
Matching Cut: Kernelization, Single-Exponential
Time FPT, and Exact Exponential Algorithms
Christian Komusiewicz
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany
komusiewicz@informatik.uni-marburg.de

https://orcid.org/0000-0003-0829-7032

Dieter Kratsch
Laboratoire de Génie Informatique, de Production et de Maintenance, Université de Lorraine,
Metz, France
dieter.kratsch@univ-lorraine.fr

Van Bang Le
Universität Rostock, Institut für Informatik, Rostock, Germany
van-bang.le@uni-rostock.de

Abstract
In a graph, a matching cut is an edge cut that is a matching. Matching Cut, which is known to
be NP-complete, is the problem of deciding whether or not a given graph G has a matching cut.
In this paper we show that Matching Cut admits a quadratic-vertex kernel for the parameter
distance to cluster and a linear-vertex kernel for the parameter distance to clique. We further
provide an O∗(2dc(G)) time and an O∗(2dc(G)) time FPT algorithm for Matching Cut, where
dc(G) and dc(G) are the distance to cluster and distance to co-cluster, respectively. We also
improve the running time of the best known branching algorithm to solve Matching Cut from
O∗(1.4143n) to O∗(1.3803n). Moreover, we point out that, unless NP ⊆ coNP/poly, Matching
Cut does not admit a polynomial kernel when parameterized by treewidth.

2012 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory

Keywords and phrases matching cut, decomposable graph, graph algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2018.19

1 Introduction

In a graph G = (V,E), a cut is a partition V = A ∪̇B of the vertex set into disjoint,
nonempty sets A and B, written (A,B). The set of all edges in G having an endvertex
in A and the other endvertex in B, also written (A,B), is called the edge cut of the cut
(A,B). A matching cut is an (possibly empty) edge cut that is a matching. Note that, by
our definition, a matching whose removal disconnects the graph need not be a matching cut.

Another way to define matching cuts is as follows ([13, 7]). A partition V = A ∪̇B of the
vertex set of the graph G = (V,E) into disjoint, nonempty sets A and B, is a matching cut
if and only if each vertex in A has at most one neighbor in B and each vertex in B has at
most one neighbor in A. Not every graph has a matching cut; the Matching Cut problem
is the problem of deciding whether or not a given graph has a matching cut:

Matching Cut
Instance: A graph G = (V, E).
Question: Does G have a matching cut?

© Christian Komusiewicz, Dieter Kratsch, and Van Bang Le;
licensed under Creative Commons License CC-BY

13th International Symposium on Parameterized and Exact Computation (IPEC 2018).
Editors: Christophe Paul and Michał Pilipczuk; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:komusiewicz@informatik.uni-marburg.de
http://orcid.org/https://orcid.org/0000-0003-0829-7032
mailto:dieter.kratsch@univ-lorraine.fr
mailto:van-bang.le@uni-rostock.de
http://dx.doi.org/10.4230/LIPIcs.IPEC.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Matching Cut

Farley and Proskurowski [11] studied matching cuts in graphs in the context of network
applications. Patrignani and Pizzonia [18] pointed out an application of matching cuts in
graph drawing. Graphs having no matching cut were first discussed by Graham in [13] under
the name indecomposable graphs, and have been recently used by Araújo et al. [1] in the
context of WDM (Wavelength Division Multiplexing) networks.

Previous results. Chvátal [7] showed that Matching Cut is NP-complete, even when
restricted to graphs of maximum degree four, and polynomially solvable for graphs of max-
imum degree three. These results triggered a lot of research on the computational complexity
of Matching Cut in graphs with additional structural assumptions [4, 6, 14, 16, 15, 17, 18].
In particular, the NP-hardness of Matching Cut has been further strengthened to planar
graphs of maximum degree four [4] and bipartite graphs of maximum degree four [16]. As
noted previously [14], the NP-hardness reduction by Chvátal [7] also shows that Matching
Cut cannot be solved in 2o(n) time, where n is the number of vertices of the input graph,
if the Exponential Time Hypothesis (ETH) is true.

Exact exponential algorithms for Matching Cut on graphs without any restriction
have been recently considered by Kratsch and Le [14] who provided the first exact branch-
ing algorithm for Matching Cut running in time O∗(1.4143n)1, and a single-exponential
algorithm of running time 2τ(G)O(n2), where τ(G) is the vertex cover number. We note that
Matching Cut can be expressed in MSOL, see for example [4]; hence Matching Cut is
fixed-parameter tractable when parameterized by tw(G), the treewidth of G. Very recently,
Aravind et al. [2] presented a tree-decomposition-based dynamic programming algorithm
that solves Matching Cut in O∗(12tw(G)) time and fixed-parameter algorithms for further
parameters describing the structure of the input graph. For example, Matching Cut can
be solved in O∗(2tc(G)) time where tc(G) ≤ τ(G) is the size of a smallest twin cover of G [2].

Our contributions. We give the first polynomial kernels for Matching Cut by showing
that Matching Cut admits a quadratic-vertex kernel for the parameter distance to cluster
and a linear-vertex kernel for the parameter distance to clique. Second, we show that
Matching Cut can be solved by single-exponential algorithms running in time 2dc(G)O(n2)
and 2dc(G)O(nm), respectively, where dc(G) is the distance to cluster and dc(G) is the
distance to co-cluster. This improves upon the FPT algorithms for Matching Cut with
running time 2τ(G)O(n2) [14], where τ(G) ≥ max{dc(G), dc(G)} is the vertex cover number
of G which can be much larger than dc(G) and dc(G). Similarly, this improves upon the FPT
algorithm with O∗(2tc(G)) [2] since tc(G) ≥ dc(G). Third, we provide an exact branching
algorithm for Matching Cut that has time complexity O∗(1.3803n). This result improves
upon the first exact branching algorithm for Matching Cut that has time complexity
O∗(1.4143n) [14].

