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Prüfungszwecken gedient.

Marburg, den 02.05.2022
Alexander Bille

ii



Danksagung

Danke

Dq glhvhu Vwhooh prhfkwh lfk plfk ehl doohq Shuvrqhq ehgdqnhq, glh plu kdoihq glhvh Duehlw lq glhvhp Pdvvh

cx huvwhoohq.

Cxhuvw jhexhkuw phlq Gdqn phlqhq Ehwuhxhuq, Fkulvwldq Nrpxvlhzlfc, Qlhov Juxhwwhphlhu xqg Qlov Prudzlhwc,

yrq ghqhq lfk gxufk glh jhphlqvdphq Glvnxvvlrqhq ylho plwqdkp. Yru doohp elq lfk lkqhq ixhu gdv Ihhgedfn, glh Yhue-

hvvhuxqjvyruvfkodhjh xqg glh Hunodhuxqjhq gdqnedu.

Zhlwhuklq ehgdqnh lfk plfk ehl phlqhu Idplolh xqg Iuhxqghq, glh plfk gxufk phlq Ohehq ehjohlwhwhq xqg plfk zdhkuhqg

glhvhu Chlw xqwhuvwxhwcwhq.

Phlq Gdqn jlow dxfk doohq Nruuhnwxuohvhuq ixhu lkuh Chlw, Pxhkhq xqg Vrujidow. Lqvhehvrqghuh prhfkwh lfk plfk

ehl Grplqln Eudqghqvwhlq, ghu plu ehl Iudjhq vwhwv kdoi xqg Lghhqyruvfkodhjh jde, khucolfkvw ehgdqnhq.

iii



Abstract

In graph clustering, the goal is to partition the vertex set into clusters such
that vertices in the same cluster are similar. One approach for defining simi-
larity is to consider vertices as similar if they are structurally equivalent, that
is, they have the same neighborhood. In other words, structurally equivalent
vertices are in the same neighborhood class.
In this work, we present the new problem Block Modeling. It asks for
removal and addition of at most k edges to an input graph such that the
resulting graph has at most t neighborhood classes. This means, that the
resulting graph is clustered with respect to structural equivalence with at
most t clusters. In contrast to previous edge modification based clustering
formulations, this problem does not specify the adjacency between or within
clusters.
We show NP-Hardness and fixed-parameter tractability for parameter k+ t.
Furthermore, we present several methods to obtain a clustering like branch-
and-bound algorithms, heuristics and ILP-formulations. To speed up the
algorithms, we analyze properties of solution structure for Block Model-
ing, and provide lower bounds and reduction rules. Finally, we compare our
algorithms with each other on real-world social networks.
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1 Introduction

An important task in the area of unsupervised learning is to compute a clus-
tering of a set of elements only based on the properties of the elements [13].
A clustering is a partition of a set where elements of the same cluster should
be similar and elements of different clusters should be dissimilar. Two com-
mon approaches for a clustering are k-Means [26] and DBSCAN [11]. These
approaches assign each element to at most one cluster and are vector-based.
In vector-based approaches, the similarity of two elements is computed by a
distance function based on the properties of the elements.
For the clustering of graphs, there are multiple interpretations for the sim-
ilarity between vertices. One interpretation is that the adjacency between
two vertices is equal to their similarity: Two vertices are adjacent to each
other if and only if they are similar. Then, in a good clustering, every vertex
is adjacent to most of the vertices of its cluster and to few vertices outside
its cluster. The Cluster Editing [4] problem demands a transformation
into disjoint cliques. Then, every clique is a cluster based on this approach
of similarity. Furthermore, the p-Cluster Editing [31] problem demands
such a clustering with exactly p cliques.
Another approach to define similarity is via structural equivalence [3, 24].
Two vertices are structurally equivalent if they have the same adjacency
to each other vertex. STRUCTURE [7] and CONCOR [6] are well-known
heuristics that cluster a graph by structural equivalence. Both algorithms
use a vector-based clustering where a vertex is represented as its column of
the adjacency matrix. Such methods are called indirect approaches [3] since
a solution is not computed with the graph structure.
Note that Cluster Editing can be seen as a transformation into structural
equivalent clusters since every two vertices of each clique have the same
adjacencies to each other vertex in the resulting graph. This problem specifies
a further constraint to the form of the clusters which is the adjacency within
a cluster and the non-adjacency between clusters.
In contrast to previous works, we present Block Modeling which puts
no constraints to the form of the clustering except the number of clusters.
Block Modeling asks for addition and removal of few edges such that
the resulting graph can be clustered into at most t clusters where every two
vertices of a cluster are structurally equivalent, that is, the resulting graph
can be partitioned into at most t sets where every two vertices of a set have
the same adjacency to each other vertex. This work focuses mainly on the
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development of algorithms for Block Modeling. Still, several theoretical
results are shown as well.

1.1 Related Work

A closely related edge modification problem to Block Modeling is H-
Bag Editing [9] which resulting graph is also a clustering with respect
to structural equivalence. This problem specifies the form of the clusters
with H. Every vertex of H represents a cluster in the resulting graph. If a
vertex is adjacent to another vertex, then the represented clusters have to be
adjacent as well. In addition, every cluster has to be a clique.
H-Bag Editing is subexponential fixed-parameter tractable with respect
to the edit parameter k [9]. More precisely, H-Bag Editing can be solved

in 2O(
√
k·log k) · nO(1) time [9]. Note that the size of H are constants in this

estimation. For several fixed graphs H, this problem is known to be NP-
complete [9]. For example, if H is a graph with p isolated vertices, then
H-Bag Editing and p-Cluster Editing are equivalent, and p-Cluster
Editing is NP-complete for p ≥ 2 [31].
There are problems that demand a clustering by structural equivalence with
more specification to the form. For example, Dense Split Graph Edit-
ing [5] asks for a transformation into a universal clique and an independent
set. Note that H-Bag Editing does not generalize Dense Split Graph
Editing since Dense Split Graph Editing demands an independent set
in the resulting graph.
The algorithm STRUCTURE [7] clusters the graph hierarchically by struc-
tural equivalence. It computes a dissimilarity matrix for the vertices where
the distance is computed on the columns of the adjacency matrix. Differ-
ent choices for the distance function are possible. The dissimilarity matrix
defines a hierarchical clustering using standard methods. To obtain a non-
hierarchical clustering, one may set a similarity threshold α or specify the
the number of clusters.
Batagelj et al. [3] provided a local search approach to cluster a graph by
structural equivalence. For a partition of the vertex set, a cost function
is defined that counts the minimal edits such that the graph, applied with
these edits, can be clustered with this partition. The algorithm starts with
a random initial partition and tries to improve it locally until no further
improvement can be made. The allowed improvements are a movement and
a swap. The movement puts a vertex into an other cluster if the clustering
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improves. The swap changes the clusters of two vertices if the clustering
improves. This process is done multiple times and the 10 best clusterings are
returned as the output.
The algorithm CONCOR [6] also follows the approach of a heuristic, indirect
and hierarchical clustering. Unlike STRUCURE, CONCOR clusters divisive.
This means, that all elements are in one cluster at the start. The cluster is
split up into two clusters recursively until the desired number of clusters is
reached. In the following, we describe a split process of a cluster. From
the adjacency matrix M0 a correlation matrix M1 is computed where the
(i, j)-th entry is the product moment correlation of the columns i and j
of M0. This process is repeated with the last correlation matrix M` until
M` = M`+1. As argued by Breiger et al. [6], the resulting matrix can almost
always be permuted into a matrix of the form

[
1 −1
−1 1

]
where a number β

represents a submatrix with β as entries. The cluster is split according to
this permutation.
To the best of our knowledge, we provide the first approaches to cluster
optimally by structural equivalence.

1.2 Our Results

In Section 2, we provide the basic notation that is used in this work.
In Section 3, we observe some properties of Block Modeling and show
several characteristics of the solution structure. Furthermore, we provide
a polynomial kernel for parameter k + t for Block Modeling and show
NP-hardness.
In Section 4, we introduces several algorithms to solve Block Modeling.
First, we provide an algorithm that solve Block Modeling in O((t2 + t)k ·
n3) time. Then, a vertex-weighted problem Vertex-Weighted Block
Modeling is defined that generalizes Block Modeling. For this problem,
an algorithm is also given. Afterwards, two greedy heuristics and one local
search approach are provided. In Section 4.3, two ILP-formulations are given.
In Section 5, several ideas are listed to improve the running-time of the
branch-and-bound algorithms of Section 4.1. These improvements include
the storage of additional information, and the update of the graph and of the
additional information by applying an edit. This is done to reduce redundant
computations. Moreover, two lower bound algorithms, reduction rules and a
branching rule are also provided.
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In Section 6, we evaluate our algorithms of Section 4 on 21 real-world social
networks.
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2 Preliminaries

In this section, we define the notation that is used throughout this work.

2.1 Graph Notation

Let N denote the natural numbers including 0 and let N+ := N\{0}. For some
set S and an integer x we define

(
S
x

)
:= {T ⊆ S | |T | = x}. The symmetrical

difference for two sets S and T is defined as S4T := (S ∪ T ) \ (S ∩ T ). A
collection of sets (T1, . . . , Tx) is a partition of S if and only if

⋃x
i=1 Ti = S

and Ti ∩ Tj = ∅ for all i 6= j. Let E(S, T ) := {{s, t} | s ∈ S, t ∈ T} be the
set of all vertex pair combinations for two sets S and T .
All graphs in this thesis are undirected and simple. A graph G = (V,E)
consists of a set of vertices V and a set of edges E ⊆

(
V
2

)
. We set n := |V |

and m := |E|. The complement graph G of a graph G = (V,E) is defined
as G := (V,E4

(
V
2

)
). We denote the deletion of a vertex v by G − v :=

(V \ {v}, E \ {{u, v} ∈ E | u ∈ V }).
The neighborhood of a vertex v is NG(v) := {u | {u, v} ∈ E}. We call the
vertices of NG(v) the neighbors of v. If {u, v} ∈ E we say u and v are adjacent
or u is adjacent to v in G. If a vertex v is adjacent to every other vertex of
V , we call v universal. A vertex with no neighbors is called isolated. Two
disjoint sets, S1 ⊆ V , S2 ⊆ V , are adjacent if and only if E(S1, S2) ⊆ E. We
say S1 and S2 are non-adjacent if E(S1, S2)∩E = ∅. In the other case we say
S1 and S2 are partially adjacent. We say the vertices u and v have the same
adjacency to another vertex w if {u,w} ∈ E if and only if {v, w} ∈ E. We
say that u and v have the same adjacency to a set W of vertices if u and v
have the same adjacency to every vertex of W . We say that a vertex w has
the same adjacencies to a set W in graph G1 as in G2 if every vertex pair of
E({w},W ) is either adjacent in G1 and G2 or is non-adjacent in G1 and G2.
A subset V ′ ⊆ V is called a clique in G if and only if

(
V ′

2

)
⊆ E. Also, a

subset V ′ ⊆ V is called an independent set in G if and only if
(
V ′

2

)
∩ E = ∅.

We omit the reference “in G” or the subscript, if G is clear from context.

2.2 Neighborhood Classes

For the definition of neighborhood classes [23] we introduce a relation over
vertices:
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Definition 2.1. Let G = (V,E) be a graph and let u, v ∈ V . We denote
u ∼G v if and only if N(u) \ {v} = N(v) \ {u}.

The relation ∼G is an equivalence relation [23].

Definition 2.2. Let G = (V,E) be a graph. The neighborhood partition of
G is the partition W = {W1,W2, . . . ,Ww} of V such that for all u, v ∈ Wi

u ∼G v, for all u ∈ Wi and v ∈ Wj with i 6= j u �G v, and every Wi is not
empty.
The neighborhood graph is a graph (W , E ′) with

{Wi,Wj} ∈ E ′ ⇔ ∀u ∈ Wi, v ∈ Wj : {u, v} ∈ E.

We say G has a neighborhood diversity of w.

Note that the neighborhood partition is unique for each graph. Each set
of this partition is called neighborhood class. Note that a graph has exactly
one neighborhood partition. Every neighborhood class is either a clique or an
independent set. A neighborhood class C is called positive when C is a clique.
Analogue, a neighborhood class C is called negative if C is an independent
set. Note that a neighborhood class with only one element inside is positive
and negative at the same time.
A vertex w is a witness of a vertex pair {u, v} if and only if w is exactly to
one vertex of {u, v} adjacent. Otherwise, w is a non-witness. Let wit(p) be
the set of witnesses of a vertex pair p.

2.3 Graph Problems

A decision problem is a language L ⊆ {0, 1}∗. Every instance I ∈ {0, 1}∗ is
called yes-instance if I ∈ L and no-instance otherwise.
This work studies some graph decision problems that demands a transforma-
tion of the input graph such that the resulting graph satisfy a property Π.
A transformation is done by a set of edits E ′ ⊆

(
V
2

)
and returns a new graph

Gres = (V,E4E ′). A set of edits is called solution for a problem p with
property Π when through the transformation the resulting graph satisfy Π.
All problems of this work have a parameter in the input that limits the size
of the solution. Usually it is named with k. A solution Esol for instance I is
called optimal if every instance with the same input as I but with Esol − 1
as the limit parameter is a no-instance.
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A vertex is called affected if and only if at least one edit in a solution contains
this vertex. All other vertices are called unaffected. A set of edits is also
called edit set and a set of vertices is called vertex set. To simplify the
notation of a transformation to a graph G we overload the operator 4 with
G4E ′ := (V,E4E ′).
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3 Theoretical Aspects of Block Modeling

In this section, we define Block Modeling and proof some properties of
this problem.

Block Modeling
Input: A graph G = (V,E) and integers k and t.
Question: Can G be modified by at most k edits such that the resulting

graph has a neighborhood diversity of at most t?

Block Modeling asks for a reduction of the neighborhood diversity and
does not force any relation between the resulting neighborhood classes.

Observation 3.1. An instance I of Block Modeling with t = 1 is trivial.
Either all vertices define a clique or define an independent set in the resulting
graph. Therefore, all missing edges have to be added or all edges need to be
removed. The instance I is a yes-instance if and only if k ≥ min(

(|E|
2

)
−

m,m).

Observation 3.2. An instance (G, t, k) of Block Modeling with t ≥ d
where d is the neighborhood diversity of G is a yes-instance.

Observation 3.3. In an optimal solution of Block Modeling, vertices
of the same neighborhood class can be in separate neighborhood classes in the
resulting graph.

An example for Observation 3.3 is given by Figure 1.

Lemma 3.1. The neighborhood partition of a graph is also the neighborhood
partition of its complementary graph.

