
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, JANUARY 201X 1

Partitioning Biological Networks
into Highly Connected Clusters
with Maximum Edge Coverage

Falk Hüffner, Christian Komusiewicz, Adrian Liebtrau, and Rolf Niedermeier

F

Abstract—A popular clustering algorithm for biological networks which
was proposed by Hartuv and Shamir [IPL 2000] identifies nonoverlapping
highly connected components. We extend the approach taken by this
algorithm by introducing the combinatorial optimization problem HIGHLY

CONNECTED DELETION, which asks for removing as few edges as
possible from a graph such that the resulting graph consists of highly
connected components. We show that HIGHLY CONNECTED DELETION

is NP-hard and provide a fixed-parameter algorithm and a kernelization.
We propose exact and heuristic solution strategies, based on polynomial-
time data reduction rules and integer linear programming with column
generation. The data reduction typically identifies 75 % of the edges that
are deleted for an optimal solution; the column generation method can
then optimally solve protein interaction networks with up to 6 000 vertices
and 13 500 edges within five hours. Additionally, we present a new
heuristic that finds more clusters than the method by Hartuv and Shamir.

Index Terms—Cluster analysis, PPI networks, fixed-parameter tractabil-
ity, data reduction, integer linear programming, heuristics

1 INTRODUCTION

N etwork clustering is a computational tool to ana-
lyze biological systems by identifying functional

subgroups within large biological networks generated
for example from protein interaction data. Herein, a
key idea is to identify densely connected subgraphs
(clusters) that have many interactions within themselves
and few with the rest of the graph [1–4]. Hartuv and
Shamir [5] proposed a clustering algorithm producing

A preliminary version appeared in the proceedings the 9th International
Bioinformatics Research and Applications Symposium (ISBRA 2013) held at
Charlotte, NC, USA (volume 7875 in Lecture Notes in Computer Science,
pages 99–111, Springer, 2013). The full version contains all missing proofs as
well as experiments based on an extended data set. We furthermore propose
and evaluate a new heuristic for HIGHLY CONNECTED DELETION.

• F. Hüffner, C. Komusiewicz, and R. Niedermeier are with the Institut für
Softwaretechnik und Theoretische Informatik, TU Berlin, Germany.
E-mail: {falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de

• A. Liebtrau was with the Institut für Informatik, Friedrich-Schiller-
Universität Jena, Germany.

Supported by DFG projects PABI (NI 369/7-2) and ALEPH (HU 2139/1-1)
and a post-doc fellowship of the region Pays de la Loire.
Manuscript received XX Sept. 201X; revised XX Sept. 201X; accepted X
Sept. 201X; published online XX Sept.. 201X.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-201X-XX-
XXXX. Digital Object Identifier no. 10.1109/TCBB.XX.X.

so-called highly connected clusters. Their method has
been successfully used to cluster cDNA fingerprints [6],
to find complexes in protein–protein interaction (PPI)
data [7, 8], to group protein sequences hierarchically into
superfamily and family clusters [9], and to find families
of regulatory RNA structures [10]. Hartuv and Shamir
[5] formalized the connectivity demand for a cluster as
follows: the edge connectivity λ(G) of a graph G is the
minimum number of edges whose deletion results in
a disconnected graph, and a graph G with n vertices
is called highly connected if λ(G) > n/2. An equivalent
characterization is that a graph is highly connected if
each vertex has degree greater than n/2 [11]. Thus, highly
connected graphs are very similar to 0.5-quasi-complete
graphs [12, 13], that is, graphs where every vertex has
degree at least (n− 1)/2. Further, being highly connected
also ensures that the diameter of a cluster is at most
two [5].

The algorithm by Hartuv and Shamir [5] partitions the
vertex set of the given graph such that each partition
set is highly connected, thus guaranteeing good intra-
cluster density (including maximum cluster diameter
two and the presence of more than half of all possible
edges). Moreover, the algorithm needs no prespecified
parameters (such as the number of clusters) and it
naturally extends to hierarchical clustering. Essentially,
Hartuv and Shamir’s algorithm iteratively deletes the
edges of a minimum cut in a connected component that
is not yet highly connected.1

While Hartuv and Shamir’s algorithm guarantees to
output a partitioning into highly connected subgraphs, it
iteratively uses a greedy step to find small edge sets
to delete. Thus it does not guarantee to maximize the
overall number of edges within clusters or, equivalently,
to minimize inter-cluster connectivity. In other words, it
is not ensured that the partitioning comes along with a
minimum number of edge deletions making the resulting
graphs consist of highly connected components. This
is why we propose a formally defined combinatorial

1. The CLICK algorithm [14] and the SIDES algorithm [15] follow
the same scheme, but use edge weights and different stopping criteria,
based on probabilistic models.

optimization problem that specifies the goal to minimize the
number of edge deletions which is addressed implicitly
by Hartuv and Shamir’s algorithm.

HIGHLY CONNECTED DELETION
Instance: An undirected graph G = (V,E).
Task: Find a minimum subset of edges E′ ⊆ E such
that in G′ = (V,E \ E′) all connected components
are highly connected.

Note that, by definition, isolated edges are not highly
connected. Hence, the smallest clusters are triangles; we
consider all singletons as unclustered.

The problem formulation resembles the CLUSTER DELE-
TION problem [16], which asks for a minimum number
of edge deletions to make each connected component a
clique; thus, CLUSTER DELETION has a much stronger
demand on intra-cluster connectivity. Also related is the 2-
CLUB DELETION problem [17], which asks for a minimum
number of edge deletions to make each connected
component have a diameter of at most two. Since highly
connected clusters also have diameter at most two [5],
2-CLUB DELETION poses a weaker demand on intra-
cluster connectivity and density. Further related problems
are those which allow a different set of modifications.
If we allow insertion of edges instead of deletion, the
problem reduces to increasing the connectivity of a graph
to more than n/2 by edge insertions. This problem can
be solved in polynomial time [18]. The vertex deletion
version of HIGHLY-CONNECTED DELETION is NP-hard by
a simple adaption of the NP-hardness proof of 2-CLUB
CLUSTER VERTEX DELETION due to Liu et al. [17]: given
a VERTEX COVER instance, create an equivalent HIGHLY
CONNECTED VERTEX DELETION instance by attaching to
each vertex a large clique. It is then easy to see that the
graph has a vertex cover of size at most k if and only if
at most k vertices can be deleted to leave a graph where
every component is highly connected.

It could be expected that the algorithm by Hartuv
and Shamir [5] yields a good approximation for the
optimization goal of HIGHLY CONNECTED DELETION.
However, we can observe that in the worst case, its
result has size Ω(k2), where k := |E′| is the size of
an optimal solution. For this, consider two cliques with
vertex sets u1, . . . , un and v1, . . . , vn, respectively, and
the additional edges {ui, vi} for 2 ≤ i ≤ n. Then these
additional edges form a solution set of size n−1; however,
Hartuv and Shamir’s algorithm will (with unlucky choice
of minimum cuts) transform one of the two cliques
into an independent set by repeatedly cutting off one
vertex, thereby deleting n(n+ 1)/2− 1 edges. This also
illustrates the tendency of the algorithm to cut off one-
vertex clusters, which Hartuv and Shamir counteract
with postprocessing [5]. This tendency might introduce
systematic bias [15]. Hence, exact algorithms for solving
HIGHLY CONNECTED DELETION are desirable.

1.1 Our contributions

We analyze the (parameterized) computational complex-
ity of HIGHLY CONNECTED DELETION and propose
several exact solution methods.2 In particular, we show
that HIGHLY CONNECTED DELETION is NP-hard even
on 4-regular graphs and, provided the Exponential Time
Hypothesis (ETH) [20] is true, cannot be solved in subex-
ponential time. While biological networks are unlikely
to be 4-regular, this result directly implies hardness for
graphs with bounded degeneracy.3 Biological networks
often have low degeneracy, but the NP-hardness means
that this fact cannot be directly exploited to obtain
efficient algorithms for HIGHLY CONNECTED DELETION.
In addition, we provide polynomial-time executable data
reduction rules (on the theoretical side also yielding a
so-called problem kernel of polynomial size) and a fixed-
parameter algorithm based on dynamic programming;
both these results exploit the parameter “number of edge
deletions”.

Geared more towards practical methods, we design
an additional polynomial-time executable data reduction
rule for HIGHLY CONNECTED DELETION preserving the
possibility to solve the problem exactly. Further, we
develop an ILP formulation (using column generation)
and show how, combined with the presented data
reduction rules, real-world instances with, e. g., 6 000
vertices and 13 500 edges can be solved within five
hours. From an algorithmic standpoint we thus make
progress towards exact algorithms for NP-hard clustering
problems on biological networks. The related application
area of comparative network analysis has seen systematic
algorithmic advances in recent years that have made it
possible to find exact solutions for hard problems [21].
We believe that such advances should also be made
for clustering problems and present a first step for one
concrete problem.4 Finally, we present a simple heuristic
that can be employed when the instances are too large
for the exact approach.

