
Proc. 20th CPM, 2009

Deconstructing Intractability—A Case Study for

Interval Constrained Coloring

Christian Komusiewicz⋆, Rolf Niedermeier, and Johannes Uhlmann⋆⋆

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany.

{c.komus,rolf.niedermeier,johannes.uhlmann}@uni-jena.de

Abstract. The NP-hard Interval Constrained Coloring problem
appears in the interpretation of experimental data in biochemistry deal-
ing with protein fragments. Given a set of m integer intervals in the
range 1 to n and a set of m associated multisets of colors (specifying for
each interval the colors to be used for its elements), one asks whether
there is a “consistent” coloring for all integer points from {1, . . . , n} that
complies with the constraints specified by the color multisets. We initi-
ate a study of Interval Constrained Coloring from the viewpoint of
combinatorial algorithmics, trying to avoid polyhedral and randomized
rounding methods as used in previous work. To this end, we employ the
method of systematically deconstructing intractability. It is based on a
thorough analysis of the known NP-hardness proof for Interval Con-
strained Coloring. In particular, we identify numerous parameters
that naturally occur in the problem and strongly influence the problem’s
practical solvability. Thus, we present several positive (fixed-parameter)
tractability results and, moreover, identify a large spectrum of combina-
torial research challenges for Interval Constrained Coloring.

1 Introduction

Althaus et al. [1, 2] recently identified the Interval Constrained Coloring
problem as an important combinatorial problem in the context of automated
mass spectrometry and the determination of the tertiary structure of proteins.
It builds the key to replace a manual interpretation of exchange data for peptic
fragments with computer-assisted methods, see Althaus et al. [2] for more on the
biochemical background and further motivation. The decision problem Inter-
val Constrained Coloring (ICC) deals with matching color multisets with
integer intervals and can be formalized as follows.1 To this end, for two positive
integers i, j with i ≤ j, let [i, j] := {k ∈ N | i ≤ k ≤ j}. Further, for i ≥ 1 let [i]
denote the interval [1, i].

⋆ Supported by a PhD fellowship of the Carl Zeiss Foundation.
⋆⋆ Supported by the DFG, research project PABI, NI 369/7.
1 Note that, compared with Althaus et al. [1, 2], we choose a somewhat different but

equivalent formalization here; this problem definition turns out to be more suitable
for our subsequent studies.

Proc. 20th CPM, 2009

Input: A positive integer n, a set of m integer intervalsF = {F1, . . . , Fm},
all within [n], a multiset of m multisets of colors C = {C1, . . . , Cm} over
k different colors.
Question: Is there a coloring c : [n] → [k] such that for each inter-
val Fi ∈ F it holds that Ci = c(Fi)?

Herein, c(Fi) denotes the multiset of colors assigned by c to the integer points
in the interval Fi. Concerning the biochemical background, the intervals cor-
respond to (typically overlapping) fragments of a protein with n residues, and
the k colors correspond to k different exchange rates that need to be assigned
consistently to the n residues [1, 2]. The color multisets correspond to experi-
mentally found bulk information that needs to be matched with the residues and
can be interpreted as constraints that describe a set of valid colorings of the in-
terval [n] or, alternatively, a set of strings of length n over the “color alphabet”.
Note that from an applied point of view it is also important to investigate the
corresponding optimization problems where one wants to maximize the number
of requirements (that is, intervals that completely match with a given color mul-
tiset) that can be fulfilled [1]. However, in this paper we focus on analyzing the
complexity of the decision problem.

Known results. To our knowledge, so far ICC has only been studied in the
two papers by Althaus et al. [1, 2]. It has been shown to be NP-complete by a
reduction from the Exact Cover problem [1]. In the more applied paper [2],
besides first introducing and formalizing the problem, an algorithm based on
integer linear programming and branch-and-bound was presented that enumer-
ates all valid (fulfilling all constraints) color mappings c. In particular, it was
shown that in the case of k = 2 colors a direct combinatorial algorithm leads to
polynomial-time solvability; the computational complexity of the case k = 3 was
left open. Finally, successful experiments with real-world instances with n < 60,
m ≤ 50, k = 3 and randomly generated instances with n ≤ 1000, m = n/2,
and k = 3 have been performed. In the more theoretical paper [1], besides the
NP-completeness proof, the preceding work [2] has been continued by provid-
ing results concerning polynomial-time approximability. In particular, there is
an algorithm producing a coloring where all requirements are matched within
a mere additive error of one if the LP-relaxation of the presented integer pro-
gram for ICC has a feasible solution. This algorithm is based on a sophisticated
polyhedral approach combined with recent randomized rounding techniques.