Proof. Let G be an arbitrary graph. We prove this lemma by showing
that the relations ∼G and ∼G are equivalent. Since a vertex x changes
the adjacency to every other vertex in the complement graph, we have
NG(x) = NG(x)4(V \ {x}). Consider any two vertices u and v of V . The
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c4 c5
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a1 a2

Figure 1: This graph with t = 2 is an example where the vertices of one
neighborhood class are in distinct neighborhood classes in the resulting graph
of an optimal solution. Circles represent vertices and lines are edges. The
dotted squares mark the neighborhood classes of the graph. The dashed lines
mark the edits of the solution. In this example, the edits are only additions.

equivalence is given by:

u ∼G v
⇔ NG(u) \ {v} = NG(v) \ {u}
⇔ (NG(u)4(V \ {u})) \ {v} = (NG(v)4(V \ {v})) \ {u}
⇔ (NG(u) \ {v})4((V \ {u}) \ {v}) = (NG(v) \ {u})4((V \ {v}) \ {u})
⇔ (NG(u) \ {v})4(V \ {u, v}) = (NG(v) \ {u})4(V \ {u, v})
⇔ NG(u) \ {v} = NG(v) \ {u}
⇔ u ∼G v

Observation 3.4. Let G = (V,E) be a graph and let E ′ be an edit set. The
graph G4E ′ is the same as G4E ′.
This follows immediately by the definitions, and the associativity and the
commutativity of the symmetrical difference:

G4E ′ = (V,E4
(
V

2

)
)4E ′ = (V, (E4

(
V

2

)
)4E ′)

= (V, (E4E ′)4
(
V

2

)
) = (V, (E4E ′)) = G4E ′
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Lemma 3.2. A solution of Block Modeling for an instance (G, k, t) is
a solution of Block Modeling for (G, k, t).

Proof. Let Esol be the solution of Block Modeling for G. We prove this
lemma by showing that G4Esol has a neighborhood diversity of at most t.
Since Esol is a solution, G4Esol has a neighborhood diversity of at most t.
Due to Lemma 3.1 the graph G4Esol has the same neighborhood partition as
G4Esol and hence the same neighborhood diversity. Because of Observation
3.4 the graph G4Esol is the same as G4Esol and therefore G4Esol has a
neighborhood diversity of at most t.

Due to Lemma 3.2 we can assume that the graph of an Block Modeling
instance has at most

(
m
2

)
/2 edges.

Lemma 3.3. If there is an optimal solution of Block Modeling where
two vertices of a positive neighborhood class P in the input graph G are in
distinct and positive neighborhood classes in the resulting graph Gres, then
there is an optimal solution where in the resulting graph Galt all vertices of P
of positive neighborhood classes in Gres are in the same positive neighborhood
class in Galt.

Proof. LetG = (V,E) be the input graph and let Esol be the optimal solution.
Thus, the resulting graph is Gres = (V,Eres = E4Esol). Let Pp be the subset
of P where every vertex is in a positive neighborhood class in Gres.
First, we show that if two vertices of Pp are non-adjacent in Gres the solu-
tion Esol is not optimal. Let u and v be two vertices of Pp with {u, v} /∈ Eres.
Let Cu be the neighborhood class of u in Gres and let Cv be the neighborhood
class of v in Gres. Let Pu := Cu ∩ P be the vertices of P which are in Cu
in Gres. Let Pv := Cv ∩ P be the vertices of P which are in Cv in Gres.
Note that Pu and Pv are not empty. We count the necessary edits for the
vertices of Pu ∪ Pv such that they are in Pu or in Pv respectively. First,
consider the edits of E(Pu ∪ Pv, V \ (Pu ∪ Pv)). A vertex w ∈ Pu changed
costCu := |E({w}, V \(Pu∪Pv))∩Esol| many adjacencies towards V \(Pu∪Pv)
such that w is in Cu. Observe that costCu is the same for each vertex of P
and not depends on Pu and Pv since Cu and P are positive. Analogously,
a vertex w ∈ Pv changed costCv := |E({w}, V \ (Pu ∪ Pv)) ∩ Esol| many
adjacencies towards V \ (Pu ∪ Pv) such that w is in Cv.
Now, we count the edges E(Pu, Pv) between Pu and Pv since they are edited
by Esol because u and v are non-adjacent in Gres. Altogether, the cost is:

10



f(Pu, Pv) := |Pu| · costCu +|Pv| · costCv +|Pu| · |Pv|. The minimum of f is
reached when Pu or Pv equals the empty set. Without loss of generality let
costCu ≤ costCv . We construct a solution where every vertex of Pu ∪ Pv
is in Cu. This solution has less edits than Esol. Thus, it contradicts the
assumption that Esol is optimal, and |Pu| ≥ 1 and |Pv| ≥ 1.
Second, we assume that any two vertices of Pp are adjacent. We provide
a solution size |Esol| where all vertices of Pp are in the same neighborhood
class. Consider two vertices u and v of Pp of distinct neighborhood classes
in Gres. Let Eu := {{u,w} ∈ Esol | w ∈ V } be the edits on u and let Ev :=
{{v, w} ∈ Esol | w ∈ V } be the edits on v. Note that Eu ∩ Ev = ∅. Let
Erest := Esol\(Eu∪Ev) be the edits that do not contain u or v. We constructed
a solution with size |Ealt|+2 · |Eu| by undoing the edits on v and applying the
analog changes of u to v such that the vertex v is in the same neighborhood
class as u. Analogously, we can construct a solution of size |Erest| + 2 · |Ev|
where u is in the same neighborhood class of v. Next, we show that |Eu| =
|Ev|. Because Esol is optimal, we have

|Esol| = |Erest|+ |Eu|+ |Ev| ≤ |Erest|+ 2 · |Eu|

and

|Erest|+ |Eu|+ |Ev| ≤ |Erest|+ 2 · |Ev|.

We simplify the inequations to |Ev| ≤ |Eu| and |Eu| ≤ |Ev|. It immediately
follows |Eu| = |Ev|. Thus, both alternative solutions are optimal as well. For
an arbitrary but fixed vertex u, we can construct sequentially a solution where
every vertex of Pp will be in the same neighborhood class as u in Galt.

The Lemma 3.3 holds for negative neighborhoods as well due to Lemma 3.2.

Lemma 3.4. Let Esol be a solution of Block Modeling for a graph G.
Let Gres = G4Esol be resulting graph.

1. If there is a neighborhood class C in G where at least one vertex is
unaffected by Esol and some other vertices of C are affected by Esol,
then Esol is not optimal.

2. If there is a neighborhood class Cres in Gres which is a real subset of a
neighborhood class in G, then Esol is not optimal.

11



Proof. Both cases are proven by contradiction. Assume that Esol is optimal.
We split the lemma into the two cases.
Case 1: One vertex c in C is unaffected and some other vertices of C are
affected by Esol.
The vertex c has the same neighbors in G and in Gres. We can construct a
solution from Esol such that all vertices of C are in the same neighborhood
class as c in the resulting graph. We achieve this by “undoing” the edits
of the vertices of C. Let Eundo := {{u, c′} ∈ Esol | c′ ∈ C} be the edits
of Esol which contain at least one vertex of C. Note that Eundo is not empty
since at least one vertex of C is affected. The constructed solution is defined
by Ealt := Esol \ Eundo.
We prove that Ealt is a solution for G. Let Galt := G4Ealt. Obviously,
Ealt has a size of at most k since |Ealt| cannot be greater than |Esol|, and
|Esol| ≤ k. Moreover, the size is smaller than k because Eundo is not empty.
It remains to show that Galt has a neighborhood diversity of at most t. Let P
be the neighborhood class of c in Gres.
Obviously, all vertices of C are in the same neighborhood class in Galt and
are unaffected. Now, we show that the vertices of P \ C are in the same
neighborhood class as c in Galt as well. Let p be a vertex of P \ C. Since c
is unaffected by Esol the vertex p has the same adjacency to C as to the
vertex c in Gres. Because c is unaffected and {c, p} cannot be in Esol, every
vertex pair of E({p}, C) is not in Esol, otherwise p �Gres c. Therefore, the
neighborhood of p is the same in Gres and in Galt since Ealt – in comparison
with Esol – only undoes the edits on the vertices of C. This implies that p is
in the same neighborhood class as c in Galt. This argument applies to every
vertex of P \C. Thus, the vertices P ∪C are in the same neighborhood class
in Galt.
Next, we prove that the vertices of V \ (C ∪P ) are in at most t−1 neighbor-
hood classes in Galt. Consider two vertices u, v from the same neighborhood
class in Gres with u /∈ (C ∪P ) and v /∈ (C ∪P ). We show that u and v are in
the same neighborhood in Galt. Note that in general, two vertices that have
a different adjacency to C in G have at least k + 1 witnesses and therefore
cannot be in the same neighborhood class in any solution. Thus, u and v
have the same adjacency to C in the input graph. Since every vertex of C is
unaffected in Galt, u and v have the same adjacency to C in Galt as well.
Since Esol is a solution, and u and v are in the same neighborhood class
in Gres, we know NGres(u) \ {v} = NGres(v) \ {u}. Therefore, and because
u and v have the same adjacency to C in G, the neighborhoods of u and v
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inGalt are eitherNGres(u)∪C andNGres(v)∪C, orNGres(u)\C andNGres(v)\C.
In both cases u ∼Galt

v holds because u and v are not in C. Thus, two vertices
of the same neighborhood class in Gres are in the same neighborhood class
in Galt. Since the vertices of V \ (C ∪ P ) are in at most t − 1 distinct
neighborhood classes in Gres they are in at most t− 1 distinct neighborhood
classes in Galt.
Altogether, the neighborhood diversity of Galt is at most t and hence Ealt is
a solution with less than k edits. This contradicts the assumption that Esol

is an optimal solution.
Case 2: There is a neighborhood class C ′ in the resulting graph Gres that is a
subset of C. We assume that every vertex of C is affected by Esol, otherwise
the condition of the first case are fulfilled. This case resolves like Case 1,
that is, Ealt is a solution for this case.
The proof proceeds analogous with some mentions. As in Case 1 the vertices
of C are in the same neighborhood class in Galt. Since P = C ′ there is no
subcase for a vertex p ∈ P \C because P \C = ∅. The proof that the vertices
of V \ (C ∪ P ) = V \ C are in at most t− 1 distinct neighborhood classes is
the same.

Lemma 3.5. In every optimal solution of Block Modeling every vertex
of every neighborhood class with size larger than k in the input graph is
unaffected.

Proof. We prove this property by contradiction. Assume that Esol is a solu-
tion where at least one vertex of a neighborhood class C in G with |C| > k
is affected. Let G be the input graph and let Gres = G4Esol be the resulting
graph . Due to Lemma 3.4 every vertex of C is affected and there is no
neighborhood class in Gres that is a real subset of C.
We show |Esol| > k and thus Esol is no solution by counting at least one edit
for every vertex of C. Throughout the proof, we call an edit {x, y} external
if x ∈ C and y /∈ C. If x and y are in C, then this edit is called internal. We
say a vertex x has external edits if an external edit exists with x in it. We
define has internal edits analogously.
The proof is done by a construction of a mapping of disjoint subsets {C1, . . . ,
Cq} of C to disjoint subsets {E1, . . . , Eq} of Esol with |Ci| ≤ |Ei| for all
1 ≤ i ≤ q. Let D = {D1, . . . , Dq} be the collection of neighborhood classes
containing at least one vertex of C. We define the subsets of C by Ci := Di∩C
for all 1 ≤ i ≤ q. Since no neighborhood class is a subset of C there is at
least one vertex di ∈ Di\Ci for all 1 ≤ i ≤ q. We consider each neighborhood
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class in D and define partially the mapping. The neighborhood classes are
distinguished by four cases (from (a) to (d)). First, we define the partial
mapping for each D ∈ D that applies to Case (a). Then, every neighborhood
class is considered that applies to Case (b). Note that a neighborhood class
D′ of Case (b) does not apply to Case (a). Otherwise, D′ would be considered
earlier in Case (a). After that, the partial mapping for each neighborhood
class that applies to Case (c). At last, we define the partial mapping for
neighborhood classes that apply to Case (d).
We name Di the considered neighborhood class. Let ` = |Ci| be the number
of vertices of C in the current considered neighborhood class Di. For each
case a subcase is illustrated in Figure 2 for a better understanding.

(a) One vertex c of Ci has at least one external edit.

Note that for any two vertices u and v of C of the same neighborhood
class, {u,w} ∈ Esol if and only if {v, w} ∈ Esol for some vertex w ∈ V \
{u, v}. Let y /∈ C be a vertex of an external edit {c, y}. Then, for every
vertex c′ of Ci the vertex pair {c′, y} is an external edit. Since the set
E({y}, Ci) is a subset of Esol, we define Ci 7→ E({y}, Ci) for the mapping.
Two map images of this category are disjoint since for two vertex sets
Ci and Cj with i 6= j the subsets E({y}, Ci) and E({x}, Ci) are disjoint
with x /∈ C, y /∈ C.

(b) There is a vertex cj /∈ Ci such that E({cj}, Ci) ⊆ Esol and ` ≥ 2.

The vertex cj is in C, otherwise the vertices of Ci have external edits.
Let Dj be the neighborhood class of cj in Gres and let Cj be the vertices
of C in Dj. Let Ebetween := E(Ci, Cj) be the vertex pairs containing one
vertex of Ci and one vertex of Cj.

First, we consider the case where
(
Ci

2

)
∩ Esol = ∅. The vertices of Ci

changed their adjacency towards Cj but the vertex pairs
(
Ci

2

)
are no edits

in Esol. Moreover, the vertex di has the same adjacencies to C in Gres as
in the input graph G, otherwise the vertices of Ci have external edits. To
have a solution, Esol includes either E({di}, Ci) or E({di}, Cj). Because
the vertices of Ci have no external edits, Esol cannot include the edits
E({di}, Ci). This implies that Cj fulfills Case (a) since the vertices of Cj
have external edits and its image is already defined. Therefore, we can
define Ci 7→ Ebetween since |Ebetween| = ` · |Cj| ≥ `.

Second, we consider the case where
(
Ci

2

)
⊆ Esol. With the edits

(
Ci

2

)
∪
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DiDj

(a) The blue vertices are in Ci. The
marked edits are all external edits for
vertices of Ci.

Di Dj

di

cj

(b) Case
(
Ci
2

)
∩Esol = ∅. Because the

vertices of Cj have an external edit,
the edits E(Ci, Cj) can be counted
for the vertices of Ci.

Di

. . .

di

u v

c1 c2 c3 c4 c5 csDr

(c) Case ` = 2. The neighborhood
classes of the c1, . . . , cs are not illus-
trated. The size of C is s+ 2.

ci cj

u dr

Di Dj

Dr

(d) Case |Cj | = 1. Exactly one of the
red marked edits has to be in Esol. In
both cases the edit {cj , dr} has to be
in Esol as well.