Notation and terminology. Let G = (V,E) be a graph with vertex set V (G) := V and
edge set E(G) := E. We assume that a (input) graph has n vertices and m edges. A stable
set (a clique) in G is a set of pairwise non-adjacent (adjacent) vertices. The neighborhood
of a vertex v in G, denoted by NG(v), is the set of all vertices in G adjacent to v; if the
context is clear, we simply write N(v). Set deg(v) := |N(v)|, the degree of the vertex v.
For a subset W ⊆ V , G[W] is the subgraph of G induced by W , and G −W stands for

1 Throughout the paper we use the O∗ notation which suppresses polynomial factors.

Ch. Komusiewicz, D. Kratsch, and V.B. Le 19:3

G[V \W]. We write NW (v) for N(v)∩W and call the vertices in N(v)∩W the W -neighbors
of v. A graph is a cluster graph if it is a vertex disjoint union of cliques. The maximal
cliques of a cluster graph are called clusters. A graph is a co-cluster graph if it is a complete
multipartite graph or, equivalently, the complement graph of a cluster graph. Observe that
a clique is a cluster graph and a co-cluster graph.

A vertex cover ofG is a subset C ⊆ V such that every edge of G has at least one endvertex
in C, i.e., V \C is a stable set in G. The vertex cover number of G, denoted by τ(G), is the
smallest size of a vertex cover of G. More generally, given a graph property P, a distance
to P set of a graph G is a subset U ⊆ V such that G−U has the property P. The distance
to P is the smallest size of a distance to P set. This number is called distance to cluster,
denoted by dc(G), in case P is the set of cluster graphs, it is called distance to co-cluster,
denoted by dc(G), in case P is the set of co-cluster graphs, and it is called distance to clique,
denoted by dq(G), in case P is the set of cliques. By the definition of cluster graphs and
co-cluster graphs, we have τ(G) ≥ max{dc(G),dc(G)} and dq(G) ≥ max{dc(G), dc(G)} for
any graph G.

Throughout the paper we use the concept of monochromatic vertex subsets and induced
subgraphs. Let G = (V,E) be a graph and U ⊆ V . Then we call U monochromatic in G if
for every matching cut (A,B) of G, either U ⊆ A or U ⊆ B; slightly abusing notation we
shall sometimes also call G[U] monochromatic in G. Being monochromatic is hereditary:
if G[U] is monochromatic, then so is G[U ′] for every U ′ ⊆ U . Note that a complete subgraph
Kn is monochromatic if n = 1 or n ≥ 3, and that a complete bipartite subgraph Kn,m is
monochromatic if n ≥ 3 and m ≥ 2 or vice versa. Moreover, disconnected graphs and graphs
having a vertex of degree at most one admit a matching cut. Hence, we may assume that
all graphs considered are connected and have minimum degree at least two.

When an algorithm branches on the current instance of size n into r subproblems of sizes
at most n − t1, n − t2, . . . , n − tr, then (t1, t2, . . . , tr) is called the branching vector of this
branching, and the unique positive root of xn−xn−t1 −xn−t2 − · · ·−xn−tr = 0, denoted by
τ(t1, t2, . . . , tr), is called its branching number. The running time of a branching algorithm
is O∗(αn), where α = maxi αi and αi is the branching number of branching rule i, and
the maximum is taken over all branching rules. We refer to [12] for more details on exact
branching algorithms. For the basic notions of parameterized complexity we refer to [8].

2 A Polynomial Kernel for the Distance to Cluster

In this section we present a polynomial kernel for the parameter dc(G), the distance of G to
a cluster graph. First, however, we motivate the study of the parameter dc(G) by a negative
result. Recall that there is an FPT algorithm for Matching Cut when parameterized by
treewidth [2, 4]. Hence, a natural question is whether Matching Cut admits a polynomial
kernel for this parameter. A further candidate parameter for a polynomial kernel is the
minimum number k of edges crossing any matching cut; this could be considered the standard
solution size parameter for Matching Cut. Finally, a common parameter in kernelizations
is the maximum degree of the input graph. We rule out polynomial kernels for all three
parameters.

I Proposition 1. Matching Cut does not admit polynomial kernel with respect to the sum
of the treewidth of G, the minimum number of edges crossing any matching cut of G, and
the maximum degree in G unless NP ⊆ coNP/poly.

The proof of Proposition 1 uses cross-composition and is deferred to the full version of this
work.

IPEC 2018

19:4 Matching Cut

u v

xy

z

a

b

c

Ui

N2(Ui)

Figure 1 An example for the definition of N2(Ui) with Ui = {u, v}. We have {x, a} ⊆ N2(Ui)
since x and a have two neighbors in Ui. Moreover, {y, z} ⊆ N2(Ui) since y and z are in a cluster
of size at least three with x. Alternatively, {x, y, z} ⊆ N2(Ui) since u ∈ Ui is adjacent to x and y.
Finally, b /∈ N2(Ui) even though a ∈ N2(Ui), since the cluster {a, b} has only size two.