On the biological and experimental side, we focus on
the analysis of the three species A. thaliana, C. elegans,
and M. musculus with moderate-size protein interaction
networks. We compare our approach with Hartuv and
Shamir’s, to which we will refer as min-cut method, and
Markov clustering (MCL). While our exact approach is
clearly the slowest when compared with the other two,
we demonstrate that it is a viable alternative in terms of
number and quality of the reported clusters.

More specifically, first we observe that our data re-

2. Exact (in contrast to heuristic and approximate) algorithms may
be beneficial for several reasons. The availability of optimal solutions
can be used to evaluate the quality and performance of heuristics, help
to separate possible model inadequacies from errors introduced by
heuristic solutions, and along with the clear combinatorial model, they
are easier to interpret; refer to Aloise et al. [19] for a deeper elaboration.

3. A graph has degeneracy d if every subgraph has at least one vertex
of degree at most d.

4. A related NP-hard clustering problem for which significant
progress has been made towards efficient exact algorithms is CLUSTER
EDITING [22].

2

duction rules typically identify more than 75 % of the
edges to be deleted for an optimal solution for HIGHLY
CONNECTED DELETION. Combining our data reduction
rules with the min-cut method significantly improves this
method’s running time and the quality of its reported
clusters. Still, with our data reduction and ILP approach
we typically find more biologically relevant clusters than
the min-cut method extended with our data reduction
algorithm does. Further, we compared our results with
a state-of-the-art algorithm based on Markov clustering.
Again, while this algorithm shows much faster running
time and better coverage (higher number of vertices
(that is, proteins) assigned to clusters), our algorithm is
superior in terms of cluster quality. Our newly proposed
heuristic can also beat the min-cut method for the number
of clusters found, which we illustrate in particular for a
dense network.

1.2 Preliminaries

We consider only undirected and simple graphs G =
(V,E). We use n and m to denote the number of vertices
and edges in the input graph, respectively, and k for the
minimum size of an edge set whose deletion makes all
components highly connected. The order of a graph G is
the number of vertices in G. We use G[S] to denote the
subgraph induced by S ⊆ V . Let N(v) := {u | {u, v} ∈ E}
denote the (open) neighborhood of v and N [v] := N(v)∪{v}.
A minimum cut of a graph G is a smallest edge set E′

such that deleting E′ increases the number of connected
components of G.

We view HIGHLY CONNECTED DELETION as a parame-
terized problem [23–25], where the parameter is the num-
ber k of edge deletions. A parameterized problem with
input size s is called fixed-parameter tractable (FPT) with
respect to a parameter k if it can be solved in f(k) · sO(1)

time, where f is a computable function only depending
on k. A problem kernel for a parameterized problem is a
many-one polynomial-time self-reduction such that the
produced instances have size upper-bounded by some
function of the parameter [26]. Usually, a problem kernel
is achieved by applying polynomial-time executable data
reduction rules. Referring to decision problems, we call
a data reduction rule R correct if the new problem
instance I ′ that results from applying R to the original
instance I is a yes-instance if and only if I is a yes-
instance.

The Exponential Time Hypothesis (ETH) [20] states that
3-SAT cannot be solved in subexponential time. Several
results on (relative) lower bounds for exponential-time
algorithms have been shown by exploiting the ETH; see
Lokshtanov et al. [27] for a recent survey.

2 COMPUTATIONAL COMPLEXITY

We present a proof that HIGHLY CONNECTED DELETION
is NP-hard even on 4-regular graphs and that it cannot

v

Type I

v

u

Type II

Fig. 1. The two different neighborhoods in a 4-regular
neighborhood restricted graph. None of these graphs
contains a clique of order four.

be solved in subexponential time unless the exponential-
time hypothesis (ETH) [20] is false. Our reduction is from
the PARTITION INTO TRIANGLES problem.

As shown by van Rooij et al. [28], the PARTITION
INTO TRIANGLES problem is NP-hard even when the
input graph G = (V,E) is 4-regular. Moreover, NP-
hardness persists even when for each vertex v ∈ V the
graph G[N [v]] is isomorphic to one of the two graphs
shown in Fig. 1 [28]; we refer to such graphs as 4-regular
neighborhood-restricted graphs. The variant of PARTITION
INTO TRIANGLES that we use in the reduction thus is:

RESTRICTED PARTITION INTO TRIANGLES
(RPIT)
Instance: An undirected 4-regular
neighborhood-restricted graph G = (V,E).
Question: Can V be partitioned into |V |/3 sets
such that each set of the partition induces a
triangle, that is, a complete graph on three
vertices, in G?

Our reduction is similar to a simple reduction that was
used to show NP-hardness of CLUSTER DELETION on
graphs of maximum degree four [29]. In this reduction,
the graph remains basically the same, and one just has
to find the appropriate k. The main difference is that
for HIGHLY CONNECTED DELETION, we have to show
that there can be no clusters larger than triangles in G
(in the case of CLUSTER DELETION this is easier since
the cluster size is at most five in 4-regular graphs). In
the following, we present two observations and a data
reduction rule for RPIT and then use them to obtain a
reduction from RPIT to HIGHLY CONNECTED DELETION.
The overall aim is to show that we can assume for our
reduction that all clusters are triangles.

Lemma 1: Let G = (V,E) be a 4-regular neighborhood-
restricted graph. Then G does not contain any highly
connected subgraph of order four, five, or at least eight.

Proof: Obviously, G does not contain highly con-
nected subgraphs of order at least eight, since G is 4-
regular and any highly connected graph of order at least
eight has minimum degree five. Furthermore, the only
highly connected graphs of order four are cliques on
four vertices. Since G has only the neighborhoods shown
in Fig. 1, it does not contain cliques of order four.

It remains to show that G does not contain highly
connected subgraphs of order five. The main observation
we use is that, in such a graph, every vertex has degree at

3

least three. Let v be a vertex in G. Since G[N [v]] contains
at least two vertices of degree two (see Fig. 1), G[N [v]] is
not highly connected. Hence, if v is contained in a highly
connected subgraph G′ of order five, then G′ contains
at least one vertex from V \N [v] and exactly one vertex
from N [v] is not in G′. If G[N [v]] is of Type I (see Fig. 1),
then v is not contained in a highly connected subgraph
of order five: deleting one vertex from G[N [v]] produces
one vertex with degree one and this vertex cannot obtain
degree at least three by adding one vertex. Hence, assume
that G[N [v]] is of Type II. Clearly, every highly connected
subgraph of order five containing v also has to contain u,
since otherwise one creates again a degree-one vertex.
Note that N [u] = N [v]. Since G is 4-regular, there is no
vertex in V \N [v] that is adjacent to u or v. Consequently,
every vertex of V \ N [v] has degree at most two in a
subgraph of G that has order five and contains u and v.
Hence, there is no highly connected subgraph of order
five that contains v.

We now present a data reduction rule that removes
small connected components from the RPIT instance.

Rule 1: Let G = (V,E) be an instance of RPIT. If G
contains a connected component C of order at most seven,
then check whether C can be partitioned into triangles. If
this is the case, then remove C from G, otherwise, answer
“no”.
The correctness of the reduction rule is obvious. Further-
more, it results in an instance with the following property.

Lemma 2: Let G = (V,E) be an instance of RPIT that is
reduced with respect to Rule 1. Then, G does not contain
any highly connected subgraphs of order six or seven.

Proof: Assume that G contains a highly connected
subgraph G′ = (V ′, E′) on six vertices. Then, each vertex
in G′ has at least four neighbors in G′. Consequently, no
vertex of G′ has in G any neighbors in V \ V ′. Hence, G′

is a connected component of G. This contradicts the
fact that G is reduced with respect to Rule 1. A similar
argument applies for highly connected subgraphs of order
seven.

Theorem 1: HIGHLY CONNECTED DELETION on 4-
regular graphs is NP-hard and cannot be solved in 2o(k) ·
nO(1), 2o(n) · nO(1), or 2o(m) · nO(1) time unless the
exponential-time hypothesis (ETH) is false.

Proof: We reduce from RPIT, which is NP-hard
and cannot be solved in 2o(n) · nO(1) time unless the
ETH is false [28]. Given an instance of RPIT, first
apply Rule 1. Let G = (V,E) be the resulting instance.
We obtain an instance of HIGHLY CONNECTED DELETION
by setting k := |V |.