Figure 2: Visualizations of cases of the proof of Lemma 3.5. Each circle is a
vertex. Vertices in a dotted rectangle represent a neighborhood class in Gres.
Blue vertices are in C and black ones not. Dashed lines represent an edit
which is in Esol. All other information like edges are not illustrated because
there are unnecessary for the proof.
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Ebetween we have enough edits for two images since |
(
Ci

2

)
∪ Ebetween| =(

`
2

)
+ ` · |Cj| ≥ ` + |Cj|. Therefore, we can split

(
Ci

2

)
∪ Ebetween into two

parts Si and Sj with |Ci| ≤ |Si| and |Cj| ≤ |Sj|, and define Ci 7→ Si and
Cj 7→ Sj. Since we defined the image of Cj, we can skip the neighborhood
class Dj in the consideration.

The edits Ebetween do not overlap with any subsets of the images of Case
(a) because all edits of Ebetween are internal. At last, we show that
two map images of this case do not overlap. Consider another image
of the neighborhood classes Dr and Ds with r 6= i and r 6= s. We
show that A =

(
Ci

2

)
∪ Ebetween =

(
Ci

2

)
∪ E(Ci, Cj) do not intersect with

B =
(
Cr

2

)
∪ E(Cr, Cs). Since r 6= i no edit of

(
Ci

2

)
is in B and no edit

of
(
Cr

2

)
is in A. The intersection E(Ci, Cj) ∩ E(Cr, Cs) is the empty set

because Ci ∩ Cr = ∅.

(c) The vertex pairs
(
Ci

2

)
are edits of Esol and ` ≥ 2.

First, we consider ` ≥ 3. Since
(
`
2

)
≥ `, we define Ci 7→

(
Ci

2

)
. This image

does not overlap with any other images of the previous cases, and this
image does not overlap with another image of this case.

For ` = 2 and Ci = {u, v} we have to consider di. Recall di ∈ Di\Ci. We
show that this situation cannot appear. Note that only the edit {u, v} is
in Esol. No other edit contains u or v, especially the vertex pairs {u, di}
and {v, di}. Since di is in Di and has the same adjacency to Ci and C \Ci
in the input graph the edits E({p}, C \ Ci) have to be in Esol because
{u, v} ∈ Esol. For example, without loss of generality let C be a clique
in the input graph. Since {u, v} is contained in Esol, the neighborhood
class Di is an independent set. Because u has no external edit, di is
non-adjacent to C in the input graph. The vertex di is adjacent to C \Ci
in the resulting graph. Therefore, the edits E({di}, C \ Ci) are a subset
of Esol in order that di and u are in the same neighborhood class.

Since |E({di}, C\Ci)| ≥ k−1 we know that at least |{u, v}|+|E({di}, C\
Ci)| ≥ k edits are in Esol. Depending on the size of C there are either too
many edits such that Esol is a no solution or |C| = k + 1 and therefore
Esol = {u, v} ∪ E({di}, C \ Ci). With this solution Esol the set C \ Csub

is a neighborhood class and a subset of C. Due to Lemma 3.4 this is a
contradiction to an optimal solution. Thus, Case (c) with ` = 2 cannot
appear.
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(d) The size of Ci is 1.

The set Ci = {ci} includes only ci. Since ci is affected and has no external
edits there is a cj such that the edit {ci, cj} is in Esol with cj ∈ C. Let
Dj be the neighborhood class of cj and let Cj be the vertices of C in
Dj. If |Cj| ≥ 2, then a mapping is already done for Cj. We can define
Ci 7→ {{ci, cj}}.
Finally, assume |Cj| = 1. Because ci � cj, there is a witness u of {ci, cj}.
If u /∈ C then Cj has external edits and we define Ci 7→ {{ci, cj}} for
the mapping. If u ∈ C, let Dr be the neighborhood class of u and let
Cr be the vertices of C in Dr. Let dr be some vertex of Dr \ Cr. Note
that dr is either adjacent or non-adjacent to {ci, cj} in G. Since dr is in
the same neighborhood class as u in Gres and u is a witness of {ci, cj},
the vertex dr is also a witness of {ci, cj}. Thus, either {dr, ci} or {dr, cj}
has to be in Esol. Since ci has only internal edits, the edit {dr, cj} is
in Esol. Therefore, the vertices of Cj have external edits and we define
Ci 7→ {ci, cj} for the mapping. The edit {ci, cj} is not contained in
any subset of the image space of the mapping since Dj only can fulfill
either Case (a) or Case (b). In Case (a), Cj maps to external edits. In
Case (b), the other considered neighborhood class either fulfills Case (a)
or a mapping for this neighborhood class is already done.

As we can count for every vertex of C at least one different edit in the
mapping the size of Esol is at least k + 1. This contradicts that Esol is a
solution.

3.1 Kernelization

In this section, we provide a polynomial kernel for parameter k+t for Block
Modeling. Before we give the kernel, we make an observation regarding
the difference of the neighborhood diversities by an application of one edit.

Lemma 3.6. Let G = (V,E) be a graph, let e = {u, v} be a vertex pair, let w
be the neighborhood diversity of G and let G′ = G4{e} be the resulting graph
by the transformation {e}. The neighborhood diversity of G′ differs from w
by at most by 2.

Proof. Let Cu and Cv be the neighborhood classes of u and v respectively,
let C be the neighborhood partition of G and let Crest := P \ {Cu, Cv} =
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{C1, . . . , Cw−2}. For two vertices x and y of V \ {u, v} the relation ∼G is
the same as ∼G′ because x and y have the same neighbors in G as in G′.
Therefore, the vertices {v1, . . . , vw−2} with vi ∈ Ci are in w − 2 distinct
neighborhood classes in G′ since vi �G vj for 1 ≤ i 6= j ≤ w−2. This implies
that G′ has at least w − 2 neighborhood classes.
On the other hand, u and v could be not similar in terms of ∼G′ such that
they are in single-sized neighborhood classes in G′. This give us an upper
bound of w + 2 for the number of neighborhood classes in G′.

Based on Lemma 3.5 and Lemma 3.6, we are now able to obtain a polynomial
kernel as shown in the following theorem.

Theorem 3.1. Block Modeling admits a kernel with O(k2+kt) vertices.

Proof. Due to Lemma 3.6 the neighborhood diversity can be reduced by at
most 2 with a single edit. Hence, a graph with more than 2k+t neighborhood
classes cannot be solved with k edits. Furthermore, due to Lemma 3.5 we
know that there is a solution where all vertices of neighborhood classes greater
than k are unaffected. Therefore, all neighborhood classes with a size greater
than k can be reduced to k + 1 vertices. This implies that a non trivial
instance has at most (2k + t) · (k + 1) = 2k2 + 2k + kt + t = O(k2 + kt)
vertices. Since the neighborhood partition can be computed in polynomial
time [23] this admits a polynomial kernel.

3.2 NP-Hardness

In this section, we show NP-Hardness for Block Modeling by reducing
from Sparse Split Graph Editing [5] which is NP-hard [21].

Sparse Split Graph Editing
Input: A graph G = (V,E) and an integer k.
Question: Can G be modified by at most k edits, such that V can be

partitioned into a clique C and an independent set P such
that the vertices of P are isolated in the resulting graph?

First, we show the NP-hardness for t = 2 with Lemma 3.7. Let (G =
(V,E), k) be an instance of Sparse Split Graph Editing. Consider the
graphG′ = (V ∪K,E) that consists ofG and an independent setK containing
k+ 1 new vertices. Let (G′, k, t = 2) be the instance for Block Modeling.
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Lemma 3.7. There is a Sparse Split Graph Editing solution of (G, k)
if and only if there is a Block Modeling solution of (G′, k, 2), where G′

is constructed as described above.

Proof. (⇒) : Let Esol be the solution of Sparse Split Graph Editing for
(G, k). We show that Esol is a solution of Block Modeling for (G′, k, 2)
as well. Obviously, the size of Esol is at most k. Let G′res = G′4Esol be
the resulting graph of G′ applied with the edits Esol. The vertices of K are
unaffected by Esol and therefore are isolated in G′res. The transformation
with Esol partitions V into a clique C and an isolated set P . Obviously, the
vertices of P ∪K are in the same neighborhood class in G′res since they are
all isolated.
The vertices of C define a clique in G′res and have no other neighbors. Thus,
the vertex set C defines a neighborhood class in G′res. This implies that G′res
has a neighborhood diversity of at most 2.
(⇐) : Now, let Esol be the solution of Block Modeling for (G′, k, 2). Due
to Lemma 3.5 we construct a solution E ′sol from Esol such that every vertex
of K is unaffected. We show that E ′sol is a solution of Sparse Split Graph
Editing for (G, k). The size of E ′sol is at most k. Let G′res = G′4E ′sol be the
resulting graph of G′ applied with the edits E ′sol. Since the vertices of K are
in the same neighborhood class, let Q1 be the neighborhood class including
K and let Q2 be the other neighborhood class in G′res. We know that Q1 is
a negative neighborhood class and every vertex of it is isolated. Therefore,
the neighborhood class Q2 has to be positive, otherwise the vertices of are
isolated as well and therefore in Q1. The existence of Q2 do not affect the
following conclusion. If there is no second neighborhood class, Q2 can be
treated as the empty set.
Altogether, through E ′sol the vertices V partitions into an isolated indepen-
dent set Q1 \C and a clique Q2. These are the conditions for Sparse Split
Graph Editing. Since only K is added to G by construction and every
vertex of K is unaffected by E ′sol, the edits E ′sol fulfill the requirements for a
solution of Sparse Split Graph Editing for (G, k).

Next, we show that Block Modeling is NP-hard for t ≥ 2.

Theorem 3.2. Block Modeling is NP-hard for t ≥ 2.

Proof. For t = 2 the NP-hardness is shown by Lemma 3.7. For t > 2 we
reduce from Sparse Split Graph Editing as well. Let (G = (V,E), k) be
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the instance of Sparse Split Graph Editing. Consider the instance (G∗ =
(V ∗, E∗), k, t) of Block Modeling where G∗ is defined as G′ but in addi-
tion with t− 2 many cliques S = {S1, . . . , St−2} of size k+ 1. Each clique Si
is non-adjacent to every other vertex in V \ Si.
First, assume that Esol is a solution of Sparse Split Graph Editing
for (G, k). As proven in Lemma 3.7 applying Esol on graph G∗ the vertices
of V ∪ K are in at most two neighborhood classes. Every vertex of any
clique of S is unaffected and therefore these vertices are in at most t −
2 neighborhood classes. Hence, Esol is a solution of Block Modeling
for (G∗, k, t).
Second, assume thatEsol is now a solution of Block Modeling for (G∗, k, t).
Due to Lemma 3.5 we construct the solution E∗sol where every vertex of
K ∪

⋃
S∈S S is unaffected. Since the cliques of S are in exact t− 2 neighbor-

hood classes, the vertices of V ∪ K are in at most 2 neighborhood classes.
Analogue as in the proof of Lemma 3.7, the vertices of V are partitioned
into a clique and an isolated independent set. Therefore, E∗sol is a solution of
Sparse Split Graph Editing for (G, k).
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4 Algorithms

In this section, we present some branch-and-bound algorithms, heuristics and
ILP-formulations.

4.1 Branch-and-Bound

Branch-and-bound algorithms are used to solve discrete or combinatorial
problems. Such an algorithm computes the solution by solving subproblems
stepwise. A question of a subproblem can be whether to include an edge to
the solution or not. A branch-and-bound algorithm can be viewed as a search
tree where one branch represent a decision of a solution to a subproblem.
Due to lower bounds or other criteria for exclusion, some branches do not
need to be considered, they will be cut off. For more about branch-and-
bound algorithms we refer to [8].
The first algorithm considers t+ 1 many vertices from distinct neighborhood
classes. At least two of these vertices have to be in the same neighborhood
class in the resulting graph. This gives us

(
t+1
2

)
branch possibilities. But

what has to be done to assure that two vertices will be in one neighborhood
class? Remember, if two vertices are in one neighborhood class, they have
the same adjacency to each other vertices. In other words, the pair of these
two vertices has no witnesses in the resulting graph.
To bring u and v in the same neighborhood class, all witnesses need to
be resolved. There are two ways to resolve a witness w of the pair {u, v}.
Without loss of generality, let {w, u} ∈ E and {w, v} /∈ E. To resolve w
for {u, v} we have to either add the missing edge {w, v} or delete the present
edge {w, u}. This decision has to be done for each witness independently.
Hence, there are 2r different possibilities to achieve that u and v are int the
same neighborhood class, where r = wit({u, v}) is the number of witnesses
of {u, v}. We call an edit set S a resolve set of {u, v} if the edits of S
resolve every witness of {u, v} and S is minimal under this property. With
this, we can write a basic version of a branch-and-bound algorithm shown in
Algorithm 1.
Clearly, the algorithm terminates because the vertex pair {u, v} have at least
one witness and thus a recursive call has a smaller edit budget k.
Note that instead of computing the set T it is possible to branch over the
witnesses. In each node, a witness resolves either by addition or by removal.
See Figure 3 for more details.
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(a) Example graph G = (V,E). Every
circle represents a vertex of V . Lines
between vertices are edges of E.

consider vertices v1, v2, v3
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(b) Visualization of a possible branching of Algorithm 1. On violet nodes t + 1
vertices from distinct neighborhood classes are chosen. Violet lines indicate the
choice of a vertex pair. In red nodes a random witness of the earlier chosen vertex
pair is selected. The red lines portray the kind how the witness is resolved.

Figure 3: Example branching of Algorithm 1 with t = 2.
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Algorithm 1: Method solve

Input: Instance I = (G, k, t) of Block Modeling
Output: True if and only if I is a yes-instance of Block

Modeling
1 if k < 0 then return False;
2 if G has neighborhood diversity of at most t then return True;
3 T ← list of t+ 1 vertices of distinct neighborhood classes;

4 foreach {u, v} ∈
(
T
2

)
do

5 T ← collection of all resolve sets of {u, v};
6 foreach Eedit ∈ T do
7 G′ ← G4Eedit;
8 I ′ ← (G′, k − |Eedit|, t);
9 if solve(I ′) then return True;

10 end

11 end
12 return False;

In the following, we estimate the running-time of Algorithm 1. The algorithm
has two kinds of branching, one that chooses a vertex pair which vertices will
be in the same neighborhood class in the resulting graph with

(
t+1
2

)
possi-

bilities and the other one that resolves a witness with 2 possibilities. The
first one is worse because

(
t+1
2

)
> 2 for t ≥ 2 (the case t = 1 is trivial as

shown by Observation 3.1). We get the worst branching when the algorithm
considers only vertex pairs that have only one witness. In this situation, the
branch tree alternates between these two branch cases. Then, the branch
tree has the maximum depth of 2k because the edit budget decreases by 1
after one witness is resolved. When combining one cycle of the alternation,
the combined branch case has

(
t+1
2

)
· 2 branches. With the combined branch

case the search tree has a depth of k. Therefore, the upper bound of leafs in
the branch tree is (

(
t+1
2

)
· 2)k = (t2 + t)k. The other computations depend on

n, the neighborhood classes can be calculated in polynomial time [23] and
the search of a witness can be done in linear time with the adjacency matrix.
Altogether, Algorithm 1 runs in O((t2 + t)k · n3) time.

After resolving all witnesses of a vertex pair, Algorithm 1 can still sepa-
rate these vertices afterwards if they will be resolved differently for another
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vertex pair.
In order to prevent these situation, we present a vertex-weighted variation of
Algorithm 1 that merges vertices. This variation uses a weight function ω :
V → N+ and a label function ` : V → {⊕,	,�}. To merge a vertex
pair {u, v}, the vertices u and v have to be in the same neighborhood class.
After the merge, v is not be part of the graph in the recursive call. The
weight function states how many vertices of the very first input graph are
represented by one vertex. The initial value of the weight for each vertex
is 1. The weight of u increases by ω(v) when merging u and v.
Through the deletion of v, we lose the information whether {u, v} is an edge
or not. Therefore, we make a case distinction whether {u, v} is an edge or
not in the resulting graph and label u accordingly. The label ⊕ of a vertex
u states that u has to be in a positive neighborhood class. Analogous, the
label 	 of a vertex u states that u has to be in a negative neighborhood
class. The label � makes no statement. When one vertex is labeled as ⊕
and another vertex is labeled with	, these two vertices cannot be in the same
neighborhood class by definition, we say they are not mergeable. Whether
two vertices u, v are mergeable, is determined by the function

mergeable`(u, v) := `(u) = `(v) ∨ `(u) = � ∨ `(v) = �.

The function mergeable needs to be considered in the neighborhood classes
as well. Therefore, we define the modified relation ∼`G as

u ∼`G v := u ∼G v ∧mergeable`(u, v).

At last, since vertices may represent more than themselves the cost of an edit
differs with Algorithm 1. For this problem, the editing cost of a vertex pair
{x, y} is defined as ω(x) · ω(y).
Altogether, we stated the necessary definitions to introduce:

Vertex-Weighted Block Modeling
Input: A graph G = (V,E), an edit budget k, a positive inte-

ger t, a weight function ω : V → N+ and a label function
` : V → {⊕,	,�}.

Question: CanG be modified by a cost budget of k such that the resulting
graph has at most t neighborhood classes with respect to ∼`G
where an edit {u, v} costs ω(u) · ω(v)?
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Algorithm 2: Method solve

Input: Instance I = (G, k, t, ω, `) of Vertex-Weighted Block
Modeling

Output: True if and only if I is yes-instance of
Vertex-Weighted Block Modeling

1 if k < 0 then return False;
2 if G has at most t neighborhood classes with respect to ∼`G then
3 return True
4 T ← list of t+ 1 vertices of distinct neighborhood classes;

5 foreach {u, v} ∈
(
T
2

)
do

6 T ← collection of all resolve sets of {u, v};
7 foreach Eedit ∈ T do
8 G′ ← (G4Eedit)− v;
9 r ←total edit cost of Eedit;

10 if `(u) 6= 	 and `(v) 6= 	 then
11 r⊕ ← r;
12 if {u, v} /∈ E then r⊕ ← r+ cost of {u, v} ;
13 I⊕ ← (G′, k − r⊕, t, ωu,v, `⊕u,v);
14 if solve(I⊕) then return True;

15 if `(u) 6= ⊕ and `(v) 6= ⊕ then
16 r	 ← r;
17 if {u, v} ∈ E then r	 ← r+ cost of {u, v} ;
18 I	 ← (G′, k − r	, t, ωu,v, `	u,v);
19 if solve(I	) then return True;

20 end

21 end
22 return False;
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The labeling and the weights changes slightly in the recursive calls. We define
the update for ω and ` after a merge process of {u, v} of Algorithm 2 by:

ωu,v(x) :=

{
ω(u) + ω(v) x = u,

ω(x) otherwise,

`⊕u,v(x) :=

{
⊕ x = u,

`(x) otherwise,

`	u,v(x) :=

{
	 x = u,

`(x) otherwise.

For the label function `, it is important whether the vertices are merged into
a clique or into an independent set. Therefore, there are two versions of the
update.
In the following, we show that Algorithm 2 is correct for Vertex-Weight-
ed Block Modeling and that Vertex-Weighted Block Modeling
generalizes Block Modeling. Therefore, Algorithm 2 can be used to solve
an instance of Block Modeling.

Lemma 4.1. The recursive steps of Algorithm 2 are correct.

Proof. Let I = (G, t, k, ω, `) be the instance to be considered. This proof
splits into two parts. The first part shows that if a recursive call returns
True, then there is a solution for I. The second part shows that if I is a
yes-instance of Vertex-Weighted Block Modeling, then at least one
recursive call has to return True.

For the first part we consider the recursive call with instance I⊕ = (G′, k′ =
k − r⊕, t, ωu,v, `

⊕
u ), where u and v will be in a positive neighborhood class.

Let Esol be the solution of I⊕. We split E⊕sol = Eu ∪ Erest in two parts.
In Eu are all edits which contain u and Erest consists of the remaining edits.
Let Ev := {{v, u} | {u, u} ∈ Eu} be the set that mimics the changes of u
to v. We define E ′edit := Eedit and add the edge {u, v} to E ′edit if {u, v} /∈ E.
Now, we show that the edits E ′edit∪Erest∪Eu∪Ev are a valid solution for G.
Intuitively, E ′edit ensures that u and v are in the same neighborhood class and
adds the missing edge {u, v} if necessary. The edits Eu and the “mimic” Ev
ensures, that u and v stay in the same neighborhood class. At last, Erest

changes the vertices V \ {u, v} such that the vertices of V are in at most t
neighborhood classes.
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Now, we discuss the cost of the edits E ′edit ∪Erest ∪Eu ∪Ev with the weight
function ω. To improve the readability, we overload the operator ω and define
for an edit set ES the summed edit cost as ω(ES) :=

∑
e∈ES

w(e). Through
the algorithm, we know that

ω⊕u,v(Erest ∪ Eu) ≤ k − r⊕ = k′ and

ω(E ′edit) = r⊕.

The cost of each edit in Erest is the same for ω and ω⊕u,v since neither u nor
v are in an edit of Erest. Because of the additional cost for u with ω⊕u,v, we
“pay” for Ev:

ω⊕u,v(Eu) = ω(Eu) + ω(Ev). (1)

With this, we can estimate the cost of E ′edit ∪ Erest ∪ Eu ∪ Ev:

ω(E ′edit) + ω(Erest) + ω(Eu) + ω(Ev)

= r⊕ + ω⊕u,v(Erest) + ω⊕u,v(Eu)

(∗)
= r⊕ + ω⊕u,v(Erest ∪ Eu)
≤ r⊕ + k − r⊕ = k.

Note that the equation marked with (∗) only holds because Erest and Eu are
disjoint. The cost of the solution is bounded by k and hence it is a valid
solution. Second, we consider I	 = (G′, k′ = k − r	, t, ωu,v, `	u ). This case
with an independent set verifies analogously.

In the second part, we assume that I is a yes-instance of Vertex-Weight-
ed Block Modeling. We know that at least two vertices of T have to be
in the same neighborhood in the resulting graph. Let u and v be those two
vertices. without loss of generality let u and v be in a positive neighborhood
class in the resulting graph. Let EI

sol be a solution of I. Let EI
edit be an edit

set of T that is a subset of EI
sol. Let I⊕ be the instance when the second

foreach-loop of Algorithm 2 considers EI
edit.

We show that I⊕ is a yes-instance of Vertex-Weighted Block Model-
ing by constructing a solution for I⊕. The construction proceeds similar to
construction of part one. Let Eu,v := EI

sol∩{u, v} the set containing {u, v} if
it is in EI

sol. We split EI
sol in EI

edit∪Eu,v∪Eu∪Ev∪Erest. Similar to part one,
in Eu is every edit e ∈ EI

sol where u ∈ e and e /∈ EI
edit ∪ Eu,v. The edit set

27



Ev is defined analogously. The set Erest consists of the remaining edits. The
edit set Esol := Erest∪Eu is a valid solution for instance I⊕. The explanation
is the same as in part one.
At last, we have to show that ω(Esol) ≤ k′ = k − r⊕. Lets denote what we
know by the algorithm:

ω(EI
sol) ≤ k,

ω(EI
edit ∪ Eu,v) = r⊕.

This implies ω(Eu) + ω(Ev) + ω(Erest) ≤ k − r⊕. Because Erest does not
contain an edit which contains u or v, the cost of Erest is the same with ωu,v
as with ω. Thus, ω(Erest) = ωu,v(Erest). The equation (1) applies here as
well. Now, we insert these equations in the upper implication and we are
done:

ω(Eu) + ω(Ev) + ω(Erest) ≤ k − r⊕
⇔ ωu,v(Eu) + ωu,v(Erest) ≤ k − r⊕
⇔ ωu,v(Esol) ≤ k − r⊕.

Theorem 4.1 shows that Vertex-Weighted Block Modeling generalize
Block Modeling.

Theorem 4.1. Any instance I = (G = (V,E), k, t) of Block Model-
ing is a yes-instance if and only if the instance I ′ = (G, k, t, ω, `) of Ver-
tex-Weighted Block Modeling is a yes-instance with ω(x) = 1 and
`(x) = � for each x ∈ V .

Proof. With such a configuration of ω and `, every edit has cost 1 and every
vertex pair is mergeable, hence ∼`G ⇔ ∼G. Thus, I is a yes-instance if and
only if I ′ is a yes-instance.

4.2 Heuristics

In this section, we present two greedy algorithms and a local search approach.
A heuristic finds a feasible solution in polynomial time but without a guar-
antee of an optimal solution. The greedy algorithm presented here build a
solution stepwise. In each step, the unfinished solution expands locally in an
optimal way.
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4.2.1 Block-Framework

This section explains the framework of the heuristics. Let G = (V,E) be
the input graph. The approaches compute the cost of a partition B =
{B0, B1, . . . , Bb} of V . Each set of this partition is called block. In one
step, the heuristic computes greedily a new partition with a decreased num-
ber of blocks. This step repeats until the partition consists of t blocks. A
start partition may be the neighborhood partition.
For each block, we compute the minimal cost such that all vertices of this
block will be in the same neighborhood class. We achieve this by two aspects.
First, a block has to be a clique or independent set in the resulting graph G′ =
(V,E ′). Second, two blocks have to be adjacent or non-adjacent in G′. We
define the cost functions ωinner and ωouter that compute the minimal cost for
both aspects. Let Eedges(Bi) :=

(
Bi

2

)
∩ E be the edges within the block Bi

and let Eedges(Bi, Bj) := E(Bi, Bj)∩E be the edges between Bi and Bj. The
cost functions are defined as:

ωinner(Bi) :=

{
min(

(|Bi|
2

)
− Eedges(Bi), Eedges(Bi)) |Bi| > 1,

0 otherwise,

ωouter(Bi, Bj) := min(E(Bi, Bj)− Eedges(Bi, Bj), Eedges(Bi, Bj)).

Finally, the cost of a partition is the sum of the cost of each block and of the
cost of each unordered pair of

(B
2

)
:

ωpartition(B) :=
∑
Bi∈B

ωinner(Bi) +
∑

{Bi,Bj}∈(B2)

ωouter(Bi, Bj).

4.2.2 Merge-Heuristic

The start partition is the neighborhood partition of G. Based on the parti-
tion, the first heuristic Merge-Heuristic searches the best partition by joining
two blocks. The function mergeB(Bi, Bj) returns the partition where two
blocks Bi and Bj of B are joined:

mergeB(Bi, Bj) := (B \ {Bi, Bj}) ∪ {Bi ∪Bj}

A pseudocode for Merge-Heuristic can be found in Algorithm 3.
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Algorithm 3: Method Merge-Heuristic

Input: Instance I = (G, t)
Output: upper bound for a solution of I

1 B ← neighborhood partition of G;
2 while |B| > t do
3 find Bi ∈ B and Bj ∈ B such that ωpartition(mergeB(Bi, Bj)) is

minimal;
4 B ← mergeB(Bi, Bj);

5 end
6 return ωpartition(B);

4.2.3 Split-Heuristic

The second heuristic Split-Heuristic decreases the partition by one in each
step as well. Again, the start partition is the neighborhood partition of G. In
each step, the algorithm determines a block which vertices are put in other
blocks. We say the block is split. To determine a block to split, we define
a function τ which describes the cost increase when augmenting a block by
a vertex. For example, let B the current block partition and we want to
compute the cost increase for a vertex v ∈ Bv by putting v in Bi. For an
naive approach let B′ := B \ {Bv} be the partition without Bv and let B′′ :=
(B′ \ {Bi})∪ {Bi ∪ {v}} be the partition without Bv where Bi is augmented
by v. The cost difference is computed by ωpartition(B′′)− ωpartition(B′).
Because of canceling of terms where the augmentation does not affected ωinner

or ωouter, we can simplify the term to:

τB′(Bi, v) := ωinner(Bi ∪ {v})− ωinner(Bi)

+
∑

Bi 6=Bj∈B′
ωouter(Bi ∪ {v}, Bj)− ωouter(Bi, Bj)

The minimal cost increase for a vertex v ∈ Bv is computed by min
Bi∈B′

τB′(Bi, v).

To determine the block which should be splitted, the algorithm searches a
block B∗ such that sum of the minimum cost increase of all vertices of B∗ is
minimal.
When spitting a block, the block is first removed from the partition. Then,
each vertex of B∗ will be put sequentially in another block such that the
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cost increase is minimal. After the distribution of the vertices, one step is
complete. The pseudocode of the Split-Heuristic is shown in Algorithm 4.
Note that the order of the vertices during the splitting process can affect
the distribution. Furthermore, the precomputed cost for such a block B∗ of
the block partition B is not always the actual cost after the split. This is
due to the fact that the cost increase for each vertex v is computed with
the partition B \ {B∗}. The other vertices of B∗ \ {v} are not considered in
τB\{B∗}(Bi, v) for some Bi ∈ B \ {B∗}. Note that the actual cost of a split
can only be higher than the estimation.