This excludes many natural candidate parameters for kernelization and motivates our
study of kernelization for dc(G), the distance of G to a cluster graph. Let U = {u1, . . . , u|U |}
denote a vertex set such that G − U is a cluster graph. We may assume that |U | ≤
3dc(G) since a 3-approximation of Cluster Vertex Deletion can be computed in
time O(dc(G)(n + m)) based on the observation that a graph is a cluster graph if and
only if it does not contain an induced path on three vertices. During the kernelization, we
maintain a partition of U into U1, . . . , U` such that each Ui is monochromatic. The initial
partition contains one set for each vertex of U , that is, Ui := {ui}, 1 ≤ i ≤ |U |. We call the
sets of the partition the monochromatic parts of U .

During the kernelization, we may merge two sets Ui and Uj , i 6= j, which is to remove Ui
and Uj from the partition and to add Ui ∪ Uj . We say that merging Ui and Uj is safe
if Ui ∪ Uj is monochromatic in G.

The main idea of the kernelization is to find opportunities to merge monochromatic parts
of U or to transform distinct clusters into a single cluster because we infer that they form
a larger monochromatic set. Intuitively, an opportunity for merging arises when there are
many vertices in V \U with at least two neighbors in U . The first step handles some clusters
that have no such vertex.

I Reduction Rule 1. If V \U contains a degree-one vertex or a cluster C such that (V \C,C)
is a matching cut, then output “yes”.

The correctness of the rule is obvious. After its application, every cluster C contains either
a vertex v with two neighbors in U or there is a vertex in u ∈ U with two neighbors in C.

To identify clusters that form monochromatic sets together with some monochromatic
parts of U , we introduce the following notation. For each monochromatic part Ui of U , we
let N2(Ui) denote the set of vertices v ∈ V \U such that at least one of the following holds:

v has two neighbors in Ui,
v is in a cluster of size at least three in G − U that contains a vertex that has two
neighbors in Ui, or
v is in a cluster C in G− U and some vertex in Ui has two neighbors in C.

I Proposition 1. Ui ∪N2(Ui) is monochromatic.

Proof. In the first case, v has two neighbors in the monochromatic set Ui and thus Ui ∪{v}
is monochromatic. In the second case, the cluster C containing v is monochromatic and
contains a vertex w such that Ui ∪{w} is monochromatic. Hence, Ui ∪C is monochromatic.
In the third case, the cluster C contains two vertices x and y that form a triangle with some
vertex from Ui and thus Ui ∪ {x, y} is monochromatic. If |C| = 2, then x = v or y = v,
if |C| > 3, then C is monochromatic and thus Ui ∪ C is monochromatic. �

Ch. Komusiewicz, D. Kratsch, and V.B. Le 19:5

The next two rules identify monochromatic parts that can be merged because they belong
to overlapping monochromatic sets.

I Reduction Rule 2. If there is a vertex v that is contained in N2(Ui) and N2(Uj) for i 6= j,
then merge Ui and Uj.

Proof of safeness. By Proposition 1, {v} ∪ Ui and {v} ∪ Uj are monochromatic in G.
Thus, Ui ∪ Uj ∪ {v} is monochromatic. �

I Reduction Rule 3. If there are three vertices v1, v2, v3 in V that have two common
neighbors u ∈ Ui and u′ ∈ Uj, i 6= j, then merge Ui and Uj.

Proof of safeness. The proof is based on the fact that a Kn,m is monochromatic for n ≥ 3
and m ≥ 2: Assume that u and u′ are not in the same part of a matching cut (A,B). Then,
at most one vertex of {v1, v2, v3} is in A and at most one is in B. This is absurd and,
thus, {u, u′} is monochromatic which makes Ui ∪ Uj monochromatic. �

In the following, a cluster consisting of two vertices is an edge cluster, all other clusters are
nonedge clusters. As we will show, after application of the above rules, we have essentially
reached a situation in which there is a bounded number of nonedge clusters that are not
contained in some N2(Ui), we call these clusters ambiguous. More precisely, we say that
a vertex in V \ U is ambiguous if it has neighbors in Ui and Uj where i 6= j. A cluster is
ambiguous if it contains at least one ambiguous vertex. In contrast, we call a cluster fixed
if it is contained in N2(Ui) for some Ui.

I Proposition 2. If G is reduced with respect to Reduction Rule 1, then every nonedge
cluster in G is ambiguous or fixed.

Proof. Since G is reduced with respect to Reduction Rule 1, every cluster C contains at least
one vertex v that has two neighbors in U or there is a vertex u from some monochromatic
part Ui that has two neighbors in C. In the latter case, C is contained in N2(Ui) and thus
fixed. In the first case, if v has two neighbors in the same part Ui, then C ⊆ N2(Ui) and C
is fixed. Otherwise, v is ambiguous which means that C is ambiguous. �

Observe that according to this definition, a nonedge cluster may be ambiguous and fixed at
the same time. We will decrease the number of fixed clusters with the following rule.

I Reduction Rule 4. If there are two clusters C1 and C2 that are contained in N2(Ui), then
add all edges between these clusters.

Proof of safeness. Let G denote the graph to which the rule is applied and let G′ denote
the resulting graph. If G′ has a matching cut, then so does G, because G is a subgraph
of G′ on the same vertex set.