Our contributions. This work proposes a fresh view on ICC and the de-
velopment of exact algorithms for NP-hard combinatorial problems in general.
The fundamental starting point here is to deconstruct proofs of NP-hardness
in order to obtain new insights into the combinatorial structure of problems.
More specifically, the point is to analyze how different parameters occurring in
a problem contribute to its computational complexity. Having identified (some
of) these parameters, the next step is to determine the complexity behavior in
dependence on these parameters and combinations thereof. This is where pa-
rameterized algorithmics [5, 6, 8] comes into play. In case of ICC, there is an

Proc. 20th CPM, 2009

enormous number of useful parameterizations, all naturally deduced from decon-
structing the known NP-hardness proof. In this line, for instance, we can show a
fixed-parameter tractability result with respect to the parameter “maximum in-
terval length”. Whereas we do not know whether the problem is fixed-parameter
tractable with respect to the color parameter k alone, it is with respect to the
combined parameter (n, k), that is, there is an algorithm with time complexity
of the form O∗((k − 1)n).2 These algorithms are of practical interest when the
corresponding parameter values are sufficiently small. For instance, note that
all experiments of Althaus et al. [2] were performed having k = 3 and n ≤ 60
for real-world instances. Indeed, in case of k = 3 we can further improve the
running time to O∗(1.89n). In this spirit, in Section 3 we investigate a number
of “single parameterizations”, and in Section 4 we consider an even larger num-
ber of “combined parameterizations”. Moreover, whereas ICC is NP-complete
for “cutwidth” three [1], we present a combinatorial polynomial-time algorithm
for cutwidth two. Tables 1 and 2 in Sections 3 and 4 survey the current state
of the art and our new results concerning (combinatorial) algorithms that can
efficiently solve ICC in case of favorable parameter constellations.

Due to the lack of space, several proofs are deferred to the long version of
this paper.

2 Parameterization and Deconstruction of NP-Hardness

Parameterized algorithmics [5, 6, 8] aims at a multivariate complexity analysis
of problems. The hope lies in accepting the seemingly inevitable combinatorial
explosion for NP-hard problems, but to confine it to some parameter p. In this
paper, p always is a positive integer or a vector of positive integers. A given
parameterized problem (I, p) is fixed-parameter tractable (FPT) with respect to
the parameter p if it can be solved within running time f(p) · poly(|I|) for some
computable function f only depending on p.

A standard question of people unfamiliar with parameterized algorithmics is
how to define respectively find “the” parameter for an NP-hard problem. There
are the following (partly overlapping) “standard answers” to this question:
1. The standard parameterization typically refers to the size of the solution set
of the underlying problem (whenever applicable).
2. A parameter describes a structural property of the input; for instance, the
treewidth of a graph or the number of input strings.
3. Finding useful parameters to some extent is an “art” based on analyzing what
typical real-world instances could look like.

Perhaps the most natural and constructive answer, however, is to look at
the corresponding proof(s) of NP-hardness and what “parameter assumptions”
they (do not) make use of. Indeed, this is nothing but what we mean by de-
constructing NP-hardness proofs for parameter identification. In this work, we
deconstruct the (only known) NP-hardness proof of ICC and gain a rich scenario
of combinatorially and practically interesting structural parameterizations.

2 The O∗-notation suppresses polynomial-time factors [9].

Proc. 20th CPM, 2009

Let us now take a closer look at ICC. We first have to briefly review the
known NP-hardness reduction from Exact Cover due to Althaus et al. [1]: The
input of Exact Cover is a set S of subsets of a ground set U := {1, 2, . . . , u}
and a positive integer t, and the question is whether there are t subsets from S
such that every element from U is contained in exactly one such subset. Althaus
et al.’s polynomial-time many-one reduction (using an approach by Chang et
al. [4]) from Exact Cover to ICC works as follows.

1. The number of colors k is set to s := |S|.
2. The interval range n is set to (u + 1) · s − t.
3. For each element from U , there are exactly three corresponding integer in-

tervals. Indeed, one can speak of three types of intervals, and all intervals of
one type can be placed consecutively into one interval [n] without overlap.

(a) Type 1: Intervals of the form [(i − 1)s + 1, is] for all 1 ≤ i ≤ u.
(b) Type 2: Intervals of the form [is − t + 1, (i + 1)s − t] for all 1 ≤ i ≤ u.
(c) Type 3: Intervals of the form [is− t− fi + 1, is− t + 1] for all 1 ≤ i ≤ u,

where fi denotes the number of occurrences of i in the sets of S.

4. Every type-1 and every type-2 interval is assigned the color set {1, . . . , k}.
A type-3 interval corresponding to i ∈ U is assigned the color set consisting
of the colors associated with the subsets in S that contain i.

After having described the construction behind the NP-hardness proof, the
deconstruction begins by making several observations about its properties:

1. The interval range n and the number m of intervals both are unbounded.
2. The number of colors k is s, hence unbounded, but all color multisets indeed

are sets. That is, no interval shall be assigned the same color twice.
3. The maximum interval length is s, hence unbounded.
4. The maximum overlap between intervals is max{t, s− t}, hence unbounded.
5. Only three different surrounding intervals [n] are needed for comprising all

intervals without overlap, hence the cutwidth of the constructed instance is
bounded by three.

From the fifth observation we can conclude that there is no hope for fixed-
parameter tractability with respect to the parameter “cutwidth” unless P=NP.
On the positive side, we will show that ICC is polynomial-time solvable for
cutwidth two. However, from the other four observations we directly obtain the
following questions concerning a parameterized complexity analysis of ICC.