Algorithm 4: Method Split-Heuristic

Input: Instance I = (G, t)
Output: upper bound for a solution of I

1 B ← neighborhood partition of G;
2 while |B| > t do
3 find Bv ∈ B such that

∑
v∈Bv

min
Bi∈B′

τB′(Bi, v) is minimal with

B′ = B \ {Bv};
4 B ← B′;
5 foreach v ∈ Bi do
6 find Bj ∈ B such that τB′′(Bj, v) with

B′′ = B \ {Bj} ∪ {Bj ∪ {v}} is minimal;
7 B ← B′′;
8 end

9 end
10 return ωpartition(B);

4.2.4 Local Search

Our local search algorithm receives the graph and a block partition as input.
The algorithm tries to improve the solution by small changes until it no more
improvement can be done.
Our approach has three kinds of changes. If no change can decrease the cost
of the partition, the local search stops. Otherwise, the algorithm tries to
improve the partition further.
The first change removes a vertex from its block and puts the vertex to
a block where the cost increases is minimal. The second change swaps the
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blocks of two vertices if it reduces the cost. The third change puts all vertices
of the same neighborhood class of a block to another block if this reduces the
cost. For the last change, we define the neighborhood class distribution of a
block B. LetW = {W1, . . . ,Ww} be the neighborhood partition of a graphG.
Then, the neighborhood class distribution of B is {W1 ∩ B, . . . ,Ww ∩ B}.
The local search heuristic is shown in Algorithm 5.

Algorithm 5: Method Local Search

Input: Graph G and block partition B
Output: locally improved block partition

1 repeat
2 foreach v ∈ V do
3 remove v from its block and update B;
4 find Bi ∈ B such that τB(Bi, v) is minimal;
5 put v in Bi and update B;

6 end

7 foreach {u, v} ∈
(
V
2

)
do

8 Bu ← block of u;
9 Bv ← block of v;

10 put u to Bv and put v to Bu if the updated B has a lower cost;

11 end
12 foreach B ∈ B do
13 S ← neighborhood class distribution of B;
14 forall S ∈ S do
15 remove all vertices of S from B and put them to any

block if the updated B has a lower cost;

16 end

17 end

18 until ωpartition(B) does not change;
19 return B;

4.3 ILP-Formulations

In this section, we introduce two Integer Linear Program-formulations for
Block Modeling. An Integer Linear Program (ILP) consists of a set of
variables, a linear objective function that is to minimize or maximize and the
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so-called constraints. A constraint is a linear equation or a linear inequation.
The goal of the ILP is to find one assignment of the variables that all con-
straints are satisfied and the objective function is optimal. For more theory
about ILPs and formal definition, we refer to [29]. We implemented the ILP
with the Gurobi1 solver.

The concept of our first ILP is derived from Algorithm 1. Let G = (V,E) be
the input graph.
The editing of one vertex pair {u, v} is represented by the edit variable e{u,v} ∈
{0, 1}. If e{u,v} = 1, then {u, v} is in the solution, and not otherwise. Hence,
the function to minimize is

∑
{u,v}∈(V

2)
e{u,v}.

We introduce a merge variable m{u,v} ∈ {0, 1} for each vertex pair {u, v} ∈(
V
2

)
. If a merge variable m{u,v} equals 1, all witnesses of {u, v} are resolved.

Let w be a witness of {u, v}. The constraints

m{u,v} ≤ e{u,w} + e{v,w},

m{u,v} ≤ 2− e{u,w} − e{v,w}

guarantee that exactly one edit variable equals 1 and thus, in the solution w
is resolved correctly for {u, v}.
Among t + 1 vertices V ′ ⊂ V at least two vertices have to be in the same
neighborhood class in the resulting graph. Therefore, among

(
V ′

2

)
there is at

least one vertex pair {x, y} such that the merge variable m{x,y} equals to 1
for a solution.
Due to the transitivity of ∼G, we add further constraints. Consider the
vertices u, v and w. If m{u,w} = m{v,w} = 1, then m{u,v} has to be 1 as well.
This is fulfilled by the constraint

m{u,w} +m{v,w} −m{u,v} ≤ 1.

1see https://www.gurobi.com/
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The ILP is given by:

min
∑

{u,v}∈(V
2)

e{u,v},

s. t. # witness constraints

m{u,v} ≤ e{u,w} + e{v,w} ∀{u, v} ∈
(
V

2

)
,∀w : w is witness of {u, v},

m{u,v} ≤ 2− e{u,w} − e{v,w}
# merge constraints∑
1≤i<j≤t+1

m{vi,vj} ≥ 1 ∀{v1, v2, . . . , vt+1} ∈
(

V

t+ 1

)
,

# transitivity constraints

m{u,w} +m{v,w} −m{u,v} ≤ 1 ∀{u, v, w} ∈
(
V

3

)
,

e{u,v} ∈ {0, 1},m{u,v} ∈ {0, 1} ∀{u, v} ∈
(
V

2

)
.

Now, we analyze the number of variables and constraints. For each vertex
pair, the ILP has an edit variable and a merge variable. In total, there are
2 ·
(
n
2

)
= O(n2) variables. Two constraints are constructed for each witness

of a vertex pair. A vertex pair can have up to n − 2 witnesses. Thus, the
ILP has

(
n
2

)
· (n − 2) = O(n3) witness constraints. There are O(n3) many

transitive constraints as well, one for each vertex triple. The largest number
of constraints is taken by the merge constraints. There are

(
n
t+1

)
= O(nt+1)

many of them.

The Gurobi solver offers the possibility to add constraints via callbacks.
Sometimes, not all constraints are necessary to find the optimal solution
for an ILP. An ILP can start with a subset of the constraints and receives
more constraints during the computation via callbacks. This technique can
decrease the running-time. Callbacks can interrupt the ILP on many events.
We use the callbacks exclusively when the ILP finds an optimal solution for
its (incomplete) set of constraints. In Section 6.3, it is described which con-
straints of this ILP are added via callbacks for our evaluation.

The second ILP creates its constraints only via callbacks. Let G = (V,E)
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be the input graph. As same as in the first ILP, the editing of one vertex
pair {u, v} is represented by the edit variable e{u,v} ∈ {0, 1}. If e{u,v} = 1,
then {u, v} is in the solution, and not otherwise. The function to minimize
is

∑
{u,v}∈(V

2)
e{u,v}.

Consider t + 1 many vertices V ′ = {v1, . . . , vt+1} of distinct neighborhood
classes in G. Every vertex pair of

(
V ′

2

)
has at least one witness. For one

vertex pair {x, y}, let χGx,y be an arbitrary but fixed witness of {x, y} in G.

We know that at least one witness of a vertex pair in
(
V ′

2

)
has to resolved.

This property is fulfilled by this constraint∑
{u,v}∈(V ′

2 )

e{u,χG
u,v} + e{v,χG

u,v} ≥ 1.

This constraint is correct for G but not for the callbacks. Consider a callback:
The ILP has a solution Esol that may be incomplete or wrong. We have to
search the t + 1 many vertices of distinct neighborhood classes in G4Esol

since similarities and witnesses may change by the application of Esol. Fur-
thermore, we have to adjust our constraint to consider already edited vertex
pairs of Esol.
Let {x, y} be a vertex pair and let z be a witness of {x, y}. Let {x, z} ∈ Esol

be an edited vertex pair and let {y, z} /∈ Esol be unedited. To resolve z for
{x, y} either {y, z} has to be edited or the edition of {x, z} must be undone.
Hence, we set the term 1− e{x,z} instead of e{x,z} when {x, z} is edited.
For this, we define a function

κEsol
({x, y}) :=

{
e{x,y} {x, y} /∈ Esol,

1− e{x,y} {x, y} ∈ Esol.

Altogether, let Esol be the solution of a callback and let G′ = G4Esol. For a
vertex set V ′ of size t+ 1 containing vertices of distinct neighborhood classes
in G′ we add ∑

{u,v}∈(V ′
2 )

κEsol
({u, χG′u,v}) + κEsol

({u, χG′u,v}) ≥ 1

to the constraints.
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5 Speed-Ups

In this section, we provide some lower bounds, reduction rules and other
improvements for the branch-and-bound algorithms. To store more infor-
mation, we present annotated versions for both problems. Generally, the
improvements are described for the annotated version of Block Model-
ing. Afterwards, we describe the adaptations to the annotated version of
Vertex-Weighted Block Modeling.

5.1 Basic Improvements

We modify the graph for the recursive calls instead of creating a copy and
then modifying it. To facilitate this, we decided to implement the neighbors
of a vertex with a slightly modified Partitionable Set [32]. This set consists
of two arrays. Consider the neighborhood of the vertex u. One array A1

stores the neighbors. The first |N(u)| entries in A1 are the neighbors of u.
The other array A2 stores the index in A1 for each vertex. If a vertex is not
in the set, its index in A2 is −1.
The adjacency between two vertices can be checked in constant time and the
iteration through the neighbors of a vertex v can be done in O(|N(v)|) time.
The insertion and removal of neighbors is also done in constant time.

5.2 Annotations

Since the speed-ups store additional information, we introduce the annotated
versions of Block Modeling and of Vertex-Weighted Block Mod-
eling. First, we describe which annotations are in each problem and then
we define the annotated problems.
We store vertex pairs that cannot be in the solution of an instance in a set B
in both annotated versions. If a vertex pair is in B, we say it is blocked.
Only for Block Modeling, we store the information whether a vertex pair
is merged in a set M . Note that within a merge process in Vertex-Weight-
ed Block Modeling a vertex is deleted and therefore, this information
cannot be stored.
For both annotated problems, we store a set A where vertex pairs, which
vertices are not in the same neighborhood class in the resulting graph, are
stored. Vertex pairs of A are called apart.
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At last, we define a function ψ : V → N that states the number of edges
inside a vertex for the Vertex-Weighted Block Modeling. The use
of ψ is discussed later.
Since the annotations of the annotated problems serve for algorithmic pur-
poses, the problem question is unchanged.

Annotated Block Modeling
Input: A graph G = (V,E), an integer k, a positive integer t and

three sets of vertex pairs B, A and M .
Question: Is there a solution Esol of Block Modeling for (G, k, t) such

that

1. the vertices u and v with {u, v} ∈ A are in distinct
neighborhood classes,

2. the vertices x and y with {x, y} ∈ M are in the same
neighborhood class, and

3. vertex pairs of B are not in Esol?

Annotated Vertex-Weighted Block Modeling
Input: A graph G = (V,E), an integer k, a positive integer t, a weight

function ω : V → N, a label function ` : V → {⊕,	,�}, two
sets of vertex pairs B and A, and a function ψ : V → N.

Question: Is there a solution Esol of Vertex-Weighted Block Mod-
eling for (G, k, t, ω, `) such that

1. the resulting graph has at most t neighborhood classes
with respect to ∼`G and λ,

2. the vertices u and v with {u, v} ∈ A are in distinct
neighborhood classes with respect to ∼`G and λ, and

3. vertex pairs of B are not in Esol?

For the transformation of a Block Modeling instance or a Vertex-
Weighted Block Modeling instance to the corresponding annotated
problem, let every set of {A,B,M} be the empty sets and we set ψ(v) = 0
for each vertex v ∈ V .
In the later sections, we use a synonym to update the sets A, B and M . For
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example, if we say that we mark a vertex pair p as blocked, we put p in B.
This is analogous for the other sets and their denotations.
In this chapter, we refer to Block Modeling and Annotated Block
Modeling if we speak of the unweighted problems. Analogously, with the
weighted problems are Vertex-Weighted Block Modeling and An-
notated Vertex-Weighted Block Modeling meant.

5.3 Branching

A basic improvement for both annotated problems is to edit a vertex pair at
most once from the root to the leaf in the branch tree. To ensure this, we
mark a vertex pair as blocked in the recursive calls once it is edited.
In Annotated Block Modeling, when the algorithm declares one vertex
pair to merge and resolves all witnesses, we mark the vertex pair as merged.
This annotation is used for Reduction Rule 2.
Next, we describe the use of the apart vertex pairs for both annotated prob-
lems. Recall the situation of a vertex pair which is chosen to be merged.
Let T be a set of t+ 1 vertices of distinct neighborhood classes. At least one
vertex pair of

(
T
2

)
has to be merged in the solution graph. After no solution

is found for the merge of one vertex pair {x, y}, we mark {x, y} as apart
for the recursive calls since no solution exists where x and y are in the same
neighborhood class in the resulting graph. Apart vertex pairs can be skipped
in the foreach-loop of

(
T
2

)
since the solution would have been found in an ear-

lier branch where the vertex pair was merged. The meant foreach-loop is in
line 4 in Algorithm 1, and in line 5 in the Algorithms 2 and 6. Note that for
Annotated Vertex-Weighted Block Modeling two vertices which
are not mergeable can be viewed as apart as well and hence skipped in the
foreach-loop.
Therefore, in the selection of the t+1 vertices of distinct neighborhood classes,
it is advantageous when many vertex pairs are already apart. Let apart(v)
be the number of vertex pairs that are apart and contain v. We sort the
vertices of V by apart(v) of each vertex v in descending order to find a good
set T ′ such that many vertex pairs of

(
T ′

2

)
are apart. At first, we start with

an empty set T ′. We iterate through the sorted vertices and put a vertex v
in T ′ if no vertex of T ′ is in the same neighborhood class as v. This is done
until |T ′| = t+ 1.
In the following, we modify the branching in Annotated Vertex-Weight-
ed Block Modeling to decrease the number of nodes in the branch tree.
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The decision of the label of a vertex can be delayed in some cases. Then,
instead of branching in two cases it is possible to branch into one. To ac-
complish this, we make use of the function ψ : V → N that represents how
many edges are inside a vertex. When merging two vertices u and v, where
v is deleted in the recursive calls, the updated function ψu,v is defined as

ψu,v(x) :=


ψ(x) x 6= u,

ψ(u) + ψ(v) + ω(u) · ω(v) {u, v} ∈ E,
ψ(u) + ψ(v) {u, v} /∈ E.

If ψ(x) = 0, then x represents an independent set. If ψ(x) =
(
ω(x)
2

)
, then x

represents a clique. Consider now that the algorithm resolved all witnesses
for {u, v}. As long as ψu,v(u) = 0 or ψu,v(u) =

(
ωu,v(u)

2

)
, setting the label `(u)

can be delayed since no decision is necessary such that u represents a clique
or an independent set. Thus, this gives us the condition for the single branch.
In the other cases where 0 < ψ(u) <

(
ω(u)
2

)
, the normal branching has to be

done where the label `(u) is set in the recursive calls.
In the normal branching the costs r⊕ and r	 need an adjustment since it is
necessary to pay for edits such that the merged vertex represents a clique or
an independent set. We define the inner cost costI := V → N for a vertex as

costI(x) :=


(
ω(x)
2

)
− ψ(x) `(x) = ⊕,

ψ(x) `(x) = 	,
0 `(x) = �.

This function states how many edits are necessary for a vertex so that x
represents a clique (`(x) = ⊕) or x represents an independent set (`(x) = 	).
If the label ot the vertex x is �, then x represents a clique or an independent
set with no payment needed. In the recursive call, the inner cost of a merged
vertex u can be larger than the summed inner costs of u and v before the
recursive call. The difference of the costs has to be considered in the edit
budget. Therefore, we define the cost of a merged costI : V ×V ×{⊕,	} → N
as

costI(x, y,⊗) :=

{(
ωx,y(x)

2

)
− ψx,y(x) ⊗ = ⊕,

ψx,y(x) ⊗ = 	.
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Algorithm 6: Method solve

Input: Instance I = (G, k, t, ω, `, B,A, ψ) of Annotated
Vertex-Weighted Block Modeling

Output: True if and only if I is yes-instance of Annotated
Vertex-Weighted Block Modeling

1 if k < 0 then return False;
2 if G has at most t neighborhood classes with respect to ∼`G and λ

then return True;
3 T ← t+ 1 vertices of distinct neighborhood classes;

4 foreach {u, v} ∈
(
T
2

)
do

5 T ← collection of all resolve sets of {u, v};
6 foreach Eedit ∈ T do
7 G′ ← (G4Eedit)− v;
8 r ← total edit cost of Eedit;

9 if ψu,v(u) = 0 or ψu,v(u) =
(
ωu,v(u)

2

)
then

10 I ′ ← (G′, k − r, t, ωu,v, `, B,A, ψu,v);
11 if solve(I ′) then return True;

12 else
13 if `(u) 6= 	 and `(v) 6= 	 then
14 r⊕ ← r + costIncreaseI(u, v,⊕);
15 I⊕ ← (G′, k − r⊕, t, ωu,v, `⊕u,v, B,A, ψu,v);
16 if solve(I⊕) then return True;

17 if `(u) 6= ⊕ and `(v) 6= ⊕ then
18 r	 ← r + costIncreaseI(u, v,	);
19 I	 ← (G′, k − r	, t, ωu,v, `	u,v, B,A, ψu,v);
20 if solve(I	) then return True;

21 end

22 end
23 return False;
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To get the cost increase, we subtract the cost of the merged vertex with the
previous costs of the vertices:

costIncreaseI(x, y,⊗) := costI(x, y,⊗)− costI(x)− costI(y)

In Algorithm 6, the changes for the branching are included. Note that the
updates for the sets B and A are missing for overview purposes.
At last, we analyze how ψ affects the neighborhood classes. Because of ψ,
the relation ∼`G has to be adjusted once more. For example, let u and v
be two vertices which are adjacent to each other with ω(u) ≥ 2, ω(v) ≥ 2,
and ψ(u) = ψ(v) = 0. Moreover, let wit({u, v}) = ∅. In this example,
u and v represent independent sets of size at least 2 which are adjacent.
Even though {u, v} has no witnesses, the vertices are currently not in the
same neighborhood class. Since the explanation whether two vertices with
no witnesses are in the same neighborhood class has many special cases, we
provide a table for a better understanding. First, we define a second label
λ : V → {⊕,	,�} that states what a vertex x represents if `(x) = �. The
label function λ is defined as:

λ(x) :=


`(x) `(x) = ⊕ ∨ `(x) = 	,
� ω(x) = 1,

⊕ ψ(x) =
(
ω(x)
2

)
,

	 ψ(x) = 0.

Note that λ is not well-defined since the case `(x) = � with 0 < ψ(x) <
(
ω(x)
2

)
is missing. This is no problem because, when 0 < ψ(x) <

(
ω(x)
2

)
, the label `

is set to ⊕ or 	 by the algorithm. At last, we mark an vertex x with ⊕ if
x ∈ E and with 	, otherwise. Consider the Table 1 with two vertices u and
v with wit({u, v}) = ∅. Table 1 contains some examples for the ` and λ of u
and v, and the result whether u and v are in the same neighborhood class.
Essentially, if the row contains both symbols ⊕ and 	, then u and v are not
in the same neighborhood class.

5.4 Witnesses

In this subsection, we explain how to update the witnesses by an application
of an edit in the unweighted problems. The adaption for the weighted prob-
lems has to mention one more detail. This is described at the end. We store
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Table 1: Examples of the labels ` and λ of two vertices u and v with
wit({u, v}) = ∅. The last column states whether u and v are in the same
neighborhood.

`(u) `(v) λ(u) λ(v) mark of {u, v} Are u and v in the
same neighborhood class?

� � 	 	 ⊕ False
� � � 	 	 True
⊕ � ⊕ � ⊕ True
� 	 � 	 ⊕ False

for each vertex pair the witnesses in a Partitionable Set. Let G = (V,E) be a
graph. A naive computation to obtain every witnesses of a vertex pair {u, v}
can be done in O(|N(u)|+|N(v)|) time by iterating through N(u)∪N(v) and
check if the vertex is only adjacent to either u or v. Doing this computation
for every vertex pair in each branch is time-consuming.
To improve the running-time, we present how to update the witnesses inO(n)
time after an edit e = {u, v} is performed. Let G′ = G4{e}. Only vertex
pairs which contain exact one vertex of e are affected by the application
of e. For each other vertex pair, its witnesses are the same as before the
application of e. Now, consider the vertex pair {u,w} with w ∈ V \ {u, v}.
First, assume that v is a witness of {u,w} in G, that is, v is either adjacent
to u or to w. In G′, the vertex v is either adjacent to {u,w} or non-adjacent
to {u,w}. Hence, v is a non-witness of {u,w} in G′. Second, assume now
that v is a non-witness of {u,w} in G. This means, the vertex v is either
adjacent to {u,w} or non-adjacent to {u,w} in G. After the application
of e = {u, v}, v is adjacent to exactly one vertex of {u,w} in G′ and therefore
a witness. The vertex v is flipped in terms of being a witness of {u,w} after
a application of {u, v}. This is analogous with u and the vertex pair {v, w}.
In Algorithms 7 and 8 the update of the witnesses is shown as pseudocode.
Since Algorithm 8 iterates through almost every vertex and the operations on
the Partitionable Set can be done in constant time, the update is computed
in O(n) time. Unfortunately, O(n3) space is required because every vertex
pair has a Partitionable Set which has up to n− 2 witnesses.
Finally, we outline the adaption for the weighted problems. Algorithm 2 and
Algorithm 6 merge two vertices and with this process, a vertex v is removed
from V in the recursive call. With the removal of v, every entry where v is a
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Algorithm 7: Method flipWitness

Input: Vertex pair p = {x, y} and vertex z
1 if z is witness of p then
2 remove z from wit(p)
3 else add z to wit(p);

Algorithm 8: Method UpdateWitnesses

Input: Graph G = (V,E) and vertex pair {u, v}
1 foreach w ∈ V \ {u, v} do
2 flipWitness({u,w}, v);
3 flipWitness({v, w}, u);

4 end

witness has to be removed as well. This means a O(n2) computation effort
for a merge and its undoing since v could be a witness of almost every vertex
pair. Instead of iterating through every vertex pair, it is possible to store
a hash table [34] for each vertex z containing all vertex pairs where z is a
witness of. This hash table has to be updated in Algorithm 7.

5.5 Neighborhood Classes

In this subsection, we explain how to update the neighborhood classes by
an application of an edit in the unweighted problems. The adaption for the
weighted problems is described at the end. The naive computation for the
neighborhood partition claims O(n3) time [23]. Since two vertices u and v
are in the same neighborhood class if the vertex pair {u, v} has no witnesses,
the computation of the neighborhood partition can be done in O(n2) time if
the witnesses for every vertex pair are precomputed.
Consider a graph G = (V,E). Let d be the neighborhood diversity of G. In
the following, we show that with precomputed witnesses for each vertex pair
the neighborhood partition can be updated in O(d) time after an application
of an edit e = {u, v}.
Let W = {W1, . . . ,Wd} be the neighborhood partition of G. Let Wu be
the neighborhood class of u and let Wv be the neighborhood class of v
in G. The relation between two vertices of V \ {u, v} is the same since
their neighborhoods are the same in G′ as in G. LetW ′ = (W \{Wu,Wv})∪
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{Wu \ {u},Wv \ {v}} be the modified and unfinished partition for G′ where
u and v are removed from their neighborhood class. Since W ′ can contain
empty sets we remove them from W ′ in O(d) time. Note that W ′ is the
neighborhood partition of (G′ − u)− v.
We construct the neighborhood partition for G′ − v, and then the neighbor-
hood partition for G′. First, the neighborhood class for u will be “searched”,
afterwards for v. We outline the scheme of the search for u. In G′ − v the
vertex u is either in a neighborhood class with another vertex or in a neigh-
borhood class with no other vertices. At the beginning, we iterate throughW ′
and check whether {u,w} has no witnesses with an arbitrary vertex w of the
considered neighborhood class W in G′. If there is no witness, then add u to
Wi and we are done since W ∪ {u} is a neighborhood class in G′ − v. Oth-
erwise, the search continues. If there is no such vertex w in W ′, we add {u}
to W ′. Afterwards, we search analogously in the updated W ′ for v a neigh-
borhood class with G′ instead of G′ − v. At the end, the partition W ′ is the
neighborhood partition of G′.
Note that for the weighted problems the conditions that two vertices are in
the same neighborhood class are more complex. They have to be merge-
able and it is necessary to consider λ in Annotated Vertex-Weighted
Block Modeling. This augments the check whether two vertices are in the
same neighborhood class by a constant but it does not affect the running-time
bound.

5.6 Lower Bounds

In this section, we present two lower bound algorithms. Let I = (G, k, t) the
considered instance. A lower bound algorithm computes a number. We call
this number lower bound. A lower bound states how big k has to be such
that I can be a yes-instance. In other words, if one lower bound is greater
than k, then I is a no-instance.

The first lower bound algorithm is described for the unweighted problems.
Afterwards, an adaption for the weighted problems is given. This lower
bound algorithm estimates the minimal number of vertices that need to be
affected by a solution. Let d be the neighborhood diversity of G. Let ξ be
the sum of the size of the d− t smallest neighborhood classes in G.

Proposition 5.1. The number d ξ
2
e is a lower bound for an instance (G, k, t)
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of Block Modeling.

Proof. We assume the optimal scenario where, with an application of an
edit {u, v}, the neighborhoods of vertices u and v need no further adjustment
in the resulting graph. The neighborhood diversity has to be reduced by d−t
to get a graph with a neighborhood diversity of t. Therefore, at least the
vertices of d− t many neighborhood classes have to be affected by a solution.
The minimum of vertices to affect is given by ξ. Since an edit affects two
vertices, at least d ξ

2
e edits are necessary to affect the vertices of the d − t

smallest neighborhood classes. This implies that d ξ
2
e is a lower bound.

Note that for the weighed problems the number ξ is the minimal sum of the
weights of d − t many neighborhood classes. The weight of a neighborhood
class is the sum of the weights of the vertices: This can be done since the
edit {u, v} costs ω(u) · ω(v) which is at least ω(u)+ω(v)

2
.

To find the desired neighborhood classes, we create an array containing the
neighborhood classes. We partition this array such that the t “biggest” neigh-
borhood classes are in the first t entries. In the remaining entries are the
desired neighborhood classes for ξ. Note that “biggest” has a different mean-
ing in the weighted and unweighted problems. The partition is done with
Hoare’s selection algorithm [18] which is a variation of Hoare’s Quicksort [17].

The second lower bound algorithm is first described for the unweighted prob-
lems. Afterwards, two version of this lower bound algorithm are presented for
the weighted problems. Let G = (V,E) be a graph. This algorithm considers
t+ 1 vertices of distinct neighborhood classes. We call such a set a pack. As
already known, at least two vertices of one pack have to be in the same neigh-
borhood class in the resulting graph. To achieve this, all witnesses of this
vertex pair have to be resolved. For a pack P , let cost(P ) = minp∈(P

2)
|wit(p)|

be the smallest number of witnesses of a vertex pair {u, v} ∈
(
P
2

)
. The func-

tion cost(P ) states the minimal cost needed to resolve P . This number is
called cost for its pack.
A collection of packs is called packing. Furthermore, every vertex can be in
at most one pack of a packing. Let γ(P) =

∑
P∈P cost(P ) be the sum of the

minimal costs of to resolve every pack of the packing P .

Proposition 5.2. The number dγ(P)
2
e of a packing P is a lower bound for

an instance (G, k, t) of Block Modeling.
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Proof. Obviously, every pack has to resolved by a solution. To resolve a pack,
edits of E(P, V \ P ) are necessary. In the worst case, an edit of E(P, V \ P )
is also necessary for at most another pack P ′ ⊆ V \ P . Therefore, an edit
can affect at most two packs since every vertex is in at most one pack. Thus,
dγ(P)

2
e is a lower bound.

In the annotated problems the computation of cost(P ) can ignore vertex
pairs of

(
P
2

)
that are marked as apart since they will not be merged in the

further branches. Moreover, in the weighted problems vertex pairs of
(
P
2

)
that are not mergeable can be ignored in the computation of cost(P ) as well.

Note that there are generally multiple packings for G and they can have
different lower bounds. Finding the optimal packing P such that γ(P) is
maximal is not trivial. We present a greedy approach to find a packing.
Let S be the vertices that are not in a pack. Let P = ∅ be the pack that
we construct. Now, we describe the process. At first, we search the vertex
pair {u, v} in

(
S
2

)
such that wit({u, v}) is maximal where and u and v are in

distinct neighborhood classes, and {u, v} is mergeable and not apart. Add u
and v to P . Now, we add a vertex of S \P to P such that cost(P ) is maximal
until |P | = t+ 1. At last, we remove all vertices of P from S. Note that we
can only create a pack if the vertices of S are in at least t+ 1 many distinct
neighborhood classes.
Next, we present a local approach to improve a packing. This swaps vertices
of two distinct packs if the cost of both packs can increase. What means
“can increase” in this context? Consider a pack P with cost c. We call
the vertex pairs in a pack

(
P
2

)
with a resolving cost equals the current cost

of P bottleneck vertex pairs. Consider a swap of a vertex u ∈ P and another
vertex v ∈ P ′ 6= P . For the exchange, we demand that u is in at least
one bottleneck vertex pair of P . At the other hand, each vertex pair p
of E({v}, P \ {u}) should have a higher resolving cost than c, be apart, or
be not mergeable. The analog conditions hold for P ′ and v. For each pack
of {P, P ′} either the number of bottleneck vertex pair reduces or the minimal
resolve cost increases.
A swap can be also done with a vertex of a pack and another vertex that is
no pack. In this case, only the cost pack should increase by the swap.

For the weighted problems we have two variants of the second lower bound
algorithm. The first variant is the same as for the unweighted problems but
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with the exception that a vertex v can be in at most ω(v) packs. This lower
bound is still correct since a vertex v represents as many vertices of the initial
branch call as its weight ω(v).
The other variant uses of the weight function ω in the computation of cost(P )
for a pack P . Since in the weighted versions the resolving of a witness w
of {u, v} costs at least min(ω(u), ω(v)) · ω(w), we redefine function cost(P ).
Let ω({u, v}) = min(ω(u), ω(v)) ·

∑
w∈wit({u,v}) ω(w) be the minimal cost to

resolve all witnesses of {u, v}. We redefine cost(P ) := minp∈(P
2)
ω(p) as the

minimal resolve cost of a vertex pair in
(
P
2

)
.

In the following we describe how to improve the running-time computation
for the second lower bound algorithm in Annotated Vertex-Weighted
Block Modeling where a vertex can be at most in one pack. At the end,
we describe what needs to be adapted for the other lower bound algorithm
version where vertices may be in more than one pack. Instead of a complete
recomputation of the lower bound in each branch node, we update the pack-
ing and search for new packs. We store for each pack its cost in an integer to
avoid redundant computation. This integer has to be updated in some cases
as well. Let P be a packing for a graph G. The update of P has to consider
the following cases:

1. Two vertices are merged or the undo of a merge is done. In this cases,
we set a flag such that the lower bound recomputes the packing in the
next branch node.

2. A witness is flipped. We distinguish in two cases for the flip of a witness
of a vertex pair {u, v}. Note that only an update is necessary when u
and v are in the same pack P . Therefore, we assume that u and v are
in the same pack P . Let c′ be cost for resolving the witnesses of {u, v}.
If a witness is added to wit({u, v}), then the cost to resolve P can
increase. Thus, we recompute the cost for P . If a witness is removed
from wit({u, v}), then the cost to resolve P can decrease or even be 0.
Let c be the cost of P before the removal of the witness. If c′ < c, we
set the cost of P to c. Moreover, if wit({u, v}) = ∅ then u and v may
be in the same neighborhood class. In this case, we remove P from the
packing.

3. The apartness of a vertex pair {u, v} changes. This case is very similar
to the last one, we describe it nevertheless. An update is only necessary
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if u and v are in the same pack. Hence, we assume that u and v are
in the same pack P . Let c be the cost of P before the change. Let c′

be cost for resolving all witnesses of {u, v}. If {u, v} turns apart, then
the cost of P can increase if c′ = c. In this case, we recompute the cost
for P . If {u, v} turns not apart, then the cost of resolving P decreases
when c′ < c. In this case, we set the cost of P to c′. Moreover, if c′ = 0,
we remove P from P .

4. The mergeability of a vertex pair {u, v} changes. This update is analog
to the last case since the characteristics not mergeable and apart are
the equal for the packing.

5. A label is set for a vertex v. If v is in no pack, the packing P needs no
update. Otherwise, some vertex pairs can change their mergeablility.
Let Pv be the pack of v. We check whether a vertex pair of E({v}, Pv \
{v}) changed the mergeability and update is accordingly.

6. The vertex pair {u, v} is edited. Witnesses are flipped through an
edit. This update is already stated. Moreover, this edit can change
the mergeability of {u, v}. If the mergeability changes, then the corre-
sponding update described in Case 4 has to be done.

Now, we describe the adaption for the lower bound algorithmm for Anno-
tated Vertex-Weighted Block Modeling where a vertex can be in
multiple packs. In this situation, a change on a vertex pair {u, v} (Cases 2-
4 and 6) can affect multiple packs since u and v can be in more than one
common packs. The update can be done separately on the common packs.
Note that in Case 5 multiple packs can contain v. In each pack of these
packs, the search for a changed label has to be done.
Since the updates on the packing can prevent to find a better branching, we
still recompute the packing in a fixed cycle like in every x-th branch node.
Note that the update-process is also applicable for the unweighted problems.
In Block Modeling only Case 2 has to be considered and in Annotated
Block Modeling the Case 2 and Case 3 have to be considered.

5.7 Reduction Rules

In this section, we present some reduction rules for the annotated problems.
A reduction rule transforms the current instance I to another I ′ such that I
and I ′ are equivalent. Recall that every vertex pair of B cannot be edited
and every vertex pair in A cannot be merged.
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Reduction Rule 1. In any instance of the annotated problems, mark every
vertex pair where the resolving of all witnesses {u, v} costs at least k + 1 as
apart.

Proof. Let {u, v} be such a vertex pair. This rule is correct since it is not
possible that u and v can be in one neighborhood class by a solution because
the summed resolving cost of all witnesses is higher than k.

The following reduction rule concerns merged vertex pairs in Annotated
Block Modeling. After resolving all witnesses for a vertex pair, every
merged vertex pair of M should have no witnesses in the resulting graph. In
the resolving process it is possible that a merged vertex pair has witnesses in
a recursive call. Consider the following example. Let u and v be two vertices
where {u, v} is already marked as merged. Let {x, y} be the vertex pair to
be merged and wit({x, y}) = {u, v}. Let x be adjacent to {u, v}. In the
algorithm it is possible that u is resolved by addition and v is resolved by
deletion for {x, y}. Afterwards, {u, v} has x and y as witnesses.

Reduction Rule 2. Resolve every witness of every vertex pair that is merged
in a graph of an instance of in Annotated Block Modeling.

Proof. A vertex pair {u, v} is marked if every witness is resolved in the
algorithm. Therefore, every witness w in a recursive call is created by an
edit of E(w, {u, v}). Without loss of generality, let {u,w} be edited. Hence,
the witness w can be resolved in at most one way since {u,w} is already
edited. If {v, w} is also edited, the branch can be cut off.

Reduction Rule 3. In an instance of an unweighted problem, return false
if there are t+ 1 many neighborhood classes with a size of at least k + 1.

Proof. This rule is a conclusion of Lemma 3.5. If there are t + 1 many
neighborhood classes in the current graph with a size greater than k, then, in
the resulting of the optimal solution Esol, the vertices of these neighborhood
classes are unaffected. Hence, there are at least t + 1 neighborhood classes
in the resulting graph. This contradicts that Esol is a solution. Therefore,
the instance is a no-instance.

The next reduction rule is only applicable for instances of the weighted prob-
lems. Moreover, the rule requires information of the initial graph G∗. The
initial graph means the graph of the root of the branch tree.
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Reduction Rule 4. Merge every two vertices u and v of the same positive
neighborhood class in the initial graph if `(u) = `(v) = ⊕.
Analogue, merge every two vertices u and v of the same negative neighborhood
class in the initial graph if `(u) = `(v) = 	.

Proof. This reduction is a conclusion from Lemma 3.3 and the note after-
wards. This lemma states only for instances of Block Modeling. The
proof for Vertex-Weighted Block Modeling is analog, it needs only
few more arguments. First, note that if a vertex v is in a positive neighbor-
hood class, then `(v) 6= 	. In the second part of the proof, the cost of the
edit sets has to be considered instead of the number of edits. With these
adjustments Lemma 3.3 is also applicable for the weighted problems.
Now, we prove the this reduction rule. Since two vertices u and v with
`(u) = `(v) = ⊕ are in positive neighborhood classes in the resulting graph,
the condition for this lemma are satisfied. Hence, there is an optimal solution
where u and v are in a neighborhood class and they can be merged.
The argument for two vertices u and v with `(u) = `(v) = 	 is analog.

5.8 Branching Rule

In the following, we present a branching rule for the unweighted problems.
This branching rule is derived from Lemma 3.4 and can only be applied when
the conditions of Lemma 3.4 are fulfilled. Again, we need the information of
the initial graph G∗. Let G = (V,E) be the considered graph of the current
branch.

Branching Rule 1. Let v be a vertex of V and let Cv be the neighborhood
class of v. One vertex pair of E({v}, V \ Cv) has to be merged if

1. there is a neighborhood class C in G∗ where some vertices are affected
by the constructed and unfinished solution of the current branch and v
of C is unaffected, or

2. the neighborhood class Cv is a real subset of a neighborhood class C
in G∗.

Proof. We proof this rule with a case distinction.
First, consider Case 1. Due to Lemma 3.4, we know that v has be to affected,
otherwise the solution is not optimal. To affect v it has to be merged with
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some other vertex of a different neighborhood class. Thus, among E({v}, V \
Cv) at least one vertex pair has to be merged.
Second, consider Case 2. Again, due to Lemma 3.4 the vertex v has to be in
a neighborhood class with another vertex of V \C ′, otherwise the solution is
not optimal. Thus, among E({v}, V \ C ′) at least one vertex pair has to be
merged.

For comparison, normally one vertex pair among
(
t+1
2

)
vertex pairs has to be

merged. Hence, this reduction rule reduces the number of branch nodes if(
t+1
2

)
> |E({v}, V \ Cv)| = n − |Cv|. We simplify the term

(
t+1
2

)
> n − |Cv|

to |Cv| > n −
(
t+1
2

)
. Thus, the branching rule improves the running-time if

|Cv| is big or if t is so big that
(
t+1
2

)
≈ n.
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6 Evaluation

In this section, we evaluate our exact algorithms and our heuristics. We want
to find the size of an optimal solution for a graph G and the desired number
of neighborhood classes t.

6.1 Implementation Details

Our implementation2 is written in Java with OpenJDK 14.0.1 using IntelliJ
IDEA (Community Edition) in version 2020.1. To construct and solve our
ILPs we used the Gurobi Optimizer3 in version 9.5.0 under an academic
license. The evaluation was done on an Intel(R) Xeon(R) Silver 4116 CPU
2.10GHz machine with 128GB RAM under Debian GNU/Linux 11 operating
system.
We tested our algorithms on real-world social networks. We obtained the
graph data of Mastrandrea et al. [27] from sociopatterns.org4. All other
graphs are obtained through konect.cc5 [22]. Table 2 shows the list of graphs
we were using. For the graphs we use their abbreviations as noted in this
table instead of their names. Note that the references are also stated in
Table 2.
If a graph has selfloops, we ignore them. We also ignored the weight of
edges in graphs. Directed graphs were transformed into undirected graphs
by replacing direct edges with undirected ones. In a signed graph, each edge
is labeled either with −1 or +1. The two labels represents mostly opposite
relations. For example, +1 means the friendship of two vertices and −1
indicates an antipathy. Hence, we construct three graphs from a signed
graph. One graph has only the positive edges, the other graph contains all
negative edges and the third graph has all edges and ignores the labels. We
added a “pos” or “neg” after the graph name to indicate the version. In
bipartite graphs, the vertex set may not be homogeneous. For example, in
the test-graph SC, a vertex represents either a person or a company. Some
additional constraints can be set, like the restriction that a person and a
company are not allowed to be in one neighborhood class. For our evaluation,

2The source code and the results can be found at https://www.uni-marburg.de/en/
fb12/research-groups/algorith/blockmodeling.zip.

3see https://www.gurobi.com/
4www.sociopatterns.org
5www.konect.cc/networks/
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we ignored the fact that a graph is bipartite and therefore, set no additional
constraints.
Each algorithm has for a time limit of 30 minutes per instance. We test every
graph of Table 2 with every t ∈ {2, 3, 4, 5, 10}.

6.2 Branch-and-Bound

In this section, we discuss our choices for the branch-and-bound algorithms.
One way to obtain an optimal solution with a branch-and-bound algorithm,
is to apply the algorithm with I = (G, k′, t) as input. Every time I is a
no-instance, we increment k′ until the updated I is a yes-instance. Later in
this section, another way is described.
The first algorithm is the annotated version of Algorithm 1 for Block Mod-
eling with Reduction Rule 2 and with both lower bound algorithms. To
distinguish the algorithms we name this algorithm bb (Branch and Bound).
The second algorithm is the annotated version of Algorithm 2 for Vertex-
Weighted Block Modeling with Reduction Rule 4, modified branching
as described in Section 5.3 and with both lower bound algorithms. We name
this algorithm bbm (Branch and Bound Merge).
The second lower bound algorithm uses the version where a vertex can be in
more than one pack. Recall that a pack P consists of t + 1 many vertices
of distinct neighborhood classes and it is used to compute a lower bound
since the witnesses of at least one vertex pair of

(
P
2

)
have to resolved by a

solution. This version has given better results in some individual tests. Even
though in the other version, higher resolve cost can be achieved for a pack P ,
a vertex pair of

(
P
2

)
with small resolve cost determines the resolve cost of P .

We suppose that this is the reason why the version where a vertex can be in
more than one vertex is better in many cases.
We name an algorithm bbmnb (Branch and Bound Merge Normal Branching)
that is like bbm but without the modified branching. To see the impact of
the modified branching, we compare bbm with bbmnb. A comparison of the
running-times and the recursive calls of these algorithms is shown in Figure 4.
With increasing running-time, algorithm bbm is faster than bbmnb except for
5 instances and bbm is mostly twice as fast as bbmnb. This is also reflected
in the number of recursive calls. Moreover, bbm solved one more instance
within the time-limit. Therefore, we will not consider bbmnb in any other
evaluations.
In the following, we will adapt bb and bbm by using heuristics.
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Table 2: List of the graphs used for the evaluation. The number of vertices is
stated in n. The number of edges is stated in m. The neighborhood diversity
is stated in d.

graph abbreviation n m d

Club Membership [12] BM 25 90 25
Contact Network Data [27] CND 120 348 117
Contiguos USA [20] CU 49 107 49
Corporate Leadership [2] BC 24 86 22
Dolphins [25] DO 62 159 60
Facebook known Pairs [27] FP 156 4515 84
Facebook known Pairs neg FPn 156 3078 152
Facebook known Pairs pos FPp 156 1437 153
Friendship Network [27] FN 134 406 123
Highland Tribes [28] HT 16 58 16
Highland Tribes neg HTn 16 29 16
Highland Tribes pos HTp 16 29 12
HIV [1] HI 40 41 34
Iceland [16] IC 75 114 43
Kangaroos [14] MK 17 91 14
Karate Klub [35] ZA 34 78 29
South Africa Companies [19] SC 6 8 6
Southern Women large [10] SW 18 64 16
Southern Women small [10] Sw 5 8 3
Taro Exchange [15, 30] MT 22 39 21
Zebra [33] MZ 27 111 17
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Figure 4: Comparison between bbm and bbmnb. The left plot compares the
running-time and the right plot compares the number of recursive calls. Ev-
ery data point represents the instance (G, t). The color of the data point
indicates t. The axes are scaled logarithmically. Only instances that are
solved within the time-limit of at least one algorithm are illustrated.
We describe on basis of the left plot how to read it. The x-axis indicates the
time bbm needed to solve the instance. The y-axis indicates the time bbmnb

needed to solve the instance. The vertical and horizontal black lines mark
the time-limit. Instances on the black middle line are solved equally fast.
The dashed and pointed lines show the proportion of the running-times. For
example, a data point on the dotted line above the black line was solved 2
times faster by bbm in comparison to bbmnb.
The right plot reads analogously except that the axes indicate the number
of recursive calls instead of the running-time.
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Another way to obtain an optimal solution is to start with an upper bound k∗

for the edit budget. Run the algorithm with I = (G, k∗, t) as input. Decre-
ment k∗ if the algorithm returns True and repeat the process until the up-
dated I is a no-instance. Then, k∗ + 1 is the number of edits of an optimal
solution.
For every instance, we compute 10 locally improved Split-Heuristics and 10
locally improved Merge-Heuristics and store the smallest upper bound in a
lookup table.
To see the improvement through a heuristic, we create two more algorithms
bbh and bbmh that start at the upper bound of the lookup table.
Since the first lower bound algorithm lb1 runs faster than the second lower
bound algorithm lb2, we first compute the lower bound r of lb1. If r is
higher than the edit budget we cut the branch off. Otherwise, we compute
the lower bound of lb2.

6.3 ILP-Formulations

In this section, we state which ILP-formulations we used for the evaluation.
One algorithm is based on the first ILP-formulations as stated in Section
4.3. We name this algorithm ilp1. In ilp1, the transitivity constraints
and the merge constraints are added via callbacks. We add every transitivity
constraint that is violated in a callback. If no transitivity constraint is added,
then we add one violated merge constraint in the callback. This combination
had the best results in preliminary experiments.
The next algorithm ilp2 is based on the second ILP-formulation of Sec-
tion 4.3. In ilp2, we add a maximum of 9 constraints in a callback. The
running-time is very sensitive to this number. Just small adjustments can
worsen the running-time by a factor of 2 or 3. Moreover, the maximal num-
ber of added constraints may be different for different instances. Maybe the
added number of constraints should depend on other criteria. Still, for us
seem 9 to be a valid compromise based on preliminary experiments.
We created two algorithms ilp1h and ilp2h where the upper bound of a
heuristic is given as a constraint. In Gurobi it is possible to set the initial
values of the variables. Since the heuristics partition the vertices into at most
t blocks, we use this information and set the start variables such that every
two vertices of a block would be in a neighborhood class.
The heuristic for ilp1h and ilp2h is computed by taking the best partition
of 5 locally improved Merge-Heuristic results and 5 locally improved results
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Table 3: Table of solved instances for each algorithm. An entry indicates the
number how many instances an algorithm solved with a specific t. The last
row is the sum of the above numbers. Note that trivial instances are also
counted. The test-graph SC is trivial with t = 10 and the test-graph Sw is
trivial with t ≥ 3.

algorithm bb bbh bbm bbmh ilp1 ilp1h ilp2 ilp2h

t = 2 10 10 10 10 13 13 8 9
t = 3 10 10 9 9 12 12 5 5
t = 4 8 8 7 8 9 10 4 4
t = 5 7 8 7 7 8 9 2 4
t = 10 10 10 9 9 7 7 3 4

sum 45 46 42 43 49 51 22 26

of Split-Heuristic.

6.4 Algorithm Comparison

In this section, we compare the exact algorithms. We tried to find the size
of the optimal solution for every t ∈ {2, 3, 4, 5, 10} and for every graph of
Table 2. The time-limit was set to 30 minutes for each instances and each
algorithm. Note that some instances are trivial since the test-graph Sw has
a neighborhood diversity of 3 and the test-graph SC has a neighborhood
diversity of 6.
Table 3 gives an overview how many instances each algorithm could solve
within 30 minutes. In Figure 5, the running-time comparison for each t ∈
{2, 3, 4, 5, 10} is illustrated.
In the following, we describe our observations. In general, the algorithms
ilp2 and ilp2h have the worst performance since they could not solve a
significant number of instances in comparison to the other algorithms.
The use of the heuristics improved the running-time of each algorithm in
most cases. One exception is graph HI with t = 3. The branch-and-bound
algorithms have worse running-times on this graph when using a heuristic.
In this case, the upper bound was 40 which is percentually significant above
the size of the optimal solution 33. Another exception is the graph MT with
t = 4.
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Figure 6: Comparison of the number of cut offs due to a lower bound al-
gorithm. Each point represents an instance. The x-value of an instance
indicates how often lb1 cut off a branch The y-value of an instance indicates
how often lb2 cut off a branch Both axes are scaled logarithmically. The
color of an instance indicates t. In instances on the black middle line, both
lower bound algorithm cut off the same number of branches. The gray lines
mark the proportions of the number of cut offs. The first gray lines mark
a proportion of factor 10. The second gray lines mark a proportion of fac-
tor 100. The third gray lines mark a proportion of factor 1000. If some lower
bound algorithm did not cut off any branch, we set its success number to 1
such that the relation can still be illustrated. For example, with t = 10 the
lower bound algorithm lb1 in bbm did not cut off a branch in any instance.

The running-times of the ILP algorithms scale stronger with increasing t on
the same instance in comparison to the branch-and-bound algorithms. This
can be seen in the running-time comparison and with the number of solved
instances in Table 3 as well.
The algorithms bb and bbh, that are based on Block Modeling, benefit
more from the first lower bound algorithm lb1. Let lb1-success be the
number of times when lb1 cut a branch off and let lb2-success be this number
for lb2. We illustrated these numbers for every solved instance for bb and
bbm in Figure 6. We omit the illustration for bbh and bbmh since they are
very similar. With t ∈ {2, 3} lb2-success is larger than lb1-success for
algorithm bb. But with increasing t, lb1-success is larger than lb2-success
for algorithm bb. The number lb2-success of algorithm bbm is in nearly all
instances larger than lb1-success.
Altogether, ilp1h solves the most instances, especially if t is small. With
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increasing t, the branch-and-bound algorithms are usually faster. Moreover,
it seems like they can solve more instances with a bigger t. Overall, ilp2
and ilp2h have the worst performance. The unweighted algorithms bb and
bbh are slightly better than their weighted variants.

6.5 Heuristics Evaluation

In this section, we compare the heuristic upper bounds with the size of op-
timal solutions and later, we compare Split-Heuristic with Merge-Heuristic.
We computed 100 Merge-Heuristic results and 100 Split-Heuristic results for
each instance. Then, we locally optimized them.
There are possibly multiple block pairs that have the same cost increase in a
merge process of Merge-Heuristic. Analogously, there are possibly multiple
blocks that have the same cost increase for the split cost computation. Both
heuristics are randomized when a tie occurs. Note that in Split-Heuristic the
precomputated cost increase is not always the actual cost increase. This is
described in Section 4.2.3.
Table 4 shows the best result and the average result shown for each instance.
The average result is the average over the 200 locally improved results. More-
over, there are also the optimal solution sizes listed if any algorithm solved
the instance within the time-limit. For every instance with t ∈ {3, 4, 5, 10}
the optimal solution size was found with a heuristic. And for the instances
with t = 2 the optimal solution was found in 92.31% of the cases.
In the following, we average the heuristic upper bounds and compare them
to the optimal solution size. The average percentual difference between the
optimal solution size and the average solution of non-trivial instances is 4.75%
for t = 2, 5.24% for t = 3, 6.27% for t = 4, 3.75% for t = 5, and 8.75% for
t = 10. The individual differences between the average heuristic result size
versus the optimal solution size is illustrated in Figure 7. As seen in Figure 7,
most of the average heuristic results are at most 10% away from the optimal
solution size.
At last, we compare Merge-Heuristic with Split-Heuristic. For this, we use
the 100 results of the heuristics without the local optimization. In Figure 8,
the average results of Merge-Heuristic and Split-Heuristic are illustrated.
Based on the average upper bounds, a clear winner cannot be identified
since the difference lies within 10% most of the time. Within the result size
of (500, 3500), it seems that Split-Heuristic yields generally smaller upper
bounds. On the other hand, within the range (250, 40) Merge-Heuristic has
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Table 4: Overview of the instances with their optimal solution size, the
best heuristic upper bound and the average upper bound of our heuristic
experiment.

t 2 3 4

graph opt best avg opt best avg opt best avg

BM 72 72 77.74 62 62 65.01 54 54 59.09
CND - 334 347.44 - 320 339.06 - 307 326.3
CU - 101 103.22 - 96 98.69 - 91 94.91
BC 68 68 70.89 57 57 57.11 - 52 53.36
DO - 148 157.46 - 135 148.12 - 122 136.48
FP - 2878 2901.37 - 2230 2282.0 - 2017 2025.02
Fpn - 2542 2783.12 - 2230 2236.24 - 2074 2140.96
Fpp - 1280 1295.7 - 1133 1196.86 - 991 1007.51
FN - 368 396.01 - 343 366.88 - 321 342.54
HT 37 37 38.38 33 33 34.3 29 29 30.2
HTn 24 24 27.03 20 20 21.2 17 17 18.04
HTp 18 18 18.0 12 12 12.0 9 9 9.8
HI 38 40 40.95 33 33 39.92 - 30 33.43
IC - 106 111.84 - 90 107.66 - 85 91.05
MK 20 20 20.0 16 16 17.83 9 9 9.0
ZA 65 65 71.81 - 57 60.99 - 44 44.1
SC 3 3 3.16 2 2 2.04 1 1 1.19
SW 40 40 40.1 27 27 27.0 19 19 19.04
Sw 1 1 1.0 0 0 0.0 0 0 0.0
MT 35 35 38.28 31 31 33.57 27 27 28.92
MZ 32 32 32.0 26 26 26.0 20 20 20.3

t 5 10

graph opt best avg opt best avg

BM - 51 55.51 - 36 37.95
CND - 300 313.25 - 259 266.06
CU - 87 90.88 - 68 71.78
BC - 48 50.44 - 33 35.01
DO - 116 124.05 - 96 100.27
FP - 1688 1696.66 - 1129 1154.0
Fpn - 1971 2051.9 - 1616 1647.74
Fpp - 913 913.91 - 718 725.75
FN - 301 321.37 - 251 259.79
HT 25 25 26.83 13 13 13.74
HTn 14 14 15.06 8 8 8.18
HTp 8 8 8.0 1 1 1.36
HI - 29 31.94 19 19 21.13
IC - 77 81.72 - 57 58.48
MK 8 8 8.4 3 3 3.07
ZA - 38 38.35 - 25 25.38
SC 1 1 1.0 0 0 0.0
SW 15 15 15.0 6 6 6.43
Sw 0 0 0.0 0 0 0.0
MT 24 24 25.19 14 14 14.03
MZ 17 17 17.88 7 7 7.36
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Figure 7: Each data point represents an instance. The color indicates t of
the instance. The x-value of an instance is its known optimal solution size
and the y-value is the difference between the average heuristic result and the
optimal solution size. The gray lines mark the percentage difference. For
example, assume that (40|4) is a data point in this plot. This point would be
on the 10% difference line. The average heuristic result would be 40+4 = 44.
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Figure 8: These four plots show the difference of the average upper bound
over 100 Split-Heuristic results with the average upper bound over 100 Merge-
Heuristic results for each instance in different ranges. Each data point rep-
resents an instance. The color indicates the parameter t. The lines mark the
percentage difference for an instance.
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the smaller average result. Since both heuristics are not time-consuming,
both upper bounds can be computed in practice for an instance.
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7 Future Work

The first part of this section is occupied with the improvements ideas for the
branch-and-bound algorithms. The second part provides further research
ideas.
Currently, the algorithm ilp1h solves the most instances. We think that
the branch-and-bound algorithms have the potential to solve as many in-
stances as the ILP-formulations or even more. The best branch-and-bound
algorithms solves 10% less instances than ilp1h. We think that the branch-
and-bound algorithms can be improved significantly with better heuristics
for the choice of the branching vertices and for the packing.
In the following, we describe two possible ways to improve the running-time
of the branch-and-bound algorithms. Recall, that lb2 creates a packing
which consists of disjoint vertex sets called packs. A pack consists of vertices
of distinct neighborhood classes. For each pack, we can charge costs for the
lower bound. In our experiments, the lower bound algorithm lb2 causes a
large part of the running-time. Without the dynamic update of the packing
by an edit, the search of the new packs causes more than 90% of the running-
time. To speed this up, an algorithm could consider a graph G′ that has the
same vertices as the input graphG. InG′, two vertices are adjacent if they are
apart or not mergeable in G. The search time for new packs could decrease
by using G′: When constructing a pack P , vertices that are apart or not
mergeable with some vertex of P can be prioritized. These vertices can be
found in quickly using the adjacency lists G′.
An idea for a new lower bound would be to use a packing where the wit-
nesses of each pack are disjoint. The witnesses of a pack P are defined as⋃
p∈(P

2)
wit(p). The correctness is not shown yet. The idea of its proof is

given by the following argumentation. Since every edit that is necessary to
resolve a pack is disjoint with every edit that resolves an other pack, the
lower bound of this approach is the sum of the resolving costs. Note that in
the second lower bound algorithm lb2, the sum is divided by 2. This division
has not to be done with the new lower bound. Hence, the new lower bound
algorithm could give better results than lb2 in some cases.

We evaluated our algorithms on real-world social networks. A point of inter-
est is to analyze the goodness of a clustering obtained by Block Modeling.
In general, it is interesting to find new approaches to solve Block Model-
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ing.
In this work, we dealt with undirected and simple graphs. Variants of Block
Modeling for directed, edge-weighted or bipartite graphs are also possible.
In these variants, the notion of neighborhood class has to be redefined. It
may be possible to adapt some of our results to these variants.
Another point of interest would be to find the optimal block modeling without
specifying the number of clusters. This means we do not demand a maximum
neighborhood diversity of t in the definition of the problem. If no upper
bound for the neighborhood diversity is set, then the optimal solution would
edit nothing since the input neighborhood diversity is also acceptable. This
would give a useless clustering. One way to fix this issue is to introduce a
penalty function f that charges costs for large neighborhood diversities. In
this variant, the edit cost plus the penalty of f of the resulting graph have
to be minimized.
Some clustering procedures, like DBSCAN [11], detect outliers. An outlier is
an element that does not fit in any cluster of the clustering. The condition
for an outlier is defined for each clustering method individually. It would
be of interest to find such a definition of outliers for Block Modeling.
The problem definition could then be adapted to disregard the outliers when
computing.
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