For the converse, consider the following: C1 ∪C2 is monochromatic since C1 and C2 are
contained in N2(Ui). Thus, if G has a matching cut, then so does G′ because adding edges
between vertices of a monochromatic set does not destroy the matching cut property. �

The following is obvious by the pigeonhole principle and the fact that the number of mono-
chromatic parts is at most |U |.

I Lemma 1. Let G be an instance of Matching Cut with cluster vertex deletion set U
that is reduced with respect to Reduction Rule 4. Then G has O(|U |) fixed clusters.

The next rules will help in bounding the number of vertices in the clusters.

IPEC 2018

19:6 Matching Cut

I Reduction Rule 5. If there is a cluster C with more than three vertices that contains a
vertex v with no neighbors in U , then remove v.

Proof of safeness. Let G denote the original graph and let G′ be the graph obtained from
the application of the reduction rule. Since |C| ≥ 4, C is monochromatic in G and C − v is
monochromatic in G′. This and the fact that v has only neighbors in C immediately implies
that G and G′ are equivalent. �

After application of Rule 5, every vertex in a cluster of size at least three has a neighbor in
U . The next rule removes unnecessary edges between monochromatic parts and clusters.

I Reduction Rule 6. If there is a cluster C with at least three vertices and a monochromatic
set Ui such that C ⊆ N2(Ui), then remove all edges between C and Ui from G, choose an
arbitrary vertex u ∈ Ui and two vertices v1, v2 ∈ C, and add two edges {u, v1} and {u, v2}.
If |Ui| = 2, then add an edge between u′ ∈ Ui \ {u} and v3 ∈ C \ {v1, v2}. If |Ui| > 2, then
make Ui a clique.

Proof of safeness. Let G denote the original graph and let G′ be the graph obtained from
the application of the reduction rule. Since C ⊆ N2(Ui), we have, by Proposition 1, that Ui∪
C is monochromatic. Thus, if G has a matching cut (A,B), then without loss of generality
we have Ui ∪ C ⊆ A. This implies that (A,B) is a matching cut of G′ since G′ is obtained
from G by removing and adding certain edges between vertices in Ui ∪ C ⊆ A.

Conversely, assume that G′ has a matching cut. In G′, Ui is monochromatic and thus
the cluster C is contained in N2(Ui). By Proposition 1, Ui ∪ C is monochromatic in G′.
As above, since G can be obtained from G′ by removing and adding certain edges between
vertices in Ui ∪ C, G also has a matching cut. �

After application of these rules, the size of the instance is, with exception of the edge
clusters, already bounded by a polynomial function of |U | as we show in the following.

I Lemma 2. Let G be an instance of Matching Cut with cluster vertex deletion set U
that is reduced with respect to Reduction Rules 1–6. Then G has

O(|U |2) ambiguous vertices, and
O(|U |2) nonedge clusters, each containing O(|U |) vertices.

The proof of Lemma 2 is deferred to the full version of this work.
To obtain a first bound on the instance size, it remains to reduce the overall number

of edge clusters. To this end, we consider for each edge cluster {u, v} the neighborhoods
of u and v in U . First, observe that, assuming G is reduced with respect to Reduction
Rule 1, u and v have neighbors in U . Now we call an edge cluster {u, v} simple if u has only
neighbors in Ui and v has only neighbors in Uj (possibly i = j). Observe that the number
of non-simple edge clusters is already bounded: Each such cluster is ambiguous because at
least one of its vertices is ambiguous. By Lemma 2, there are O(|U |2) such vertices and
thus O(|U |2) clusters containing them. To obtain a bound on the overall number of edge
clusters, we show that all simple edge clusters can be removed.

I Reduction Rule 7. If there is a simple edge cluster {u, v}, then remove u and v from G.

The proof of the safeness of this rule is deferred to the full version of this work.
Thus, with the above rules we obtain a kernel with O(dc(G)3) vertices: a reduced instance

has O(|U |2) = O(dc(G)2) clusters, each containing O(|U |) = O(dc(G)) vertices. To obtain a
kernel with an overall quadratic number of vertices, we observe first that after applications

Ch. Komusiewicz, D. Kratsch, and V.B. Le 19:7

of Reduction Rule 6, every vertex in cluster C, where |C| ≥ 3 and C ⊆ N2(Ui) for some i,
has at most one neighbor in Ui.

It remains to bound the number of vertices in V \U with only one neighbor in U . First,
we find monochromatic parts of U that can be merged not because they have many common
neighbors but, instead, because they have common neighbors in several nonedge clusters.

I Reduction Rule 8. If there are two vertices u ∈ Ui and u′ ∈ Uj, i 6= j, and three distinct
nonedge clusters C1, C2, C3 such that u and u′ have at least one neighbor in each of them,
then merge Ui and Uj.

Proof of safeness. We show that Ui ∪Uj is monochromatic; by definition this implies that
merging Ui and Uj is safe. Let (A,B) be any matching cut of G. Each of the three clusters
is monochromatic because they are nonedge clusters. Hence, we can assume without loss of
generality, that A contains C1 and C2. Since u has neighbors in C1 and in C2, it has two
neighbors in A and thus Ui ⊆ A. Similarly, Uj ⊆ A. Hence, Ui ∪ Uj is in the same part of
the cut. This holds for all cuts, making Ui ∪ Uj monochromatic. �

I Lemma 3. After exhaustive application of Reduction Rules 1–8, there are O(|U2|) vertices
in V \ U that are in nonedge clusters and have only one neighbor in U .