The equivalence of the instances can be seen as
follows. If G has a partition into triangles, then each
of these triangles is a highly connected subgraph. The
number of triangles is |V |/3 and the overall number of
edges contained in these triangles is |V |. Since G is 4-
regular, |E| = 2|V |. Hence, G can be transformed by at
most k edge deletions into a highly connected cluster
graph.

Conversely, if G can be transformed into a highly
connected cluster graph G′ by at most |V | edge deletions,
then G′ has at least |V | edges. By Lemmas 1 and 2, no
cluster in G′ has order at least four. Hence, all clusters
are triangles or singletons. Since G′ has |V | edges, all
clusters are triangles. Therefore, G can be partitioned into
triangles.

Clearly, the reduction implies NP-hardness of HIGHLY
CONNECTED DELETION on 4-regular graphs. The ETH-
based lower bounds follow from the fact that |V | = k =
|E|/2.

3 PARAMETERIZED COMPLEXITY

In this section, we provide polynomial-time data reduc-
tion rules that reduce an instance of HIGHLY CONNECTED
DELETION to an equivalent one with at most 10k1.5

vertices. Thus, after reduction, the instance size depends
solely on k. The resulting instance is called a problem
kernel with respect to the parameter k and the data
reduction algorithm is called kernelization [26]. The size of
the resulting instance is used to measure the effectiveness
of the data reduction rules. Further, we present a fixed-
parameter algorithm for HIGHLY CONNECTED DELETION
with running time O(34k · k2 + n2mk · log n). These
results imply the fixed-parameter tractability of HIGHLY
CONNECTED DELETION with respect to k and give hope
for finding optimal solutions for instances where k is not
too large.

3.1 Problem Kernel

The first data reduction rule is obvious.
Rule 2: Remove all connected components from G that

are highly connected.
The following lemma can be proved by a simple counting
argument.

Lemma 3: Let G be a highly connected graph and let
u, v be two vertices in G. If u and v are adjacent, then
they have at least one common neighbor; otherwise, they
have at least three common neighbors.

Proof: Let nuv be the number of common neighbors
of u and v and nu and nv the number of neighbors specific
to u and v, respectively (excluding u and v). Let c be 1 if
{u, v} ∈ E and 0 otherwise. We have nuv + nu + c > n/2
and nuv +nv + c > n/2, thus 2nuv +nu +nv + 2c ≥ n+ 1.
Since n ≥ nuv +nu +nv + 2, we get nuv + 2c−2 ≥ 1, thus
nuv ≥ 3− 2c.
A simple data reduction rule follows directly from
Lemma 3.

Rule 3: If there are two vertices u and v with {u, v} ∈ E
that have no common neighbors, then delete {u, v} and
decrease k by one.

Interestingly, Rules 2 and 3 yield a linear-time algo-
rithm for HIGHLY CONNECTED DELETION on graphs of
maximum degree three, which together with Theorem 1
shows a complexity dichotomy with respect to the
maximum degree.

4

Theorem 2: HIGHLY CONNECTED DELETION can be
solved in linear time when the input graph has degree
at most three.

Proof: We first apply Rule 3. This reduction rule can
be applied in one pass since an edge that is in a triangle is
never deleted by this rule. Consequently, the application
of this rule does not produce new vertices u and v to
which this rule applies. Hence, Rule 3 can be exhaustively
applied in O(n+m) time: for each edge in G we examine
the neighborhoods of its endpoints; since G has maximum
degree three this neighborhood has constant size. Next,
we apply Rule 2, which can also be performed in linear
time. After the application of this rule, G is reduced with
respect to both rules.

Consider a connected component in G. We show that G
contains only four vertices. Let {u, v} be some edge
in this connected component. Since G is reduced with
respect to Rule 3, there is a vertex w that is a common
neighbor of u and v. Since G is reduced with respect
to Rule 2, one of these three vertices, say v has a further
neighbor x. Now, x has a common neighbor with v, say u.
The connected component does not contain any further
vertices: First, u and v can have no further neighbors
since G has maximum degree three. Second, w and x
cannot be adjacent since then the connected component is
a clique of order four which contradicts that G is reduced
with respect to Rule 2. Finally, neither x nor w have a
further neighbor since this neighbor has to be adjacent
to either u or v, which already have degree three. Hence,
each remaining connected component can be solved in
constant time.

The next two data reduction rules are concerned with
finding vertex sets that have a small edge cut. For S ⊆ V ,
we use D(S) := {{u, v} ∈ E | u ∈ S and v ∈ V \ S} to
denote the set of edges outgoing from S, that is, the edge
cut of S.

The idea behind the next reduction rule is to find vertex
sets that cannot be separated by at most k edge deletions.
We call two vertices u and v inseparable if the minimum
edge cut between u and v is larger than k. Analogously, a
vertex set S is inseparable if all vertices in S are pairwise
inseparable.

Rule 4: If G contains a maximal inseparable vertex
set S of size at least 2k, then do the following. If G[S] is
not highly connected, then there is no solution of size
at most k. Otherwise, remove S from G and set k :=
k − |D(S)|.

Lemma 4: Rule 4 preserves optimal solvability and can
be exhaustively applied in O(n2 ·mk log n) time.

Proof: We show that the rule produces equivalent
instances. First, assume that (G, k) is a yes-instance.
Clearly, an inseparable vertex set S has to be subset of a
cluster C in the solution graph. Now, since |S| ≥ 2k there
can be no vertex in C \ S: Assume that C contains such
a vertex. Then by the maximality of S, the graph G[C]
has an edge cut of size at most k. Since |C| > 2k, this
means that G[C] is not highly connected. Hence, S is a
cluster in the solution and thus G[S] is highly connected.

The rule performs precisely the edge deletions needed to
cut S from V \ S and reduces the parameter accordingly.
Hence, it produces a yes-instance.

Now, if the instance is a no-instance, then either the
rule returns “no” or performs some edge deletions and
reduces the parameter accordingly. This cannot transform
a no-instance into a yes-instance.

We now describe how to achieve an exhaustive applica-
tion of the rule in the described running time. First, build
a so-called Gomory–Hu tree in O(n2·m log n) time [30, 31].
This tree has n vertices and the set of weighted edges
represents all pairwise min-cuts. A maximal inseparable
vertex sets can be found by deleting all edges that have
weight at most k. Once this set has been identified,
the application of the reduction rule can be performed
in O(m) time. Since the reduction rule can be performed
at most k times (it answers either “no” or reduces k), the
overall running time follows.

Note that a highly connected graph of order at least 2k
forms an inseparable vertex set. Hence, after exhaustive
application of Rule 4, every cluster has bounded size.
While Rule 4 identifies clusters that are large with respect
to k, Rule 5 identifies clusters that are large compared to
their neighborhood.

Rule 5: If G contains a vertex set S such that
• |S| ≥ 4,
• G[S] is highly connected, and
• |D(S)| ≤ 0.3 ·

√
|S|,

then remove S from G and set k := k − |D(S)|.
Lemma 5: Rule 5 preserves optimal solvability and can

be exhaustively applied in O(n2 ·mk log n) time.
Proof: We show that there is an optimal solution in

which S is a cluster. To this end, suppose that there is an
optimal solution which produces some clusters C1, . . . , Cq

that contain vertices from S and vertices from V \ S. We
show how to transform this solution into one that has S
as a cluster and needs at most as many edge deletions.
First, we bound the overall size of the Ci’s. Note that
deleting all edges between S and

⋃
1≤i≤q(Ci \ S) cuts

each Ci. By the condition of the rule, such a cut has at
most 0.3

√
|S| edges. Since each G[Ci] is highly connected,

this implies that
∑

1≤i≤q |Ci| < 0.6
√
|S|.

Now, transform the solution at hand into another
solution as follows. Make S a cluster, that is, undo all
edge deletions within S and delete all edges in D(S),
and for each Ci, delete all edges in G[Ci \ S]. This is
indeed a valid solution since G[S] is highly connected,
and all other vertices that are in “new” clusters are now
in singleton clusters.

We now compare the number of edge modifications for
both edge deletion sets and show that the new solution
needs less edge modifications. To this end, we consider
each vertex u ∈ S that is contained in some Ci. On
the one hand, since G[S] is highly connected, and since
there is at least some v ∈ S that is not contained in
any Ci we undo at at least |S|/2 edge deletions between
vertices of S. On the other hand, an additional number

5

of up to 0.3
√
|S| +

(b0.6√|S|c
2

)
edge deletions may be

necessary to cut all the Ci’s from S and to delete all
edges in each G[Ci \ S]. By the preconditions of the rule
we have

√
|S| ≤ |S|/2 and thus the overall number of

saved edge modifications for u is at least

|S|/2− 0.3
√
|S| −

(
b0.6

√
|S|c

2

)
> |S|/2− 0.6|S|/2− 0.36|S|/2 > 0.

