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Abstract

The assignment of orthologous genes is an important concept in
comparative genomics that is also computationally challenging. There
is a great variety of methods and algorithms proposed to infer orthol-
ogy relations. One possible approach is to use graph-based models,
where the genes of two or more species are represented as vertices of
different colors in a graph and the goal is to find a clustering of the
vertices such that genes inside the same cluster are very likely to be or-
thologs. In this work we propose several variants of graph problems in
the context of orthology assingment and analyze their computational
complexity. We show the NP-hardness for each variant and provide
FPT-algorithms and problem kernels for the canonical parameter. We
then conduct experiments on graphs obtained from biological data to
provide a first assessment of the practical use of the models.

Zusammenfassung

Die Zuordnung von orthologen Genen ist ein wichtiges Konzept
in der vergleichenden Genomik, das sich als anspruchsvolles Berech-
nungsproblem erweist. Es existiert eine große Vielfalt an Metho-
den und Algorithmen, die verfolgt werden um Orthologie-Beziehungen
abzuleiten. Ein möglicher Ansatz ist die Verwendung von Graph-
basierten Modellen, bei denen die Gene von zwei oder mehr Spezies
als verschiedenfarbige Knoten in einem Graphen dargestellt werden
und das Ziel darin besteht, eine Zuordnung der Knoten zu finden, so
dass Gene innerhalb derselben Gruppe sehr wahrscheinlich ortholog
zueinander sind. In dieser Arbeit führen wir mehrere Varianten von
Graphenproblemen im Kontext der Zuordnung von orthologen Genen
ein und analysieren ihre rechnerische Komplexität. Wir zeigen die NP-
Härte für jede Variante und formulieren FPT-Algorithmen und Prob-
lemkerne für den kanonischen Parameter. Anschließend führen wir
Experimente an Graphen durch, die aus biologischen Daten gewon-
nen wurden, um eine erste Einschätzung der praktischen Anwendung
der Modelle zu geben.
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1 Introduction

Orthology is a central concept in the field of evolutionary and comparative
genomics [9, 17]. Two genes in different species are orthologs if they arose
via a speciation event from a common ancestor in the gene tree. The iden-
tification of orthologous genes is of great importance for phylogenetic tree
interference, genome annotation and the prediction of gene functions, but is
also a difficult computational task [16].

Various models and methods have been proposed for the study of orthol-
ogous relations, which can be broadly divided into tree-based [3, 13] and
graph-based approaches [14, 4].

A possible graph-based approach used by Zheng et al. [20] is to construct
a graph, where the vertices of the graph represent the genes of the different
species. Edges between two genes of distinct species are present if the genes
are likely to be orthologs, based on sequence similarity scores between the
genes of the different species. Then the goal is to find a clustering of the
graph in groups of orthologous genes that contain at most one gene from
each species, where, roughly speaking, there are many edges between genes
inside the same cluster and few edges between genes from different clusters.

Paralogs, two genes from the same species that originate from a gene
duplication event, pose an additional difficulty for orthology assignments.
Zhen et al. [20] and Fertin et al. [10] proposed orthology assignment models
that also consider paralogous genes.

In this work we introduce graph problems on bicolored undirected graphs,
in which the common goal is to achieve a cluster graph by a minimal amount
of edge modifications, where every cluster contains at most one vertex from
one of the two colors. This can be seen as a generalization of the model
analyzed by Fertin et al. [10], where we now also consider multiple gene du-
plication events that occurred for both species, resulting in orthology clusters
that can contain more than one gene from one of the two species. Each clus-
ter can be seen as a group of paralogs in one species that is orthologous to a
gene of the other species.

The graph problems considered in this work have also close ties to and
can be seen as an extension of the well-studied Cluster Deletion and
Cluster Editing problems.

The structure of this work is as follows. In Section 2 we establish the
notation and definitions used throughout this work and give a brief overview
of the most important concepts of computational complexity theory. In Sec-
tion 3 we define the graph problems we analyze in this work. In Section 4
we prove the NP-hardness for all variants. More precisely, we show that
each variant is NP-complete, even when restricted to graphs with maximum
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degree six. In Section 5 we then study the parameterized complexity of the
variants, where we only allow edge deletions. For the solution size parame-
ter k we formulate branching algorithms that also show the fixed-parameter-
tractability of the problem. We then formulate for both problems reduction
rules that lead to a vertex-kernel for the respective problem. In Section 6
we then conduct our study for the variants, where we also allow edge in-
sertions. We again postulate FPT-algorithms for both variants and present
a vertex-kernel for the parameter k. In Section 7 we then give an integer
linear program formulation and run experiments for two of the considered
problems, evaluating the general practicality of our model.
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2 Preliminaries

In this section we first provide the notation and definitions we use throughout
this work. We then give a brief overview about the most important concepts
of parameterized computational complexity theory and give some further
definitions.

2.1 Notation and Definitions

For a finite set X and an integer k, 0 ≤ k ≤ |X|, we define
(
X
k

)
= {Y ⊆ X |

|Y | = k}. In this work we consider undirected graphs G = (V,E) consisting
of a finite set of vertices V (G) := V and a set of edges E(G) := E ⊆

(
V
2

)
.

We usually denote the sizes of those sets with n := |V | and m := |E|.
For a subset of vertices V ′ ⊆ V we denote with G[V ′] := (V ′, E∩

(
V ′

2

)
) the

induced subgraph of G which is induced by V ′ and with G− V ′ := G[V \ V ′]
the induced subgraph of G without the vertices in V ′ and their incident
edges. For two subsets of vertices V1, V2 ⊆ V we denote with EG(V1, V2) :=
{{v1, v2} ∈ E(G)|v1 ∈ V1, v2 ∈ V2} the set of edges between a vertex from V1

and a vertex from V2.
A path of length k, with k ≥ 0, in a graph G = (V,E) is a sequence

P = (v1, v2, . . . , vk+1) ∈ V k+1 of pairwise distinct vertices in V such that
{vi, vi+1} ∈ E for all i, 1 ≤ i ≤ k. Moreover, we call P a (v1, vk+1)-path
in G. A sequence C = (v1, v2, . . . , vk+1) ∈ V k+1, where (v1, v2, . . . , vk) is a
(v1, vk)-path and vk+1 = v1, {vk, v1} ∈ E, is called a cycle of length k.

For an integer k we refer to a graph that consists of a path of length k−1
as a Pk. We refer to a set of vertices P = {v1, . . . , vk} ⊆ V as an induced Pk
in G, if the induced subgraph G[P ] is a Pk. By abuse of notation we also
refer to a path P = (v1, . . . , vk) in G as an induced Pk, if {v1, . . . , vk} is an
induced Pk in G. If there is no induced Pk in G, we say that G is Pk-free.

For two vertices u, v ∈ V the distance function dist(u, v) returns the
length of the shortest (u, v)-path. If there is no path between u and v, we
define dist(u, v) := ∞. For an integer i ≥ 1 and a vertex v ∈ V we define
the (open) i-neighborhood N i

G(v) of v as the set of all vertices u ∈ V with
dist(u, v) = i and N∞G (v) := {u ∈ V | dist(u, v) = ∞}. If the graph is clear
from the context we usually omit the identifier in the index.

The (open) neighborhood of a vertex v ∈ V is denoted by N1
G(v) :=

{u ∈ V | {v, u} ∈ E} or just NG(v) and the closed neighborhood by N1
G[v] :=

NG(v)∪{v} or just NG[v]. The (open) neighborhood of a set of vertices V ′ ⊆
V is defined by NG(V ′) = (

⋃
v∈V ′ NG(v)) \ V ′ and the closed neighborhood

by NG[V ′] := NG(V ′)∪V ′. The degree of a vertex v is the number of adjacent
vertices degG(v) := |NG(v)|. The minimum and maximum degree of G are
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denoted by δ(G) := min{deg(v) | v ∈ V } and ∆(G) := max{deg(v) | v ∈ V },
respectively.

We say a graphG = (V,E) is connected, if for every pair of vertices {u, v} ⊆
V there is an (u, v)-path in G, that is, if dist(u, v) <∞.

A subset of vertices K ⊆ V is called a connected component of G, if
G[K] is connected and there is no V ′ ⊆ V with K ⊂ V ′ such that G[V ′]
is connected. A singleton is a connected component consisting of a single
vertex, or in other words, a vertex without incident edges.

A subset of vertices C ⊆ V such that G[C] is complete in the sense that
E(G[C]) =

(
C
2

)
is called a clique. A triangle is a clique of size three.

A critical clique C is a clique, such that every vertex v ∈ C has the same
neighborhood and C is maximal under this property. A critical clique C is a
closed critical clique if C ∪N(C) is also a clique.

We call a connected component, which is a clique, a cluster and a graph,
in which every connected component is a cluster, a cluster graph.

A bicoloring of a graph G = (V,E) is a function g : V → {black, white}
that labels every vertex of the graph as either black or white. When the con-
text is clear we usually abbreviate the colors with b for black and w for white.
For a set of vertices V ′ ⊆ V we denote with B(V ′) := {v ∈ V ′ | g(v) = b} and
W (V ′) := {v ∈ V ′ | g(v) = w} the black and white vertices in V ′, respec-
tively. If for a given cluster C and a bicoloring g we have that at least half
of the vertices in C have the same color x, we say C is x-dominated and if
g(c) = g(c′) for any two c, c′ ∈ C, we call C a g(c) monochromatic cluster.

We denote a graph that consists of a clique that contains exactly two
black and exactly two white vertices with K(2,2). We refer to a set of vertices
K ⊆ V as an induced K(2,2) in G, if the induced subgraph G[K] is a K(2,2).
If there is no induced K(2,2) in G, we say that G is K(2,2)-free.

A graph property Π is defined by a family of graphs GΠ and we say a
graph G satisfies the property Π if and only if G ∈ GΠ.

Let Π be a graph property. We say Π is quasi-hereditary, if for every
graph G = (V,E) that satisfies Π the deletion of a certain vertex v ∈ V
yields a graph G′ = (V \ {v}, E ′) that also satisfies Π. If for every graph
G = (V,E) satisfying Π the deletion of any vertex v ∈ V yields a graph
G′ = (V \ {v}, E ′) that also satisfies Π, we call Π hereditary. Equivalently,
a graph property is hereditary if it is preserved by induced subgraphs. Note
that a hereditary graph property is also quasi-hereditary.

We say a family of graphs G has a forbidden induced subgraph character-
ization, if there is a set of graphs F , such that a graph g belongs to G if and
only if it does not contain any graph in F as an induced subgraph. A family
of graphs G has a forbidden induced subgraph characterization if and only if
for some hereditary graph property Π every graph in G satisfies Π [5].
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2.2 Computational Complexity Theory

Formally, a decision problem is a language L ⊆ {0, 1}∗. An instance I ∈
{0, 1}∗ is a yes-instance of L if I ∈ L and a no-instance otherwise. We say
an algorithm solves a problem L, if it decides for every instance I, whether
I ∈ L or not. A polynomial reduction from a decision problem A to a
decision problem B is an algorithm that has a polynomial running time and
transforms an instance IA of A into an instance IB of B such that IA is a
yes-instance of A if and only if IB is a yes-instance of B. If there is such an
algorithm we say that A can be reduced to B and write A ≤P B. Note that
the reduction relation ≤P is transitive. The class of problems, which can be
solved in polynomial time, is denoted by P. A verifier V for a decision problem
L is an algorithm that can verify an instance I ∈ L in the sense that for every
x ∈ {0, 1}∗ there is a certificate c ∈ {0, 1}p(|x|) for some polynomial function
p such that V accepts the input (x, c) if and only if x is a yes-instance of
L. The class of problems, for which there is a verifier running in polynomial
time, is denoted by NP. Note that P ⊂ NP and this is widely assumed to
be a proper inclusion. We say a problem A is NP-hard, if for every problem
B in NP we have B ≤P A. If A is NP-hard and A ∈ NP we say A is
NP-complete. An example for a NP-hard problem is the Exact-3-SAT
problem [11].

Exact-3-SAT
Input: A boolean formula φ in conjunctive normal form with
exactly three literals per clause.
Question: Is there an assignment to the variables of φ that
satisfies all clauses of φ?.

For more details on computational complexity theory we refer to [11].

2.3 Parameterized Complexity

In this section we want to give an overview over the most important con-
cepts of parameterized complexity theory. For a comprehensive read on the
topic we refer to [8]. Parameterized complexity is a two-dimensional frame-
work for describing the computational complexity of a decision problem. An
instance (x, k) of a parameterized problem L ⊆ {0, 1}∗ × N consists of the
input x of a decision problem and a parameter k. A parameterized complex-
ity class L is a set of parameterized problems. A parameterized problem L
is called fixed-parameter tractable, if there is a computable function f such
that for every instance (x, k) ⊆ {0, 1}∗ ×N it can be decided in f(k) · |x|O(1)
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time whether (x, k) is a yes-instance of L. The class of problems that con-
tains exactly those that are fixed-parameter tractable is called FPT. The
class XP contains exactly all the parameterized problems, for which there
is a computable function f such that for every instance (x, k) ⊆ {0, 1}∗ × N
it can be decided in |x|f(k) time wether (x, k) is a yes-instance of L. A pa-
rameterized reduction is an algorithm that takes an instance I1 = (x1, k1)
of a problem L1 and transforms it into an instance I2 = (x2, k2) of a prob-
lem L2 such that I1 ∈ L1 if and only if I2 ∈ L2 and k2 ≤ g(k1) with running
time f(k1) · |x1|O(1) for some computable functions f and g.

A parameterized problem L admits a problem kernel, if there is a pa-
rameterized reduction running in polynomial time that transforms an in-
stance (x1, k1) of L into an instance (x2, k2) of L such that k2 ≤ k1 and
|x2| ≤ h(k1) for some computable function h, so we get an equivalent new
instance, where the input size is upper-bounded by a computable function
that only depends on the old parameter k1. The function h is called the size
of the kernel. We refer to such a parameterized reduction as a kernelization
algorithm for the parameterized problem L. A parameterized problem is in
FPT if and only if it admits a problem kernel [8].

A data reduction rule, or just reduction rule, for a parameterized prob-
lem L is an algorithm that runs in polynomial time and transforms an in-
stance (x1, k1) of L into an instance (x2, k2) of L, such that (x1, k1) ∈ L
if and only if (x2, k2) ∈ L. A kernelization algorithm usually consists of
exhaustively applying a set of reduction rules.

In this work an edge-modification problem with property Π is a decision
problem that gets an undirected graph G and an integer k as inputs and asks,
whether it is possible to transform G by at most k deletions or insertions of
edges into a graph G′ that satisfies the property Π. Analogously, a bicolored
edge-modification problem is an edge-modification problem that also gets a
bicoloring g as input.

An edge-modification set for an instance (G = (V,E), k) of a parameter-
ized edge-modification problem is a subset S = S−∪̇S+ ⊆

(
V
2

)
with S− ⊆ E

corresponding to edge deletions and S+ ⊆
(
V
2

)
\E to edge insertions. Apply-

ing an edge-modification set S to the graph G = (V,E) yields a new graph
GS = (V, (E \ S−) ∪ S+). In the case that for a given edge-modification
problem only edge-deletions are allowed we have E2 = ∅. We say a vertex
u ∈ V is affected by an edge-modification set S if {u, v} ∈ S for any v ∈ V
and unaffected, otherwise. Analogously, we say a set of vertices V ′ is affected
by an edge-modification set S, if any vertex v ∈ V ′ is affected, or unaffected,
if every vertex v ∈ V ′ is unaffected.

A solution set or just solution for an instance (G = (V,E), k) of a param-
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eterized edge-modification problem with property Π is an edge-modification
set S, such that applying S to G yields a solution graph GS that satisfies the
property Π. We say a solution S∗ is optimal, if for every other solution S ′

we have |S∗| ≤ |S ′|. We say a solution S is valid for an instance (G, k) of a
parameterized edge-modification problem, if |S| ≤ k.

We analogously define an edge-modification set and a solution for an
instance (G = (V,E), g, k) of a bicolored edge-modification problem.
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3 Problem Definitions

In this section we formulate the decision problems which we analyze in this
work.

3.1 Definitions

In this work we consider several parameterized bicolored edge-modification
problems on undirected graphs. For every variant the common goal is to
transform the input graph into a cluster graph, that also satisfies a certain
property Π depending on the bicoloring, by at most k edge modifications.
Depending on the variant this can either be achieved by only edge deletions
or a combination of edge deletions and insertions.