Proof. First, by Lemma 1, there are O(|U |) fixed nonedge clusters. By Lemma 2, these
clusters contain O(|U |) vertices each. Thus, the number of vertices in fixed nonedge clusters
that have only one neighbor in U is O(|U |2).

Hence, it remains to bound the number of vertices that have only one neighbor in U

and are contained in a nonfixed cluster C. By Proposition 2, these clusters are ambiguous.
Each ambiguous cluster C contains an ambiguous vertex with neighbors in Ui and Uj ,
where i 6= j. Thus, for each vertex of C with only one neighbor u ∈ U , there is at least
one other vertex u′ ∈ U such that u′ has at least one neighbor in C, and u and u′ are not
from the same monochromatic part U` (because u is in at most one of Ui and Uj). Now, for
each u ∈ U and u′ ∈ U that are in distinct monochromatic parts of U , let N(u, u′) denote
the number of vertex pairs {v, v′} such that there is an ambiguous cluster C containing v
and v′, one of v and v′ is adjacent to u, and the other is adjacent to u′. By the above
discussion, any vertex in an ambiguous cluster C with exactly one neighbor in U increases
the number N(u, u′) for at least one pair of vertices u and u′. By pigeonhole principle,
if there are more than 3 ·

(|U |
2
)
vertices in ambiguous nonedge clusters that have only one

neighbor in U , then there is some pair of vertices u and u′ such that N(u, u′) ≥ 3. Since u
and u′ each have at most one neighbor in every ambiguous cluster, this means that there
are three distinct clusters C1, C2, C3 which contain neighbors of u and u′. Because u and u′
are from distinct monochromatic parts, Reduction Rule 8 applies, which contradicts the
fact that G is reduced with respect to this rule. Consequently, the number of vertices in
ambiguous nonedge clusters that have only one neighbor in U is O(|U |2). �

I Theorem 4. Matching Cut admits a problem kernel with O(dc(G)2) vertices that can
be computed in O(dc(G)3 · (n2 + nm)) time.

Proof. Note that every instance contains O(dc(G)) vertices in U because we may assume
that |U | ≤ 3dc(G). Furthermore, the number of special vertices is also O(dc(G)) since
there is a constant number of them for every monochromatic part. To obtain the kernel,
we need to reduce the size of V \ U . To this end, we first apply exhaustively Rules 1–8.
Afterwards, V \ U has O(dc(G)2) vertices: By Lemma 2, V \ U has O(dc(G)2) ambiguous
vertices. Moreover, since G is reduced with respect to Rule 7, we have that every edge

IPEC 2018

19:8 Matching Cut

cluster contains an ambiguous vertex. Hence, the number of edge clusters, and therefore
the number of vertices in edge clusters, is O(dc(G)2). It remains to bound the number of
vertices in nonedge clusters that are not ambiguous. Each of these vertices has only one
neighbor in U because G is reduced with respect to Reduction Rule 6. By Lemma 3, V \U
has O(dc(G)2) vertices that are in nonedge clusters and have only one neighbor in U .

Finally, the number of vertices that have no neighbors in any set Ui is O(1) for each
cluster because G is reduced with respect to Rule 5 and thus O(dc(G)2) overall.

It remains to bound the running time for the application of the rules. Rule 1 can be
applied in time O(n + m) and applies only once. For the remaining rules, we need to
maintain the set N2(Ui) for each Ui. These sets can be computed in O(dc(G)(n + m))
time. Afterwards, the applicability of each rule can be tested in O(dc(G)2(n + m)) with
the bottleneck being Rule 8. Moreover, each rule can be applied in O(n) time, with the
exception of Rule 4 which may take Θ(n2) time, because it may add Θ(n2) many edges. To
make this rule more efficient, we can however store the edges in each cluster only implicitly,
giving a running time bound of O(n) also for this rule; we omit the details. Thus, to
obtain the claimed bound on the running time it is sufficient to bound the number of
applications of the rules by O(dc(G) · n): All rules that merge monochromatic parts can
be performed O(dc(G)) times overall. For the remaining rules, we have that Rule 4 can be
performed O(n) times, because it decreases the number of clusters in G−U by one, Rules 5
and 7 can be performed O(n) times, because they remove at least one vertex from G. �

It is worth noting that if G − U consists of only one cluster, i.e., G − U is a clique C,
Lemma 2 shows that C can be reduced to contain O(|U |) many vertices.

I Corollary 5. Matching Cut admits a linear kernel when parameterized by dq(G), the
distance to clique.

3 Single-exponential FPT Algorithms

In this section, we consider Matching Cut parameterized by the distance to cluster and
by the distance to co-cluster. Recall that co-cluster graphs are precisely the complete mul-
tipartite graphs. We show that Matching Cut can be solved in time 2dc(G)O(n2) and in
time 2dc(G)O(nm). Recall that we may assume that all graphs considered are connected,
have minimum degree at least two and that a clique Q is monochromatic if |Q| 6= 2. Finally,
observe that minimum distance to cluster sets and minimum distance to co-cluster sets can
be computed in O(1.92dc(G) · n2) time and O(1.92dc(G) · n2) time, respectively [5].

Distance to Cluster. Next, we provide an FPT algorithm solving Matching Cut running
in single-exponential time 2dc(G)O(n2).

I Lemma 6. Let U ⊂ V (G) such that F = V (G) \ U induces a cluster graph. Given a
partition (A,B) of G[U], it can be decided in time O(n2) if G has a matching cut (X,Y)
such that A ⊆ X and B ⊆ Y .

