biconnectivity by the demand for bridge-connectivity.

Proc. 19th CPM, 2008

The reduction from Clique as used in the proof of Theorem 5 works also for
bridge-connected subgraphs.

Theorem 6. Bridge-Connected Subgraph is W[1]-complete with respect
to k (number of subgraph vertices).

Further, we can generalize the hardness results to graph motifs of higher
connectivity. To this end, consider the following problem.

p-(Edge) Connected Subgraph: Input: An undirected graph G and a
nonnegative integer k. Question: Does there exist an S ⊆ V of size k such that
the induced subgraph G[S] is p-(edge) connected?

Theorem 7. p-(Edge) Connected Subgraph is W[1]-complete with respect
to k (number of subgraph vertices).

The following theorem answers an open question of Dondi et al. [6].

Theorem 8. Min-CC Graph Motif restricted to paths is W[1]-hard with re-
spect to the parameter “number of components”.

Proof. (Construction) We reduce from the W[1]-complete Perfect Code [4]
problem: Given an undirected graph G = (V, E) and a positive integer k, is
there is a size-k-subset V ′ ⊆ V such that for every vertex v ∈ V there is exactly
one vertex in N [v] ∩ V ′. Given a Perfect Code instance (G = (V, E), k),
we construct a Min-CC Graph Motif instance consisting of a path P and
a motif M . It asks for the existence of a solution consisting of k connected
components. The vertex set of P consists of |N [v]| vertices with color cv for
every v ∈ V , n−1 “separator” vertices with color s each, and 2 ·n “end” vertices
with color e each. Now, we describe the order of the vertices in the path P . For
this, let a “subpath” of P denote a connected path that is part of P . Then,
for every vertex v ∈ V there is a subpath containing |N [v]| vertices colored
by {cw | w ∈ N [v]} in an arbitrary order. At both ends of every subpath we add
an end vertex with color e. Finally, we connect all subpaths in an arbitrary order
such that two neighboring subpaths are connected through a separator vertex
with color s. The motif set M consists of 2 ·k times the color e and {cv | v ∈ V }.

We omit to show that G has a perfect code of size k iff the there are k
subpaths P1, . . . , Pk such that there is a bijection between the colors of their
vertices and the colors of M . ⊓⊔

4 Conclusion

Graph Motif and its variants are natural graph-theoretic pattern matching
problems with prospective applications. Our positive algorithmic results should
support implementation and experimental work, similarly to previous positive
experiences with color-coding based graph algorithms [5, 7, 10, 11, 14]. It is par-
ticularly interesting whether the recently introduced subset convolution tech-
nique [3], which so far has been studied purely from a theoretical point of view,
also yields a significant speed-up in practice.

Acknowledgments. We are grateful to Jiong Guo (hinting to Theorem 8) and
Frances Rosamond for helpful comments.

Proc. 19th CPM, 2008

References

[1] E. Alm and A. P. Arkin. Biological networks. Curr. Opin. Struc. Biol., 13(2):
193–202, 2003.

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast

subset convolution. In Proc. 39th STOC, pages 67–74. ACM, 2007.
[4] M. Cesati. Perfect code is W[1]-complete. Inform. Process. Lett., 81:163–168,

2002.
[5] P. Deshpande, R. Barzilay, and D. R. Karger. Randomized decoding for selection-

and-ordering problems. In Proc. NAACL HLT ’07, pages 444–451. Association for
Computational Linguistics, 2007.

[6] R. Dondi, G. Fertin, and S. Vialette. Weak pattern matching in colored graphs:
Minimizing the number of connected components. In Proc. 10th ICTCS, volume
4596 of WSPC, pages 27–38. World Scientific, 2007.

[7] B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R. Sharan. QNet: A tool
for querying protein interaction networks. In Proc. 11th RECOMB, volume 4453
of LNCS, pages 1–15. Springer, 2007.

[8] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[9] M. R. Fellows, G. Fertin, D. Hermelin, and S. Vialette. Sharp tractability border-

lines for finding connected motifs in vertex-colored graphs. In Proc. 34th ICALP,
volume 4596 of LNCS, pages 340–351. Springer, 2007.

[10] F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering for color-coding to
facilitate signaling pathway detection. In Proc. 5th APBC, volume 5 of Advances in

Bioinf. and Comput. Biol., pages 277–286. Imperial College Press, 2007. Extended
version to appear in Algorithmica.

[11] F. Hüffner, S. Wernicke, and T. Zichner. FASPAD: fast signaling pathway detec-
tion. Bioinformatics, 23(13):1708–1709, 2007.

[12] V. Lacroix, C. G. Fernandes, and M.-F. Sagot. Reaction motifs in metabolic
networks. In Proc. 5th WABI, volume 3692 of LNCS, pages 178–191. Springer,
2005.

[13] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[14] J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for detecting
signaling pathways in protein interaction networks. J. Comput. Biol., 13(2):133–
144, 2006.

[15] R. Sharan and T. Ideker. Modeling cellular machinery through biological network
comparison. Nat. Biotechnol., 24:427–433, April 2006.

[16] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcrip-
tional regulation network of escherichia coli. Nat. Genet., 31(1):64–68, 2002.

[17] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comp.,
(1):146–160, 1972.

[18] S. Wernicke. Efficient detection of network motifs. IEEE ACM T. Comput. Bi.,
3(4):347–359, 2006.

	Parameterized Algorithms and Hardness Results for Some Graph Motif Problems
	 Nadja Betzler, Michael R. Fellows, Christian Komusiewicz , and Rolf Niedermeier