1. Is ICC fixed-parameter tractable with respect to the parameters n or m?
2. Is ICC fixed-parameter tractable with respect to k, or is it already NP-hard

for constant k-values? Indeed, the complexity for the practically relevant case
k = 3 is still unsettled. How does the parameter “maximum number of dif-
ferent colors per color multiset” influence the complexity? In the constructed
instance this parameter is unbounded.

3. Is ICC fixed-parameter tractable with respect to the parameter “maximum
interval length”?

Proc. 20th CPM, 2009

4. Is ICC fixed-parameter tractable with respect to the parameter “maximum
overlap between intervals”?

The central point underlying the above derived algorithmic questions is that
whenever a quantity (that is, parameter) in an NP-hardness proof is unbounded
(non-constant), then this evokes the quest to know what happens if this quantity
is constant or considered to be small compared to the overall input size. Clearly,
one way to answer is to provide a different proof of NP-hardness where this
quantity is bounded. Otherwise, the main tool in answering such questions is
parameterized algorithmics. Indeed, the story goes even further by combining
different parameterizations. More specifically, it is, for instance, natural to ask
whether ICC is fixed-parameter tractable when parameterized by both cutwidth
and the number of colors k (the answer is open), or whether it is fixed-parameter
tractable when parameterized by both n and k (the answer is “yes”) and what
the combinatorial explosion f(n, k) then looks like. In this way, one ends up
with an extremely diverse and fruitful ground to develop practically relevant
combinatorial algorithms.

In the remainder of this paper, besides the already defined parameters n
(range), m (number of intervals), and k (number of colors), we will consider the
following parameters and combinations thereof:

– maximum interval length l;
– cutwidth c := max1≤i≤n |{F ∈ F : i ∈ F}|;
– maximum pairwise overlap between intervals o := max1≤i<j≤m |Fi ∩ Fj |;
– maximum number of different colors ∆ in the color multisets.

Note that one of the integer linear programs devised by Althaus et al. [2]
has O(m · k) variables. Using Lenstra’s famous result [7] on the running time of
integer linear programs with a fixed number of variables then implies that ICC is
fixed-parameter tractable with respect to the (combined) parameter (m, k). Due
to the huge combinatorial explosion in Lenstra’s theorem, however, this result is
of purely theoretical interest and more efficient combinatorial algorithms are of
big interest.

In the next two sections, we present several fixed-parameter tractability re-
sults with respect to the above parameters (Section 3) and combinations of each
time two of them (Section 4).

Let us spot some challenges for future research concerning the multivari-
ate complexity analysis of ICC. The complexity behavior with respect to the
combined parameter (c, k) is widely open. A breakthrough would be to show the
tractability with respect to k—note that we have intractability with respect to c.
Basically along the same lines as k, also ∆ gives an interesting parameterization
with almost no results so far. The parameter m also seems of particular interest.
The fixed-parameter tractability with respect to m is completely open and with
respect to the combined parameter (m, k) the running time needs improvement.

We close this section with some simple observations about a helpful “normal
form” that one may assume without loss of generality for all ICC input instances.
More precisely, based on simple and efficient preprocessing rules, one can perform
a data reduction that yields this normal form.

Proc. 20th CPM, 2009

Table 1. Complexity of ICC for 1-dimensional parameterizations. Herein, “P”
means that the problem is polynomial-time solvable, “NPc” means that the
problem is NP-complete, and “?” means that the complexity is unknown. For
fixed-parameter algorithms, we only give the function of the exponential term,
omitting polynomial factors. The results for k = 2 and c = 3 are due to Althaus
et al. [1, 2], the rest is new.

Parameter k ∆ l c m n o

Complexity
k = 2: P
k ≥ 3: ?

∆ ≥ 2: ? l!
c = 2: P
c = 3: NPc

? n!
o = 1: P
o ≥ 2: ?

Proposition 1. (Normal form for ICC)
In O(lmn) time, one can transform every ICC instance into an equivalent one
such that

1. at every position i ∈ [n], there is at most one interval starting at i and at
most one interval ending at i, and

2. if the maximum interval length is l, then every position i ∈ [n] is contained
in at most 2l intervals.

3 Single Parameters

In Section 2, we identified various parameters as meaningful “combinatorial
handles” to better assess the computational complexity of ICC. Concerning
cutwidth c, whereas c = 3 is known to be NP-complete [1], here we show that
c = 2 is polynomial-time solvable. Obviously, l ≤ n, so the fixed-parameter
tractability with respect to l (as we will prove subsequently) implies the fixed-
parameter tractability with respect to n. Table 1 surveys known and new results
with respect to single parameters.

Theorem 1. ICC can be solved in O(l! · lmn) time.

