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Abstract. A popular way of formalizing clusters in networks are highly
connected subgraphs, that is, subgraphs of k vertices that have edge con-
nectivity larger than k/2 (equivalently, minimum degree larger than k/2).
We examine the computational complexity of finding highly connected
subgraphs. We first observe that this problem is NP-hard. Thus, we
explore possible parameterizations, such as the solution size, number of
vertices in the input, the size of a vertex cover in the input, and the num-
ber of edges outgoing from the solution (edge isolation), and expose their
influence on the complexity of this problem. For some parameters, we find
strong intractability results; among the parameters yielding tractability,
the edge isolation seems to provide the best trade-off between running
time bounds and a small parameter value in relevant instances.

1 Introduction

A popular method of analyzing complex networks is to identify clusters or
communities, that is, subgraphs that have many interactions within themselves
and fewer with the rest of the graph (e. g. [18, 19]). Hartuv and Shamir [9] proposed
a prominent clustering algorithm producing highly connected clusters, formalized
as follows: the edge connectivity λ(G) of a graph G is the minimum number of
edges whose deletion results in a disconnected graph, and a graph G with n
vertices is called highly connected if λ(G) > n/2. An equivalent characterization
is that a graph is highly connected if each vertex has degree at least bn/2c+1 [3].
Moreover, highly connected graphs have diameter at most two [9].

We study the following problem:

Highly Connected Subgraph
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there a vertex set S such that |S| = k and G[S] is highly
connected?
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In addition to the natural application in analyzing complex networks [19],
Highly Connected Subgraph also occurs (with vertex weights) as a sub-
problem in a column generation algorithm for partitioning graphs into highly
connected components [11].

Since Highly Connected Subgraph is NP-hard (Theorem 1), we explore
the “parameter ecology” [7] of this problem. We are looking for fixed-parameter
algorithms, that is, we try to find problem parameters p that allow for a running
time bounded by f(p) · |G|O(1). The hope is that the function f grows not too fast
(although it has to be superpolynomial unless P = NP), and that the parameter
value p can be expected to be relatively small in interesting instances. Clearly,
there is a trade-off between these goals. Similarly to NP-hardness, fixed-parameter
tractability can be refuted by giving suitable reductions from hard problems of
the classes W[1] or W[2]. For details, refer to the literature [5].

Results. We list the results going from the hardest parameters to the easiest,
corresponding roughly to going from small expected parameter values to large
ones. Let n be the number of vertices in G. For the parameter ` := n− k (the
number of vertices to delete to obtain a highly connected subgraph), we obtain a
strong hardness result: there is a trivial nO(`) time algorithm, but it is unlikely
that no(`) time can be achieved (Theorem 1). For the size of the solution k,
a fixed-parameter algorithm is unlikely, even if we additionally consider the
degeneracy of G as a parameter (Theorem 2). If we take the minimum size τ of
a vertex cover for G as parameter, we obtain a fixed-parameter algorithm: the
problem can be solved in (2τ)τ ·nO(1) time (Theorem 3). Considering the number
of vertices n, we can clearly solve the problem in 2n · nO(1) time. We show that
it is unlikely that this can be improved to 2o(n) · nO(1) time (Theorem 4). If the
parameter is the number γ of edges between G[S] and the remaining vertices, then
the problem can be solved in time O(4γn2) (Theorem 5). Finally, if we consider
the number α of edges to delete to obtain a highly connected subgraph (plus
singleton vertices), we obtain a O(2 4·α0.75

+ α2nm)-time algorithm (Theorem 8).
This running time is subexponential in α.

Related work. The algorithm by Hartuv and Shamir [9] partitions a graph heuris-
tically into highly connected components; another algorithm tries to explicitly
minimize the number of edges that need to be deleted for this [11]. Highly con-
nected graphs can be seen as clique relaxation [18], that is, a graph class that has
many properties similar to cliques, without being as restrictive. Highly connected
graphs are very similar to 0.5-quasi-complete graphs [17], that is, graphs where
every vertex has degree at least (n− 1)/2. These graphs are also referred to as
(degree-based) 0.5-quasi-cliques [15]. Recently, also the task of finding subgraphs
with high vertex connectivity has been examined [20].