Proof. We first consider the case A or B is empty, say B = ∅. Thus, A = U and we
are searching for a matching cut (X,Y) such that U ⊆ X. If G[F] has some connected
component Q such that (Q,V (G) \ Q) is a matching cut, then we are done. Otherwise,
consider some matching cut (X,Y) such that U ⊆ X. For each connected component Q of
G[F] we have Q ⊆ X or Q ⊆ Y : This is obviously true for the connected components of
size at least three and for those of size one because they are monochromatic in G. For each

Ch. Komusiewicz, D. Kratsch, and V.B. Le 19:9

connected component {u, v} of size two observe the following. Since (V (G) \ {u, v}, {u, v})
is not a matching cut, either

u and v have a common neighbor in U , or
|N(u) ∩ U | ≥ 2 or |N(v) ∩ U | ≥ 2.

In the first case, {u, v} is monochromatic, in the second case u and v are in the same part of
the cut as U , and thus we have {u, v} ⊆ X. Summarizing, U ⊆ X and for each connected
component Q of G[F] we have Q ⊆ X or Q ⊆ Y . Since there is no matching cut between U
and a connected component Q of G[F], this implies Q ⊆ X. Hence, F ∪ U ⊆ X and
thus Y = ∅. Therefore, G has no matching cut (X,Y) such that U ⊆ X.

Now assume that A and B are nonempty. Then the algorithm first applies Reduction
Rules (R1) – (R4) given in [14]; the correctness of these rules is easy to see.

(R1) If an A-vertex has two B-neighbors, or a B-vertex has two A-neighbors then STOP: “G
has no matching cut separating A, B”.

(R2) If v ∈ F , |N(v) ∩ A| ≥ 2 and |N(v) ∩ B| ≥ 2 then STOP: “G has no matching cut
separating A, B”.
If v ∈ F and |N(v) ∩A| ≥ 2 then A := A ∪ {v}.
If v ∈ F and |N(v) ∩B| ≥ 2 then B := B ∪ {v}.

(R3) If v ∈ A has two adjacent F -neighbors w1, w2 then A := A ∪ {w1, w2}.
If v ∈ B has two adjacent F -neighbors w3, w4 then B := B ∪ {w3, w4}.

(R4) If there is an edge xy in G such that x ∈ A and y ∈ B and N(x) ∩N(y) ∩ F 6= ∅ then
STOP: “G has no matching cut separating A, B”.
If there is an edge xy in G such that x ∈ A and y ∈ B then add N(x)∩F to A, and add
N(y) ∩ F to B.

If none of these reduction rules can be applied then
the A,B-edges of G form a matching cut in G[A ∪B] = G− F due to (R1),
every F -vertex is adjacent to at most one A- and at most one B-vertex due to (R2),
the F -neighbors of any A-vertex and the F -neighbors of any B-vertex form an independ-
ent set due to (R3), and
every A-vertex adjacent to a B-vertex has no F -neighbor and every B-vertex adjacent
to an A-vertex has no F -neighbor.

Clearly these properties hold for the instance (G,A,B) if none of the Rules (R1) – (R4)
can be applied. Note that G[F] is a cluster graph. Let Q be the set of all monochromatic
connected components in G[F] and let R := F \

⋃
Q∈Q V (Q). That is, each member in Q

is a trivial clique or a clique with at least three vertices, and each vertex in R belongs to a
2-vertex connected component in G[F]. Now, create a boolean formula φ as follows:

For each Q ∈ Q we have two boolean variables QA and QB (indicating all vertices of Q
should be added to A, respectively, to B).
For each vertex u ∈ R we have two boolean variables uA, uB (indicating u should be
added to A, respectively, to B).

The clauses of φ are as follows:
(c1) For each Q ∈ Q: (QA ∨QB), (¬QA ∨¬QB). These clauses ensure that Q will be moved

to A or else to B.
(c2) For each vertex u ∈ R: (uA ∨ uB), (¬uA ∨ ¬uB). These clauses ensure that u will be

moved to A or else to B.
(c3) For each two adjacent vertices u, v ∈ R:

IPEC 2018

19:10 Matching Cut

(c3.1) If u has neighbors in A and B, if v has neighbors in A and B, if u and v have neighbors
in A, or if u and v have neighbors in B: (uA ↔ vA), (uB ↔ vB). These clauses ensure
that either both u and v must be moved to A, or both must be moved to B.

(c3.2) If |N(u) ∩ A| = |N(v) ∩ B| = 1 and N(u) ∩ B = N(v) ∩ A = ∅: (¬uB ∨ ¬vA). This
clause ensures that in case u goes to B, v must also go to B, and in case v goes to A,
u must also go to A.

(c3.3) If |N(u) ∩ B| = |N(v) ∩ A| = 1 and N(u) ∩ A = N(v) ∩ B = ∅: (¬uA ∨ ¬vB). This
clause ensures that in case u goes to A, v must also go to A, and in case v goes to B,
u must also go to B.

(c4) For z, z′ ∈ Q ∪R:
(c4.1) If z, z′ have a common neighbor in A: (¬zB ∨ ¬z′B). This clause ensures that in this

case, z or z′ must go to A.
(c4.2) If z, z′ have a common neighbor in B: (¬zA ∨ ¬z′A). This clause ensures that in this

case, z or z′ must go to B.
Then φ is the conjunction of all these clauses over all Q ∈ Q and all u ∈ R.