Proof. We present a dynamic programming algorithm. We use the following no-
tation. First, let A denote the set of intervals contained in some other intervals,
that is, A := {F ∈ F | ∃F ′∈F : F ⊆ F ′}, and B := F \ A. Let K = {1, . . . , k}
denote the set of all colors. We say that a coloring c′ satisfies an input inter-
val Fi ∈ F if c′(Fi) = Ci. For an interval [s, t], a coloring is represented by
a vector in Kt−s+1. For an input interval Fi ∈ F , the set Ki of all satisfying
colorings is given by Ki := {c′ ∈ K|Fi| | c′ satisfies Ci}. In the worst case that
every color occurs at most once in the multiset Ci, there are |Ci|! satisfying
colorings of an input interval Fi. In the following, we assume that the intervals
in B are ordered in increasing order of their start points (and, hence, also in
increasing order of their endpoints). Let B = {B1, . . . , Bm′} and Bj = [sj , tj]

for all 1 ≤ j ≤ m′. The intervals in B cover [n], that is,
⋃m′

j=1 Bj = [n]. For
every Bj , the algorithm maintains a table Tj with an entry for every satisfying

Proc. 20th CPM, 2009

coloring of Bj . More specifically, for every coloring c′ = (c′1, . . . , c
′
|Bj |

) ∈ Kj

we set Tj(c
′) = true iff there exists a coloring c′′ = (c′′1 , . . . , c′′tj

) ∈ Ktj of the
interval [tj] with (c′′sj

, . . . , c′′tj
) = c′ such that c′′ satisfies each interval F ∈ F

with F ⊆ [tj].
For j = 1 and for every c′ ∈ K1, this is achieved by setting T1(c

′) := true
iff c′ satisfies every interval [s, t] ∈ F with [s, t] ⊆ [s1, t1].

We say that a coloring c′ = (c′1, . . . , c
′
|Bj |

) ∈ Kj for Bj is consistent with a

coloring c′′ = (c′′1 , . . . , c′′|Bj−1|
) ∈ Kj−1 for Bj−1 if c′ and c′′ agree in Bj−1 ∩ Bj ,

that is, (c′′sj−sj−1+1, . . . , c
′′
|Bj−1|

) = (c′1, . . . , ctj−1−sj+1). We write c′|c′′ to denote

that c′ is consistent with c′′.
For j = 2, . . . , n and for every c′ = (c′1, . . . , c

′
|Bj |

) ∈ Kj, we set

Tj(c
′) = true ⇐⇒ c′ satisfies all F ∈ F with F ⊆ Bj and

∃c′′∈Kj−1, c′|c′′ : Tj−1(c
′′) = true.

The correctness can be seen as follows. The “⇒”-direction follows directly
by definition. For the “⇐”-direction, observe the following. A coloring of [tj],
composed of a coloring of [tj−1] satisfying all F ∈ F with F ⊆ [tj−1] and a
coloring c′ of [sj , tj] satisfying all F ∈ F with F ⊆ [sj , tj], satisfies all F ∈ F
with F ⊆ [tj]; clearly, all F ∈ F with F ⊆ [tj−1] are satisfied. Moreover, all
other F ∈ F with F ⊆ [tj] are satisfied since for every fragment [s, t] ∈ F
with tj−1 < t ≤ tj it holds that [s, t] ⊆ [sj , tj].

As to the running time, there are at most |Bj |! satisfying colorings of Bj ;
at most one for every permutation of the associated color multiset. Hence, one
has to consider at most l! colorings for every Bj . For every j = 1, . . . , m′ − 1,
the algorithm works as follows. When building the table Tj for every c′ =
(c′1, . . . , c

′
|Bj |

) ∈ Kj, the algorithm computes an auxiliary table Qj with an en-

try Qj(c
′
r, c

′
r+1, . . . , c

′
|Bj|

), where r := sj+1 − sj + 1, indicating whether Tj(c
′) =

true. Herein, in order to ensure that the size of Qj does not exceed l! and to
allow fast access to its elements, table Qj can for example be realized as an array
of size |Bj |! where the entry for cs = (c′r, c

′
r+1, . . . , c

′
|Bj |

) is stored at the position

corresponding to the number of the lexicographically smallest permutation of Cj

with “prefix” cs. Then, to check whether ∃c′′∈Kj−1, c′|c′′ : Tj−1(c
′′) = true for

a c′ = (c′1, . . . , c
′
|Bj |

) ∈ Kj , the algorithm can check whether Qj−1(c
′
1, . . . , c

′
|Bj|

) =

true in O(l) time. Hence, for every position 1 ≤ j ≤ m′, it needs at most O(l!·(l+
lm)) time, where the factor lm is due to checking whether c′ satisfies all F ∈ F
with F ⊆ [sj , tj]. In summary, the total running time is O(l! · lmn) since m′ ≤ n.

⊓⊔

Next, we show that ICC is solvable in O(n2) time for c = 2. This contrasts
the case c = 3 shown to be NP-complete [1]. Our algorithm is based on four
data reduction rules that are executable in polynomial time. The application of
these rules either leads to a much simplified instance that can be colored without
violating any interval constraints or shows that the instance is a no-instance.

Reduction Rule 1 For any two intervals Fi and Fj,

Proc. 20th CPM, 2009

– if |Fi ∩ Fj | = |Ci ∩ Cj |, then set c(Fi ∩ Fj) = Ci ∩ Cj;
– if |Fi ∩ Fj | > |Ci ∩ Cj |, then return “No”.

Rule 1 is obviously correct: if two intervals “share” more positions than colors,
then there is no coloring that satisfies both intervals, and if the number of shared
positions is equal to the number of shared colors, then we have to color the
overlapping intervals exactly with these colors.