Preliminaries. Using standard graph notation, we consider only simple undirected
graphs G = (V,E) with n := |V | and m := |E|; we call n the order of G. We
use N(v) to denote the set of neighbors of a vertex v. For a vertex set S ⊆ V , we
denote G[S] := (S, {{u, v} ∈ E | u, v ∈ S}) the subgraph of G induced by S. We
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use G − S as shorthand for G[V \ S]. A cut (A,B) in a graph G = (V,E) is a
vertex bipartition, that is, A∩B = ∅ and A∪B = V . The cut edges are the edges
between vertices in A and B; the size of a cut is the number of its cut edges.

2 Vertex Deletion

For finding large cliques in a graph, one successful approach is to use fixed-
parameter algorithms for the parameter “number of vertices in the graph that are
not in the clique” [13, 14]. We show by a reduction from Hitting Set that such
fixed-parameter algorithms are unlikely for Highly Connected Subgraph.

Theorem 1 (?). Highly Connected Subgraph is NP-hard and W[2]-hard pa-
rameterized by ` := n− k. Moreover, an no(`)-time algorithm implies FPT=W[1].

3 Solution Size and Degeneracy

A graph has degeneracy d if every subgraph contains at least one vertex that has
degree at most d. In many graphs from real-world applications, the degeneracy
of a graph is very small compared to the network size [6]. For yes-instances, the
degeneracy of the input graph has to be at least bk/2c+ 1. Therefore, Highly
Connected Subgraph is polynomial-time solvable if the input graph has
constant degeneracy: trying all subgraphs with k ≤ 2d+ 2 vertices decides the
problen in n2d · nO(1) time. This can be improved to the following running time.

Proposition 1 (?). Highly Connected Subgraph can be solved in 2d ·
nd+O(1) time where d is the degeneracy of G.

Unfortunately, if we regard the degeneracy as a parameter instead of a constant,
we obtain hardness using a reduction from Clique, even if additionally the
solution size k is a parameter.

Theorem 2 (?). Highly Connected Subgraph parameterized by the com-
bined parameter (d, k), where d is the degeneracy of G, is W[1]-hard.

4 Vertex Cover Size

We next consider the parameter τ , the minimum size of a vertex cover of G. This
parameter is interesting because it can be smaller than the number of vertices of G.
We show that Highly Connected Subgraph is solvable in (2τ)τ · nO(1) time.
The algorithm first computes a vertex cover C, then determines via branching
the intersection of C and the desired solution S, and then adds suitable vertices
of the independent set V \ C. We identify suitable vertices in the independent
set by solving an instance of Set Multicover.
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Set Multicover
Input: A universe U with covering demands d : U → N, a family F of
subsets of the universe with multiplicity values m : F → N, and p ∈ N.
Question: Is there a multiset of at most p subsets from F that contains
each F ∈ F at most m(F ) times, and covers each u ∈ U with at least d(u)
subsets?

Lemma 1. A given instance of Highly Connected Subgraph with a vertex
cover of size τ can be solved using the answers to at most 2τ instances of Set
Multicover, each with |U | ≤ τ and 2maxu∈U d(u) ≤ τ . Furthermore, all these
instances can be computed in O(2τ (n+ τn)) time.

Proof. Fix some highly connected subgraph G[S] of order k if it exists. First
compute a minimum vertex cover C for G in O(1.274τ + τn) time [4]. Enumerate
all 2τ possibilities for C ′ ⊆ C. Clearly, in one branch C ′ = C ∩S. In each branch,
delete the vertices from C \ C ′. Then remove vertices from the independent set
V \C ′ that have k/2 or less neighbors in C ′, since they cannot be part of S. Let
V ′ be the thus reduced vertex set. It remains to find k′ := k − |C ′| vertices in
V ′ \ C ′ such that each vertex v in C ′ has more than d(v) := k/2− |N(v) ∩ C ′|
neighbors among these k′ vertices. This is an instance of Set Multicover: In
our case, the universe is C ′, the covering demands are d as defined above, the
family is F = {N(v)∩C ′ | v ∈ V ′ \C ′}, the multiplicity of X ∈ F is the number
of vertices in V ′ \ C ′ having neighborhood X in C ′, and p = k′. If the solution
to Set Multicover has less than k′ sets, then we can add arbitrary further
vertices from V ′ \ C ′ to make the vertex subset large enough (if |V ′ \ C ′| < k′,
then we can safely reject this branch for C ′ ⊆ C). ut

Set Multicover with multiplicity constraints can be solved in O((b+ 1)|U ||F|)
time [10], where b := maxu∈U d(u). Note that |C ′| > k/2, since the vertices
outside of C ′ form an independent set and we cannot choose k/2 or more of them.
Thus, b < |C ′| ≤ τ . The size of F is at most n. Together with the enumeration
of the instances, we obtain the following.

Theorem 3. Highly Connected Subgraph can be solved in O((2τ)τ ·τn) time.

5 Number of Vertices

A trivial algorithm for Highly Connected Subgraph is to enumerate all vertex
subsets S of size k and to check for each subset whether it is highly connected.
This algorithm has running time O(2n ·m). We now show by a reduction from
Clique that a running time improvement to 2o(n) · nO(1) is unlikely. The idea of
the reduction is to add to a Clique instance some new graph that is so large,
that, in the resulting instance of Highly Connected Subgraph, every highly
connected graph of size k must contain this new graph. The remaining vertices
must form a clique in order to have sufficiently high degree. The following lemma
shows that we can efficiently construct the graph which we need to add to the
Clique instance.
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Lemma 2 (?). For any two integers a, b ∈ N such that a is even, b− 3 ≥ 8 is a
power of two, and a− 2 ≥ 2b, there is a graph G = (X ∪W,E) on the disjoint
vertex sets X and W , such that
i) G[X] is connected,
ii) |X| = a− 2, |W | = a− b+ 1,
iii) NG(X) \X =W ,
iv) each vertex in X has degree a, and each vertex in W has degree a− b.
Moreover, G can be constructed in time polynomial in a.

We call the graph G described in the above lemma an (a, b)-equalizer and the
vertices in W are its ports.

Lemma 3. There is a polynomial-time many-one reduction from Clique to
Highly Connected Subgraph that is parameter-linear with respect to the
number of vertices.

Proof. Let (G, p) represent an instance of Clique. Without loss of generality,
assume that p− 3 ≥ 8 and p− 3 is a power of two. Otherwise, repeatedly add
a universal vertex and increase p by one, until p− 3 ≥ 8, and p− 3 is a power
of two. Note that this at most doubles p. Furthermore, assume that n− 1 ≥ p;
otherwise, solve the instance in polynomial time.

Denote |V (G)| = n. We construct the instance (G′, k) of Highly Connected
Subgraph where k = 4n−1. Note that the minimum degree in a highly connected
graph with k vertices is 2n. Graph G′ is constructed as follows. First, copy G
into G′. Then add a vertex-disjoint (2n, p)-equalizer. By Lemma 2, a (2n, p)-
equalizer exists and is computable in polynomial time, because, by choice of
(G, p), 2n is even, p− 3 ≥ 8 is a power of two, and 2n− 2 ≥ 2p. Denote the ports
of the equalizer by W and its remaining vertices by X. Add an edge between
each port and each vertex in V (G); this finishes the construction. The graph G′
has less than 5n vertices, since the (2n, p)-equalizer has less than 4n vertices. It
remains to show equivalence of the instances, that is,

(G, p) is a yes-instance ⇔ (G′, k = 4n− 1) is a yes-instance.

“⇒”: Let G[S] be a clique of order p in G. Then, G′[S ∪ X ∪W ] is highly
connected: Each vertex in S is adjacent to p− 1 vertices in S and to 2n− p+ 1
vertices inW . Hence, each vertex in S has 2n neighbors in S∪X∪W , as required.
Each port has 2n − p neighbors in X ∪W and p neighbors in S. Finally, each
vertex in X has 2n neighbors in X ∪W .

“⇐:” Let G′[S] be a highly connected graph of order k in G′. There are at
most n vertices in V (G)∩S, thus there is at least one vertex in S∩X. Since G′[X]
is connected and each vertex in X has degree exactly 2n (the minimum degree
in G′[S]), we have X ⊆ S. Furthermore, since {v | X ∩ N(v) 6= ∅} \ X = W ,
also W ⊆ S, leaving 4n − 1 − |X| − |W | = p vertices in S ∩ V (G). Since
NG′(V (G)) \ V (G) =W and |W | = 2n− p+ 1, each vertex in S ∩ V (G) has at
least p− 1 neighbors in S ∩ V (G). Thus G[S ∩ V (G)] is a clique. ut

Using Lemma 3, we can connect the running time with respect to parameter n
with the Exponential Time Hypothesis (ETH) [16].
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Theorem 4. If the Exponential Time Hypothesis (ETH) is true, then Highly
Connected Subgraph does not admit a 2o(n) · nO(1)-time algorithm.

6 Edge Isolation

We now present a single-exponential FPT algorithm for the number γ of edges
between the desired highly connected subgraph G[S] and the remaining graph.
In this case, S is called “γ-isolated”. More formally, if G = (V,E) is a graph,
we call a set S ⊆ V γ-isolated if (S, V \ S) is a cut of size at most γ. To our
knowledge, Ito et al. [13] were the first to consider a formal notion of isolation
in the context of dense subgraph identification. There is the following difference
between the isolation definitions: we count the total size of the cut (S, V \ S),
whereas previous definitions count the size of (S, V \ S) divided by the size of
S [12, 13] or the minimum of the number of outgoing edges per vertex [14]. Our
isolation definition leads to the following problem.

Isolated Highly Connected Subgraph
Input: An undirected graph G = (V,E), nonnegative integers k and γ.
Question: Is there a k-vertex γ-isolated highly connected subgraph con-
tained in G?

The notion of isolation is not only motivated from an algorithmic point of view
but also from the application. Ideally, communities in a network have fewer
connections to the rest of the network [18]. Thus, putting an additional constraint
on the number of outgoing edges may yield better communities than merely
demanding high edge connectivity.

In the following, it will be useful to consider an augmented version of Isolated
Highly Connected Subgraph: we place integer labels on the vertices which
imply that these vertices are harder to isolate. We thus additionally equip each
instance of Isolated Highly Connected Subgraph with a labeling f : V → N

and we call V ′ ⊆ V γ-isolated under f if there are at most γ −
∑
v∈V ′ f(v) edges

between V ′ and V \ V ′ in G. Without loss of generality, assume k ≥ 2 in
the following.

The algorithm first performs three reduction rules. The first simple rule
removes connected components that are too small.

Rule 1. Remove all connected components with less than k vertices from G.

The next rule finds connected components that are either trivial solutions or
cannot contain any solution since proper subgraphs violate the isolation condition.

Rule 2. If there is a connected component C = (V ′, E′) of G that has minimum
cut size at least γ + 1, then accept if C is highly connected, |V ′| = k, and V ′ is
γ-isolated under f . Otherwise remove C from G.

Proof (Correctness of Rule 2). The rule is clearly correct if it accepts. If the rule
removes C, then C has a minimum cut of size at least γ + 1. Thus, for every
induced subgraph C[S] of C that does not contain all of its vertices, set S is not
γ-isolated. Hence, no subgraph of C is a solution and we can safely remove C. ut
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Rule 3. If G has a connected component C with a minimum cut (A,B) of size at
most k/2, then do the following. For each v ∈ A redefine f(v) := f(v)+|N(v)∩B|
and for each v ∈ B redefine f(v) := f(v) + |N(v) ∩ A|. Then, delete all edges
between A and B.

Proof (Correctness of Rule 3). Any k-vertex subgraph of C with nonempty
intersection with both sides of (A,B) is not highly connected as it has a minimum
cut of size at most k/2. Hence, any highly connected induced subgraph C[S] of C
is either contained in C[A] or in C[B]. If S is γ-isolated under f in G, then it is
also γ-isolated under the modified f in the modified graph (and vice-versa) by
the way we have redefined f . ut

Exhaustive application of these rules yields a relation between γ and k/2.

Lemma 4. If Rules 1 to 3 are not applicable, then γ > k/2.

Proof. Assume the contrary. Each connected component has a minimum cut
cutting at least one edge because Rule 1 is not applicable and k ≥ 2. Further,
each connected component has a cut of size at most γ because Rule 2 is not
applicable. By assumption γ ≤ k/2 and, hence, each connected component has a
cut of size at most k/2 which contradicts the inapplicability of Rule 3. ut

As shown by the following lemma, the reduction rules can be applied efficiently.

Lemma 5 (?). Rules 1 to 3 can be exhaustively applied in O((kn+ γ)nm) time.

Using the above, we can now present the branching algorithm.

Theorem 5. There is an O(4γn2 + (kn+ γ)nm)-time algorithm for Isolated
Highly Connected Subgraph.

Proof. We first reduce the instance with respect to Rules 1 to 3. By Lemma 5
this can be done in O((kn+ γ)nm) time. Next, we guess one vertex v that is in
the solution S (by branching into n cases according to the n vertices). We start
with S′ := {v} and try to extend S′ to a solution. More precisely, we choose a
vertex v′ from the neighborhood of S′ (that is, from

⋃
u∈S′ N(u)\S′), and branch

into two cases: add v′ to S′, or exclude v′, that is, delete v′ and increase f(u) by
one for all u ∈ N(v′). In the first case, we increase |S′| by one. In the second case,
we increase

∑
u∈S′ f(u) by at least one. Branching is performed until |S′| = k or∑

u∈S′ f(u) exceeds γ or the neighborhood of S′ is empty. When |S′| reaches k,
we check whether S′ is highly connected and γ-isolated under f , and if this is
the case, we have found a solution. Otherwise, when

∑
u∈S′ f(u) exceeds γ or

no branching is possible because the neighborhood of S′ is empty, we abort the
branch; in this case, clearly no superset of S′ can be a solution. The height of the
search tree is bounded by k + γ, and each branch can be executed in O(n) time,
yielding a running time bound of O(n · 2k+γ · n).

We now distinguish two cases: k ≤ γ and k > γ. In the first case 2k+γ ≤ 4γ ,
as required. If k > γ, there is at least one vertex in S that has no neighbors
outside of S. Thus, instead of S′ = {v}, we can start with S′ := {v} ∪ N(v).
Since v has more than k/2 neighbors in S, we have |S′| > k/2+1, and thus there
are less than k/2 branches of adding a vertex. By Lemma 4, 2k/2+γ ≤ 4γ . ut
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We now present a further way of analyzing the presented data reduction rules by
giving a Turing kernelization [1] for Isolated Highly Connected Subgraph
parameterized by γ. Informally, a Turing kernelization is a reduction of the input
instance of a parameterized problem to many instances of the same problem which
are small measured in the parameter. Then, the solution to the original input
instance can be computed by solving the small problem instances separately.

To motivate the Turing kernelization result we first observe that Isolated
Highly Connected Subgraph does not admit a problem kernel, that is, a
Turing kernelization which produces only one small problem instance. The disjoint
union of a set of graphs has an isolated highly connected subgraph if and only
if at least one of the graphs has one. Hence, Isolated Highly Connected
Subgraph has a trivial OR-composition which implies the following [2].

Proposition 1. Isolated Highly Connected Subgraph does not admit a
polynomial-size problem kernel with respect to γ unless NP ⊆ coNP/poly.

Before describing the Turing kernelization, we give a formal definition.

Definition 1. Let L be a parameterized problem and let g : N → N be a com-
putable function. A Turing kernelization for L is an algorithm that, for each
instance (x, k), decides whether (x, k) ∈ L in polynomial time using an oracle
for {(x′, k′) | |x′| + k′ ≤ g(k) ∧ (x′, k′) ∈ L}. The sequence of queries posed to
the oracle is called Turing kernel. We call g(k) the size of the Turing kernel.

We now describe the algorithm in detail. The first step is to reduce to the
augmented version of Isolated Highly Connected Subgraph in which
we introduce the vertex labeling f . Then, apply Rules 2 and 3 exhaustively.
Afterwards, apply the following reduction rule which removes high-degree vertices.

Rule 4 (?). Let (G, k, γ) be an instance of Isolated Highly Connected
Subgraph that is reduced with respect to Rules 2 and 3. If G contains a vertex v
of degree at least 3γ − f(v), then remove v from G, and for each u ∈ N(v)
increase f(u) by one.

Now we construct n instances of Isolated Highly Connected Subgraph
that have O(γ3) vertices each. The original instance is a yes-instance if and only
if one of these instances is a yes-instance. The idea is to exploit the fact that
highly connected graphs have diameter two [9]. Thus, to find highly connected
graphs, it is sufficient to explore the two-neighborhood of each vertex. More
precisely, the instances are constructed as follows.

For each vertex v ∈ V , construct the graph Gv := G[N2[v]] where N2[v] is
the set of all vertices that have distance at most two from v (including v). When
solving the Isolated Highly Connected Subgraph instances we need to
determine whether a subgraph is γ-isolated. Thus, the graph Gv has to contain
information on the original vertex degrees. Note that for each u ∈ V , f(u) denotes
the number of edges deleted during the data reduction that are incident with u.
Moreover, for each vertex u in Gv, let g(u) denote the number of neighbors
of u in G in V \N2[v]. To obtain instances of Isolated Highly Connected
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Subgraph one may not use vertex labelings. Thus, for each u ofGv add g(u)+f(u)
new vertices and make them adjacent to u. This completes the construction of Gv.
In this way we obtain n instances (Gv, k, γ) of Isolated Highly Connected
Subgraph. The following lemma shows that it is sufficient to solve these instances
in order to determine whether the original Isolated Highly Connected
Subgraph instance (G = (V,E), k, γ) is a yes-instance.

Lemma 6 (?). Let (G = (V,E), k, γ) be an instance of Isolated Highly
Connected Subgraph and, for each v ∈ V , let (Gv, k, γ) denote the instance
as constructed above. Then, (G, k, γ) is a yes-instance if and only if there is
a v ∈ V such that (Gv, k, γ) is a yes-instance.

We now show that the instances have bounded size.

Lemma 7 (?). Let (Gv, k, γ) be an instance of Isolated Highly Connected
Subgraph constructed from G as described above. Then Gv has less than (3γ)3

vertices and less than 3γ4 edges.

Combining Lemmas 6 and 7 leads to the following.

Theorem 6. Isolated Highly Connected Subgraph admits a Turing kernel
of size O(γ4) which has less than (3γ)3 vertices.

7 Edge Deletion

We now show that there is a subexponential fixed-parameter algorithm for Highly
Connected Subgraph with respect to α, the number of edges we are allowed
to delete in order to obtain a highly connected graph of order k. The algorithm is
a search tree algorithm which branches on whether or not a given vertex is part of
the highly connected graph. Repeated application of two reduction rules (similar
to Rules 2 and 3 above) ensures that the branches are effective in reducing the
remaining search space. To give a precise presentation of the branching step and
the reduction rules, we define the problem with an additional seed S, a set of
vertices which have to be in the highly connected graph.

Seeded Highly Connected Edge Deletion
Input: An undirected graph G = (V,E), a vertex set S ⊆ V , and nonneg-
ative integers k and α.
Question: Is there a set E′ ⊆ E of at most α edges such that G−E′ con-
sists only of degree-zero vertices and a (k + |S|)-vertex highly connected
subgraph containing S?

For S = ∅ we obtain the plain edge deletion problem. The reduction rules are as
follows.

Rule 5 (?). If there is a connected component C = (V ′, E′) of G that has
minimum cut size at least α+ 1, then accept if C is highly connected, S ⊆ V ′,
|V ′ \ S| = k, and the remaining connected components of G contain at most α
edges. Otherwise reject.
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Rule 6 (?). If there is a connected component of G that has a minimum cut of
size at most (k + |S|)/2, then delete all cut edges and reduce α by their number.

Similarly to the edge isolation parameter, after using the reduction rules k, |S|,
and α are related.

Lemma 8 (?). If Rules 5 and 6 are not applicable, then α > (k + |S|)/2.

As the ones presented in Section 6, both rules can be applied efficiently.

Lemma 9 (?). Rules 5 and 6 are exhaustively applicable in O(α2nm) time.

Exhaustively applying the reduction rules lets us bound the number of the
remaining vertices linearly in α. This will be useful in the branching algorithm
below.

Theorem 7 (?). Seeded Highly Connected Edge Deletion admits a
problem kernel with at most 2α+ 4α/k vertices and

(
2α
2

)
+ α edges computable

in O(α2nm) time.

In the subexponential branching algorithm, we use the following simple
branching rule. It simply takes a vertex and branches on whether or not it should
be added to the seed S for the desired highly connected graph.

Branching Rule 1. If α+k ≥ 0, then choose an arbitrary vertex v ∈ V \S and
branch into the cases of adding v to S or removing v from G. That is, create the
instances I1 = (G,S ∪ {v}, k − 1, α) and I2 = (G− v, S, k, α− degG(v)). Accept
if I1 or I2 is accepted.

It is clear that Branching Rule 1 is correct. We now describe the complete
algorithm and bound its running time.

Theorem 8. There is an O(2 4·α0.75

+ α2nm)-time algorithm for Highly Con-
nected Edge Deletion.

Proof. We first apply the kernelization from Theorem 7, which entails applying
Rules 5 and 6 exhaustively. Then, if k ≤ 2

√
α we check whether S ∪ V ′ induces

a highly connected subgraph, for every vertex subset V ′ ⊆ V \ S of size k. We
accept or reject accordingly. If k > 2

√
α, then we apply Branching Rule 1 and

recurse on the two created instances.
From the correctness of the rules it is clear that this algorithm finds a solution

if there is one. Let us analyze its running time. Note that in each recursive call,
except the first one, the input instance has O(α) vertices according to Theorem 7.
Thus applying Rules 5 and 6 in a recursive call amounts to O(α5) time except
in the first one where it is O(α2nm) time, by Lemma 9. Next, in each recursive
call we may have to check whether S ∪ V ′ is highly connected for all k-vertex
subsets V ′. This is done only after Rules 5 and 6 have been exhaustively applied
and only if k ≤ 2

√
α. Thus, the graph G is of order at most 2α + 4α/k ≤ 4α

(note that k ≥ 2 without loss of generality). Hence, testing the subgraphs
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amounts to O((4α)2
√
α+2) time. In total, the time spent per search tree node is

O((4α)max{5,2
√
α+2).

Now let us bound the number of leaves C of the search tree. Note that the total
number of search tree nodes is within a constant factor of C. For an instance I =
(G,S, k, α) of Highly Connected Subgraph, consider the value µ(I) = k + α
in the root of the search tree, after applying Rules 5 and 6. Then, µ(I) ≤ 3α by
Lemma 8. Let C(µ(I)) denote an upper bound on the number of leaves that a
search tree with a root with value µ(I) can have. Whenever we apply Branching
Rule 1, µ is reduced by a certain amount. More precisely, C(µ(I)) fulfills C(0) = 1,
and C(µ(I)) ≤ C(µ(I1)) + C(µ(I2)). Hence, C(µ(I)) is monotone. Further, since
Rule 6 is not applicable, degG(v) ≥ (|S|+ k)/2 ≥ k/2 ≥

√
α in the application

of Branching Rule 1. This implies C(µ(I)) ≤ C(µ(I) − 1) + C(µ(I) −
√
α).

Hence C(µ(I)) is at most the number of paths in R2 from the origin to some
point (x, y) that take only steps (1, 0) or (0,

√
α), where x+ y = µ(I). Scaling

the y-axis by a factor of 1/
√
α, computing C(µ(I)) reduces to the problem of

counting such paths from the origin to some (x, y′) taking only steps (1, 0) or (0, 1)
such that x+

√
αy′ = µ(I). We now bound the number of these paths.

The number of (0, 1) steps is at most 3
√
α. If the path contains i (0, 1)-

steps, then the total number of steps in the path is i + 3α −
√
αi. Hence,

there are
(
i+3α−

√
αi

i

)
paths with exactly i steps (0, 1). This implies C(µ(I)) ≤∑3

√
α

i=0

(
i+3α−

√
αi

i

)
. To bound this number we use the fact that

(
a+b
a

)
≤ 22

√
ab [8,

Lemma 9]. Hence C(µ(I)) ≤
∑3
√
α

i=0 22
√
i·(3α−

√
αi). Consider the derivative f(i)

of 2
√
i · (3α−

√
αi) with respect to i. We have

f(i) =

√
α(3
√
α− 2i)√√

αi(3
√
α− i)

.

Inspecting f(i) shows that
√
i · (3α−

√
αi) is maximized over 0 ≤ i ≤ 3

√
α

if i = 3
√
α/2. This gives C(µ(I)) ≤ 3

√
α · 23

√
α
√
α. Finally,

3
√
α · 23

√
α
√
α · (4α)max{5,2

√
α+2} ∈ O(24α

0.75

),

giving the overall running time bound of O(24α
0.75

+ α2nm). ut

Although the presented algorithm is a subexponential-time algorithm with rel-
atively small constants in the exponential functions, it is unclear whether it
can be useful in practice. This is because the parameter α is likely to be large
in real-world instances. With further substantial running time improvements,
however, one might obtain practical algorithms. For example, an algorithm with
running time O(2α

0.5 · nm) should perform well on many real-word instances.
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