I Proposition 3. G has a matching cut (X,Y) with A ⊆ X and B ⊆ Y if and only if φ is
satisfiable.

The proof of Proposition 3 is deferred to the full version of this work.
Obviously, the length of the formula φ is O(n2). Since 2-Sat can be solved in linear time

(cf. [3, 9, 10]), the above discussion yields an O(n2)-time algorithm for deciding if G has a
matching cut (X,Y) such that A ⊆ X and B ⊆ Y . �

Running the algorithm of Lemma 6 for all partitions (A,B) of G[U], where U is a minimum
distance to cluster set of the input graph G, one obtains

I Theorem 7. Matching Cut can be solved in time 2dc(G)O(n2).

Distance to Co-cluster. We now provide an FPT algorithm solving Matching Cut run-
ning in single-exponential time 2dc(G)O(nm).

I Lemma 8. Let U ⊂ V (G) such that F = V (G) \ U induces a co-cluster graph. Given a
partition (A,B) of G[U], it can be decided in time O(nm) if G has a matching cut (X,Y)
such that A ⊆ X and B ⊆ Y .

The proof of Lemma 8 is deferred to the full version of this work.
Running the algorithm of Lemma 8 for all partitions (A,B) of G[U], where U is a

minimum distance to co-cluster set of the input graph G, one obtains

I Theorem 9. Matching Cut can be solved in time 2dc(G)O(nm).

4 An Improved Exact Exponential Algorithm

Our algorithm takes as input a graph G = (V,E) and decides whether or not there is an
edge set M ⊆ E such that M is a matching cut of G. As above, we may assume that G is
connected and has minimum degree at least two. The idea is to compute a partition of the
vertex set into subsets A and B such that A and B are nonempty unions of components of
G−M and allM -edges have one endvertex in A and the other in B. Our algorithm consists
of reduction rules and branching rules that label the vertices of the input graph by either A
or B but never change the graph G. Finally we provide a termination lemma stating that

Ch. Komusiewicz, D. Kratsch, and V.B. Le 19:11

if neither a reduction rule nor a branching rule can be applied then there is a matching cut
in the graph G, respecting the current partial partition into A and B.

The branching algorithm below will be executed for all possible pairs a, b ∈ V , hence
O(n2) times. To do this set A := {a}, B := {b}, and F := V \ {a, b} and call the branching
algorithm. At each stage of the algorithm, A and/or B will be extended or it will be
determined that there is no matching cut that separates A from B.

We describe our algorithm by a list of reduction and branching rules given in preference
order, i.e., in an execution of the algorithm on any instance of a subproblem one always
applies the first rule applicable to the instance, which could be a reduction or a branching
rule. A reduction rule produces one instance/subproblem while a branching rule results in
at least two instances/subproblems, with different extensions of A and B. Note that G has
a matching cut that separates A from B if and only if in at least one recursive branch,
extensions A′ of A and B′ of B are obtained such that G has a matching cut that separates
A′ from B′. Typically a rule assigns one or more free vertices, vertices of F , either to A or
to B and removes them from F , that is, we always have F := V \ (A ∪B).

First our algorithm applies Reduction Rules (R1) – (R4) mentioned in Section 3 to the
current instance (in the order of the rules). In addition, we need two new reduction rules.

(R5) If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈ A, y ∈ B, then
A := A ∪ {u}, B := B ∪ {v}.

I Proposition 4. Reduction Rule (R5) is safe: G has a matching cut separating A and B
if and only if G has a matching cut separating A ∪ {u} and B ∪ {v}.
The proof of Proposition 4 is deferred to the full version of this work.

(R6) If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈ A, y ∈ F then
A := A ∪ {u}.
If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈ F, y ∈ B then
B := B ∪ {v}.

I Proposition 5. Reduction Rule (R6) is safe:
(i) Let x ∈ A and y ∈ F . Then G has a matching cut separating A and B if and only if G

has a matching cut separating A ∪ {u} and B.
(ii) Let x ∈ F and y ∈ B. Then G has a matching cut separating A and B if and only if G

has a matching cut separating A and B ∪ {v}.
The proof of Proposition 5 is deferred to the full version of this work.

Our algorithm consists of six branching rules dealing with small configurations (connected
subgraphs with at most eight vertices some of them may already belong to A or B.) See
Fig. 2. The Branching Rules (B1) and (B2) are new, the last four have been used in [14].
Moreover, compared to [14] we do a better branching on configuration (B5).

To determine the branching vectors which correspond to our branching rules, we set the
size of an instance (G,A,B) as its number of free vertices, i.e., |V (G)| − |A| − |B|.

(B1) We branch into two subproblems. First, add v1 to B. Then v2 has to be added to B
and v3 has to be added to A. Second, add v1 to A. Then v2 has to be added to A too.
Hence the branching vector is (3, 2).

(B2) We branch into two subproblems. First, add v2 to B. Then v1 has to be added to A
and v3 has to be added to B. Second, add v2 to A. Then v3 has to be added to A too.
Hence the branching vector is (3, 2).

(B3) First, add v2 to B. This implies that v1 has to be added to A, and that v3 and v4 have
to be added to B. Second, add v2 to A. Hence the branching vector is (4, 1).