For a given bicoloring g : V → {b, w} we say a graph G = (V,E) is
a bicolored cluster graph or, in other words, satisfies the bicolored cluster
property, if G is a cluster graph such that every cluster contains at most one
black or at most one white vertex. If G is a cluster graph such that every
cluster contains exactly one black or exactly one white vertex, we call it a
strictly bicolored cluster graph.

First, we formulate the deletion variants.

Bicolored Cluster Deletion (BCD)
Input: An undirected graphG= (V,E), a bicoloring g : V → {b, w}
and an integer k.
Question: Can G be transformed into a bicolored cluster graph
by at most k edge deletions?

Observe that in Bicolored Cluster Deletion monochromatic clus-
ters in the resulting graph are allowed. Considering the biological interpre-
tation of assigning orthology clusters it makes sense to only accept clusters
of size two or more if they contain at least one vertex of both colors. This is
expressed in the problem Strict Bicolored Cluster Deletion.

Strict Bicolored Cluster Deletion (SBCD)
Input: An undirected graphG= (V,E), a bicoloring g : V → {b, w}
and an integer k.
Question: Can G be transformed into a strictly bicolored cluster
graph by at most k edge deletions?

For our next problem Bicolored Cluster Editing we also allow edge
insertions.

8



Bicolored Cluster Editing (BCE)
Input: An undirected graphG= (V,E), a bicoloring g : V → {b, w}
and an integer k.
Question: Can G be transformed into a bicolored cluster graph
by at most k edge deletions or insertions?

Similar to the deletion variants, in the editing case we also want to dif-
ferentiate between a non-strict and a strict variant.

Strict Bicolored Cluster Editing (SBCE)
Input: An undirected graphG= (V,E), a bicoloring g : V → {b, w}
and an integer k.
Question: Can G be transformed into a strictly bicolored cluster
graph by at most k edge deletions or insertions?

3.2 Simple Observations

We now proceed to state some useful observations about the aforementioned
properties.

Lemma 3.1. The bicolored cluster property is hereditary.

Proof. Let G be a bicolored cluster graph. Recall that every connected com-
ponent of G is a cluster with at most one black or at most one white ver-
tex. Deleting a vertex v of any cluster K does not affect other clusters and
K \ {v} is still a cluster with at most one black or at most one white vertex,
so G[V \ {v}] is also a bicolored cluster graph.

The property to be a strictly bicolored cluster graph is only quasi-hereditary,
however.

Lemma 3.2. The strictly bicolored cluster property is quasi-hereditary, but
not hereditary.

Proof. Let G be a strictly bicolored cluster graph, so every connected com-
ponent of G is a cluster with exactly one black or exactly one white vertex.
Consider a cluster K in G. If K consists of a single vertex v, then the dele-
tion of v does not impact any other cluster and G[V \ {v}] is still a strictly
bicolored cluster graph. Now, assume that |K| ≥ 2 and without loss of gen-
erality let K contain exactly one black vertex. Deleting any white vertex u
in K results in a new cluster K \ {u} that still contains exactly one black
vertex and does not impact any other cluster, so G[V \ {u}] is still a strictly
bicolored cluster graph. This shows that for every strictly bicolored cluster
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graph there is a vertex v such that deleting v results in a strictly bicolored
cluster graph, so the strictly bicolored cluster property is quasi-hereditary.
Now, consider for example a strictly bicolored cluster graph that only con-
sists of a single black-dominated cluster K of size |K| ≥ 3 with exactly one
white vertex. Deleting any black vertex in K again yields a black-dominated
cluster with exactly one white vertex. However, deleting the white vertex
in K creates a monochromatic black cluster, so the resulting graph is no
longer strictly bicolored. Therefore the strictly bicolored cluster property is
not hereditary.

A common way to describe a family of graphs is to use a forbidden induced
subgraph characterization. For example, cluster graphs can be characterized
as graphs that do not contain an induced P3. This is because every cluster
is per definition a clique and therefore does not contain any induced P3s and
if a graph G contains a set of vertices V ′ := {v1, v2, v3}, such that V ′ is an
induced P3 in G, then V ′ cannot be part of a cluster and G is not a cluster
graph.

Next we show that bicolored cluster graphs also have a forbidden induced
subgraph characterization.

Lemma 3.3. Let G = (V,E) be a graph with a bicoloring g : V → {b, w}
on G. Then the graph G is a bicolored cluster graph if and only if G is P3-free
and K(2,2)-free.

Proof. (⇒) Let G be a cluster graph, such that every cluster contains at
most one black or at most one white vertex. Since G is a cluster graph, G
is P3-free. Furthermore, no cluster in G contains two black and two white
vertices, so G is also K(2,2)-free.

(⇐) Let G be a graph that is P3-free and K(2,2)-free. Since G does not
contain an induced P3 it is a cluster graph. Now assume that G contains
a cluster K with at least two black vertices b1, b2 and at least two white
vertices w1, w2. Then, since K is a cluster, the vertices b1, b2, w1 and w2 form
an induced K(2,2) in G, which contradicts that G is K(2,2)-free. Therefore G
only contains clusters with at most one black or at most one white vertex.

For the non-strict variants we call a cluster valid, if it is K(2,2)-free. For
the strict variants we call a cluster of size at least two valid, if it is K(2,2)-free
and is not a monochromatic cluster. Singletons are also considered as a valid
cluster.

Let P := (v1, v2, v3) be an induced P3 in a graph G and S an edge mod-
ification set. We say that P is resolved by S, if the edge {v1, v3} is inserted
by S or at least one of the edges {v1, v2} or {v2, v3} is deleted by S. Let K
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be an induced K(2,2) in a graph G and S an edge modification set. We say
that K is resolved by S, if at least one of the edges between vertices in K is
deleted by S.
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4 NP-hardness results

To show the NP-hardness of the several problem variants we use a reduction
from the NP-hard problem Exact-3-SAT very similar to the one used
by Komusiewicz and Uhlmann [15] for Cluster Editing. They showed
that Cluster Editing is NP-hard, even when restricted to graphs with
maximum degree six. We show NP-hardness SBCE, the same reduction and
similar argumentation then also implies NP-hardness for the other variants.

First we want to recap the reduction presented by Komusiewicz and
Uhlmann [15] and then explain the adjustments made for the problem vari-
ants we consider in this work. The basic idea of the reduction is as follows.
For a given 3-CNF formula φ with n variables and m clauses there is a vari-
able cycle of length 4mi for every variable xi, with mi being the number of
clauses containing xi. For a cycle with even length such as 4mi, deleting every
second edge yields a minimum-cardinality edge modification set to transform
the cycle into a cluster graph. The two possibilities of either deleting every
edge that is labeled odd or every edge that is labeled even in the cycle repre-
sent a true or false assignment to xi. Furthermore, for every clause Cj we
have a clause gadget, consisting of a vertex aj representing the clause, which
is connected to the variable cycles of the variables in Cj in such a way, that
each of those variable cycles has four designated vertices for Cj. The idea is
to ensure that only four edge modifications per clause are needed, if there is
a satisfying assignment for φ, and at least five edge modifications otherwise.
We now present the details of the reduction.

Construction. For a given 3-CNF formula φ with clauses C0, . . . , Cm−1

over the variables {x0, . . . , xn−1} we construct the graph of a Cluster Edit-
ing instance (G = (V,E), k) with k = 10m as follows. For each variable xi,
0 ≤ i < n, the graph G contains a variable cycle Zi that consists of the ver-
tices Vi := {vi0, . . . , vi4mi−1} and the edges Ev

i := {{vik, vik+1} | 0 ≤ k < 4mi
}

with vi4mi
= vi0. For ease of presentation we always interpret viy as viy mod 4mi

.
We call an edge {viy, viy+1} even, if y is even, and odd otherwise. Now, for
every variable xi we have an arbitrary, but fixed ordering of the clauses that
contain xi given by a bijective function πi, with πi(j) ∈ {0, . . . ,mi − 1}
being the position of a clause Cj containing xi in this ordering. For every
clause Cj with variables xp, xq, xr we construct a clause gadget by adding a
new vertex aj and connecting aj to the variable cycles of xp, xq and xr. For
each i ∈ {p, q, r} we add the edges {aj, vi4πi(j)} and {aj, vi4πi(j)+1} if xi occurs

nonnegated in Cj or the edges {aj, vi4πi(j)+1} and {aj, vi4πi(j)+2} otherwise.
We denote the set of edges in the clause gadget of Cj by Ec

j . This completes

the construction of the graph G = (V,E) with V :=
⋃n−1
i=0 Vi ∪

⋃m−1
j=0 {aj}
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and E :=
⋃n−1
i=0 E

v
i ∪
⋃m−1
j=0 Ec

j .
Now we make adjustments to the constructed graph G. We specify a bi-

coloring g of V in order to obtain an instance (G = (V,E), g, 10m) of SBCE.
Let g : V → {b, w} be a bicoloring of the vertices in V , such that g(aj) = w
for every clause vertex aj. Furthermore, for every vertex vis in the variable cy-
cle Zi of a variable xi we have g(vis) = w if s is even and g(vis) = b otherwise.
We set W := {v ∈ V | g(v) = w} and B := {v ∈ V | g(v) = b}.

In the following we show that φ has a satisfying assignment if and only
if (G, g, 10m) is a yes-instance of SBCE.

Lemma 4.1. If φ has a satisfying assignment β, then there is a valid solution
S ⊆ E for I := (G, g, 10m) only consisting of edge deletions, such that GS is
a cluster graph where every cluster contains exactly one black and either one
or two white vertices.

Proof. For each variable xi, if β(xi) = true, then delete all edges in Ev
i of

the variable cycle Zi in G that are odd and if β(xi) = false, then delete all
of the even edges in Zi, resulting in∑

0≤i<n

4mi/2 = 2
∑

0≤i<n

mi = 6m

edge deletions in total. This resolves any induced P3s containing only ver-
tices of the same variable cycle. Now, for each clause Cj of φ consider the
clause gadget in G and let xp, xq, xr be the variables of that clause. With-
out loss of generality assume that the literal corresponding to xp fulfills Cj
under the assignment β. Deleting the four edges between aj and a vertex
in Vq ∪ Vr resolves all induced P3s containing aj, since, by construction, the
two endpoints of the remaining edges between aj and Vp are connected (by
an odd edge, if xp appears negated in Cj, or an even edge, otherwise) and
the literal containing xp in Cj is true under the assignment β and therefore
the connecting edge was not deleted. This procedure deletes four edges per
clause gadget in G, so we apply another 4m deletions and therefore need 10m
edge deletions in total. Since there are no edges between different variable
cycles and therefore no induced P3s involving vertices from different variable
cycles, this destroys every induced P3 in G, yielding a cluster graph G′. Every
connected component of G′ is either an edge of a variable cycle with a black
and a white vertex or a triangle consisting of an edge of a variable cycle and
a clause vertex aj, containing one black and two white vertices. Therefore
applying the set S of 10m edge deletions described above to G yields a cluster
graph GS = G′, where every cluster contains exactly one black and either
one or two white vertices. Moreover G′ is a cluster graph such that every
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cluster contains at most one black vertex. Therefore I is a yes-instance and
S a valid solution.

Now, we show the opposite direction of the equivalence.

Lemma 4.2. If I := (G, g, 10m) is a yes-instance of SBCE, then I has
an optimal solution S ⊆ E only consisting of edge deletions with |S| = 10m,
such that GS is a cluster graph where every cluster contains exactly one black
and either one or two white vertices and φ has a satisfying assignment β.

Proof. Let I := (G, g, 10m) be a yes-instance for SBCE. Let S be a valid
solution for G with |S| ≤ 10m. We show that S also has to contain at least,
and therefore exactly, 10m edge modifications, which are all edge deletions.
Per construction in every variable cycle Zi of length 4mi there are 2mi edge-
disjoint induced P3s with all three involved vertices on the variable cycle that
each require an edge modification to be resolved. Clearly, either deleting all
even or all odd edges resolves all of the induced P3s with 2mi deletions.
Consider one of those P3s, say P := (vij−1, v

i
j, v

i
j+1). Note that, by con-

struction, vij−1 and vij+1 have the same color. Adding the edge {vij−1, v
i
j+1}

to resolve P implies that the edges {vij−2, v
i
j−1} and {vij+1, v

i
j+2} must be

deleted, since g(vij−2) = g(vij+2) 6= g(vij−1) = g(vij+1). This amounts to three
edge-modifications and still leaves 2mi − 2 edge-disjoint induced P3s in Zi,
each requiring at least one edge-modification. When one odd and one even
edge is deleted there are also still 2mi − 1 edge-disjoint induced P3s left.
The minimum amount 2mi of edge-modifications to resolve all P3s in Zi can
therefore only be achieved by deleting either all even or all odd edges. Over-
all at least

∑
0≤i<n 4mi/2 = 6m edge deletions are necessary to destroy all

induced P3s of the variable cycles.
Now, consider an arbitrary clause vertex aj of a clause Cj containing the

variables xp, xq, xr. At least four edge modifications are needed to resolve
all induced P3s containing edges incident to the vertex aj, since every edge
connecting aj to the variable cycle of one of the variables in Cj forms an
induced P3 with any edge connecting aj to another variable cycle. We now
proceed to show that the minimum of four edge modifications can only be
achieved by deleting all edges connecting aj to two of the adjacent variable
cycles.

Let Kj denote the cluster containing aj in GS and Wj = NG(aj) ∩ Kj

denote the set of neighbors of aj in G that are part of the same cluster Kj

in GS with ρ := |Wj|. Note that, since S is a solution and aj is white, Wj

can not contain two black vertices and a white vertex at the same time, thus
ρ ≤ 4. Furthermore, Kj can contain at most one edge between two neighbors
of aj on the same variable cycle, since all three of those edges each connect
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a black and a white vertex. This means that Kj contributes to S with 6− ρ
deletions and if ρ > 1 at least

(
ρ
2

)
− 1 insertions, one for each pair of vertices

in Wj minus one for the edge that may already exist, only involving vertices
in Wj ∪ {aj}.

We now consider all possible values for ρ:

• ρ = 4: S deletes two edges between aj and NG(aj) and inserts at least
five edges between vertices in Wj.

• ρ = 3: S deletes three edges between aj and NG(aj) and inserts at least
two edges between vertices in Wj.

• ρ = 2: S deletes four edges between aj and NG(aj) and inserts one
edge if the two vertices in Wj were not already connected.

• ρ ≤ 1: S deletes at least five edges between aj and NG(aj).

In any case, at least four edge modifications are needed. The only possibility
where S contains exactly four edge modifications involving only vertices in
Wj ∪ {aj} is when ρ = 2 and the two remaining neighbors of aj are from
the same variable cycle and are still connected by an edge. At least 4m
edge modifications are needed to resolve all induced P3s containing clause
vertices aj.

Since at least 6m edge modifications are already needed to resolve all
induced P3s in the variable cycles, the total amount of edge modifications is
at least 10m, showing that |S| ≥ 10m and therefore |S| = 10m. Now, since
S is a solution, this also implies that indeed in every variable cycle either
all odd or all even edges are deleted. Furthermore, for every clause vertex
aj the induced P3s involving aj are resolved by exactly four edge deletions,
such that the two remaining neighbors of aj in GS are from the same variable
cycle.

Let β be the assignment for φ that sets a variable xi, 0 ≤ i < n, to
β(xi) := true if all odd edges of its variable cycle are deleted and β(xi) :=
false if all even edges of its variable cycle are deleted. We show that β is
a satisfying assignment for φ. Let Cj be an arbitrary clause of φ containing
the variables xp, xq, xr. In the final cluster graph GS resulting by application
of S to G the vertex aj can not be the center of an induced P3, so only edges
to at most one variable cycle can be present. Without loss of generality
let Zp be that cycle. Since exactly four of the six edges incident to aj are
deleted, both edges connecting aj to the variable cycle Zp of xp are not
deleted by S as shown above. Without loss of generality, assume that xp
appears nonnegated in Cj. Then the two vertices adjacent to aj are vj4πp(j)
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and vj4πp(j)+1. Since S is a solution, the even edge {vj4πp(j), v
j
4πp(j)+1} is also

not deleted by S and therefore no even edge of Zp is deleted. As xp appears
nonnegated in Cj and the remaining edges of Zp are all the even edges, Cj
is fulfilled by β(xp) := true. Every resulting cluster in GS is either an edge
of a variable cycle or a triangle consisting of the two vertices of an edge of a
variable cycle and a clause vertex aj, so every cluster consists of exactly one
black and either one or two white vertices.