Note that when we set c(i) = cx for some position i, we can simplify the
instance as follows. For all Fj = [s, t] with s ≤ i ≤ t, we set Cj := Cj \ {cx}
and t := t − 1. For all Fj = [s, t] with i < s, we set s := s − 1 and t := t − 1.
“Empty” intervals Fj with Cj = ∅ are removed from the input. After Rule 1
and this subsequent reduction of the instance, we can assume that no interval is
completely contained in any other interval.

In the following, assume that the intervals are ordered with respect to their
startpoints, that is, for Fi = [si, ti] and Fj = [sj , tj] with i < j we have si < sj .
Let t be the endpoint of the first interval Fj 6= F1 that overlaps only with one
other interval. Clearly, we can color [t] independently from [t + 1, n]. Together
with Rule 1, and the fact that c = 2, we can thus assume that all intervals
except for F1 and Fm overlap with exactly two other intervals. Hence, we can
partition each interval Fj , 1 < j < m, into at most three subintervals: the first
subinterval overlaps with Fj−1, the second (possibly empty) subinterval does not
overlap with any other interval, and the third subinterval overlaps with Fj+1.
The following notation describes this structural property. For an interval Fj , 1 <
j < m, define F 1

j := Fj ∩ Fj−1, F 3
j := F 1

j+1, and let F 2
j := Fj \ (F 1

j ∪ F 3
j). For

a coloring c′ of all intervals, let C1
j := c′(F 1

j). Define C2
j and C3

j accordingly.

For F1, define F 3
1 := F 1

2 , and F 2
1 := F1 \ F 3

1 ; for Fm define F 1
m := Fm ∩ Fm−1

and F 2
m := Fm \ F 1

m; C3
1 , C2

1 , C1
m, and C2

m are defined analogously. Whether a
coloring violates an interval Fj only depends on the sets C1

j ,C2
j , and C3

j . Hence,

when we know that a color cx must belong to some Cl
j , 1 ≤ l ≤ 3, then we can

color an arbitrary i ∈ F l
j with cx. Finally, let occ(x, C) denote the multiplicity

of an element x in a multiset C.
The next rule reduces intervals Fj that have no “private” middle interval F 2

j

but more elements of a color cx than the previous interval.

Reduction Rule 2 For any interval Fj , if F 2
j = ∅ and there is a color cx such

that occ(cx, Cj−1) < occ(cx, Cj), then set c(i) = cx for some arbitrary i ∈ F 3
j .

The rule is obviously correct. After its application, for every interval Fj with F 2
j =

∅, we have |Fj−1| > |Fj |. Next, we reduce triples of intervals Fj−1, Fj , Fj+1 that
have identical color multisets in case F 2

j = ∅.

Reduction Rule 3 For intervals Fj−1, Fj , and Fj+1 such that Cj−1 = Cj =
Cj+1 and F 2

j = ∅, remove Fj−1 and Fj from the input and for all intervals Fj+l =
[s, t] with l ≥ 1 set Fj+l = [s′, t′], where s′ := s − |Fj | and t′ := t − |Fj |.

The correctness proof for Rule 3 is omitted.
The following is our final data reduction rule.

Proc. 20th CPM, 2009

Reduction Rule 4 Let I be an instance that is reduced with respect to Rules 1, 2,
and 3, and let Fj be the first interval of I such that there is a color cx with
occ(cx, Cj) > occ(cx, Cj+1). Do the following:

– if j = 1, then set c(i) = cx for some i ∈ F 2
1 ;

– if j > 1 and cx /∈ Cj−1, then set c(i) = cx for some k ∈ F 2
j in case F 2

j 6= ∅
and otherwise return “No”;

– if j > 1 and cx ∈ Cj−1, then set c(i) = cx for some i ∈ F 1
j .

Lemma 1. Rule 4 is correct.

Proof. Let I be an instance, reduced with respect to Rules 1, 2, and 3, to which
Rule 4 is applied, and let I ′ be the resulting instance. We only show that if I
is a yes-instance, then I ′ is a yes-instance, since the reverse direction trivially
holds.

If j = 1, this is easy to see: since cx occurs more often in F1 than in F2 one
of the positions in F1 \ F2 must be colored with cx.

If j > 1 and cx /∈ Cj−1, then it is clear that one of the positions in F 2
j must

be colored with cx. We either perform this forced coloring or return “No” if this
is not possible.

Finally, if j > 1 and cx ∈ Cj−1, the situation is more complicated. Let c′ be a
coloring that fulfills the interval constraints of I, we call such a coloring proper.
If there is a position i ∈ F 1

j such that c′(i) = cx, then the claim obviously holds.
Otherwise, we show that we can transform c′ into an alternative coloring c′′ that
is proper and there is an i ∈ F 1

j such that c′′(i) = cx. Whether coloring c′′

is proper depends only on the multisets C1
l , C2

l , and C3
l , 1 ≤ l ≤ m, that

are defined by the coloring function c′. Hence, we describe the transformation
applied to c′ with respect to these multisets. Note that we do not modify the
sets Cy

l for any l > j.

We face the following situation: cx /∈ C1
j , but since c′ is a coloring that does

not violate any interval constraints and by the precondition of Rule 2, cx ∈ C2
j .