IPEC 2018

19:12 Matching Cut

A

A

v1

v2

v3

(B1)

A

B

v1 v2

v3(B2)

A

v4

v1 v2

v3(B3)

B

v1

v2

v3 v4

(B4)

A

A

B

v1 v2

v3v4 (B5)

A

A

v1 v2

v3v4

v5 v6

(B6)

Figure 2 Branching configurations: Vertices with label A and B belong to A, respectively, to B;
vertices with labels vi are in F .

(B4) On this configuration we branch into two subproblems, similar to (B3). First, add v3 to
A. This implies that v4 has to be added to B, and that v1 and v2 have to be added to
A. Second, add v3 to B. Hence the branching vector is (4, 1).

(B5) We branch into two subproblems. First, add v2 to A. This implies that v3 has to be
added to B and then v4 has to be added to A. Second, add v2 to B. Then v1 must be
added to A. Hence the branching vector is (3, 2).

(B6) We branch into four subproblems. First, add v5 to A. This implies that v2 and v3
have to be added to A. Next, add v5 to B. There are three choices to label v2 and v3:
AB,BA,BB. In the first two choices, v6 has to be added to B and v1 or v4 has to be
added to A. In the last choice, v1 and v4 have to be added to A. Hence the branching
vector is (3, 5, 5, 5).

The branching numbers of the branching vectors of our algorithm are 1.3803 (B3, B4),
1.3734 (B6) and 1.3248 (B1, B2, B5). Consequently, the running time of our algorithm is
O∗(1.3803n).

It remains to show that if none of the reduction and branching rules is applicable to
(G,A,B) then G has a matching cut (X,Y) with A ⊆ X and B ⊆ Y . The proof of this fact
is deferred to the full version of this work. In summary, we obtain the following result.

I Theorem 10. Matching Cut can be solved in time O∗(1.3803n).

5 Conclusions

We provided three algorithms for Matching Cut: an exact exponential algorithm of run-
ning time O∗(1.3803n), a fixed-parameter algorithm of running time 2dc(G)O(n2) where
dc(G) is the distance to cluster number, and a fixed-parameter algorithm of running time
2dc(G)O(nm) where dc(G) is the distance to co-cluster number. Our results improved
the O∗(1.4143n) time exact algorithm and the 2τ(G)O(n2) time algorithm previously given
in [14], where τ(G) ≥ max{dc(G),dc(G)} is the vertex cover number. Moreover, we found a
quadratic vertex-kernel for Matching Cut for the distance to cluster, and a linear vertex-
kernel for the distance to clique.

There are many possible directions for future research. Does Matching Cut admit a
linear vertex-kernel for the distance to cluster? Even a linear vertex-kernel for the parameter
vertex cover number τ(G) is open. Moreover, it is open whether the problem admits a
polynomial kernel for the feedback vertex set number of G. Finally, it is natural to ask
whether the running time of our O∗(1.3803n) branching algorithm can be improved.

Ch. Komusiewicz, D. Kratsch, and V.B. Le 19:13

References
1 Júlio Araújo, Nathann Cohen, Frédéric Giroire, and Frédéric Havet. Good edge-labelling

of graphs. Discr. Appl. Math., 160(18):2502–2513, 2012.
2 N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On struc-

tural parameterizations of the matching cut problem. In Proceedings of the 11th Interna-
tional Conference on Combinatorial Optimization and Applications (COCOA ’17), volume
10628 of LNCS, pages 475–482. Springer, 2017.

3 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123,
1979.

4 Paul S. Bonsma. The complexity of the matching-cut problem for planar graphs and other
graph classes. J. Graph Theory, 62(2):109–126, 2009.

5 Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branch-
ing algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357–376, 2016.

6 Mieczyslaw Borowiecki and Katarzyna Jesse-Józefczyk. Matching cutsets in graphs of
diameter 2. Theor. Comput. Sci., 407(1-3):574–582, 2008.

7 Vasek Chvátal. Recognizing decomposable graphs. J. Graph Theory, 8(1):51–53, 1984.
8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
9 Martin Davis and Hilary Putnam. A computing procedure for quantification theory.

J. ACM, 7(3):201–215, 1960.
10 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicom-

modity flow problems. SIAM J. Comput., 5(4):691–703, 1976.
11 Arthur M. Farley and Andrzej Proskurowski. Networks immune to isolated line failures.

Networks, 12(4):393–403, 1982.
12 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
13 Ron L. Graham. On primitive graphs and optimal vertex assignments. Ann. N. Y. Acad.

Sci., 175(1):170–186, 1970.
14 Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theor.

Comput. Sci., 609:328–335, 2016.
15 Hoàng-Oanh Le and Van Bang Le. On the complexity of matching cut in graphs of fixed dia-

meter. In Proceedings of the 27th International Symposium on Algorithms and Computation
(ISAAC ’16), volume 64 of LIPIcs, pages 50:1–50:12. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

16 Van Bang Le and Bert Randerath. On stable cutsets in line graphs. Theor. Comput. Sci.,
301(1-3):463–475, 2003.

17 Augustine M. Moshi. Matching cutsets in graphs. J. Graph Theory, 13(5):527–536, 1989.
18 Maurizio Patrignani and Maurizio Pizzonia. The complexity of the matching-cut prob-

lem. In Proceedings of the 27th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG ’01), volume 2204 of LNCS, pages 284–295. Springer, 2001.

IPEC 2018

	Introduction
	A Polynomial Kernel for the Distance to Cluster
	Single-exponential FPT Algorithms
	An Improved Exact Exponential Algorithm
	Conclusions