Using the reduction above we can now proof the NP-hardness for the
several bicolored edge modification problems.

Theorem 4.3. BCD, SBCD, BCE and SBCE are NP-complete, even
when restricted to graphs with maximum degree six.

Proof. It is easy to see that BCD, SBCD, BCE and SBCE and are all in
NP. A possible verifier V would verify a yes-instance (G, g, k) by taking a
solution S as a certificate, applying S to G and checking in polynomial time
that GS fulfills the desired property.

Since Exact-3-SAT is NP-hard, Lemma 4.1 and Lemma 4.2 directly im-
ply the NP-hardness of SBCE. Furthermore, if (G, g, k) is a yes-instance for
SBCE with a valid solution S that only performs edge deletions, then (G, g, k)
clearly is also a yes-instance with valid solution S for every other bicolored
edge modification problem we consider. This implies that the reduction above
together with Lemma 4.1 and Lemma 4.2 also shows the NP-hardness for the
other variants. Since the constructed graph in the reduction has a maximum
degree six, this implies that the bicolored edge modifications problems are
NP-complete, even when restricted to graphs with maximum degree six.
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5 Deletion Variants

In this section we study the parameterized complexity of the deletion variants
BCD and SBCD, parameterized by the solution size k. First, we present
simple FPT-algorithms for both variants. Next, we formulate reduction rules
that lead to a linear-vertex problem kernel for BCD and a non-linear but
subquadratic-vertex problem kernel for SBCD.

We often compare the number of edge deletions needed to achieve a cer-
tain valid clustering with the number of edge deletions needed for another
valid clustering. For this we will make use of the following observation.

Observation 1. Let C be a clique. Splitting C into two cliques C1 and
C2 with |C1| ≤ |C2| requires |C1| · |C2| edge deletions. The number of edge
deletions needed is at least |C| − 1 and is monotonously increasing with the
size of C1.

5.1 FPT-Algorithms

5.1.1 Bicolored Cluster Deletion

One way to get an FPT-algorithm for BCD is to use the forbidden subgraph
characterization of bicolored cluster graphs. Let I := (G, g, k) be an instance
of BCD. If I is a yes-instance, then there must be a valid solution S such
that GS does not contain an induced P3 and no induced K(2,2). Therefore, we
can solve an instance I by resolving all induced P3s and K(2,2)s. This can be
achieved by branching over the possible edge deletions that resolve a given
induced P3 or induced K(2,2). We formulate two branching rules that are
applied by our FPT-algorithm for BCD. If the application of a branching
rule results in k being negative, the corresponding branching case is a no-
instance and the algorithm returns to the parent node in the search tree.
The first rule resolves an induced P3.

Branching Rule 1. Let G = (V,E) be a graph with a bicoloring g : V →
{b, w} and let k ≥ 0. If G contains an induced P3, denoted by P :=
(v1, v2, v3), branch into the cases:

1. remove the edge {v1, v2} from G and decrease k by one;

2. remove the edge {v2, v3} from G and decrease k by one.

Since both branching cases of the rule reduce the parameter k by one,
Branching Rule 1 admits the branching vector (1, 1), which has a branching
number of β(1, 1) = 2.
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Exhaustively applying Branching Rule 1 branches over all possibilities to
transform G into a cluster graph with at most k edge deletions. In order to
achieve a bicolored cluster graph, additionally every induced K(2,2) must be
resolved.

Let K be an induced K(2,2) in G consisting of two black vertices b1, b2

and two white vertices w1, w2. A trivial branching would in each case remove
one of the

(
4
2

)
= 6 edges between vertices in K and reduce k by one. This

would lead to a branching rule with branching vector (1, 1, 1, 1, 1, 1) and
branching number β(1, 1, 1, 1, 1, 1) = 6. However, we can achieve a much
better branching by considering which of the vertices in K can stay together
in a cluster in a solution graph. Let S be a solution. Let C be a cluster in
GS that contains at least one vertex from K. Clearly, C can not contain all
four vertices from K, otherwise it would contain an induced K(2,2). We thus
have three cases:

• If C contains exactly one vertex from K, then S deletes all three edges
to the other three vertices.

• If C contains exactly two vertices from K, then S deletes all four edges
to the other two vertices.

• If C contains exactly three vertices from K, then S again deletes all
three edges between the last vertex from K and the vertices in C ∩K
as in the first case.

In each case K is no longer an induced K(2,2) in GS and every solution S
has to delete at least all three or four edges according to one of the cases,
so that K is no longer an induced K(2,2) in GS. Therefore, the following
branching rule resolves an induced K(2,2) in G.

Branching Rule 2. Let G = (V,E) be a graph with a bicoloring g : V →
{b, w} and let k ≥ 0. If G contains an induced K(2,2), consisting of two black
vertices b1, b2 and two white vertices w1, w2, branch into the cases:

1. remove all edges between b1 and {b2, w1, w2} from G and decrease k
by 3.

2. remove all edges between b2 and {b1, w1, w2} from G and decrease k
by 3.

3. remove all edges between w1 and {b1, b2, w2} from G and decrease k
by 3.

4. remove all edges between w2 and {b1, b2, w1} from G and decrease k
by 3.

5. remove all edges between {b1, b2} and {w1, w2} from G and decrease k
by 4.

18



6. remove all edges between {b1, w1} and {b2, w2} from G and decrease k
by 4.

7. remove all edges between {b1, w2} and {b2, w1} from G and decrease k
by 4.

Branching Rule 2 admits the branching vector (3, 3, 3, 3, 4, 4, 4) with branch-
ing number β(3, 3, 3, 3, 4, 4, 4) ≈ 1.78. We can now formulate the FPT-
algorithm for BCD that gets initially called with an edge modification set S := ∅.

Algorithm 1:

Input: A graph G = (V,E), a bicoloring g : V → {b, w}, an
integer k and an edge modification set S.

Output: A valid solution S∗, if one exists.
if k < 0 then

Return to the parent node in the search tree;
else

Search for an induced P3 and an induced K(2,2) in G;
if an induced P3 in G was found then

Apply Branching Rule 1;
else if an induced K(2,2) in G was found then

Apply Branching Rule 2;
else

Return the solution set S;
end

end

Since Branching Rule 1 has a branching number of 2 and Branching Rule 2
has a lower branching number, the size of the search tree can be upper
bounded by 2k and we get the following proposition.

Proposition 1. BCD is in FPT and can be solved in O(2k · nO(1)) time.

In practice, Branching Rule 2 is not needed. Since edge insertions are not
allowed and therefore two vertices from different connected components can
never be part of the same cluster in the resulting cluster graph, we have the
following observation.

Observation 2. Let (G, g, k) be an instance of BCD. Each connected com-
ponent of G can be solved independently.

Let I := (G, g, k) be an instance of BCD. Using Observation 2, we show
that if the input graph G is already P3-free, or in other words a cluster graph,
we can solve I in polynomial time. For this we will make use of the following
lemma.

19



Lemma 5.1. Let I := (G, g, k) be an instance of BCD. Let K be a cluster
in G with bK > 1 black and wK > 1 white vertices. Then every optimal
solution S∗ for I splits K into exactly two clusters.

Proof. Let S be a solution for I. Since K is not valid, there are at least
two clusters in GS containing vertices of K. Let CK = {C1, C2, . . . , Cr}, with
r > 1, denote the valid clusters in GS that each contain at least one vertex
of K. Since S is a solution, every cluster in CK is a monochromatic black
cluster, a monochromatic white cluster, a valid black-dominated cluster or a
valid white-dominated cluster.

Suppose that r > 2. We show that we can always find a better solution
S∗ with |S∗| < |S| that only creates two clusters instead of r many. To this
end we step-wise merge some clusters that contain vertices from K, so that in
the end we only have one valid black-dominated cluster and one valid white-
dominated cluster left. We describe the merging-steps for black-dominated
clusters, the merging-steps for white-dominated clusters are analogous.

1. Let Ci and Cj be two different monochromatic black clusters. We can
merge Ci and Cj into a single monochromatic black cluster Ci ∪ Cj,
which does not require the deletion of edges between Ci and Cj and
gives us a better solution S ′ := S \ E(Ci, Cj) with one less cluster in
CK .

After step 1 we can assume that there is at most one black monochro-
matic cluster in CK .

2. Let Ci be a valid black-dominated cluster and Cj be a black monochro-
matic cluster. We can merge them into a single valid black-dominated
cluster Ci∪Cj which does not require the deletion of edges between Ci
and Cj and gives us a better solution S ′ := S \E(Ci, Cj) with one less
cluster in CK .

After step 2 we can assume that if there is a monochromatic black-
cluster in CK that it is the only black-dominated cluster in CK .

3. Let Ci and Cj be two different valid black-dominated cluster with
W (Cj) = {wj}. We can separate wj from Cj and merge the monochro-
matic black cluster C ′j := Cj \ {wj} with Ci. This requires |Cj| − 1
additional edge deletions to separate wj from the other vertices in Cj,
but also saves (|Cj| − 1) · |Ci| deletions due to the merging. Thus, we
obtain us a better solution S ′ :=

(
S \ E(Ci, C

′
j)
)
∪ E(Ci, wj). The so-

lution S ′ merges two black-dominated clusters in CK into one, but also
creates the new white singleton wj.
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Case 1: CK contains a white-dominated cluster C`. Then we can merge
wj with C` and get a better solution S ′′ := S ′ \ E(wj, C`).

Case 2: CK does not contain a white-dominated cluster. Then, after
splitting wj from the other vertices in Cj, we have that C` := {wj}
constitutes a new white-dominated cluster.

In both cases we can find a better solution that contains one less black-
dominated cluster and at least one white-dominated cluster in CK .

After step 3 we can assume that CK contains exactly one valid black-
dominated and exactly one valid white-dominated cluster, otherwise
we could merge some clusters according to step 1, 2 or 3.

Lemma 5.2. Let I := (G, g, k) be an instance of BCD, such that G is a
cluster graph. Then, I can be solved in O(n+m) time.

Proof. According to Observation 2 every cluster of G can be solved indepen-
dently. A cluster which is either a monochromatic cluster or contains exactly
one black or exactly one white vertex is already valid. Hence, we only have to
consider components that contain at least two black and two white vertices.

Let K be a connected component of G with bK := |B(K)| > 1 black and
wK := |W (K)| > 1 white vertices.

According to Lemma 5.1, we can assume that a minimum-cardinality
solution S∗ splits K into exactly two clusters C1 and C2 in GS∗ . It remains
to show that the minimal set of edge deletions that splits K into C1 and C2

can be determined in polynomial time.
According to Observation 1 splitting K into C1 and C2 needs |C1| · |C2|

edge deletions and this number is minimal if, without loss of generality, |C1|
is as small as possible or in other words |C2| is as big as possible. Since C1

and C2 both need to be a valid cluster, the maximal size of C2 depends on
the numbers bK and wK .

Case 1: bK ≤ wK . The cluster C2 can at most contain all wK white
and a black vertex b ∈ B(K). Thus, splitting K into C1 := B(K) \ {b} and
C2 := K \ C1 is optimal.

Case 2: bK > wK . The cluster C2 can at most contain all bK black
and a white vertex w ∈ W (K). Thus, splitting K into C1 := W (K) \ {w}
and C2 := K \ C1 is optimal.

Given bK and wK we can therefore determine the minimal number of edge
deletions involving vertices in K in constant time.

Finding every connected component K and determining the correspond-
ing values bK and wK can be done in O(n + m) time by using a modified
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breadth-first-search. Constructing the optimal set of edge deletions according
to the values of bK and wK can then also be done in O(n+m) time.

Using Lemma 5.2 we get a faster FPT-algorithm for BCD by resolving
all induced P3s by branching via Branching Rule 1 and then solving the
resulting cluster graph as described in Lemma 5.2. The following algorithm
is again initially called with an edge modification set S := ∅.

Algorithm 2:

Input: A graph G = (V,E), a bicoloring g : V → {b, w}, an
integer k and an edge modification set S.

Output: A valid solution S∗, if one exists.
if k < 0 then

Return to the parent node in the search tree;
else

Search for an induced P3 in G;
if an induced P3 in G was found then

Apply Branching Rule 1;
else

Solve each connected component K according to Lemma 5.2;
if k ≥ 0 then

Return the solution set S;
end

end

end

Theorem 5.3. BCD can be solved in O(2k · (n+m)) time.

Proof. Algorithm 2 first branches over all possibilities to resolve a given in-
duced P3. This is correct, since, if P is an induced P3 in G, every optimal
solution S∗ must resolve P in order to yield a bicolored cluster graph. Re-
solving all induced P3s results in a cluster graph that then can be solved
according to Lemma 5.2.

In each node of the search tree finding an induced P3 can be done in
O(n+m) time. If no induced P3 can be found, according to Lemma 5.2 the
given instance in that node of the search tree can be solved in O(n + m)
time. Since Branching Rule 1 admits the branching number 2, the size of
the search tree is bounded by 2k. The total worst-case running-time of the
algorithm is therefore O(2k · (n+m)).
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5.1.2 Strict Bicolored Cluster Deletion

Now we present a very similar FPT-algorithm for SBCD. Note that, since
the strict bicolored cluster property is not hereditary, strict bicolored clus-
ter graphs have no forbidden subgraph characterization. However, we can
again first resolve all induced P3s and then determine an optimal solution in
polynomial time.

Since only edge deletions are allowed we can again make the following
observation.

Observation 3. Let (G, g, k) be an instance of SBCD. Each connected
component of G can be solved independently.

Let I := (G, g, k) be an instance of SBCD. Using Observation 3 we again
show that if the input graph G is already P3-free, or in other words if G is a
cluster graph, we can solve I in polynomial time.

Lemma 5.4. Let I := (G, g, k) be an instance of SBCD. Let K be a cluster
in G with bK > 1 black and wK > 1 white vertices. Every optimal solution
S∗ for I splits K into exactly two clusters, one of which is black-dominated
and one of which is white-dominated.

Proof. Let S be a solution for I. Since K is not valid, there are at least
two clusters in GS containing vertices of K. Let CK = {C1, C2, . . . , Cr}, with
r > 1, denote the valid clusters in GS that each contain at least one vertex
of K. Since S is a solution, every cluster in CK is a valid black-dominated
cluster or a valid white-dominated cluster.

Suppose that r > 2. We show that we can always find a better solution S∗

with |S∗| < |S| that only creates two clusters instead of r many. To this end
we step-wise rearrange and merge some clusters that contain vertices from
K, so that in the end we only have one valid black-dominated cluster and
one valid white-dominated cluster left.

Case 1: CK contains a white-dominated cluster CW and a black-dominated
cluster CB.

Let Ci be another black-dominated cluster in CK with W (Ci) = {wi}.
We define three sets of edges. E1 := E({wi}, CW ), E2 := E(Ci \ {wi}, CB)
and E3 := E({wi}, Ci \ {wi}). Consider the edge-modification set S ′ :=(
S \ (E1 ∪ E2)

)
∪ E3 that splits wi from the rest of Ci and merges wi with

CW into a new cluster C ′W and Ci \ {wi} with CB into a new cluster C ′B.
Since wi is a white vertex and every vertex in Ci \ {wi} is black, C ′W is still a
valid white-dominated and C ′B still a valid black-dominated cluster. Clearly
|E3| < |E1|+ |E2|, so we have |S ′| < |S|.
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This shows that if CK contains a black-dominated cluster Ci with Ci 6=
CB, we can always find a better solution where CB is the only black-dominated
cluster in CK . Analogously the same is true for a white-dominated Cj cluster
and CW . Thus, we can assume that CK contains a single white-dominated
cluster CW and a single black-dominated cluster CB.

Case 2: CK contains two white-dominated clusters CW1 and CW2 and no
black-dominated cluster.