By the precondition of Rule 4, we have C1 ⊆ C2 ⊆ . . . ⊆ Cj . We show that we
can always find a series of exchange operations such that the resulting coloring
is proper and cx ∈ C1

j . We perform a case distinction. Due to the lack of space,
we show only some cases, the other cases are similar, albeit more complicated.
Case 1: F 2

j−1 6= ∅. There are three subcases of this case.

Case 1.1: cx ∈ C2
j−1. In this case, we exchange cx ∈ C2

j−1 and some arbi-

trary cl ∈ C1
j . Furthermore, we remove cx from C2

j and add cl to C2
j . The ex-

change is shown in Fig. 1a; the resulting coloring is clearly proper and cx ∈ C1
j .

Case 1.2: cx ∈ C1
j−1 and F 2

j−2 6= ∅. Clearly, Cj−2 must be involved in the

exchange. We choose an arbitrary element cl ∈ C2
j−2. Since Cj−2 ⊆ Cj−1, we

also have cl ∈ Cj−1 \ Cj−2. We distinguish two subcases.
Case 1.2.1: cl ∈ C3

j−1. We perform a direct exchange of cl and cx between C2
j−2

and C1
j−1 and also between C1

j and C3
j . The exchange is shown in Fig. 1b; the

resulting coloring is clearly proper and cx ∈ C1
j .

Proc. 20th CPM, 2009

Fj

Fj

Fj

Fj−1

Fj−1

Fj−1

Fj−2

Fj−2

Fj−2

cx cx

cxcx

cx

cx cx

cf

cf

cl

cl

clcl

clcl

a)

b)

c)

Fig. 1. Exchange operations used in the proof of Lemma 1.

Case 1.2.2: cl ∈ C2
j−1. We remove cl from C2

j−2 and add cx to C2
j−2. Further-

more, we perform a circular exchange between C1
j−1, C2

j−1, and C3
j−1: move cx

from C1
j−1 to C3

j−1, move an arbitrary element cf from C3
j−1 to C2

j−1, and move cl

from C2
j−1 to C1

j−1. Finally, we remove cx from C2
j and add cf to C2

j . The ex-

change is shown in Fig. 1c; the resulting coloring is clearly proper and cx ∈ C1
j .

The correctness of the final two cases is deferred to a long version of this
paper.
Case 1.3: cx ∈ C1

j−1 and F 2
j−2 = ∅.

Case 2: F 2
j−1 = ∅.

In all cases, we can construct an alternative coloring that is proper and cx ∈
C1

j , which means that we can assume that if I is yes-instance, then there is

some i ∈ C1
j such that c′(i) = cx. In summary, this shows that I is a yes-

instance iff I ′ is a yes-instance. ⊓⊔

With these four reduction rules at hand, we can describe a simple quadratic-time
algorithm for ICC with cutwidth two.

Theorem 2. ICC can be solved in O(n2) time when the input has cutwidth two.

Proof. The algorithm starts with exhaustively applying Rules 1 to 4. Note that
the rules have to be applied in the correct order, that is, after each reduction
step, we always check first whether Rule 1 can be applied, then whether Rule 2
can be applied, and so on. The rules either return “No” or we obtain an instance
that is reduced with respect to all data reduction rules. In such an instance we
have C1 ⊆ C2 ⊆ . . . ⊆ Cm. Otherwise, Rule 4 would apply, because there would

Proc. 20th CPM, 2009

be some Fi ∈ F and a color cx such that occ(cx, Ci) > occ(cx, Ci + 1) . This
instance can be easily colored as follows. For the first interval F1, we choose an
arbitrary coloring that does not violate C1. Clearly, this also does not violate C2

since C1 ⊆ C2. Then we remove the colored parts from the input, adjust the color
multisets accordingly, and choose an arbitrary coloring that does not violate C2.
Clearly, this does not violate C3, since C2 ⊆ C3. After this, we again reduce the
colored parts and continue with coloring F3. This is repeated until all positions
are colored and clearly produces a coloring that does not violate any interval
constraints. This proves the correctness of the algorithm.

For the running time of the algorithm consider the following. First, since
the input has cutwidth two, we have m = O(n). For each data reduction rule,
checking whether it can be applied and the application itself can be performed
in O(n) time. Furthermore, the application of any of the reduction rules removes
at least one position from the interval [n]. Hence, each rule can be applied at
most n times. Together with the O(n) time that is clearly sufficient for coloring
any instance reduced with respect to the reduction rules, this leads to a total
running time of O(n2). ⊓⊔

Using the previous algorithm, we also obtain polynomial-time solvability in
case the maximum overlap o between fragments is at most one. This follows
from the observation that after achieving the normal form of the instance, each
instance with overlap at most one also has cutwidth at most two, which can be
seen as follows. Suppose an instance that has the normal form has overlap one
and cutwidth at least three. Then there must be an interval Fi that overlaps
with two other intervals Fj , Fl at some position x. Since at each position at
most one interval starts, at most one of Fj and Fl, say Fj , starts at position x.
This, however, means that Fl starts at some position u < x and hence it has
overlap at least two with Fi, leading to a contradiction.

Corollary 1. ICC can be solved in O(n2) time when the input has overlap one.