(1)

Hence, the number of undone edge modifications
is larger than the number of new edge modifications.
Consequently, S is a cluster in every optimal solution.

The running time can be bounded analogously to
the running time of Rule 4. The only difference is that
after constructing the Gomory–Hu tree, one can find a
vertex set that fulfills the conditions of the rule by trying
all O(m) possibilities for “guessing” |S|/2. Assuming the
correct guess, deleting all edges with weight at most |S|/2
in the tree produces one connected component that is
exactly S.

Theorem 3: HIGHLY CONNECTED DELETION can be
reduced in O(n2 ·mk log n) time to an equivalent instance,
called problem kernel, with at most 10 · k1.5 vertices.

Proof: Let I = (G, k) be an instance that is reduced
with respect to Rules 2, 4 and 5. We show that every
yes-instance has at most 10 · k1.5 vertices. Hence, we can
answer no for all larger instances.

Assume that I is a yes-instance and let C1, . . . , Cq

denote the clusters of a solution. Since I is reduced
with respect to Rule 4, we have |Ci| ≤ 2k for each Ci.
Furthermore, for every Ci we have D(Ci) ≥ 0.3

√
|Ci|

since I is reduced with respect to Rules 2 and 5. In other
words, every cluster Ci “needs” at least 0.3

√
|Ci| edge

deletions. Hence, the overall instance size is at most

max
(c1,...,cq)∈Nq

q∑
i=1

ci s. t.

∀i ∈ {1, . . . , q} : ci ≤ 2k,∑
1≤i≤q

0.3 ·
√
ci ≤ 2k.

A simple calculation shows that there is an assignment
to the ci’s maximizing the sum such that at most one ci
is smaller than 2k. Hence, the sum is maximized when
a maximum number of ci’s have value 2k. Each of the
corresponding clusters is incident with at least 0.3

√
2k

edge deletions. Hence, there are at most 2k/0.3
√

2k =
10
√

2k/3 such clusters. The overall instance size follows.

3.2 Fixed-Parameter Algorithm
We present a fixed-parameter algorithm solving HIGHLY
CONNECTED DELETION in 34k · nO(1) time. Fixed-
parameter algorithms have also been given for related
clustering problems; the best known fixed-parameter
algorithm for CLUSTER DELETION (after a long line
of improvements) runs in 1.415k · nO(1) time [32], and

the best known fixed-parameter algorithm for 2-CLUB
DELETION runs in 2.74k · nO(1) time [17].

The main idea of our algorithm is to branch until each
connected component has diameter at most two and solve
these instances by a dynamic programming algorithm.
The details are as follows.

Since each highly connected graph has diameter at
most two [5], we can perform the following branching
rule.

Branching Rule 1: If a connected component in G has
diameter three or more, then find two vertices u and v
with distance three and pick an arbitrary shortest
path P = uxyv between u and v. Branch into the three
possibilities to destroy P by deleting either {u, x}, {x, y},
or {y, v}. In each recursive branch, set k := k − 1.
The rule is obviously correct in the sense that at least one
of the three edges has to be destroyed. Now assume that
the branching rule does not apply anymore, that is, each
connected component has diameter two. If the graph
is also highly connected, then we are done. Otherwise,
we can apply Rule 4 to obtain an instance that is small
compared to k, as shown by the following lemma.

Lemma 6: Let I = (G, k) be an instance of HIGHLY
CONNECTED DELETION such that G has diameter two
and I is reduced with respect to Rule 4. Then, G has at
most 4k vertices.

Proof: Consider a solution for I . Since G has diameter
two, there is at most one cluster in this solution that has
vertices that are not incident with an edge that is deleted
by the solution (call these vertices unaffected): if there are
two clusters Ci and Cj with unaffected vertices u and v,
then these vertices are within distance at least three (u is
not adjacent to a neighbor of v). Let C1 be the, possibly
empty, cluster that has unaffected vertices. Then, since I
is reduced with respect to Rule 4, C1 has at most 2k
vertices. Since all other vertices are affected, there are at
most 2k further vertices. The overall size of the instance
follows.
In the following lemma, we describe an algorithm that
solves HIGHLY CONNECTED DELETION for arbitrary (not
necessarily diameter-2) instances. The main trick in the
fixed-parameter algorithm is that with the above lemma,
this running time becomes single-exponential for the
parameter k.

Lemma 7: HIGHLY CONNECTED DELETION can be
solved in O(3n ·m) time.

Proof: We describe a dynamic programming algo-
rithm. The idea of the algorithm is that if V can be
two-partitioned into V1 and V2 such that all clusters are
subsets of either V1 or V2, then we can obtain the overall
solution by combining best solutions for the induced
subgraphs G[V1] and G[V2]. The details are as follows.

We build a dynamic programming table T with entries
of the type T [V ′], V ′ ⊆ V which store an optimal solution
for HIGHLY CONNECTED DELETION for G[V ′]. The table
is initialized by setting T [V ′] = 0 for each V ′ ⊆ V such
that G[V ′] is highly connected. The remaining entries can

6

be computed by the recurrence

T [V ′] = min
V1,V2,V1∪̇V2=V ′

(T [V1] + T [V2]+

|{{u, v} ∈ E | u ∈ V1 ∧ v ∈ V2}|).
(2)

The third summand is exactly the number of edges
needed to cut V1 from V2 in G. After all entries have
been computed, T [V] stores the number of edge deletions
needed for obtaining a highly connected cluster graph;
an actual clustering can be obtained by a traceback. The
correctness of the recurrence follows from the discussion
above.

The running time can be bounded as follows. For each
table entry, the initialization can be performed in O(m)
time, leading to an overall time of O(2n ·m) for this part
of the algorithm. In the second part of the algorithm, an
overall number of O(3n) recurrences have to be evaluated:
each partition of V ′ into V1 and V2 uniquely defines a
three-partition of V into V \ V ′, V1 and V2. Since the
number of edges needed for the third summand can be
counted in O(m) time, the overall running time follows.

Combining the above two lemmas with the branching
rule, we obtain our main result of this section.

Theorem 4: HIGHLY CONNECTED DELETION can be
solved in O(34k · k2 + n2mk · log n) time.

Proof: The algorithm performs Rules 2 and 4 and
the branching rule as long as possible. By Lemma 6,
the remaining instances have at most 4k′ vertices for
some k′ ≤ k. Using Lemma 7, these instances can be
solved in O(34k′ · k2) time. The overall running time
follows from a simple worst-case analysis; we omit the
details.
The running time given by Theorem 4 is impractical.
Moreover, the algorithm relies partially on dynamic
programming which has the disadvantage that, compared
to branching algorithms, its average-case running time
often comes close to its worst-case running time. We
conjecture that a running time improvement using only
branching algorithms is possible.

4 PRACTICAL ALGORITHMS

The fixed-parameter tractability results for HIGHLY CON-
NECTED DELETION (Section 3.2) are of purely theoretical
nature. Hence, we now follow an algorithmic approach
that consists of two main steps: First, apply a set of
data reduction rules that exploit the structure of biological
networks and yield a new instance that is significantly
smaller than the original one. Second, formulate the
problem as an integer linear programming (ILP) and apply
it to the new, smaller instance. 5 The resulting ILP can
be solved using sophisticated ILP solvers which are very
efficient.

5. ILP formulations have proved useful for attacking other hard
graph problems involving dense subgraphs such as computation of
edge-weighted quasi-bicliques [33] or CLUSTER EDITING [22].

4.1 Further Data Reduction

As we demonstrate in the computational experiments
presented in Section 5, Rule 3 tremendously simplifies
many real-world input instances. In particular, as shown
by Theorem 2, it is useful to reduce vertices of small de-
gree, as found in protein interaction networks. However,
Rules 4 and 5 that produce a kernel have the downside
of requiring relatively large substructures unlikely to
exist in our inputs. In contrast, we noted that Rule 3
leaves behind many degree-2 and -3 vertices. Thus, we
additional devised the following rule.

We try to identify triangles uvw that form a highly
connected cluster in at least one optimal solution. For a
triangle edge {x, y}, let Nxy := (N(x) ∪N(y)) \ {u, v, w}
be the common neighbors of the edge outside the triangle.
Let the value of an edge e be 3 if Ne 6= ∅ and 0 otherwise.
Let the value of a vertex x be the size of the largest
connected component in G[N(x) \ {u, v, w}], or 0 if this
size is 1.