In this case we can rearrange CW1 and CW2 as follows, so that we have
a white-dominated cluster and a black-dominated cluster in CK and Case 1
applies. Let b2 denote the single black vertex in CW2 and let w2 denote a
white vertex in CW2 . Consider the edge modification set

S ′ :=
(
S \ E(CW2 \ {b2, w2}, CW1)

)
∪ E({b2, w2}, CW2 \ {b2, w2})

that leaves b2 and w2 as the cluster C ′W2
:= {b2, w2} and merges all other

(white) vertices in CW2 together with CW1 into the valid white-dominated
cluster C ′W1

:= CW1 ∪ (CW2 \ {b2, w2}). Compared to S, the solution S ′ adds
2 · (|CW2|−2) edge deletions, but also saves |CW1| · (|CW2|−2) edge deletions.
Since CW1 is a valid cluster and thus |CW1| ≥ 2, we have |S ′| ≤ |S|. As C ′W2

only consists of a single black and a single white vertex, C ′W2
constitutes a

valid black-dominated cluster and Case 1 applies.
Case 3: CK contains two black-dominated clusters CB1 and CB2 and no

white-dominated cluster.
Analogously to Case 2 we can rearrange CB1 and CB2 so that we again

have a white-dominated cluster and a black-dominated cluster in CK and
Case 1 applies.

With Lemma 5.4, we can now show that if the input graph G is already
P3-free, we can solve the instance in polynomial time.

Lemma 5.5. Let I := (G, g, k) be an instance of SBCD, such that G is a
cluster graph. Then, I can be solved in O(n+m) time.

Proof. According to Observation 3, every cluster of G can be solved inde-
pendently. A cluster which contains exactly one black or exactly one white
vertex is already valid. Hence, we only have to consider components that
contain at least two black and two white vertices.

Let K be a connected component of G with bK := |B(K)| > 1 black and
wK := |W (K)| > 1 white vertices.

According to Lemma 5.4, we can assume that a minimum-cardinality
solution S∗ splits K into exactly two clusters CB and CW in GS∗ , such that
CB is a valid black-dominated cluster and CW is a valid white-dominated
cluster.
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It remains to show that the minimal set of edge deletions that splits K
into CB and CW can be determined in polynomial time.

According to Observation 1 splitting K into two clusters C1 and C2 needs
|C1| · |C2| edge deletions and this number is minimal if, without loss of gen-
erality, |C1| is as small as possible or in other words |C2| is as big as possible.
The optimal partition of K into CB and CW depends on the values of bK and
wK .

Case 1: bK > 2, wK > 2. Let b1 be a black and w1 be a white vertex in
K. Since CB must be a valid black-dominated cluster, it must contain exactly
one white vertex and CW must contain all the other white vertices. Also,
since CW must be a valid white-dominated cluster, it must contain exactly
one black vertex and CB must contain all the other black vertices. Therefore,
splitting K into CB := (B(K)\{b1})∪{w1} and CW := (W (K)\{w1})∪{b1}
is optimal.

Case 2: bK = 2. Let B(K) := {b1, b2}. Since a single black vertex
is also a valid black-dominated cluster, splitting K into CB := {b1} and
CW := W (K) ∪ {b2} is optimal.

Case 3: wK = 2. Let W (K) := {w1, w2}. Since a single white vertex
is also a valid white-dominated cluster, splitting K into CW := {w1} and
CB := B(K) ∪ {w2} is optimal.

Given bK and wK we can therefore determine the minimal amount of edge
deletion involving vertices in K in constant time.

Finding every connected component K and determining the correspond-
ing values bK and wK can be done in O(n + m) time by using a modified
breadth-first-search. Constructing the optimal set of edge deletions according
to the values of bK and wK can then also be done in O(n+m) time.

Using Lemma 5.5, we get a FPT-algorithm for SBCD by resolving all
induced P3s by branching via Branching Rule 1 and then solving the resulting
cluster graph as described in Lemma 5.5. The following algorithm is initially
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called with an edge modification set S := ∅.
Algorithm 3:

Input: A graph G = (V,E), a bicoloring g : V → {b, w}, an
integer k and an edge modification set S.

Output: A valid solution S∗, if one exists.
if k < 0 then

Return to the parent node in the search tree;
else

Search for an induced P3 in G;
if an induced P3 in G was found then

Apply Branching Rule 1;
else

Solve each connected component K according to Lemma 5.5;
if k ≥ 0 then

Return the solution set S;
end

end

end

Theorem 5.6. SBCD is in FPT and can be solved in O(2k · (n+m)) time.

Proof. Algorithm 3 first branches over all possibilities to resolve a given in-
duced P3. This is correct, since, if P is an induced P3 in G, every optimal
solution S∗ must resolve P in order to yield a strict bicolored cluster graph.
Resolving all induced P3s results in a cluster graph that then can be solved
according to Lemma 5.5.

In each node of the search tree finding an induced P3 can be done in
O(n+m) time. If no induced P3 can be found, according to Lemma 5.5 the
given instance in that node of the search tree can be solved in O(n + m)
time. Since Branching Rule 1 admits the branching number 2, the size of
the search tree is bounded by 2k. The total worst-case running-time of the
algorithm is therefore O(2k · (n+m)).

5.2 Problem Kernels

5.2.1 Bicolored Cluster Deletion

Now we present a linear-vertex kernel for BCD that makes use of the fol-
lowing observation regarding critical cliques in a resulting bicolored cluster
graph. Recall that a critical clique C is a clique, such that every vertex v ∈ C
has the same neighborhood and C is maximal under this property. A closed
critical clique is a critical clique C such that C ∪N(C) is also a clique.
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Lemma 5.7. Let (G, g, k) be an instance of BCD or SBCD and let S be
an optimal solution. Let v be an unaffected vertex and let K be the critical
clique in G containing v. Then K is a closed critical clique, the valid cluster
containing v in GS is K ∪N(K), and every vertex in K is unaffected.

Proof. First, we show that K is closed. Assume that for u,w ∈ N(K) we
have {u,w} /∈ E. Since only edge deletions are allowed, this implies that u
and w can not be in the same resulting cluster in GS and therefore at least
one of the edges {v, u} and {v, w} is deleted by S, which would contradict
that v is unaffected.

Now consider the valid cluster C in GS containing v. Since v is unaffected,
no edge adjacent to v is deleted by S, so N [v] = K ∪ N(K) ⊆ C. Because
edge insertions are not allowed, no vertex w /∈ N [v] = K ∪ N(K) can be
in the same resulting cluster as v. Hence C ⊆ K ∪ N(K) and therefore
C = K ∪N(K).

Let u be a vertex in K. Since K is a critical clique we have N [u] =
K ∪N(K) = C. As u belongs to the valid cluster C in GS, no edge modifi-
cation is incident to u, hence u is unaffected.

We now formulate reduction rules that give rise to a linear-vertex kernel
for BCD. Similar to previous kernels obtained for Cluster Editing [12, 7]
the idea is to bound the number of affected and unaffected vertices in the
input graph of a yes-instance using the concept of critical cliques.

The first reduction rule removes already valid clusters, since those are not
affected by any edge deletions.

Reduction Rule 1. Remove a valid cluster in G.

Lemma 5.8. Reduction Rule 1 is correct and can be exhaustively applied in
O(n+m) time.

Proof. Let (G, g, k) be an instance of BCD and C a valid cluster in G. Let S
be a solution such that there are two clusters C1 ⊆ C, C2 ⊆ C with C1 6= C2

in GS. Consider the edge modification set S ′ := S \ {{u, v} | u ∈ C1, v ∈ C2}
that does not separate C1 and C2. Clearly, |S ′| < |S|. Since C was already a
valid cluster, S ′ is also a solution. Therefore an optimal solution S∗ does not
delete any edges between vertices in C and C can be safely removed from G.

Using a modified breadth-first search every connected component can be
computed and checked for validity in O(n+m) time.

The next reduction rule bounds the number of edges between critical
cliques in the resulting input graph.
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Reduction Rule 2. Let K be a closed critical clique in G such that K ∪
N(K) forms a valid cluster and |K| > |E(N(K), N2(K))|. Delete every edge
in E(N(K), N2(K)), delete K ∪N(K) and reduce k by |E(N(K), N2(K))|.

To prove the correctness of Reduction Rule 2 we make use of the following
claim.

Claim 1. Let (G, g, k) be an instance of BCD. Let K be a closed critical
clique in G such that K∪N(K) forms a valid cluster. Then, for every optimal
solution S∗ every vertex in K is part of the same resulting cluster in GS∗.

Proof. Let S be a solution such that there are two clusters C1, C2 with
C1 ⊆ K ∪ N(K), C2 ⊆ K ∪ N(K) and C1 6= C2 in GS. Consider the
edge modification set S ′ := S \ {{u, v} | u ∈ C1, v ∈ C2} that does not
separate C1 and C2. Clearly, |S ′| < |S|. Since K is a closed critical clique
and K ∪N(K) is already a valid cluster, C1 ∪ C2 is also a valid cluster and
S ′ is a solution. Therefore an optimal solution S∗ does not delete any edges
between vertices in K and every vertex in K is part of the same resulting
cluster in GS∗ .

Lemma 5.9. Reduction Rule 2 is correct and can be exhaustively applied in
O(n2 + n ·m) time.

Proof. Let (G, g, k) be an instance of BCD. Let K be a closed critical
clique that meets the requirements in Reduction Rule 2. First, note that
for any optimal solution S∗ every vertex in K is part of the same clus-
ter CK ⊆ K ∪N(K) in GS∗ according to Claim 1.

Let S be a solution. Assume that CK ( K ∪N(K) in GS. This implies
thatGS contains a cluster C ′ 6= CK with C ′∩N(K) 6= ∅. Let V ′ := C ′∩N(K).

Consider the edge modification set S ′ := S \ E(V ′, CK) ∪ E(V ′, C ′ \ V ′)
that leaves V ′ in the same cluster as K. We proceed to show that S ′ deletes
less edges than S and is also a solution.

As K ⊆ CK , we have |E(V ′, CK)| ≥ |K|. Since V ′ ⊆ N(K), clearly
E(V ′, C ′\V ′) ⊆ E(N(K), N2(K)) and thus |E(V ′, C ′\V ′)| ≤ |E(N(K), N2(K))|.
With |K| > |E(N(K), N2(K))|, we get |S ′| < |S|.

Since the bicolored cluster property is hereditary by Lemma 3.1, CV ′ \V ′
is still a valid cluster and CK ∪ V ′ ⊆ K ∪N(K) is also a valid cluster, so S ′

is a solution.
Overall, this implies that for every optimal solution S∗ in the resulting

cluster graph K ∪N(K) forms a cluster and every edge in E(N(K), N2(K))
is deleted by S∗.

For a given graphG all critical cliques can be determined inO(n+m) time.
Using a modified breadth-first search the critical cliques can be checked for
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validity and the edges between critical cliques can be determined in O(n+m)
time. Every application of Reduction Rule 2 deletes at least one vertex, hence
the rule must be applied at most n times. Therefore, Reduction Rule 2 can
be exhaustively applied in O(n2 + n ·m) time.

Lemma 5.10. Let I := (G, g, k) be exhaustively reduced with respect to Re-
duction Rules 1 and 2. If G has more than 4k vertices, then I is a no-instance
of BCD.

Proof. Let I be a yes-instance of BCD and let S be a valid solution for I. We
prove the lemma by giving an upper bound on the number of vertices in G
that are affected and unaffected by S. Let Vα denote the vertices affected by
S and Vβ denote the vertices that are unaffected by S, Vα∪̇Vβ = V . Clearly,
|Vα| ≤ 2k, since S is valid and every edge in S is incident with at most two
unique vertices. According to Lemma 5.7 every unaffected vertex v ∈ Vβ
is part of a closed critical clique K in G, such that every vertex in K is
unaffected and K ∪N(K) is a valid cluster in GS. Let K1, K2, . . . Kr, r ≥ 0
denote the closed critical cliques in G that contain the unaffected vertices.
Since Ki ∪ N(Ki) is a valid cluster in GS, every edge in E(N(Ki), N

2(Ki))
must have been deleted by S. For two indices i and j, i 6= j, an edge in
E(N(Ki), N

2(Ki)) can have an endpoint in N(Kj) and thus also be included
in E(N(Kj), N

2(Kj)). Since S is valid we therefore have

r∑
i=1

|E(N(Ki), N
2(Ki))| ≤ 2k.

Since G is reduced with respect to Reduction Rule 1 and 2, for every re-
maining closed critical cliqueKi we also have that |Ki| ≤ |E(N(Ki), N

2(Ki))|.
Thus, in total we get

|Vβ| =
r∑
i=1

|Ki| ≤
r∑
i=1

|E(N(Ki), N
2(Ki))| ≤ 2k

and finally
|V | = |Vα|+ |Vβ| ≤ 2k + 2k = 4k.

Theorem 5.11. BCD admits a 4k-vertex kernel that can be computed in
O(n2 + n ·m) time.

Proof. Let (G, g, k) be an instance of BCD. The kernelization algorithm for
BCD first exhaustively applies Reduction Rules 1 and 2. Then, if for the
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resulting graph G′ we have |V (G′)| > 4k, the algorithm returns a trivial
no-instance.

Exhaustively applying Reduction Rules 1 and 2 takes O(n2 +n ·m) time.
The correctness of the kernelization algorithm follows from Lemma 5.10.

5.2.2 Strict Bicolored Cluster Deletion

Now we proceed to present a problem kernel for SBCD, again using the no-
tion of critical cliques to bound the number of affected and unaffected vertices
in the input graph of a yes-instance. Recall that for SBCD a valid cluster
of size at least two is a cluster that is K(2,2)-free and is not a monochromatic
cluster. Singletons are also considered a valid cluster. Recall that Lemma 5.7
also holds for SBCD, only the notion of a valid cluster is slightly different.

The first reduction rule again removes already valid clusters.

Reduction Rule 3. Remove a valid cluster in G.

Lemma 5.12. Reduction Rule 3 is correct and can be exhaustively applied
in O(n+m) time.

Proof. Let (G, g, k) be an instance of SBCD and C a valid cluster in G.
Note that, since C is a valid cluster, C contains exactly one black or exactly
one white vertex. Without loss of generality, assume that |B(C)| = 1 and
let b denote the black vertex in C. This also implies that every vertex in
C \ {b} is white. Let S be a solution such that there are two valid clusters
C1 ⊆ C, C2 ⊆ C with C1 6= C2 and, without loss of generality, assume b ∈ C1

in GS. Note that this also implies that C2 consists of a single white vertex
w ∈ W (C). Consider the edge modification set S ′ := S \ {{u,w} | u ∈ C1}
that does not separate C1 and C2. Clearly, |S ′| < |S|. Since C is already a
valid cluster and C1 contains b, C1 ∪ C2 ⊆ C is also a valid cluster and S ′

is a solution. Therefore, an optimal solution S∗ does not delete any edges
between vertices in C. Thus, C can be safely removed from G.

Using a modified breadth-first search, every connected component can be
computed and checked for validity in O(n+m) time.

Reduction Rule 4 upper-bounds the size of closed critical cliques. This
later contributes to bounding the number of unaffected vertices in a reduced
instance.

Reduction Rule 4. Let K be a closed critical clique in G with |K| ≥ k+ 2.
Then, if K ∪N(K) forms a valid cluster, delete K ∪N(K) and reduce k by
|E(N(K), N2(K))|. Otherwise, return a trivial no-instance.
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Lemma 5.13. Reduction Rule 4 is correct and can be exhaustively applied
in O(n2 + n ·m) time.

Proof. Since |K| ≥ k+ 2, according to Observation 1 splitting off any clique
K ′ ⊂ K ∪N(K) from the other vertices in K ∪N(K) would require at least
|K| − 1 ≥ k + 1 edge deletions.

Therefore, if K ∪N(K) forms a valid cluster, every valid solution S must
contain the cluster K ∪ N(K) in GS and K ∪ N(K) can be safely deleted.
Otherwise, at least one vertex in K ∪ N(K) must be separated from the
others. Since this requires at least k + 1 edge deletions, (G, g, k) is a no-
instance.

For a given graphG all critical cliques can be determined inO(n+m) time.
Using a modified breadth-first search the critical cliques can be checked for
validity and the edges between critical cliques can be determined in O(n+m)
time.

Since every application of Reduction Rule 4 either returns a trivial no-
instance or deletes at least one vertex, the rule can be applied at most n times.
Therefore, Reduction Rule 4 can be exhaustively applied in O(n2 + n · m)
time.

For SBCD we can also formulate a claim similar to Claim 1.

Claim 2. Let (G, g, k) be an instance of SBCD. Let K be a closed critical
clique in G such that K ∪ N(K) forms a valid cluster. Then, for every
optimal solution S∗ either every vertex in K is part of the same resulting
cluster in GS∗ or every vertex in K is a singleton in GS∗.

Proof. Since K ∪ N(K) is a valid cluster, we have |B(K ∪ N(K))| = 1
or |W (K ∪ N(K))| = 1. Without loss of generality, assume that |B(K ∪
N(K))| = 1 and let b denote the black vertex in K ∪ N(K). This also
implies that every vertex in (K ∪ N(K)) \ {b} is white. We consider two
cases, depending on whether b ∈ K or b ∈ N(K).

Case 1: First, let b ∈ K. Let S be a solution such that there are
two valid clusters C1 with C1 ⊆ K ∪ N(K), C1 ∩ K 6= ∅, and C2 with
C2 ⊆ K ∪ N(K), C2 ∩ K 6= ∅, such that C1 6= C2 in GS and, without
loss of generality, b ∈ C1. Note that this also implies that C2 consists of a
single white vertex w, because C2 does not contain any black vertices and
must therefore be a singleton in GS. Consider the edge modification set
S ′ := S \ {{u,w} | u ∈ C1} that does not separate C1 and C2. Clearly,
|S ′| < |S|. Since K ∪ N(K) is already a valid cluster and C1 contains b,
C1 ∪ C2 ⊆ K ∪ N(K) is also a valid cluster and S ′ is a solution. Therefore
an optimal solution S∗ does not delete any edges between vertices in K and
every vertex in K is part of the same resulting cluster in GS∗ .
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Case 2: Now, let b ∈ N(K). Note that in a resulting cluster graph the
cluster containing b cannot contain a vertex v ∈ K and a vertex u ∈ N2(K)
at the same time, since per definition {v, u} /∈ E and edge insertions are
not allowed. Therefore, for every solution S the cluster Cb containing b is a
subset of K ∪N(K) or a subset of N(K) ∪N2(K).

Case 2.1: Let S1 be a solution such that the cluster containing b in GS1

is Cb ⊆ N(K)∪N2(K). Then, since (K ∪N(K)) \ {b} does not contain any
black vertex, every vertex v ∈ K cannot be contained in a valid cluster with
another vertex u ∈ K ∪N(K) and is therefore a singleton in GS1 .

Case 2.2: Let S2 be a solution, such that the cluster containing b in GS2

is Cb ⊆ K ∪N(K). Let C ′ with C ′ ⊆ K ∪N(K) be another cluster in GS2 .
Note that C ′ consists of a single white vertex w, because C ′ does not contain
any black vertices.

Consider the edge modification set S ′2 := S2 \ {{u,w} | u ∈ Cb} that does
not separate Cb and C ′. Clearly, |S ′2| < |S2|. Since K ∪ N(K) is already a
valid cluster and Cb contains b, Cb ∪ C ′ ⊆ K ∪ N(K) is also a valid cluster
and S ′2 is a solution.

In any case, for an optimal solution S∗ either every vertex in K is part
of the same resulting cluster in GS∗ or every vertex in K is a singleton
in GS∗ .

Similar to Reduction Rule 2, Reduction Rule 5 aims to bound the number
of edges between critical cliques in the resulting input graph, using that the
size of critical cliques is already bounded according to Reduction Rule 4.

Reduction Rule 5. Let K be a closed critical clique in G such that K ∪
N(K) forms a valid cluster and |K| > |E(N(K), N2(K))| · k 1

2 . Delete K ∪
N(K) and reduce k by |E(N(K), N2(K))|.

Lemma 5.14. Let I := (G, g, k) be an instance of SBCD such that I is
exhaustively reduced with respect to Reduction Rule 4 and k ≥ 16. Then
Reduction Rule 5 is correct and can be exhaustively applied in O(n2 + n ·m)
time.

Proof. Let K be a closed critical clique in G that meets the requirements of
Reduction Rule 5. First, note that for any optimal solution S∗ every vertex
in K is part of the same cluster CK ⊆ K ∪N(K), or every vertex in K is a
singleton in GS∗ according to Claim 2.

Let S be a solution, such that K ∪ N(K) is not a cluster in GS. Since
edge insertions are not allowed, every cluster in GS containing a vertex in
K ∪ N(K) is a subset of K ∪ N(K) or a subset of N(K) ∪ N2(K). Let
C1, C2, . . . , Cr, r > 0, denote all the clusters in GS that are subsets of K ∪

32



N(K), including singletons. Let C ′1, C
′
2, . . . , C

′
`, ` ≥ 0, denote all the clusters

in GS that are subsets of N(K) ∪N2(K) and contain at least one vertex of
N(K) and at least one vertex of N2(K).

We define four sets of edges in order to obtain a better solution. The sets

E1 :=
⋃

1≤i<j≤r

E(Ci, Cj),

E2 :=
⋃

1≤i≤r
1≤p≤`

E(Ci, C
′
p ∩N(K)),

and
E3 :=

⋃
1≤p<q≤`

E(C ′p ∩N(K), C ′q ∩N(K))

contain all the edges between vertices in K ∪ N(K) that are deleted by S.
The set

E4 :=
⋃

1≤p≤`

E(C ′p, C
′
p ∩N2(K))

contains all edges that have to be additionally deleted in order to make every
vertex in C ′p ∩N2(K), 1 ≤ p ≤ ` a singleton.

Case 1: Let ` = 0. This implies that every vertex in K ∪ N(K) is
contained in one of the clusters Ci, 1 ≤ i ≤ r, in GS. Consider the edge
modification set

S ′ := S \ E1

that instead preserves K ∪ N(K) as a cluster. Clearly, |S ′| < |S|. In GS′

every vertex from Ci, 1 ≤ i ≤ r, is now part of the cluster K ∪ N(K) and
every other cluster in GS remains the same in GS′ . Since K ∪ N(K) is a
valid cluster and S is a solution, thus S ′ is also a solution.

Case 2: Let ` ≥ 1. Consider the edge modification set

S ′ :=
(
S \

(
E1 ∪ E2 ∪ E3

))
∪ E4

that instead preserves K ∪ N(K) as a cluster and leaves every vertex in
C ′p ∩N2(K), 1 ≤ p ≤ `, as a singleton. We proceed to show that S ′ deletes
fewer edges than S and is also a solution.

Observe that, since |K| > |E(N(K), N2(K))| · k 1
2 and I is exhaustively

reduced with respect to Reduction Rule 4, we have

k + 1 ≥ |K| > |E(N(K), N2(K))| · k
1
2

which implies
|E(N(K), N2(K))| < k

1
2 + 1 (1)
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Let v be a vertex in C ′1∩N(K). Since K∪N(K) is a clique in G, the vertex v
is adjacent to every vertex u ∈ K in G and thus

⋃
1≤i≤r E(Ci, C

′
1 ∩ N(K))

contains an edge between v and every vertex u in K. Hence, for the number
of edges in E2 =

⋃
1≤i≤r
1≤p≤`

E(Ci, C
′
p ∩N(K)) we have

|E2| ≥ |K|. (2)

Furthermore, we have

E4 =
⋃

1≤p≤`

E(C ′p, C
′
p ∩N2(K)) ⊆ E(N(K), N2(K)) ∪N2(K). (3)

Since every vertex in N2(K) has at least one neighbor in N(K), we have
|N2(K)| ≤ |E(N(K), N2(K))| and therefore the edges between two vertices

in N2(K) can be bound by
(|E(N(K),N2(K))|

2

)
. Setting x := |E(N(K), N2(K))|

we get the following inequalities that hold for every k ≥ 16:

|E4| = |
⋃

1≤p≤`

E(C ′p, C
′
p ∩N2(K))|

(3)

≤ x+

(
x

2

)
≤ x ·

(
1 +

x

2

)
(1)
< x ·

(
1 +

k1/2 + 1

2

)
< x ·

(
k1/2

2
+ 2

)
≤ x · k1/2 since k ≥ 16

< |K|
(2)

≤ |E2|.

This gives us |E4| < |E2| which implies that |S ′| < |S|.
Now we show that S ′ is a solution. Note that every cluster in GS ex-

cept Ci, C
′
p, 1 ≤ i ≤ r, 1 ≤ p ≤ `, is also a cluster in GS′ . By construction of

S ′ every vertex from Ci, C
′
p, 1 ≤ i ≤ r, 1 ≤ p ≤ ` is either a singleton or part

of the valid cluster K ∪N(K) in GS′ . Therefore every vertex in GS′ is part
of a valid cluster and S ′ is a solution.

Overall, this implies that for every optimal solution S∗ in the resulting
cluster graph GS∗ the vertex set K ∪ N(K) forms a cluster and every edge
in E(N(K), N2(K)) is deleted by S∗.

For a given graphG all critical cliques can be determined inO(n+m) time.
Using a modified breadth-first search the critical cliques can be checked for
validity and the edges between critical cliques can be determined in O(n+m)
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time. Every application of Reduction Rule 5 deletes at least one vertex, hence
the rule must be applied at most n times. Therefore, Reduction Rule 5 can
be exhaustively applied in O(n2 + n ·m) time.

Lemma 5.15. Let I := (G, g, k) be exhaustively reduced with respect to Re-

duction Rules 3, 4 and 5 and k ≥ 16. If G has more than 2k
3
2 + 2k vertices,

then I is a no-instance.

Proof. Let I be a yes-instance of SBCD and let S be a valid solution for I.
We prove the lemma by giving an upper bound on the number of vertices
in G that are affected and unaffected by S. Let Vα denote the vertices
affected by S and Vβ denote the vertices that are unaffected by S, recall
that Vα∪̇Vβ = V . Clearly, |Vα| ≤ 2k, since S is valid and every edge in S
is incident to at most two unique vertices. According to Lemma 5.7 every
unaffected vertex v ∈ Vβ is part of a closed critical clique K in G, such that
every vertex in K is unaffected and K ∪N(K) is a valid cluster in GS. Let
K1, K2, . . . , Kr, r ≥ 0 denote the closed critical cliques in G that contain the
unaffected vertices. Since Ki ∪N(Ki) is a valid cluster in GS, every edge in
E(N(Ki), N

2(Ki)) is deleted by S. For two indices i and j, i 6= j, an edge in
E(N(Ki), N

2(Ki)) can have an endpoint in N(Kj) and thus also be included
in E(N(Kj), N

2(Kj)).
Since S is valid we therefore have

r∑
i=1

|E(N(Ki), N
2(Ki))| ≤ 2k.

Since G is reduced with respect to Reduction Rule 3, 4, and 5 and k ≥ 16,
for every remaining closed critical clique Ki we also have that

|Ki| ≤ |E(N(Ki), N
2(Ki))| · k

1
2 .

Thus, in total we get

|Vβ| =
r∑
i=1

|Ki| ≤
r∑
i=1

|E(N(Ki), N
2(Ki))| · k

1
2 ≤ 2k · k

1
2 = 2k

3
2

and finally
|V | = |Vα|+ |Vβ| ≤ 2k

3
2 + 2k

Theorem 5.16. SBCD admits a 2k
3
2 +2k-vertex kernel that can be computed

in O(n2 + n ·m) time.
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Proof. Let (G, g, k) be an instance of SBCD. The kernelization algorithm
for SBCD first exhaustively applies Reduction Rule 3 and 4 and then checks
whether k ≥ 16. As long as k ≥ 16, the algorithm tries to apply Reduction
Rule 5. If k ≥ 16 and Reduction Rule 5 has been exhaustively applied,
if for the resulting graph G′ we have |V (G′)| > 2k

3
2 + 2k, the algorithm

returns a trivial no-instance. If at any point k < 16, the algorithm solves
the current instance I := (G′, g, k) using Algorithm 3 in O(n + m) time. If
I is a yes-instance, the kernelization algorithm returns a trivial yes-instance.
Otherwise, the algorithm returns a trivial no-instance.

Clearly, the kernelization algorithm is correct for k < 16. The correctness
of the kernelization algorithm for k ≥ 16 follows from Lemma 5.15. Exhaus-
tively applying Reduction Rule 3, 4 and 5 can be done in O(n2 +n ·m) time.
For k < 16 using the FPT-algorithm for SBCD takes O(n+m) time.
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6 Editing Variants

In this chapter we proceed to study the parameterized complexity of the
editing variants BCE and SBCE for the parameter solution size k. First
we again propose an FPT-algorithm for both variants and then formulate
reduction rules that lead to quadratic-vertex kernels.

6.1 FPT-Algorithms

6.1.1 Bicolored Cluster Editing

As for BCD, for BCE we can also make the observation that we can solve
each connected component individually.

Observation 4. Let (G, g, k) be an instance of BCE. Each connected com-
ponent of G can be solved independently.

Proof. Let S be a solution and let C be a cluster in GS that contains
vertices from two distinct connected components K1 and K2 in G. All
edges between vertices in K1 ∩ C and K2 ∩ C are inserted by S. Let
S∗ := S \ EGS

(K1 ∩ C,K2 ∩ C) be a solution that leaves the vertices in
K1 ∩ C and K2 ∩ C separated, but is otherwise identical to S. Clearly,
we have |S∗| < |S|. Since S is a solution and the bicolored cluster property
is hereditary, S∗ is also a solution.

This shows that every optimal solution does not insert edges between
vertices from different connected components and therefore every connected
component can be solved independently.

For BCE we have an FPT-algorithm very similar to the one proposed
for BCD. Again, we branch over all possibilities to resolve any induced P3s
and then solve the resulting instance in polynomial time.

The following branching rule resolves an induced P3. Note that in the
editing case we can resolve an induced P3 by either deleting one of the present
edges or inserting the missing edge.

Branching Rule 3. Let G = (V,E) be a graph with a bicoloring g : V →
{b, w} and let k ≥ 0. If G contains an induced P3, denoted by P := (v1, v2, v3),
branch into the cases:

1. remove the edge {v1, v2} from G and decrease k by one;

2. remove the edge {v2, v3} from G and decrease k by one;

3. insert the edge {v1, v3} in G and decrease k by one.
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Since all three branching cases of the rule reduce the parameter k by one,
Branching Rule 3 admits the branching vector (1, 1, 1), which has a branching
number of β(1, 1, 1) = 3.

Similar to BCD we can again solve an instance of BCE if the input graph
is already a cluster graph.

Lemma 6.1. Let I := (G, g, k) be an instance of BCE, such that G is a
cluster graph. Then, I can be solved in O(n+m) time.

Proof. According to Observation 4 every cluster of G can be solved indepen-
dently. Since every cluster is already a complete subgraph, this also implies
that an optimal solution for I only consists of edge deletions. Therefore, an
optimal solution for an instance I ′ := (G, g, k) of BCD is also an optimal
solution for I and we can solve I in O(n+m) time according to Lemma 5.2.

Using Branching Rule 3 and Lemma 6.1 we can now formulate the FPT-
algorithm for BCE.

Algorithm 4:

Input: A graph G = (V,E), a bicoloring g : V → {b, w}, an
integer k and an edge modification set S.

Output: A valid solution S∗, if one exists.
if k < 0 then

Return to the parent node in the search tree;
else

Search for an induced P3 in G;
if an induced P3 in G was found then

Apply Branching Rule 3;
else

Solve each connected component K according to Lemma 6.1;
if k ≥ 0 then

Return the solution set S;
end

end

end

Theorem 6.2. BCE is in FPT and can be solved in O(3k ·O(n+m)) time.

Proof. Algorithm 4 first branches over all possibilities to resolve a given in-
duced P3. This is correct, since, if P is an induced P3 in G, every optimal
solution S∗ must resolve P in order to yield a bicolored cluster graph. In
each node of the search tree finding an induced P3 can be done in O(n+m)
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time. If no induced P3 can be found, according to Lemma 6.1 the given in-
stance in that node of the search tree can be solved in O(n+m) time. Since
Branching Rule 3 admits the branching number 3, the size of the search tree
is bounded by 3k. The total worst-case running-time of the algorithm is
therefore O(3k · (n+m)).

6.1.2 Strict Bicolored Cluster Editing

Before we proceed to propose an FPT-algorithm for SBCE, we first formu-
late a series of lemmas that we will use to design both the FPT-algorithm and
the problem kernel for SBCE. The first two lemmas describe what happens
to the vertices of a monochromatic cluster in G when an optimal solution is
applied.

Lemma 6.3. Let C be a monochromatic black cluster in G. Let S∗ be an
optimal solution. Then, there is at most one cluster CB in GS∗ that contains
two or more vertices from C. Furthermore, every vertex v ∈ C is in GS∗

either

• the single black vertex of a white-dominated cluster CW ,

• part of the black-dominated cluster CB with B(CB) ⊆ C, or

• a singleton.

Proof. First, assume that there is a black-dominated cluster C1 in GS∗ such
that C1 contains at least one vertex from C and B(C1) * C. Let wC1 denote
the single white vertex in C1 and C1 := C1 \ C, C ′1 := C1 ∩ C.

Case 1: |C ′1| ≤ |C1|.
Every edge between C ′1 and C1 is inserted by S∗. Therefore we can get

a better solution S ′ by instead leaving C1 as a valid black-dominated clus-
ter and breaking up C ′1 into singletons. This needs

(|C′1|
2

)
additional edge

deletions but also saves |C ′1| · |C1| edge insertions.
Case 2: |C ′1| > |C1|.
Every edge between C1 \ {wC1} and C ′1 is inserted by S∗. Therefore we

can get a better solution S ′ by instead leaving C ′1 ∪ {wC1} as a valid black-
dominated cluster and breaking up C1 \ {wC1} into singletons. This needs

at most
(|C1|

2

)
additional edge deletions but also saves |C ′1| · (|C1| − 1) edge

insertions.
We can now assume that for every black-dominated cluster C1 in GS∗

either C1 contains no vertices from C or B(C1) ⊆ C. Now let C1, C2 be two
black-dominated clusters with |C1 ∩C| ≥ 2, |C2 ∩C| ≥ 2 and let wC2 denote
the single white vertex in C2. We can then get a better solution S ′ that
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merges C2 \{wC2} with C1 and leaves wC2 as a singleton. This saves the edge
deletions applied by S∗ to separate C1 ∩ C and C2 ∩ C as well as the edges
inserted between C2 ∩ C and wC2 .

Therefore GS∗ contains at most one cluster with two or more vertices
from C and the lemma holds, since otherwise we can find a better solution
S ′ with |S ′| < |S∗|, which contradicts the optimality of S∗.

For monochromatic white clusters we have a lemma analogous to Lemma 6.3.

Lemma 6.4. Let C be a monochromatic white cluster in G. Let S∗ be an
optimal solution. Then there is at most one cluster CW in GS∗ that contains
two or more vertices from C. Furthermore, every vertex v ∈ C is in GS∗

either

• the single white vertex of a black-dominated cluster CB,

• part of the white-dominated cluster CW with W (CW ) ⊆ C, or

• a singleton.

Proof. The proof is analogous to that of Lemma 6.3.

The next two lemmas handle valid black-dominated and valid white dom-
inated clusters in G.

Lemma 6.5. Let C be a valid black-dominated cluster in G and let w be
the single white vertex in C. Let S∗ be an optimal solution. Then there is
at most one cluster C∗ in GS∗ that contains two or more vertices from C
and C∗ is a black-dominated cluster with C∗ ⊆ C. Furthermore, in GS∗ the
vertex w is

• the single white vertex of a black-dominated cluster CB with CB ∩ C = {w},

• part of the black-dominated cluster C∗ ⊆ C, or

• a singleton

and for every vertex v ∈ C \ {w} in GS∗ we have that v is

• the single black vertex of a white-dominated cluster CW ,

• part of the black-dominated cluster C∗ ⊆ C, or

• a singleton.
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Proof. We denote with CB the set of black-dominated clusters in GS∗ and
with CW the set of white-dominated clusters in GS∗ .

Let Cw be the cluster in GS∗ that contains the vertex w. First we show
that either Cw ⊆ C or Cw ∈ CB with Cw ∩ C = {w}.

Case 1: |Cw ∩ C| ≥ 2 and Cw * C.
We have to distinguish whether Cw ∈ CB or Cw ∈ CW .
Case 1.1: Cw ∈ CB.
Let C ′w := Cw \ C and Cw := Cw ∩ C.
Case 1.1a: |Cw| ≤ |C ′w|.
Every edge between C ′w and Cw\{w} is inserted by S∗. Therefore, we can

find a better solution S ′ that instead leaves C ′w ∪ {w} as a cluster and splits

up Cw\{w} into singletons. This requires
(|Cw|

2

)
additional edge deletions but

also saves (|Cw|−1) · |C ′w| edge insertions. In GS′ then the cluster containing
w is C ′w ∪ {w} ∈ CB with (C ′w ∪ {w}) ∩ C = {w}.

Case 1.1b: |Cw| > |C ′w|.
Every edge between C ′w and Cw is inserted by S∗. Therefore, we can find

a better solution S ′ that instead leaves Cw as a cluster and splits up C ′w
into singletons. This requires at most

(|C′w|
2

)
additional edge deletions but

also saves |Cw| · |C ′w| edge insertions. In GS′ then the cluster containing w
is Cw ⊆ C.

Case 1.2: Cw ∈ CW .
Let b be the single black vertex in Cw. Since C is a black-dominated

cluster and |Cw ∩ C| ≥ 2, we have that Cw ∩ C = {b, w}. Let C ′w := Cw \ C.
If |C ′w| = 1 we can get a better solution S ′ by leaving the single vertex
in C ′w as a singleton and not inserting the edges to b and w. If |C ′w| ≥ 2,
we can get a better solution S ′ that leaves C ′w ∪ {b} as a cluster and w as a
singleton. This requires the additional deletion of the edge {b, w}, but also
saves the |C ′w| edge insertions between C ′w and w.

Case 2: |Cw ∩ C| = 1.
We have to again distinguish whether Cw ∈ CB or Cw ∈ CW .
Case 2.1: Cw ∈ CB.
In this case we already have that Cw ∈ CB with Cw ∩ C = {w}.
Case 2.2: Cw ∈ CW .
In this case we can find a better solution S ′ by leaving Cw \{w} as a valid

cluster and {w} as a singleton. Since every edge between w and the other
vertices in Cw is inserted by S∗, this saves |Cw| − 1 edge insertions.

From now on, we may assume that in the solution graph GS∗ for the
cluster Cw, that contains the white vertex w ∈ C, we have either Cw ⊆ C
or Cw ∈ CB with Cw∩C = {w}. It remains to show that in GS∗ every vertex
in C \{w} is the single black vertex of a white-dominated cluster, part of Cw,
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or a singleton.
Case 1: Cw ⊆ C.
Let C ′ ∈ CB be another cluster that contains some (black) vertices from C.

Let C1 := C ′ ∩ C and C2 := C ′ \ C. Note that C2 contains the single white
vertex in C ′. We then can get a better solution S ′ by merging C1 with Cw
and leaving C2 as a valid black-dominated cluster. This saves |Cw| · |C1| edge
deletions and |C1| · |C2| edge insertions.

Case 2: Cw ∈ CB with Cw ∩ C = {w}.
Let C ′ ∈ CB be another cluster that contains some (black) vertices from C.

Let the single white vertex in C ′ be w′. Let C1 := C ′ ∩ C and C2 := C ′ \ C.
Case 2.1: |C1| ≤ |C2|.
We can get a better solution S ′ by leaving C2 as a valid cluster and

splitting C1 into singletons. This requires
(|C1|

2

)
additional edge deletions,

but also saves |C1| · |C2| edge insertions.
Case 2.2: |C1| ≥ |Cw| − 1.
We can get a better solution S ′ by leaving C1 ∪ {w} as a cluster and

merging C2 with Cw \ {w}. This requires (|Cw| − 1) · |C2| additional edge
insertions, but also saves |C1| edge deletions and (|Cw| − 1) + |C1| · |C2| edge
insertions.

Case 2.3: |C2| < |C1| < |Cw| − 1.
In this case we can get a better solution S ′ by leaving C1 ∪ {w} as a

cluster, splitting up C2 and merging Cw \ {w} with w′. This requires
(|C2|

2

)
additional edge deletions and |Cw| − 1 additional edge insertions, but also
saves |C1| edge deletions and (|Cw| − 1) + |C1| · |C2| edge insertions.

This shows that a black vertex v ∈ C \ {w} is in GS∗ either the single
black vertex of a white-dominated cluster CW , in the same cluster Cw ⊆ C
as w, or a singleton.

For valid white-dominated clusters we have a lemma analogous to Lemma 6.5.

Lemma 6.6. Let C be a valid white-dominated cluster in G and let b be the
single black vertex in C. Let S∗ be an optimal solution. Then there is at most
one cluster C∗ in GS∗ that contains two or more vertices from C and C∗ is
a white-dominated cluster with C∗ ⊆ C. Furthermore, in GS∗ the vertex b is
either

• the single black vertex of a white-dominated cluster CW with CW ∩ C = {b},

• part of the white-dominated cluster C∗ ⊆ C, or

• a singleton

and for every vertex v ∈ C \ {b} in GS∗ we have that v is either
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• the single white vertex of a black-dominated cluster CB,

• part of the white-dominated cluster C∗ ⊆ C, or

• a singleton.

Proof. The proof is analogous to that of Lemma 6.5.

For the FPT-algorithm for SBCE we can again first branch over all
possibilities to resolve a given induced P3 using Branching Rule 3 and branch
over all possibilities to resolve a given induced K(2,2) using Branching Rule 2.
After Branching Rules 3 and 2 have been exhaustively applied, the resulting
graph is a cluster graph that can contain singletons, valid black- or white-
dominated clusters, monochromatic black and monochromatic white clusters.
Since for SBCE monochromatic clusters of size at least two are not allowed,
they must also be handled.

Let C be a monochromatic black cluster in G. According to Lemma 6.3
for an optimal solution S∗ every vertex in C is in GS∗ the only vertex from C
in its cluster or is part of a valid black-dominated cluster CB that only
contains vertices from C and a white vertex that makes the cluster valid.
For monochromatic white clusters in G we have an analogous statement
with Lemma 6.4.

The idea of the next branching rule is to branch for a given monochro-
matic cluster C whether we separate a vertex from C, and potentially more
later on, or leave it in its current state and just add a vertex of the opposite
color to it. For this we introduce two counters, cb for black vertices and cw
for white vertices, that tell us how many singletons of the respective color
are needed to ”fix” the monochromatic clusters from which no more vertices
are separated according to the branching rule.

Branching Rule 4. Let G = (V,E) be a cluster graph with a bicolor-
ing g : V → {b, w} and let k ≥ 0, cb ≥ 0, cw ≥ 0.

If G contains a monochromatic black cluster CB with |CB| ≥ 2, branch
into the cases:

1. separate a vertex from CB and decrease k by |CB| − 1;

2. remove CB from G, decrease k by |CB| and increase cw by one.

Otherwise, if G contains a monochromatic white cluster CW with |CW | ≥ 2,
branch into the cases:

1. separate a vertex from CW and decrease k by |CW | − 1;
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2. remove CW from G, decrease k by |CW | and increase cb by one.

If the rule can be applied, it always branches into two cases. In Case 1 at
least one edge is deleted and in Case 2 at least two edges are inserted. Thus,
Branching Rule 4 admits the branching vector (1, 2), which has a branching
number of β(1, 2) ≈ 1.62.

Exhaustively applying Branching Rules 3, 2, and 4 yields a cluster graph
G that only contains singletons and valid clusters of size at least two. How-
ever, for each monochromatic cluster removed by Branching Rule 4, a sin-
gleton of the opposite color is needed. The exact amount of black and white
singletons needed is given by the values of cb and cw. If there are already at
least cb black and cw white singletons present in G, we are done. Otherwise,
we can first delete all singletons in G and adjust cb and cw accordingly. The
singletons that are then still needed must be separated from valid clusters
in G.

The following lemma motivates the last branching rule. It shows that
for each singleton that we need to separate from valid clusters we only have
to consider the currently smallest black-dominated and currently smallest
white-dominated cluster.

Lemma 6.7. Let G = (V,E) be a cluster graph with a bicoloring g : V → {b, w}
that only contains valid clusters of size at least two. Let CB := {CB

1 , C
B
2 , . . . , C

B
r }

be the set of black-dominated and CW := {CW
1 , CW

2 , . . . , CW
q } be the set

of white-dominated clusters in G. Let |CB
1 | ≤ |CB

i | for 1 ≤ i ≤ r and
|CW

1 | ≤ |CW
j | for 1 ≤ j ≤ q. Let cb ≥ 0, cw ≥ 0 be integers.

Then there is a minimal-cardinality edge-modification set S that creates
at least cb black and cw white singletons in GS such that:

• If cb > 0, then S completely splits up CW
1 or separates a black vertex

from CB
1 .

• If cw > 0, then S completely splits up CB
1 or separates a white vertex

from CW
1 .

Proof. Let S be a minimal-cardinality edge-modification set that creates at
least cb black and cw white singletons in GS. Let cb > 0. First, suppose that S
creates a black singleton by completely splitting up a cluster CW

j ∈ CW , j 6= 1.
This requires (

|CW
j |
2

)
=

|CW
j |−1∑
`=1

(
|CW

j | − `
)

edge deletions. Since |CW
1 | ≤ |CW

j |, we can get another edge-modification
set S ′ by instead splitting up CW

1 and separating d := |CW
j | − |CW

1 | white
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vertices from CW
j . This also requires

(
|CW

1 |
2

)
+

d∑
p=1

(
|CW

j | − p
)

=

|CW
1 |−1∑
`=1

`+
d∑
p=1

(
|CW

j | − p
)

=

|CW
j |−1∑
`=1

` =

(
|CW

j |
2

)
edge deletions and creates the same number of white singletons.

Now, suppose that S creates some black singletons by separating i black
vertices from a cluster CB

j ∈ CB and not separating any vertices from CB
1 .

Separating i black vertices from a CB
j requires

∑i
p=1

(
|CB

j |−p
)

edge deletions.

Case 1: |CB
1 | ≥ i+1. We can get another edge-modification set S ′ by

instead separating i black vertices from CB
1 . This requires

∑i
p=1

(
|CB

1 | − p
)

edge deletions. Since |CB
1 | ≤ |CB

j | we have |S ′| ≤ |S|.
Case 2: |CB

1 | < i + 1. We can get another edge-modification
set S ′ by instead completely splitting up CB

1 and separating the remaining
d := i− (|CB

1 | − 1) black vertices from CB
j . This requires

x :=

|CB
1 |−1∑
`=1

`+
d∑
p=1

(
|CB

j | − p
)
≤

i∑
p=1

(
|CB

j | − p
)

edge deletions and we thus have |S ′| ≤ |S|.
If cw > 0 we can analogously show that there is always a minimum-

cardinality edge-modification set S that completely splits up CB
1 or separates

a white vertex from CW
1 .

We can now formulate the last branching rule that leads to an FPT-
algorithm for SBCE.

Branching Rule 5. Let G = (V,E) be a cluster graph with a bicolor-
ing g : V → {b, w} that only contains valid clusters and no singletons and
let k ≥ 0 and cb, cw be integers. Let C1

B be the smallest black-dominated and
C1
W be the smallest white-dominated cluster in G.

If cb > 0, branch into the cases:

1. separate a black vertex from C1
B, decrease k by |C1

B| − 1 and decrease
cb by one;

2. remove C1
W from G, decrease k by

(|C1
W |
2

)
, decrease cb by one and de-

crease cw by |C1
W | − 1.

Otherwise, if cw > 0, branch into the cases:
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1. separate a white vertex from C1
W , decrease k by |C1

W | − 1 and decrease
cw by one;

2. remove C1
B from G, decrease k by

(|C1
B |
2

)
, decrease cw by one and de-

crease cb by |C1
B| − 1.

The rule always branches into two cases, each of which deletes at least
one edge. Thus, Branching Rule 5 admits the branching vector (1, 1) with
branching number β(1, 1) = 2.

Lemma 6.7 shows the correctness of Branching Rule 5. We now propose
an FPT-algorithm for SBCE using Branching Rules 3, 2, 4, and 5.

Algorithm 5:

Input: A graph G = (V,E), a bicoloring g : V → {b, w}, an
integer k, integers cb and cw, and an edge modification set S.

Output: A valid solution S∗, if one exists.
if k < 0 then

Return to the parent node in the search tree;
else

Search for an induced P3 and an induced K(2,2) in G;
if an induced P3 in G was found then

Apply Branching Rule 3;
else if an induced K(2,2) in G was found then

Apply Branching Rule 2;
else

Compute all connected components in G and add them to a
set C;

if C contains a monochromatic black or a monochromatic
white cluster of size ≥ 2 then

Apply Branching Rule 4;
else

Remove all singletons from G and decrease cb and cw
accordingly;

if cb > 0 or cw > 0 then
Apply Branching Rule 5;

else
Return the solution set S;

end

end

end

end
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Theorem 6.8. SBCE is in FPT and can be solved in O(3k · (n+m)) time.

Proof. Algorithm 5 first branches over all possibilities to resolve a given in-
duced P3 or a given induced K(2,2). This results in a cluster graph that
contains singletons as well as monochromatic and valid clusters of size at
least two. Using Branching Rules 4 and 5 the algorithm then branches over
all possibilities to handle a monochromatic cluster according to Lemma 6.3
and get the required amount of singletons from valid clusters.

In each node of the search tree, finding an induced P3 or an induced K(2,2)

can be done in O(n+m) time. If neither can be found, the connected com-
ponents are computed, which can also be done in O(n+m) time. Checking
the set of connected components for a monochromatic cluster, checking the
values of cb and cw and applying the Branching Rule 4 or 5 can again be
done in O(n+m) time. Since Branching Rule 3 has the branching number 3
and the other branching rules have a lesser branching number, the size of
the search tree is bounded by 3k. The total worst-case running-time of the
algorithm is therefore O(3k · (n+m)).

6.2 Problem Kernels

For the editing variants we again make use of critical cliques in order to
obtain a problem kernel.

Lemma 6.9. Let (G, g, k) be an instance of BCE or SBCE and let S be an
optimal solution. Let v be an unaffected vertex and let K be the critical clique
in G containing v. Then the valid cluster containing v in GS is K ∪N(K),
and every vertex in K is unaffected.

Proof. Let C be the valid cluster in GS containing v. Since v is unaffected,
no edge incident with v is deleted by S, so N [v] = K ∪ N(K) ⊆ C. Fur-
thermore, no vertex w ∈ V \ (K ∪N(K)) can be in the same cluster C with
v. Otherwise, S would insert the edge {v, w} /∈ E and v would be affected.
Hence, C ⊆ K ∪N(K) and therefore C = K ∪N(K).

Let u be a vertex in K. Since K is a critical clique we have N [u] = K ∪
N(K) = C. As u belongs to the valid cluster C in GS, no edge modification
is incident to u, hence u is unaffected.

6.2.1 Bicolored Cluster Editing

Similar to BCD, for BCE we can again remove all clusters that are already
valid.

Reduction Rule 6. Remove a valid cluster in G.
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Lemma 6.10. Reduction Rule 6 is correct and can be exhaustively applied
in O(n+m) time.

Proof. Let (G, g, k) be an instance of BCE and C a valid cluster in G. Let
S = S−∪̇S+ be a solution such that there are two distinct clusters C1 and
C2 with C1 ∩ C 6= ∅, C2 ∩ C 6= ∅ in GS, both containing vertices from C.

Consider a new set of edge deletions S ′− = S− \ {{u, v} | u ∈ C1 ∩C, v ∈
C2∩C} and a new set of edge insertions S ′+ = S+ \({{u, v} | u ∈ C1∩C, v ∈
C1 \ C} ∪ {{u, v} | u ∈ C2 ∩ C, v ∈ C2 \ C}). Now consider the edge
modification set S ′ := S ′− ∪ S ′+ that does not separate the vertices in C1

and C2 that were originally part of the cluster C and does not insert the edges
between vertices in C and other vertices in C1 and C2, respectively. Since S ′

applies fewer deletions and fewer insertions than S, we have |S ′| < |S|.
Because the bicolored cluster property is hereditary, C1 \ C and C2 \ C are
still valid clusters. Since C already was a valid cluster, S ′ is therefore also a
solution. Hence, an optimal solution S∗ does not delete any edges between
vertices in C and does not insert edges between C and other connected
components, so C can be safely removed from G.

Using a modified breadth-first search every connected component can be
computed and checked for validity in O(n+m) time.

The next reduction rule bounds the number of vertices in a critical clique,
which will help to bound the number of unaffected vertices in a reduced
instance.

Reduction Rule 7. Let K be a critical clique in G with |K| > k + 1.
Insert every missing edge between vertices in N(K), delete every edge in
E(N(K), N2(K)), reduce k accordingly, and delete K ∪N(K) from G.

Lemma 6.11. Reduction Rule 7 is correct and can be exhaustively applied
in O(n2 + n ·m) time.

Proof. Let (G, g, k) be an instance of BCE. Let S be a solution such that
K∪N(K) is not a cluster in GS. Let C with C∩(K∪N(K)) 6= ∅ be a cluster
in GS and let KC denote the vertices from K∪N(K) in C. This means that S
deletes all edges between KC and K \KC . According to Observation 1 this
requires at least |K|−1 > k edge deletions, so S is not valid. Hence, for every
valid solution S∗ the resulting cluster graph GS∗ must contain K ∪N(K) as
a cluster and the reduction rule is correct.

For a given graphG all critical cliques can be determined inO(n+m) time.
Using a modified breadth-first search the critical cliques can be checked for
validity and the edges between critical cliques can be determined in O(n+m)
time.

48



Since every application of Reduction Rule 7 deletes at least one vertex,
the rule can be applied at most n times. Therefore, Reduction Rule 7 can
be exhaustively applied in O(n2 + n ·m) time.

Lemma 6.12. Let I := (G, g, k) be exhaustively reduced with respect to Re-
duction Rules 6 and 7. If G has more than 2k2 + 4k vertices, then I is a
no-instance of BCE.

Proof. Let I be a yes-instance of BCE and let S be a valid solution for I. We
prove the lemma by giving an upper bound on the number of vertices in G
that are affected and unaffected by S. Let Vα denote the vertices affected by
S and Vβ denote the vertices that are unaffected by S, recall that Vα∪̇Vβ = V .
Clearly, |Vα| ≤ 2k, since S is valid and every edge in S is incident to at most
two unique vertices. According to Lemma 6.9 every unaffected vertex v ∈ Vβ
is part of a critical clique K in G, such that every vertex in K is unaffected
and K ∪N(K) is a valid cluster in GS. Let K1, K2, . . . , Kr, r ≥ 0 denote the
critical cliques in G that contain the unaffected vertices.

Since I is exhaustively reduced with respect to Reduction Rule 6, every
cluster Ki ∪ N(Ki), 1 ≤ i ≤ r, is not an isolated cluster in G and there-
fore contains at least one vertex vi ∈ N(Ki) that is incident with an edge
{vi, u} ∈ S. Note that the other vertex u incident with that edge can be in
N(Kj) for another critical clique Kj with j ∈ {1, . . . r}, j 6= i. Since S is
valid, this gives us r ≤ 2|S| ≤ 2k.

Since G is reduced with respect to Reduction Rule 7, for every remaining
critical clique Ki we also have that |Ki| ≤ k + 1. Thus, in total we get

|Vβ| =
r∑
i=1

|Ki| ≤
r∑
i=1

k + 1 ≤ 2k · (k + 1) = 2k2 + 2k

and finally

|V | = |Vα|+ |Vβ| ≤ 2k + (2k2 + 2k) = 2k2 + 4k.

Theorem 6.13. BCE admits a 2k2 + 4k-vertex kernel that can be computed
in O(n2 + n ·m) time.

Proof. Let (G, g, k) be an instance of BCE. The kernelization algorithm for
BCE first exhaustively applies Reduction Rules 6 and 7. Then, if for the
resulting graph G′ we have |V (G′)| > 2k2 +4k, the algorithm returns a trivial
no-instance.

Exhaustively applying Reduction Rules 6 and 7 takes O(n2 +n ·m) time.
The correctness of the kernelization algorithm follows from Lemma 6.12.
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6.2.2 Strict Bicolored Cluster Editing

Now we proceed to present a problem kernel for SBCE, again using the
notion of critical cliques to bound the number of affected and unaffected
vertices in the input graph of a yes-instance. Recall that for SBCE a valid
cluster of size at least two is a cluster that is induced K(2,2)-free and is not a
monochromatic cluster. Singletons are also considered a valid cluster. Note
that Lemma 6.9 also holds for SBCE, only the notion of a valid cluster is
slightly different.

Unlike BCE, for SBCE in general we cannot remove all valid clusters
from the input graph. This is, because in order to achieve a strict bicolored
cluster graph, it can be necessary to separate a vertex from a valid cluster C
and include it into another cluster C ′, so that C ′ has at least one vertex for
both colors.

However, we can bound the number of valid clusters in the input graph
using the following reduction rules.

Reduction Rule 8. Let C1, . . . , Ck+1 be valid black-dominated clusters in
G with |C1| ≤ · · · ≤ |Ck+1|. Remove Ck+1 from G.

Reduction Rule 9. Let C1, . . . , Ck+1 be valid white-dominated clusters in
G with |C1| ≤ · · · ≤ |Ck+1|. Remove Ck+1 from G.

In order to prove the correctness of Reduction Rule 8 and 9 we make use
of Lemma 6.5 and Lemma 6.6.

Lemma 6.14. Reduction Rule 8 is correct and can be exhaustively applied
in O(n2 + n ·m) time.

Proof. Let (G, g, k) be an instance of SBCE. Let S∗ be an optimal solution
that deletes or inserts at least one edge incident to a vertex in Ck+1. We show
that we can always find a solution S ′ that applies at most the same number
of edge modifications as S∗, but leaves every vertex in Ck+1 unaffected. This
then implies that there is an optimal solution that does not affect any vertex
in Ck+1 and the valid cluster Ck+1 can therefore be safely removed.

Let C := {C1, . . . , Ck+1}. First, note that according to Lemma 6.5 for
every cluster Ci ∈ C in G we have that in GS∗ every vertex v ∈ Ci is either in
a cluster C ′i ⊆ Ci of size at least two or is in a cluster Cv with Cv ∩Ci = {v}
and there is no other vertex in Cv with the same color as v.

We can therefore assume that in GS∗ every vertex in Ck+1 is either part
of a cluster C ′k+1 ⊆ Ck+1 or gets separated from every other vertex in Ck+1.

Let wk+1 be the single white vertex in Ck+1. Let Dk+1 contain every black
vertex v 6= wk+1 from Ck+1 that gets separated from wk+1, and therefore also
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separated from every other black vertex u ∈ Ck+1, and let r := |Dk+1|. We
show that there is another solution S ′ that instead separates r black vertices
from other clusters in C. We can assume that r < k, since otherwise S∗

applies more than k edge modifications and is not valid. Furthermore, since
C contains k + 1 clusters, we can also assume that at least r many of the
clusters in C \ {Ck+1} are unaffected, otherwise S∗ would be not valid. Let
Cβ := {Cβ

1 , C
β
2 , . . . , C

β
q } ⊂ C, q ≥ r, with |Cβ

1 | ≤ |C
β
2 | ≤ · · · ≤ |Cβ

q | denote

the unaffected (with respect to S∗) clusters from C and let ri := |Cβ
i | − 1

denote the number of black vertices in Cβ
i .

We can then get a solution S ′ that leaves Ck+1 as a cluster and instead
creates r black singletons from clusters in Cβ. This can be done by first
completely splitting up the clusters Cβ

1 , C
β
2 , . . . , C

β
`−1 for some ` ∈ {1, . . . , q},

thus getting r′ := r1 + r2 + · · · + r`−1 black singletons. Then the remaining
r̃` := r − r′ black vertices are separated from the cluster Cβ

` . This is always
possible since q ≥ r and every cluster in Cβ contains at least one black
vertex. It remains to show that S ′ applies at most the same number of edge
modifications as S∗.

Separating the r black vertices from Ck+1 requires |Ck+1|−1 edge deletions
to separate the first vertex, |Ck+1| − 2 for the second, and so on, resulting in

xS
∗

:=
r∑
i=1

|Ck+1| − i

edge deletions applied by S∗. Instead completely splitting up Cβ
j , 1 ≤ j ≤ `− 1,

requires

xS
′

j :=

rj∑
i=1

|Cβ
j | − i =

rj∑
i=1

(rj + 1)− i =

rj∑
i=1

i

edge deletions, respectively. Additionally, separating the r̃` remaining ver-
tices from Cβ

` requires another

xS
′

` :=

r̃∑̀
i=1

|Cβ
` | − i

edge deletions. Since |Ck+1| ≥ |Cj| for every |Cj| ∈ C, we have

r̃∑̀
i=1

|Ck+1| − i ≥
r̃∑̀
i=1

|Cβ
` | − i. (4)

Furthermore, we have

r∑
i=r̃`+1

|Ck+1| − i ≥
`−1∑
j=1

rj∑
i=1

i, (5)
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since the sums on both sides of the equation contain exactly r′ terms and the
smallest term in the sum

∑r
i=r̃`+1 |Ck+1|− i is |Ck+1|− r ≥ 1. In total we get

xS
∗

=
r∑
i=1

|Ck+1| − i ≥
( r̃∑̀
i=1

|Cβ
` | − i

)
+

`−1∑
j=1

rj∑
i=1

i = xS
′

` +
`−1∑
j=1

xS
′

j ,

so S ′ applies at most as many edge deletions as S∗.
Determining all valid black-dominated clusters in G and computing their

sizes can be done in O(n+m) time. Deleting the cluster Ck+1 can then also
be done in O(n+m) time.

Since every application of Reduction Rule 8 deletes at least one vertex,
the rule can be applied at most n times. Therefore, Reduction Rule 8 can
be exhaustively applied in O(n2 + n ·m) time.

Lemma 6.15. Reduction Rule 9 is correct and can be exhaustively applied
in O(n2 + n ·m) time.

Proof. Lemma 6.15 can be proven analogously to Lemma 6.14.

Note that Lemma 6.9 and Lemma 6.11 are also correct for SBCE. Using
Reduction Rule 7, 8 and 9 we now get a problem kernel for SBCE.

Lemma 6.16. Let I := (G, g, k) be exhaustively reduced with respect to Re-
duction Rules 7, 8 and 9. If G has more than 4k2 + 6k vertices, then I is a
no-instance of SBCE.

Proof. Let I be a yes-instance of SBCE and let S be a valid solution for I.
We prove the lemma by giving an upper bound on the number of vertices in
G that are affected and unaffected by S. Let Vα denote the vertices affected
by S and Vβ denote the vertices that are unaffected by S and recall that
Vα∪̇Vβ = V . Clearly, |Vα| ≤ 2k, since S is valid and every edge in S is
incident to at most two unique vertices. According to Lemma 6.9 every
unaffected vertex v ∈ Vβ is part of a critical clique K in G, such that every
vertex in K is unaffected and K ∪N(K) is a valid cluster in GS.

Let Cb denote the valid black-dominated clusters in G and Cw denote the
valid white-dominated clusters in G. Since I is exhaustively reduced with
respect to Reduction Rule 8 and 9, we have |Cb| ≤ k and |Cw| ≤ k.

Let K1, K2, . . . , Kr, r ≥ 0, denote the critical cliques in G that contain
the unaffected vertices. Every cluster in GS contains at most one critical
clique Ki. Since every cluster in GS except for at most 2k clusters from Cb
and Cw contains an affected vertex, there are at most 2k + 2k = 4k clusters
in GS and we therefore also have r ≤ 4k.
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Since G is reduced with respect to Reduction Rule 7, for every remaining
critical clique Ki we also have that |Ki| ≤ k + 1. Thus, in total we get

|Vβ| =
r∑
i=1

|Ki| ≤
r∑
i=1

(k + 1) ≤ 4k · (k + 1) = 4k2 + 4k

and finally

|V | = |Vα|+ |Vβ| ≤ 2k + (4k2 + 4k) = 4k2 + 6k.

Theorem 6.17. SBCE admits a 4k2+6k-vertex kernel that can be computed
in O(n2 + n ·m) time.

Proof. Let (G, g, k) be an instance of SBCE. The kernelization algorithm
for SBCE first exhaustively applies Reduction Rules 7, 8 and 9. Then, if for
the resulting graph G′ we have |V (G′)| > 4k2 + 6k, the algorithm returns a
trivial no-instance.

Exhaustively applying Reduction Rules 7, 8 and 9 takes O(n2+n·m) time.
The correctness of the kernelization algorithm follows from Lemma 6.16.
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7 ILP-Formulation and Experimental Results

In this section we describe the experiments we ran on graphs obtained from
biological data sets [10]. We took each graph as input of an instance of the
optimization version of BCD and BCE and tried to solve the corresponding
Integer Linear Program (ILP) using the Gurobi solver.1 We first describe
our ILP-formulation and the details of the experiments. Then we analyze
and compare the results for both variants.

7.1 ILP-Formulation

For a formal definition of and general information about Integer Linear Pro-
grams (ILPs) we refer to [18].

We consider the ILP for both of our problems as minimization problems.
We first formulate the ILP for BCD. Let G = (V,E) be the input graph. For
each edge e ∈ E, we introduce a binary variable xe ∈ {0, 1}. Setting xe = 0
represents that e is deleted by the solution set S, while xe = 1 represents
that e is still present in GS. Since the goal is to delete as few edges as possible
in order to transform G into a bicolored cluster graph, the objective function
is given by the total number of edges in G minus the sum of all edge variables.
As shown by Lemma 3.3 a bicolored cluster graph can be characterized as a
graph that is P3-free and K(2,2)-free. We make use of this property for the
construction of the constraints of our ILP.

We consider three types of constraints. Let PG denote the set of in-
duced P3s in G, let TG denote the set of triangles in G and let KG denote the
set of induced K(2,2)s in G. For each P ∈ PG we introduce a constraint that
only allows one of the two edges in P to be present in GS. We call constraints
of this type P3-constraints. Note that the deletion of edges can result in new
induced P3s being created. We therefore also add a set of three constraints
for each triangle T ∈ TG in G that make sure that two of the three edges in T
can only be present in GS if the third was also not deleted. These constraints
are referred to as triangle-constraints. Finally, for each K ∈ KG we add a
constraint that only allows three of the six edges between vertices in K to
be present in GS. This guarantees that not all four vertices from K can end
up in the same cluster. We denote these constraints as color-constraints.

Note that in order to restrict the initial number of constraints and thus
speed-up the construction of the ILP we at first do not include the color-
constraints in the ILP. Instead, using the callback functionality of Gurobi
we check in each of our callbacks (that gets called if the current solution

1see https://www.gurobi.com/
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satisfies all current constraints, that is if the where variable of the callback
class has the value MIPSOL) whether the current solution graph contains
an induced K(2,2). We then add the corresponding color constraints to our
model as lazy constraints, if they are violated by the current solution.

The base ILP is given by

minimize m−
∑
e∈E

xe,

subject to x{u,v} + x{v,w} ≤ 1 ∀(u, v, w) ∈ PG,

−x{u′,v′} + x{v′,w′} + x{u′,w′} ≤ 1 ∀{u′, v′, w′} ∈ TG,
x{u′,v′} − x{v′,w′} + x{u′,w′} ≤ 1
x{u′,v′} + x{v′,w′} − x{u′,w′} ≤ 1

xe ∈ {0, 1} ∀e ∈ E.

Using Gurobi callbacks we also add the color constraints∑
u,v∈K
u6=v

x{u,v} ≤ 3 ∀K ∈ KGS

if there are any induced K(2,2)s in the solution graph GS of the current so-
lution S, for which all previous constraints are satisfied. This procedure is
continued until a solution S is found that satisfies all constraints and for
which no induced K(2,2) is contained in GS.

For BCE we use a similar ILP formulation. Let E :=
(
V
2

)
\E denote the

set of missing edges in G. Besides a binary variable xe for each edge e ∈ E,
we now also have a binary variable xe′ ∈ {0, 1} for each missing-edge e′ ∈ E.
If for a missing-edge e′ we have xe′ = 1, then e′ is inserted by the solution S,
while xe′ = 0 corresponds to e′ still not being present in GS. For the objective
function we expand the objective function used for BCD by also adding the
sum of all missing-edge variables xe′ . This is because setting a missing-edge
variable to 1 represents an edge insertion, which we want to minimize.

Let PG, TG, and KG again denote the set of induced P3s, triangles and
induced K(2,2)s in G, respectively. Since for BCE edges can also be inserted,
instead of a single constraint we now also have a set of three constraints
for each induced P3 in G, similar to the triangle constraints. Moreover,
inserting edges can create new induced P3s that must be handled. Therefore
we check in each callback whether the current solution graph GS contains
any induced P3 and add the corresponding constraints as lazy constraints to
our model. We also again include the color constraints via callbacks for each
induced K(2,2) in the solution graph GS of the current solution S.
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The base ILP is thus given by

minimize m−
∑
e∈E

xe +
∑
e′∈E

xe′ ,

subject to −x{u,v} + x{v,w} + x{u,w} ≤ 1 ∀(u, v, w) ∈ PG,
x{u,v} − x{v,w} + x{u,w} ≤ 1
x{u,v} + x{v,w} − x{u,w} ≤ 1

−x{u′,v′} + x{v′,w′} + x{u′,w′} ≤ 1 ∀{u′, v′, w′} ∈ TG,
x{u′,v′} − x{v′,w′} + x{u′,w′} ≤ 1
x{u′,v′} + x{v′,w′} − x{u′,w′} ≤ 1

xe ∈ {0, 1} ∀e ∈ E,
xe′ ∈ {0, 1} ∀e′ ∈ E.

Using Gurobi callbacks we also add constraints

−x{u,v} + x{v,w} + x{u,w} ≤ 1 ∀(u, v, w) ∈ PGS
,

x{u,v} − x{v,w} + x{u,w} ≤ 1
x{u,v} + x{v,w} − x{u,w} ≤ 1

if there are any induced P3s in the solution graph GS of the current solution
S, for which all previous constraints are satisfied, and the color constraints∑

u,v∈K
u6=v

x{u,v} ≤ 3 ∀K ∈ KGS

if there are any induced K(2,2)s in GS. This procedure is continued until a
solution S is found that satisfies all constraints and for which no induced P3

and no induced K(2,2) is contained in GS.

7.2 Implementation Details

The experiments were run on an Intel(R) Core(TM) i5-8300H CPU 2.30GHz
machine with 8GB RAM under the Windows 10 Pro operating system. Our
implementation2 is done with Java using NetBeans IDE 8.2, running under
the OpenJDK runtime environment in version 1.8.0 252. To construct and
solve our ILPs we used the Gurobi Optimizer3 in version 9.0.3 under an
academic license.

2The source code of our implementation and the result files can be found under
https://www.uni-marburg.de/en/fb12/research-groups/algorith/bce.zip.
3see https://www.gurobi.com/
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For our experiments we used as input the graphs obtained from biolog-
ical data used by Fertin et al. [10]. In their work Fertin et al. constructed
graphs with black and white vertices from the genomes of Ricinus commu-
nis [6] (castor bean), Populus trichocarpa [19] (western balsam poplar) and
Theobroma cacao [2] (cacao tree). In both sets the black vertices represented
the genes of Populus trichocarpa. In one set of graphs the genes of Ricinus
communis were represented by white vertices, another set of graphs had the
genes of Theobroma cacao as white vertices. Edges between genes were in-
serted based on BLAST Expect (E) values [1]. An edge was added between
to genes if the E-value was below some threshold. Three values were used for
the threshold T , with T ∈ {0, 10−80, 10−140}, thus giving two sets of graphs
with three graphs each. Each increment of the threshold value resulted in ap-
proximately double the number of edges. Note that all graphs do not contain
edges between two white vertices.

In the following we refer to the input graphs as Cacao-Poplar-X or
Ricinus-Poplar-X, with X being the respective threshold value.

According to Lemma 2 and Lemma 4 for an instance of BCD or BCE we
can solve each connected component individually. We therefore separately
solved the ILP for each connected component of the input graph and then
aggregated the results. We only considered components that contain at least
two black and at least two white vertices, since those are the particularly
interesting components, where from a biological viewpoint the orthology re-
lations still have to be resolved. By this we also ignore very small and trivial
components, of which there are a lot in the input graphs. Because of the
huge amount of edge variables and constraints involved, we also excluded
some extraordinarily large components with > 800 vertices. Since especially
for BCE we have a relatively high number of constraints and callbacks even
for smaller components, not all components could be solved in reasonable
time. We therefore set the time limit for the solver to ten minutes for each
component.

7.3 Results

We now present the results of our experiments. Table 1 shows the total
running time and number of unsolved components for each instance alongside
some properties of the input graphs.

For BCD for each instance almost all components could be solved within
the time limit, with only one (for Cacao-Poplar-0) to five (for Ricinus-Poplar-
10−80) unsolved components. For BCE the number of unsolved components
ranged from 22 (for Ricinus-Poplar-0) to 73 (for Ricinus-Poplar-10−80). For
Ricinus-Poplar-10−80 two of the unsolved components are large components
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Table 1: Statistics for each input graph with T denoting the threshold value.
nB and nW denote the number of black and white vertices, respectively, m the
number of edges, K the number of connected components and Knontriv the
number of considered (nontrivial) components. KBCD

unsolv and KBCE
unsolv are the

number of unsolved components and tBCD and tBCE the total running-time
(in minutes) for BCD and BCE, respectively.

Cacao-Poplar Ricinus-Poplar

T 0 10−140 10−80 0 10−140 10−80

nB 14 287 18 140 25 165 14 235 18 079 24 472
nW 9 907 12 488 16 963 9 075 11 333 15 111
m 73 837 131 568 368 430 64 162 109 352 269 862

K 6 152 7 043 7 847 6 247 7 102 7 980

Knontriv 1 336 1 659 2 223 1 175 1 505 2 022

KBCD
unsolv 1 5 4 1 4 5

KBCE
unsolv 31 54 - 22 35 73

tBCD 11.8 51.1 48.6 10.9 47.9 54.1
tBCE 358.2 598.3 - 232.4 407.5 794.4

(with 306 and 651 vertices) that could not be handled and terminated with
an error.

For Cacao-Poplar-10−80 while consecutively solving the ILP for each com-
ponent an unsalvageable crash in the Gurobi framework occurred and we
thus could not generate data for that instance for BCE. For that reason we
exclude Cacao-Poplar-10−80 from further analysis.

When only considering the components that were solved by both variants
we get the following results, which we use to compare the running-time,
solution size and distribution of inferred clusters between the two variants.
Table 2 shows the statistics for the components that were solved for both
BCD and BCE.

For BCD the total running time was for all instances under 20 seconds.
In contrast, for BCE even for the components that could be solved by both
variants the total running time still ranged from around 12 minutes to 1.4
hours, taking significantly longer than for BCD. For BCE a rather small
number of edges was inserted, ranging from 3.2% to 3.9% of the total num-
ber of edge modifications. The size of the largest resulting cluster ranged
from 23 to 33 vertices for BCD and from 29 to 38 vertices for BCE, with
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the average cluster size being slightly higher for BCE across all instances.
Somewhat surprisingly, more singletons were created for BCE than for BCD.
Conversely, the resulting graph contained more isolated edges as well as more
black-dominated clusters in the case of BCD. This is due to the fact that
for BCE fewer, but bigger clusters are created. For both variants, the re-
sulting graph contained no monochromatic white and only for BCE a few
white-dominated clusters, since in the input graphs no white vertices are
adjacent.

Table 2: Results for the components that were solved for both BCD
and BCE. Here t is the total time (in seconds) needed for the instance;
kdel and kins denote the number of deletions/insertions; K1 and P2 denote
the number of singletons and isolated edges, respectively; mB and mW are
the number of monochromatic clusters of the respective color; dB and dW
are the number of non-monochromatic valid clusters; ∅C denotes the average
size of the clusters.

t kdel kins K1 P2 mB mW dB dW ∅C

Cacao-Poplar-0 / nB = 5 983, nW = 4 034, m = 32 375

BCD 13.4 15 181 - 2 111 455 1 0 1 507 0 2.46
BCE 2893.3 14 030 504 2 220 354 0 0 1 470 6 2.47

Cacao-Poplar-10−140 / nB = 7 669, nW = 5 256, m = 44 125

BCD 11.2 21 569 - 2 889 522 1 0 1 881 0 2.44
BCE 3 498.2 19 965 661 3 047 411 0 0 1 814 2 2.45

Ricinus-Poplar-0 / nB = 5 506, nW = 3 434, m = 29 117

BCD 7.9 12 708 - 1 747 399 1 0 1 332 0 2.57
BCE 743.2 11 701 407 1 846 308 1 0 1 302 2 2.58

Ricinus-Poplar-10−140 / nB = 7 605, nW = 4 682, m = 45 773

BCD 13.3 21 414 - 2 468 496 2 0 1 780 0 2.59
BCE 3 451.8 19 333 792 2 616 403 1 0 1 692 3 2.60

Ricinus-Poplar-10−80 / nB = 10 387, nW = 6 463, m = 64 664

BCD 19.7 30 599 - 3 491 735 0 0 2 318 0 2.57
BCE 5 064.8 28 235 996 3 710 548 0 0 2 235 12 2.59

In summary, both variants give similar results in regards to the solution
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size and the distribution of the clusters. Considering the drastically higher
running-time and slightly higher number of singletons for BCE, according
to this preliminary results BCD appears to be the more favorable model,
which should be further investigated with more elaborated experiments that
also take additional biological information into account.

Note that we did not conduct our experiments for the strict variants
SBCD and SBCE, since their ILP-formulation involves far more variables
and constraints. However, it is worth mentioning that for our input graphs
the results for SBCD and SBCE would likely be very similar to those we
obtained for BCD and BCE, since almost no monochromatic cluster (which
are not allowed for the strict variants) were created.
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8 Conclusion

In this section we summarize our results, pose open questions and give di-
rections for future work.

8.1 Summary

In this work we presented several decision problems in the context of graph-
based orthology assignment that can be seen as a generalization of previous
models [10].

In Section 3 we formulated the problems we analyzed in this work and
showed some properties of the desired solution graphs. In Section 4 we
showed the NP-hardness of our problems. More precisely, we showed that
all of the considered problems are NP-complete, even when restricted to
graphs with maximum degree six.

In Section 5 we then analyzed the parameterized complexity of the dele-
tion variants BCD and SBCD for the solution size k as parameter. We
provided FPT-algorithms for both problems and showed that they can be
solved in polynomial time on cluster graphs. We then showed that BCD
admits a linear-vertex kernel and SBCD admits a subquadratic-vertex ker-
nel for k. In Section 6 we continued our analysis for the editing variants
BCE and SBCE. We again provided FPT-algorithms for both problems
and showed that both variants admit quadratic-vertex kernels for k. Table 3
summarizes the results of our complexity analysis.

In Section 7 we then ran experiments on graphs obtained from biologi-
cal data [10]. Using an Integer Linear Program formulation we solved the
optimization versions of BCD and BCE on the input graphs and compared
the results for both variants, providing a first practical assessment of the
proposed problems.

Table 3: Complexity analysis results for all variants considered in this work,
parameterized by the solution size k.

problem FPT-algorithm problem kernel

BCD O(2k · (n+m)) 4k-vertex kernel

SBCD O(2k · (n+m)) (2k
3
2 + 2k)-vertex kernel

BCE O(3k · (n+m)) (2k2 + 4k)-vertex kernel
SBCE O(3k · (n+m)) (4k2 + 6k)-vertex kernel
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8.2 Future Work

In all variants we considered in this work a cluster can also consist of a
single vertex, which can be interpreted as an unmatched gene. Note that
in the deletion case not allowing singletons would in many cases lead to not
finding a clustering at all. Take for example an induced path of length two,
P = (v1, v2, v3), as an input graph G. The only possibilities to transform
G into a cluster graph are deleting either of the two edges {v1, v2}, {v2, v3}
or both, in any case creating a singleton. In the editing case, however, a
clustering without singletons can always be achieved by a sufficient amount
of edge modifications. This could motivate another editing variant, in which
the resulting graph does not contain any singletons.

We considered problems where the goal is to achieve a cluster graph and
a cluster is defined as a connected component that is a clique and contains at
most one vertex of one of the two colors. Another variation of interest would
be to consider as a cluster a connected component that must not necessarily
be a clique. A special case of this variation would be where the input graph is
bipartite, with both partitions including all vertices of one of the two colors.
Another extension of our models would be to consider edge-weighted graphs
as in other orthology assignment problems [10, 20].

Moreover, it would be of interest to explore the biological significance of
the problems proposed in this work. To this end further experiments that
incorporate phylogenetic information could be conducted.
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