4 Combined Parameters

In the following, as already indicated in Section 2, we turn to the study of some
relevant pairs of single parameters which form a “combined parameter”. Table 2
summarizes our current knowledge about combined parameterizations of ICC—
there are many questions left open. Here, we study the three different combined
parameters (l, k), (l, c), and (n, k) that seem to be of immediate practical interest
and all allow for fixed-parameter tractability results. The proof of Theorem 3 is
somewhat similar to the proof of Theorem 1 and therefore omitted.

Theorem 3. ICC can be solved in O(kl · (k + lm)n) time.

Theorem 4. ICC can be solved in (c + 1)l · poly(n, m) time.

Proof. We present a dynamic programming algorithm. We use the following
notation. For every position i, 1 ≤ i ≤ n, let Fi = {Fi1 , . . . , Fini

} denote the

Proc. 20th CPM, 2009

Table 2. Complexity of ICC for combined parameters. We only give the function
of the exponential term, omitting polynomial factors. Herein, (k, ∗) and (k, ∗, ∗)
refer to combined parameters that feature k and one or two additional param-
eters, (l, ∗) refers to combined parameters that feature l and one additional
parameter. Note that for k = 3, we achieve an improvement from 2n to 1.89n.
The result for parameter (k, m) is due to Althaus et al. [2], the rest is new.

Parameter Running times

(k, ∗) kl, (k − 1)n, f(k, m) (ILP)

(k, ∗, ∗) lc·(k−1), nc·(k−1)

(l, ∗) ∆l, (c + 1)l

input intervals containing i. Further, let Ci = {Ci1 , . . . , Cini
} denote the color

multisets associated with the intervals in Fi, where Cij
is the color multiset

associated with Fij
, 1 ≤ j ≤ ni. Note that ni ≤ c. Further, let Fij

= [sij
, tij

]
for all 1 ≤ j ≤ ni. By K = {1, . . . , k} we refer to the set of all colors. Further, a
tuple (M1, . . . , Mq) of (multi)sets is called a chain if there exists a permutation π
of {1, . . . , q} such that Mπ(1) ⊆ Mπ(2) ⊆ . . . ⊆ Mπ(q).

For every position i, the algorithm maintains a table Ti with a Boolean
entry for every possible tuple of color multisets (A1, . . . , Ani

) with Aj ⊆ Cij

and |Aj | = i−sij
+1 for all 1 ≤ j ≤ ni. More specifically, Ti(A1, . . . , Ani

) is true
iff there exists a coloring c′ : [i] → K such that c′([sij

, i]) = Aj for all 1 ≤ j ≤ ni

and for every Fl ∈ F with Fl ⊆ [i] it holds that c′(Fl) = Cl. Note that an
instance is a yes-instance iff there is a true entry in Tn. The goal of the dynamic
programming is to compute the tables Ti to fulfill this definition.

According to Proposition 1, at each position in [n] there starts at most one
input interval and ends at most one input interval. Hence, there is exactly one
interval in F1. Let F1 = {F} and let C be the color multiset associated with F .
We set T1({c′}) = true for every c′ ∈ C.

For every position i, 2 ≤ i ≤ n, there is at most one interval in Fi−1 \
Fi and at most one in Fi \ Fi−1. Thus, assume that Fi−1 = {F ′, F1, . . . , Fq}
and Fi = {F1, . . . , Fq, F

′′}, that is, Fi−1 ∩ Fi = {F1, . . . , Fq} (if Fi−1 \ Fi = ∅
or Fi \Fi−1 = ∅, then skip F ′ or F ′′ in the following formulas). Let Fj = [sj , tj]
for all 1 ≤ j ≤ q.

For every tuple (A1, . . . , Aq, A
′′) that forms a chain and fulfills Aj ⊆ Fj ,

|Aj | = i − sj + 1 for 1 ≤ j ≤ q and A′′ ⊆ F ′′, |A′′| = 1, set

Ti(A1, . . . , Aq, A
′′) = true ⇐⇒

∃x∈(
Tq

j=1
Aj)∩A′′ : Ti−1(F

′, A1 \ {x}, . . . , Aq \ {x}). (I)

The correctness of this recursion can be seen as follows. On the one hand, if
Ti(A1, A2, . . . , Aq, A

′′) = true, that is, if there exists a coloring c′ : [i] → K
fulfilling the above conditions, then clearly c′ restricted to [i − 1] fulfills the
above properties for i − 1 and F ′, A1 \ {c′(i)}, . . . , Aq \ {c′(i)}.