Rule 6: Assume that for a triangle uvw the following
conditions hold:
• There is no vertex connected to all three of u, v,

and w;
• the set Nuv ∪Nuw ∪Nvw does not contain an edge;
• for any {x, y, z} = {u, v, w}, the value of {x, y} plus

the value of z is at most three;
• the sum of the values of u, v, and w is at most three.

Then isolate the triangle by deleting all edges incident
with u, v, and w except the triangle edges.

Proof (preservation of optimality): By case distinction:
if the triangle is not a solution cluster, then it must be
part of a larger cluster, or the vertices are divided into
two or three clusters. The conditions ensure that none of
these situations yield a better solution than isolating the
triangle.

4.2 Integer Linear Programming: Column Genera-
tion

We now consider integer linear programming (ILP) based
approaches. With these, we can utilize the decades of
engineering that went into commercial solvers like CPLEX
or Gurobi to be able to tackle large instances. Our main
approach is somewhat involved due to the use of column
generation. We additionally tried a more straightforward
approach based on a CLIQUE PARTITIONING formulation
and row generation [22, 34]. However, it performed
poorly compared to the column generation, and we omit
a detailed comparison.

We describe an ILP formulation of HIGHLY CON-
NECTED DELETION, which in its basic scheme is similar to
those of Mehrotra and Trick [35] and Ji and Mitchell [36]
for constrained CLIQUE PARTITIONING and that of Aloise
et al. [19] for modularity maximization; however, we
need a new approach for solving the column generation
subproblem. Let T be the set of all vertex sets that induce
a highly connected subgraph. We use binary variables zT

7

to indicate that the cluster T ∈ T is part of the solution.
Then the model is

maximize
∑
T∈T

cT zT , (3)

s. t.
∑

{T∈T |u∈T}

zT = 1 ∀u ∈ V, (4)

zT ∈ {0, 1} ∀T ∈ T , (5)

where cT is the number of edges in the subgraph induced
by T . The objective (3) maximizes the number of edges
within clusters, which is equivalent to minimizing the
number of inter-cluster edges (deletions). The constraints
of type (4) ensure that each vertex is contained in exactly
one cluster.

Due to the large number of variables, this model cannot
be solved directly except for tiny instances. Thus, the idea
is to only consider “relevant” variables. More precisely,
we start with an initial set of zT variables that yields a
feasible solution (e. g., all singleton clusters). Then we
successively add variables (“columns”) that improve the
objective, until this is no longer possible. Due to the
structure of real-world instances, typically only a small
subset of possible variables needs to be added.

More precisely, we try to add variables that improve the
relaxed model where constraint (5) is replaced by zT ≥ 0.
We thus first compute an optimal solution to the relaxed
model. If we can find an improving column, then we add
this column and compute a new solution for the relaxed
model. If we cannot find an improving column, then
there is no cluster that can improve the current fractional
solution. If this solution is “by chance” integral, then
we have found an optimal solution also for the model
with integrality constraints. Otherwise, as suggested by
Mehrotra and Trick [35], we use Ryan–Foster branching:
we find two vertices such that there is both a fractional
cluster containing both vertices and a fractional cluster
containing exactly one of them, and branch into the two
cases that the two vertices are together in a cluster or
that they are in a different cluster.

The improvement of adding a column for cluster T in
the relaxed model is cT minus the contribution of the
vertices in T to the objective function. This contribution
for some vertex u can be calculated as the value of
the dual variable λu for the corresponding constraint
of type (4) in the relaxation (see e. g. Aloise et al. [19] for
details). The values of the dual variables can be easily
calculated by a linear programming solver. Thus, we need
to find a cluster T that maximizes cT −

∑
u∈T λu. In other

words, we need to find a highly connected subgraph that
maximizes the number of edges minus vertex weights.
For this, we again use an ILP formulation, using binary
edge variables euv and binary vertex variables vu to
describe the cluster selected, and a positive integral
variable d to describe the cluster size:

maximize
∑

{u,v}∈E

euv −
∑
u∈t

λuvu, (6)

s. t. d =
∑
u∈V

vu, (7)

euv ≤ vu, evu ≤ vv ∀{u, v} ∈ E, (8)

if vu then
∑

v∈N(u)

euv > d/2 ∀u ∈ V, (9)

where the constraint (9) can be linearized using the big-
M method (that is, by adding M(1 − vu) on the left-
hand side with a sufficiently large constant M); in our
implementation, we instead use indicator constraints as
supported by CPLEX.

To get a speedup, we can make use of the fact that it
is not necessary to find a maximally improving column.
Therefore, we can solve the column generation problem
heuristically, and only solve it optimally using the ILP
when no improving solution was found. As heuristic,
we use a simple greedy method that starting from each
vertex repeatedly adds the vertex that maximizes the
value of the cluster, and records the best cluster that
was highly connected. If this fails, we try local search:
removing and adding up to two vertices, respectively, to
a known cluster. Further, we abort solving the column
generation ILP as soon as an improving solution is found.
Also, to find a good set of disjoint clusters more quickly,
we initially scale the dual variables by a factor of 5 until
no improving clusters can be found with this factor.

4.3 Neighborhood Heuristic
One drawback of the method by Hartuv and Shamir
[5] is that it uses a minimum cut routine, which has a
fairly high worst-case time complexity and is difficult to
implement. We suggest an alternative simpler heuristic.
Recall that Rule 3 from Section 3.1 says that an edge
whose two endpoints have no common neighbor can be
deleted. The idea is then to greedily delete in a connected
component that is not yet highly connected the edge for
which the endpoints have the fewest common neighbors.
We additionally weigh this by the vertex degree, that is,
we delete the edge {u, v} with x := |N(u) ∩ N(v)| that
minimizes

min{x/deg(u), x/deg(v)}. (10)

5 EXPERIMENTAL EVALUATION

We implemented the data reduction in OCaml and the
ILPs in C++ using the CPLEX 12.5.1 ILP solver. For
the minimum cut subroutine of the min-cut method, a
highly optimized implementation in C was used [37].
Our source code and sample instances are available at
http://fpt.akt.tu-berlin.de/hcd/. The test machine is a
4-core 3.6 GHz Intel Xeon E5-1620 (Sandy Bridge-E) with
10 MB L3 cache and 64 GB main memory, running under
Debian GNU/Linux 7.0. CPLEX is allowed to use up to
8 threads; we report wall-clock times.

We used protein interaction networks available at the
BioGRID repository [38] (release 3.2.101 from May 25th,
2013). The species for which we illustrate our results are
S. pombe, C. elegans, M. musculus, and A. thaliana. For

8

http://fpt.akt.tu-berlin.de/hcd/

TABLE 1
Instance properties and data reduction results. Here, K is
the number of connected components, n′ and m′ are the
number of vertices and edges in the largest connected
component, respectively, ∆k is the number of edges
deleted during data reduction, ∆k [%]:= ∆k/k is the

relative number of edges deleted during data reduction,
K ′ is the number of connected components after data

reduction, and n′′ and m′′ are the number of vertices and
edges in the largest connected component after data

reduction, respectively.

n m K n′ m′ ∆k ∆k [%] K′ n′′ m′′

SP phys. 1963 4772 33 1875 4709 2398 62.9 1249 611 2173
SP all 3735 51620 9 3716 51608 6446 ≥13.0 959 2765 45156
CE phys. 3176 5465 101 2926 5314 4593 88.6 2844 268 747
CE all 3866 7707 73 3686 7599 5665 77.7 3292 542 1991
MM phys. 7354 14509 142 6983 14274 10693 79.6 6107 1115 3604
MM all 7414 14687 146 7037 14449 10757 79.1 6133 1159 3733
AT phys. 5999 13571 118 5727 13407 9388 79.0 4730 1009 3658
AT all 6038 13680 124 5739 13490 9396 78.5 4744 1042 3771

each species, we extracted one network with physical
interactions only, and one with all interactions. Table 1
shows some basic properties of these networks.

5.1 Data Reduction and Running Time
Table 1 shows the effect of data reduction. Knowing
the optimal k (see Table 2) allows us to state that
typically 75 % of the edges that need to be deleted are
identified. Since connected components can be treated
separately, the most important time factor is the size of
the largest connected component (m′′). Here, the number
of edges is reduced to typically 30 %. This demonstrates
the effectivity of the data reduction, which preserves exact
solvability, and suggests it should be applied regardless
of the actual solution method that follows.

Table 2 summarizes the clustering results and running
times. Doing data reduction before running the min-
cut method actually improves the running time, since
it reduces the number of costly min-cut calls. The
neighborhood method finds many more (mostly smaller)
clusters than the min-cut method, and overall deletes less
edges. However, the largest clusters it produces tend to
be smaller. The column generation method is able to solve
all but one test instance, although the hardest one takes
almost 5 hours. It is not able to solve the network of all
interactions of S. pombe within 32 hours; this is probably
because this is a denser network, making data reduction
less effective. Ryan–Foster branching is necessary for all
instances, but the search tree is typically small, the largest
having 37 nodes.

In Figure 2, we examine the trade-off between the solu-
tion size k and the running time for the min-cut method,
the neighborhood method, and the column generation
with a per-connected-component time limit. We see that
data reduction speeds up the first two methods a lot, and
also improves the solution quality, in particular for the
min-cut heuristic. The column generation gets an almost

0 5 10 15 20 25 30 35 40
time (min)

0

2

4

6

8

10

re
la

tiv
e

er
ro

r f
or

 k
 (%

)

Column generation
Min-Cut
Min-Cut + DR
Neighbor
Neighbor + DR

Fig. 2. Running time trade-off for the A. thaliana network

optimal result very quickly, and finds the optimal solution
after about 8 minutes (however, proving optimality takes
several hours). Data reduction for column generation
consistently improves running time, for example for CE-
p by a factor of 24.

5.2 Biological evaluation

For the biological evaluation, we studied the A. thaliana
network with all interactions in more detail. For the
computation of the enrichment of annotation terms, we
used the GOstats package [39] of Bioconductor with
A. thaliana annotation data from the TAIR database [40].
The computed p-values are corrected for multiple hypoth-
esis testing. We used a significance threshold of p ≤ 0.01.
Our findings are summarized in Figure 3. Solving HIGHLY
CONNECTED DELETION exactly produces more clusters
than using the min-cut algorithm with data reduction
which in turn produces more clusters than the min-cut
algorithm without data reduction. This behavior can be
observed for small and for large clusters.

To assess the biological relevance of these clusters, we
determined for each cluster whether the corresponding
protein set has a statistically significant enrichment of
annotations describing processes in which the protein
take part. As shown in Fig. 3, for all methods a large
portion of clusters shows such an enrichment. The min-
cut algorithm with data reduction clearly outperforms the
min-cut algorithm without data reduction: it produces
more clusters without producing a larger fraction of
nonenriched clusters. For the neighborhood heuristic
and the exact algorithm the results are less clear: they
produce even more clusters, but a larger fraction is
nonenriched. This behavior is particularly pronounced
for small clusters of size at most three, but also for
some larger cluster sizes. A possible explanation could
be as follows. By minimizing the number of deletions,
some of the small reported clusters, for instance triangles,

9

TABLE 2
Results for the instances of Table 1. Here, k is the number of edges deleted, u is the number of unclustered vertices,
K is the number of clusters, n and m are the number of vertices and edges in the largest cluster, respectively, and t is

the running time in seconds.

min-cut without DR min-cut with DR neighborhood with DR column generation with DR

k u K n m t k u K n m t k u K n m t k u K n m t

SP-p 4324 1839 17 17 96 16 4165 1699 62 17 96 2 3961 1548 101 15 71 2 3811 1495 108 17 96 102
SP-a 50343 3663 4 63 1268 526 50331 3651 8 63 1268 214 49514 3263 95 60 1175 3491 — — — — — —
CE-p 5437 3159 4 7 16 56 5268 3040 37 9 30 1 5215 2984 56 9 30 1 5184 2960 62 9 30 34
CE-a 7613 3849 1 17 94 93 7491 3758 27 17 94 3 7382 3664 55 15 78 4 7295 3625 63 19 113 149
MM-p 14413 7316 9 13 69 1198 14078 7072 80 13 50 15 13636 6718 185 13 69 15 13428 6600 209 13 67 2190
MM-a 14591 7376 9 13 69 1253 14265 7141 77 13 50 15 13791 6762 189 13 69 16 13591 6655 209 13 67 2458
AT-p 13009 5843 25 23 190 602 12497 5478 131 23 190 10 12119 5249 191 22 178 10 11885 5142 209 23 190 16721
AT-a 13121 5885 24 23 190 616 12613 5523 129 23 190 10 12222 5291 189 22 178 10 11972 5170 211 23 190 10536

30

20

40

60

80

100

120

140

160

nu
m

be
r o

f c
lu

st
er

s

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
cluster size

0

5

10

15

20
Min-Cut
Min-Cut + DR
Neighbor + DR
Column generation

Fig. 3. Clusters in the A. thaliana network with all interactions. The darker part of each bar shows the fraction of clusters
with significant enrichment of biological process annotation terms.

contain some nodes of very low degree and one high
degree node that is “by chance” not included in any large
cluster. The resulting cluster is unlikely to have similar
GO annotations across all three proteins. We discuss a
possibility to counter this behavior in the conclusion.

Comparison with Markov Clustering
Next, we compare our clustering algorithm with a popu-
lar clustering algorithm for protein interaction networks.
As comparison, we choose the so-called Markov Cluster-
ing Algorithm (MCL), which was shown to outperform
several other clustering algorithms on protein interaction
networks [41]. For details concerning MCL refer to [42];
in the experiments, we used the MCL implementation
available at http://micans.org/mcl/ (version 12-135).
One parameter that can be set when using MCL is the
“inflation” I . We performed experiments with the default
value of I = 2.0 and with I = 3.0. which produces a more
fine-grained clustering (as does our algorithm). Unless
stated otherwise, we use MCL to refer to the algorithm
with default setting.

When comparing the two algorithms, our exact ap-
proach (in the following referred to as HCD) and the
MCL algorithm, there are some clear advantages of the
MCL algorithm: MCL finishes within less than a second,

MCL assigns almost all proteins to clusters, and MCL
produces more clusters than HCD. MCL also produces
larger clusters than HCD. For instance, it finds 38 clusters
of size more than 20, and the largest cluster has size
280. As shown in Figure 4, the number of produced
clusters is higher across all cluster sizes. The fraction of
clusters whose proteins share a significantly enriched GO
annotation term, however, is for small and medium-size
clusters much lower in the clustering produced by MCL
than in the clustering produced by HCD. Hence, MCL
places many more vertices in enriched clusters than the
other methods, but the average cluster quality is much
lower (see Table 3).

In order to assess how informative the clusters pro-
vided by the algorithms are, we examined the nature of
the relevant enriched terms more closely. For instance,
the largest cluster produced by MCL has 280 proteins
and the annotation term with the lowest p-value was
‘transport’ shared by 30 % of the proteins, followed by
‘localization’. In contrast, the largest cluster produced by
HCD only has size 23. The term with the lowest p-value
is ‘negative regulation of cyclin-dependent protein kinase
activity’ shared by 21 of 23 proteins.

10

http://micans.org/mcl/

3 4 5 6 7
cluster size

0

50

100

150

200

250

300
nu

m
be

r o
f c

lu
st

er
s

mcl I=2.0

mcl I=3.0

Column generation

8 9 10 11 12 13 14 15 16 17 18 19≥20
cluster size

0

5

10

15

20

25

30

35

40

nu
m

be
r o

f c
lu

st
er

s

mcl I=2.0

mcl I=3.0

Column generation

Fig. 4. Clusters produced by the MCL algorithm and
column generation for A. thaliana. The darker part of
each bar shows the fraction of clusters with significant
enrichment of biological process annotation terms.

#clust. clust. enriched [%] vert. enriched [%]

Min-Cut 24 66.7 2.0
Min-Cut + DR 129 56.6 5.5
Neighbor-Heur. 189 49.7 7.4
Column gen. 211 49.8 8.5
MCL I = 2 1045 29.9 48.1
MCL I = 3 1514 22.4 31.6

TABLE 3
Number and percentage of clusters with gene annotation

enrichment in the A. thaliana network

Semantic similarity

To provide a more systematic analysis of the similarity
of annotation terms for the clusters, we computed for
each protein pair in the same cluster a semantic similarity
score for the GO annotations using the score definition

3 4 5 6 7
cluster size

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

se
m

an
tic

 s
im

ila
rit

y

mcl
mcl I=3.0

Column generation

(a) Small clusters for A. thaliana.

3 6 7 11 12 30 >30
cluster size

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

se
m

an
tic

 s
im

ila
rit

y

mcl
mcl I=3.0

Column generation

(b) Cluster categories for A. thaliana.

Fig. 5. The average pairwise semantic similarity for protein
pairs in the same clusters grouped by cluster sizes; error
bars show the 95 % confidence interval.

of Wang et al. [43]. The computed scores lie in [0, 1];
a higher score indicates higher similarity between the
two considered proteins. The average semantic similarity
score for a protein pair in the same cluster is 0.538 for
HCD, 0.258 for MCL with I = 2.0, and 0.261 for MCL
with I = 3.0. This purely numeric score, however, could
be skewed in favor of HCD: since MCL produces larger
clusters, it would be acceptable that the pairs show less
similarity because the obtained clustering could simply
be coarser. We therefore further examined the effect of the
cluster size on the average semantic score for protein pairs
in the same cluster. Our results are shown in Figure 5. For
small clusters, our clusters show better similarity values
for all cluster sizes except for size-five and size-seven
clusters, where the difference is less pronounced. Note
that the similarity value increases for size-six clusters and

11

then decreases again for size-seven clusters. We believe
that this behavior is due to the following fact: Size-five
clusters are the smallest clusters that can have a missing
edge; they can contain vertices with 3 = 5−2 neighbors in
the cluster. For size-six clusters, every protein can again
have at most one missing neighbor and thus has at least
4 = 6−2 neighbors in the cluster. Now, size-seven clusters
can contain proteins with two missing neighbors. This
might indicate that this “jump” in semantic similarity
is due to the rounding effect in the definition of highly
connected graphs.

Next, we grouped the reported clusters into four
categories: small (3–6 proteins), medium (7–11 proteins),
large (12–30 proteins), and very large (> 30 proteins) and
computed the average similarity scores for clusters in
these categories. While HCD did not find any very large
clusters, the average similarity score is, for the three
other categories, significantly higher in HCD than in
MCL. Our results also confirm that the very large clusters
show lower pairwise similarity than the small clusters.
Summarizing, our results for the A. thaliana network
indicate that HCD outperforms MCL in terms of quality
of the reported clusters while MCL shows better coverage
and a better running time.

Biological interpretation of an example cluster
We further examined a cluster of size 15 that was
found by the column generation algorithm and the
neighborhood heuristic in the A. thaliana network with all
interactions. The corresponding proteins are AT2G04660,
AT2G18290, AT2G20000, AT2G39090, AT2G42260,
AT3G48150, AT3G57860, AT4G11920, AT4G21530,
AT4G22910, AT4G33270, AT5G05560, AT5G13840,
AT1G06590, and AT1G78770. The annotation term with
the lowest p-value for this cluster is ‘regulation of DNA
endoreduplication’ shared by 12 out of the 15 proteins.
The three proteins that are not annotated with this term
are AT2G42260, AT4G21530, and AT4G33270. Protein
AT2G42260 is annotated by ‘DNA endoreduplication’
and has unknown function, but mutants undergo further
rounds of endoreduplications, so a role in regulation
of DNA endoreduplication is not unlikely. Protein
AT4G21530 is part of the anaphase promoting complex
(APC) which plays a crucial role in cell cycle regulation.
Protein AT4G33270 is a signal transducing protein
interacting with subunits of the APC. So far, it is only
annotated by ‘signal transduction’; a more specific role
in regulation of DNA endoreduplication is suggested
by its many interactions with the other proteins of the
cluster.

Interestingly, this cluster is completely destroyed by the
min-cut method (with or without data reduction), that is,
all proteins are unclustered when using these approaches.
The MCL algorithm finds other clusters that overlap with
this cluster. The cluster with the largest overlap has an
enrichment of annotation terms; the term with the lowest
p-value is again ‘regulation of DNA endoreduplication’,
but here only 9 of 19 proteins have this annotation.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19≥20
cluster size

0

20

40

60

80

100

120

140

nu
m

be
r o

f c
lu

st
er

s

Min-Cut + DR
Neighbor + DR
Column generation (12 h)

Fig. 6. Heuristic methods for the S. pombe network

5.3 Heuristics
We examine the heuristic methods for HIGHLY CON-
NECTED DELETION for the S. pombe network with all
interactions, which our exact approach cannot solve (see
Fig. 6). The min-cut method finds a dense core with
63 vertices and 1268 edges. The neighborhood heuristic
finds almost the same cluster, omitting 5 vertices and
adding 2 others. However, the min-cut method finds
additionally only 7 triangles, whereas the neighborhood
heuristic finds an additional 94 clusters, of which 31 are
not triangles, the largest being two clusters of size 15
each. The column generation method with time limit
finds even more clusters, but only after several hours
(note that the heuristic column generation is not well-
optimized for such large graphs, and this time could
easily be improved). In summary, the neighborhood
heuristic and column generation with time limit find
many more potentially interesting clusters where the
min-cut algorithm fails.

6 CONCLUSION

Proposing the NP-hard problem HIGHLY CONNECTED
DELETION, we introduced a new view on partitioning
into highly connected components with a clearly defined
and natural optimization goal. We developed effective
and efficient data reduction rules which can be combined
with different approaches, including heuristic and ILP-
based ones. Hence, we suggest these data reduction rules
for wider use. Furthermore, we chartered the border
of practical feasibility for finding optimal solutions to
HIGHLY CONNECTED DELETION, showing that medium-
size instances can be solved within few hours. Finally, we
demonstrated the practical relevance of our approach for
clustering protein interaction networks, favorably compar-
ing with established clustering approaches without clear
optimization goal. We believe that our simple formal
model of partitioning into highly connected clusters

12

provides a viable alternative to existing approaches.
Compared to the min-cut method with data reduction, we
find more clusters of slightly inferior quality; compared
with Markov clustering, we find fewer clusters, but these
have higher quality.

For future work, it seems interesting to perform com-
parisons with further clustering algorithms, for example
the RN algorithm [44]. One drawback of the HIGHLY
CONNECTED DELETION clustering definition is that many
vertices remain unclustered. This could be counteracted
with postprocessing as suggested by Hartuv and Shamir
[5]. Another drawback is that the biological quality of the
small clusters for the exact solutions is worse than for
the min-cut method. Thus, two possible extensions for
improving the overall cluster quality could be as follows:
First, one could demand that small clusters contain only
vertices of low degree. Second, one could demand for
instance for size-five clusters that they have to be cliques,
thus putting a stronger connectivity demand on these
small clusters. Finally, it seems useful to consider edge-
weighted HIGHLY CONNECTED DELETION, that is, to
maximize the sum of edge weights in the clustering. This
could be useful to model different degrees of reliability
in the data [33]. Our ILP can be adapted to solve this
problem as well.

ACKNOWLEDGMENT

We are indebted to Nadja Betzler and Johannes Uhlmann
for their early contributions in the theoretical part of
this research. We also thank Andrea Kappes (Karlsruhe
Institute of Technology) for pointing out a flaw in a
previous version of the column generation algorithm.

REFERENCES

[1] R. Albert, “Scale-free networks in cell biology,”
Journal of Cell Science, vol. 118, no. 21, pp. 4947–4957,
2007.

[2] R. Sharan, I. Ulitsky, and R. Shamir, “Network-based
prediction of protein function,” Molecular Systems
Biology, vol. 3, p. 88, 2007.

[3] V. Spirin and L. A. Mirny, “Protein complexes and
functional modules in molecular networks,” PNAS,
vol. 100, no. 21, pp. 12 123–12 128, 2003.

[4] M. E. J. Newman, Networks: An Introduction. Oxford
University Press, 2010.

[5] E. Hartuv and R. Shamir, “A clustering algorithm
based on graph connectivity,” Information Processing
Letters, vol. 76, no. 4–6, pp. 175–181, 2000.

[6] E. Hartuv, A. O. Schmitt, J. Lange, S. Meier-Ewert,
H. Lehrach, and R. Shamir, “An algorithm for
clustering cDNA fingerprints,” Genomics, vol. 66,
no. 3, pp. 249–256, 2000.

[7] N. Pržulj, D. A. Wigle, and I. Jurisica, “Functional
topology in a network of protein interactions,” Bioin-
formatics, vol. 20, no. 3, pp. 340–348, 2004.

[8] W. Hayes, K. Sun, and N. Pržulj, “Graphlet-based
measures are suitable for biological network com-
parison,” Bioinformatics, vol. 29, no. 4, pp. 483–491,
2013.

[9] A. Krause, J. Stoye, and M. Vingron, “Large scale
hierarchical clustering of protein sequences,” BMC
Bioinformatics, vol. 6, p. 15, 2005.

[10] B. J. Parker, I. Moltke, A. Roth, S. Washietl, J. Wen,
M. Kellis, R. Breaker, and J. S. Pedersen, “New
families of human regulatory RNA structures identi-
fied by comparative analysis of vertebrate genomes,”
Genome Research, vol. 21, no. 11, pp. 1929–1943, 2011.

[11] G. Chartrand, “A graph-theoretic approach to a
communications problem,” SIAM Journal on Applied
Mathematics, vol. 14, no. 4, pp. 778–781, 1966.

[12] H. Matsuda, T. Ishihara, and A. Hashimoto, “Clas-
sifying molecular sequences using a linkage graph
with their pairwise similarities,” Theoretical Computer
Science, vol. 210, no. 2, pp. 305–325, 1999.

[13] D. Jiang and J. Pei, “Mining frequent cross-graph
quasi-cliques,” ACM Transactions on Knowledge Dis-
covery from Data, vol. 2, no. 4, pp. 16:1–16:42, 2009.

[14] I. Gat-Viks, R. Sharan, and R. Shamir, “Scoring
clustering solutions by their biological relevance,”
Bioinformatics, vol. 19, no. 18, pp. 2381–2389, 2003.

[15] M. Koyutürk, W. Szpankowski, and A. Grama,
“Assessing significance of connectivity and conser-
vation in protein interaction networks,” Journal of
Computational Biology, vol. 14, no. 6, pp. 747–764,
2007.

[16] R. Shamir, R. Sharan, and D. Tsur, “Cluster graph
modification problems,” Discrete Applied Mathematics,
vol. 144, no. 1–2, pp. 173–182, 2004.

[17] H. Liu, P. Zhang, and D. Zhu, “On editing graphs
into 2-club clusters,” in Proc. FAW-AAIM ’12, ser.
LNCS, vol. 7285. Springer, 2012, pp. 235–246.

[18] G.-R. Cai and Y.-G. Sun, “The minimum augmen-
tation of any graph to a k-edge-connected graph,”
Networks, vol. 19, no. 1, pp. 151–172, 1989.

[19] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Per-
ron, and L. Liberti, “Column generation algorithms
for exact modularity maximization in networks,”
Physical Review E, vol. 82:046112, no. 046112, 2010.

[20] R. Impagliazzo, R. Paturi, and F. Zane, “Which
problems have strongly exponential complexity?”
Journal of Computer and System Sciences, vol. 63, no. 4,
pp. 512–530, 2001.

[21] N. Atias and R. Sharan, “Comparative analysis of
protein networks: hard problems, practical solutions,”
Communications of the ACM, vol. 55, no. 5, pp. 88–97,
2012.

[22] S. Böcker, S. Briesemeister, and G. W. Klau, “Exact
algorithms for cluster editing: Evaluation and ex-
periments,” Algorithmica, vol. 60, no. 2, pp. 316–334,
2011.

[23] R. G. Downey and M. R. Fellows, Parameterized
Complexity, 1999.

[24] J. Flum and M. Grohe, Parameterized Complexity

13

Theory, 2006.
[25] R. Niedermeier, Invitation to Fixed-Parameter Algo-

rithms. Oxford University Press, 2006.
[26] J. Guo and R. Niedermeier, “Invitation to data

reduction and problem kernelization,” ACM SIGACT
News, vol. 38, no. 1, pp. 31–45, 2007.

[27] D. Lokshtanov, D. Marx, and S. Saurabh, “Lower
bounds based on the Exponential Time Hypothesis,”
Bulletin of the EATCS, vol. 105, pp. 41–71, 2011.

[28] J. M. M. van Rooij, M. E. van Kooten Niekerk,
and H. L. Bodlaender, “Partition into triangles
on bounded degree graphs,” Theory of Computing
Systems, vol. 52, no. 4, pp. 687–718, 2013.

[29] C. Komusiewicz and J. Uhlmann, “Cluster editing
with locally bounded modifications,” Discrete Applied
Mathematics, vol. 160, no. 15, pp. 2259–2270, 2012.

[30] R. E. Gomory and T. C. Hu, “Multi-Terminal Net-
work Flows,” Journal of the Society for Industrial and
Applied Mathematics, vol. 9, no. 4, pp. 551–570, 1961.

[31] V. King, S. Rao, and R. E. Tarjan, “A faster determin-
istic maximum flow algorithm,” Journal of Algorithms,
vol. 17, no. 3, pp. 447–474, 1994.

[32] S. Böcker and P. Damaschke, “Even faster parameter-
ized cluster deletion and cluster editing,” Information
Processing Letters, vol. 111, no. 14, pp. 717–721, 2011.

[33] W.-C. Chang, S. Vakati, R. Krause, and O. Eulenstein,
“Exploring biological interaction networks with tai-
lored weighted quasi-bicliques,” BMC Bioinformatics,
vol. 13, no. S-10, p. S16, 2012.

[34] M. Grötschel and Y. Wakabayashi, “A cutting plane
algorithm for a clustering problem,” Mathematical
Programming, vol. 45, no. 1–3, pp. 59–96, 1989.

[35] A. Mehrotra and M. A. Trick, “Cliques and cluster-
ing: A combinatorial approach,” Operations Research
Letters, vol. 22, no. 1, pp. 1–12, 1998.

[36] X. Ji and J. E. Mitchell, “Branch-and-price-and-cut
on the clique partitioning problem with minimum
clique size requirement,” Discrete Optimization, vol. 4,
no. 1, pp. 87–102, 2007.

[37] C. Chekuri, A. V. Goldberg, D. R. Karger, M. S.
Levine, and C. Stein, “Experimental study of
minimum cut algorithms,” in Proc. 8th SODA.
ACM/SIAM, 1997, pp. 324–333.

[38] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher,
A. Breitkreutz, and M. Tyers, “BioGRID: a general
repository for interaction datasets,” Nucleic Acids
Research, vol. 34, no. suppl. 1, pp. D535–D539, 2006.

[39] S. Falcon and R. Gentleman, “Using GOstats to test
gene lists for go term association,” Bioinformatics,
vol. 23, no. 2, pp. 257–258, 2007.

[40] T. Z. Berardini, S. Mundodi, R. Reiser, E. Huala,
M. Garcia-Hernandez et al., “Functional annotation
of the Arabidopsis genome using controlled vocab-
ularies,” Plant Physiology, vol. 135, no. 2, pp. 1–11,
2004.

[41] S. Brohée and J. van Helden, “Evaluation of clus-
tering algorithms for protein-protein interaction

networks,” BMC Bioinformatics, vol. 7, no. 1, p. 488,
2006.

[42] S. van Dongen, “Graph clustering by flow simula-
tion,” Ph.D. dissertation, University of Utrecht, 2000.

[43] J. Z. Wang, Z. Du, R. Payattakool, P. S. Yu, and C.-
F. Chen, “A new method to measure the semantic
similarity of GO terms,” Bioinformatics, vol. 23, no. 10,
pp. 1274–1281, 2007.

[44] P. Ronhovde and Z. Nussinov, “Local resolution-
limit-free Potts model for community detection,”
Physical Review E, vol. 81, no. 4, p. 046114, 2010.

Falk Hüffner studied computer science at the
Eberhard-Karls-Universität Tübingen and re-
ceived his PhD at Friedrich-Schiller-Universität
Jena. After a postdoctoral stay at Tel Aviv Uni-
versity, he now has a position at TU Berlin.
He is interested in the design, analysis, and
experimental evaluation of algorithms for hard
problems, in particular graph problems and dis-
crete optimization problems, from various areas
such as computational biology, VLSI design, and
operations research.

Christian Komusiewicz studied bioinformatics
at Friedrich-Schiller-Universität Jena and re-
ceived his PhD from TU Berlin. Currently, he
is on a postdoctoral research stay at Université
de Nantes. His main research interest lies in
algorithmics for hard problems in bioinformatics.

Adrian Liebtrau studied computer science
and mathematics at Friedrich-Schiller-Universität
Jena. He now works as an SAP consultant for
IBM.

Rolf Niedermeier studied computer science at
TU München and received his PhD and habili-
tation from Eberhard-Karls-Universität Tübingen.
After chairing for six years the Theoretical Com-
puter Science/Computational Complexity group
at Friedrich-Schiller-Universität Jena, since 2010
he chairs the Algorithmics and Complexity Theory
group at TU Berlin, Faculty of Electrical Engineer-
ing and Computer Science. His research interests
include algorithms for NP-hard problems, find-
ing applications in fields such as computational

molecular biology, computational social choice, and graph-based data
clustering.

14

	Introduction
	Our contributions
	Preliminaries

	Computational Complexity
	Parameterized Complexity
	Problem Kernel
	Fixed-Parameter Algorithm

	Practical Algorithms
	Further Data Reduction
	Integer Linear Programming: Column Generation
	Neighborhood Heuristic

	Experimental Evaluation
	Data Reduction and Running Time
	Biological evaluation
	Heuristics

	Conclusion
	Acknowledgment
	Biographies
	Falk Hüffner
	Christian Komusiewicz
	Adrian Liebtrau
	Rolf Niedermeier