Proc. 20th CPM, 2009

On the other hand, if ∃x∈(
Tq

j=1
Aj)∩A′′ : Ti−1(A

′, A1\{x}, . . . , Aq\{x}) = true,

that is, if there exists a coloring c′′ : [i − 1] → K fulfilling the above properties
for i−1 and A′, A1\{x}, . . . , Aq\{x}, then the extension c′ of c′′ with c′(j) = c′′(j)
for 1 ≤ j < i and c′(i) = x fulfills the above properties for i and A1, . . . , Aq, A

′′.
Finally, note that we only consider tuples (A1, . . . , Aq, A

′′) that form chains.
This is correct, since for a coloring c′ : [i] → K it clearly holds that the tu-
ple (c′([s1, i]), . . . , c

′([sj , i]), {c(i)}) forms a chain.
In accordance with the equivalence (I), the algorithm computes the tables Ti

for increasing values of i (starting with i = 2). Finally, it outputs “Yes” if Tn

contains a true entry and “No”, otherwise.
As to the running time, for every position there are at most (c+1)l tuples of

color multisets (A1, . . . , Ani
) with Aj ⊆ Cij

and |Aj | = i − sij
+ 1, 1 ≤ j ≤ ni,

that form a chain. This can be seen as follows. Let Fl denote the interval in Fi

with the smallest starting point. Clearly, a tuple of color multisets (A1, . . . , Ani
)

that forms a chain corresponds to a partition of Cj into (c + 1) subsets. Since,
for every color in Fj there are (c + 1) choices, there are at most (c + 1)l such
partitions. ⊓⊔

For a multiset M that contains k different colors and for an integer q ≥ 1 there
are at most qk−1 size-q submultisets of M . This is true since if we have chosen
the occurrence number of the first k − 1 colors in a size-q subset (there are at
most qk−1 choices), then the occurrence number of the kth color is fixed. With
this observation, the running time of the algorithm presented in the proof of
Theorem 4 can also be bounded by O∗(lc·(k−1)).

Corollary 2. ICC can be solved in lc·(k−1) · poly(n, m) time.

Trivially, we can solve any instance in O(kn) time by trying all k colors for all
n positions. Now, we use the fact that for two colors the problem is polynomial-
time solvable [2]. Hence, we need to “guess” only k − 2 colors and the positions
that have one of the two remaining colors. For these positions, we then use the
polynomial-time algorithm for ICC with two colors, giving the following result.

Theorem 5. ICC can be solved in O((k − 1)n · g(n, m)) time, where g(n, m) is
the time needed to solve ICC for k = 2.

For the practically relevant case where k = 3 [2], we can achieve a speed-up
by the following simple observation: At least one of the colors appears at most
on n/3 positions.

Theorem 6. For k = 3, ICC can be solved in O(1.89n · g(n, m)) time, where
g(n, m) is the time needed to solve ICC for k = 2.

Beigel and Eppstein [3] gave a thorough study of exact exponential-time algo-
rithms for the NP-complete 3-Coloring problem. It is tempting to investigate
whether some of their tricks can be applied to ICC with three colors; in partic-
ular, a simple randomized strategy presented by Beigel and Eppstein might be
promising.

Proc. 20th CPM, 2009

5 Conclusion

Conceptually, we presented a systematic development of the method of “de-
constructing intractability”. We exhibited this approach using the NP-complete
ICC problem as a particularly fertile application case. Through deconstruction
and using methods of parameterized algorithmics, we started a diverse multi-
variate complexity analysis of ICC. Refer to Tables 1 and 2 in Sections 3 and 4
for an overview and numerous challenges for future research. There remain many
challenges for future work: Even combinations of three or more parameters may
be relevant. Besides that, already for pairs of two single parameters there are
several qualitatively different fixed-parameter tractability results one can strive
for and which typically are independent from each other. For instance, for a com-
bined parameter (p1, p2) combinatorial explosions such as pp2

1 , pp1

2 , 2p1·p2 etc. all
can be useful for solving specific real-world instances. Finally, we focussed atten-
tion on the decision version, but the investigations should clearly be extended to
the optimization variants. Summarizing, the research challenges offered by ICC
and, more generally, the deconstructive approach to intractability, seem to be
(almost) inexhaustible.

Acknowledgment. We thank Michael R. Fellows for early discussions about the
deconstructive approach to NP-hard problems and Nadja Betzler for pointing
us to the ICC problem.

References

[1] E. Althaus, S. Canzar, K. Elbassioni, A. Karrenbauer, and J. Mestre. Approximat-
ing the interval constrained coloring problem. In Proceedings of the 11th Scandi-
navian Workshop on Algorithm Theory (SWAT ’08), volume 5124 of LNCS, pages
210–221. Springer, 2008.

[2] E. Althaus, S. Canzar, M. R. Emmett, A. Karrenbauer, A. G. Marshall, A. Meyer-
Baese, and H. Zhang. Computing H/D-exchange speeds of single residues from
data of peptic fragments. In Proceedings of the 23rd ACM Symposium on Applied
Computing (SAC ’08), pages 1273–1277. ACM, 2008.

[3] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms,
54(2):168–204, 2005.

[4] J. Chang, T. Erlebach, R. Gailis, and S. Khuller. Broadcast scheduling: Algorithms
and complexity. In Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’08), pages 473–482. ACM-SIAM, 2008.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[6] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[7] H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics

of Operations, 8:538–548, 1983.
[8] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31 in Oxford

Lecture Series in Mathematics and Its Applications. Oxford University Press, 2006.
[9] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Proc. 5th

International Workshop on Combinatorial Optimization – Eureka, You Shrink!,
volume 2570 of LNCS, pages 185–208. Springer, 2003.

	Deconstructing Intractability---A Case Study for Interval Constrained Coloring
	Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann

