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Abstract

In the Maximum-Duo Preservation String Mapping (Max-Duo PSM) problem,
the input consists of two related strings A and B of length n and a nonnegative integer k.
The objective is to determine whether there exists a mapping m from the set of positions
of A to the set of positions of B that maps only to positions with the same character and
preserves at least k duos, which are pairs of adjacent positions. We develop a randomized
algorithm that solves Max-Duo PSM in 4k · nO(1) time, and a deterministic algorithm that
solves this problem in 6.855k ·nO(1) time. The previous best known (deterministic) algorithm
for this problem has (8e)2k+o(k) · nO(1) running time [Beretta et al., Theor. Comput. Sci.
2016]. We also show that Max-Duo PSM admits a problem kernel of size O(k3), improving
upon the previous best known problem kernel of size O(k6).

Keywords: Maximum-Duo Preservation String Mapping, Parameterized Algorithms,
Kernelization

1 Introduction

Computing distances between strings is a fundamental task in computer science. For many
distance measures, the distance between two strings A and B is defined as the minimum number
of local operations that are needed to transform A into B, for example the deletion or insertion
of a character. For these measures, the distance between two strings A and B can be usually
computed in polynomial time [13, 23]. In some applications, however, it is necessary to consider
nonlocal operations that transform one string into the other. In comparative genomics, for
example, genomes are modeled as strings with one character corresponding to a complete gene
and one is interested in determining the evolutionary distance between two genomes. During
biological evolution, genomes may be altered by large-scale mutations such as the reversal or the
transposition of larger parts of the genome [19].

One approach to approximate the distance between two strings A and B with respect to
many of these operations is to compute a smallest common string partition [11, 27]. Informally,
a size-` common string partition of two strings A and B is a partition of A and B, each into `
nonoverlapping substrings, such that the resulting two multisets of substrings of A and B are
the same. The problem to compute a smallest common string partition, known as Minimum
Common String Partition, is NP-hard [11, 22].

An alternative way of defining such a partition is to ask for a partition of A into ` nonover-
lapping substrings such that permuting the order of these substrings and concatenating them
subsequently gives the string B. This second view implies a mapping m that (bijectively) maps
each position i of A to a position m(i) of B such that A[i] = B[m(i)]. The size of the common
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string partition is then exactly the number of pairs of consecutive positions i and i+1 (called duos)
such that m(i) + 1 6= m(i + 1) plus one since i is the end of one part and i + 1 is the start of the
next part. Therefore, computing a mapping m that maps only positions with the same characters
to each other and maximizes the number k of consecutive positions for which m(i) + 1 = m(i+ 1)
directly yields a minimum common string partition of A and B. The problem of computing such
a mapping is known as Maximum-Duo Preservation String Mapping (Max-Duo PSM).
Since Max-Duo PSM is simply a dual of the Minimum Common String Partition problem,
it is NP-hard as well. Motivated by this hardness, we study Max-Duo PSM from the viewpoint
of parameterized algorithmics. More precisely, our aim is to obtain efficient algorithms when the
parameter is k, the number of preserved duos. Before describing previous and our results, we
give a formal problem definition.

Formal Problem Definition. Let A and B be two strings over a finite set of symbols Σ.
Throughout this work, we assume that |A| = |B| = n and that A and B are related, that is,
B is a permutation of A. A mapping of A into B is a (bijective) function m : [n]→ [n] where
for each i ∈ [n],1 A[i] = B[m(i)]. A duo in A is a pair of consecutive positions (i, i + 1) of A.
We say that a mapping m preserves a duo (i, i + 1) if m(i) + 1 = m(i + 1). Accordingly, the
Max-Duo PSM problem is defined as follows.

Maximum-Duo Preservation String Mapping (Max-Duo PSM)
Input: Two related strings, A and B, and a nonnegative integer k.
Question: Does there exist a (bijective) mapping m of A into B such that the
number of preserved duos is at least k?

Previous Work. Initially, Max-Duo PSM has been proposed as an alternative possibility
of achieving approximation algorithms for Minimum Common String Partition (MCSP) [10],
because the best known polynomial-time approximation algorithm has an approximation factor
of O(log n log∗ n) [12]. Consequently, most work on Max-Duo PSM focuses on approximation
algorithms with the first constant-factor approximation algorithm achieving an approximation
factor of 4 [6]. This was subsequently improved to a factor of 3.5 [5] and then to a factor of 3.25 [7].
Recently further progress concerning the approximation factor has been reported [18, 28].

Beretta et al. [2, 1] initiated the study of Max-Duo PSM from the viewpoint of parameterized
algorithmics. They studied both the fixed-parameter tractability and the kernelization complexity
of Max-Duo PSM, showing that this problem can be solved in (8e)2k+o(k) ·nO(1) time, and that
it admits a kernel of size O(k6). Thus, Beretta et al. [2, 1] were the first to show that Max-Duo
PSM is FPT and that it admits a polynomial kernel. The fixed-parameter algorithm of Beretta
et al. [2, 1] is based on a combination of color coding and dynamic programming.

In comparison with Max-Duo PSM, MCSP has been investigated more thoroughly from
the viewpoint of parameterized algorithms. Damaschke [15] presented the first fixed-parameter
algorithms for MCSP, for combined parameters such as “partition size ` plus repetition number
of the input strings”.2 Subsequently, MCSP was shown to be fixed-parameter tractable with
the single parameter partition size ` [9]. Jiang et al. [24] considered the combined parameter
“partition size ` plus maximum occurrence d of any character” and showed that MCSP can be
solved in (d!)k · nO(1) time. Subsequently, this running time was improved to O(d2k · kn) [8].

Our Contribution. We make two main contributions. First, we develop two algorithms for
the Max-Duo PSM problem that are substantially faster than the (deterministic) algorithm by
Beretta et al. [2, 1], which runs in (8e)2k+o(k) · nO(1) time. Specifically, we develop a randomized

1We use [n] as shorthand for {1, 2, . . . , n}.
2The repetition number of a nonempty string x is defined as the largest i such that x = uviw where v is

nonempty.
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algorithm that solves Max-Duo PSM in 4k · nO(1) time, as well as a deterministic algorithm
that solves this problem in 6.855k ·nO(1) time. Here, in the context of our randomized algorithm,
we mean that if we determine that the input is a yes-instance, then this answer is necessarily
correct, and if we determine that the input is a no-instance, then this answer is correct with
probability at least 9/10.3 For the purpose of developing our algorithms, we present a reduction
from Max-Duo PSM to a problem of finding paths in an edge-colored graph, which might be
of independent interest. This reduction lies at the heart of our algorithms, since by employing
advanced tools from the field of parameterized algorithmics, namely, the methods of narrow sieves
[4, 3] and representative sets [20], it is possible to quickly solve the resulting graph problem.

Second, we prove that Max-Duo PSM admits a kernel of size O(k3), improving upon the
kernel of size O(k6) by Beretta et al. [2].

Preliminaries. We use [i, j] to denote the set {i, i+1, . . . , j} of natural numbers between i
and j. Moreover, given a string A, we denote the substring starting at position i and ending at
position j by A[i, j]. For a (directed) graph G, let V (G) denote the vertex set of G and E(G)
the edge set of G.

The field of parameterized algorithmics studies parameterized problems, where each problem
instance is associated with a parameter k, usually a nonnegative integer. Given a parameterized
problem, the first question is whether the problem is fixed-parameter tractable (FPT), that is,
whether it can be solved in f(k) · |X|O(1) time, where f is an arbitrary function that depends
only on k and |X| is the size of the input instance. In other words, the notion of FPT signifies
that the combinatorial explosion can be confined to the parameter k. A second question is
whether the problem also admits a polynomial kernelization. Here, a problem Π is said to admit
a polynomial kernelization if there exists a polynomial-time algorithm that, given an instance
(X, k) of Π, outputs an equivalent instance (X̂, k̂) of Π, called a kernel, where |X̂| = k̂O(1) and
k̂ ≤ k; kernelization is a mathematical concept that aims to analyze preprocessing procedures in
a formal, rigorous manner. For further details, refer to [17, 14, 21].

2 Reduction to a Path Finding Problem

In this section, we present a reduction from Max-Duo PSM to the following graph problem.

Substantially Blue Path
Input: A directed acyclic graph (DAG) G, an edge-coloring c : E(G)→ {R,B}, a
vertex-labeling ` : V (G)→ N, and nonnegative integers k and r.
Question: Does G contain a directed path P such that

• |V (P )| ≤ r,

• for all u, v ∈ V (P ), `(u) 6= `(v), and

• |{e ∈ E(P ) : c(e) = B}| ≥ k.

Construction. Let (A,B, k) be an instance of Max-Duo PSM. We construct an instance
(G, c, `, k, r) of Substantially Blue Path as follows (here, the parameter k is the same). First,
we initialize G to be an empty graph. Now, for every pair of substrings A[i, j] of A and B[p, q]
of B such that j − i ≤ k and A[i, j] = B[p, q], we insert a directed path Pi,j,p,q on j − i + 1 new
vertices into G whose edges are colored blue and such that the label of the dth vertex on this
path is (p + d− 1). The purpose of this path is to represent the possibility to preserve all duos
in A[i, j] by mapping this substring to B[p, q]. The labels of the vertices are meant to ensure
that every position in B is mapped only once. Now, a complete mapping of A to B can be seen

3Clearly, the probability of success can be improved by running the algorithm multiple times and determining
that the input is a yes-instance if and only if at least one of the calls determined so.
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as a combination of mappings of substrings that are represented by the paths. Thus, we next
turn to connect the paths we have just constructed by adding new edges.

For every two paths Pi,j,p,q and Pi′,j′,p′,q′ such that j < i′, we add a red edge from the last
vertex of the path Pi,j,q,p to the first vertex of the path Pi′,j′,q′,p′ . Informally, the manner in
which we direct these edges is meant to ensure that every position in A is mapped only once.
Clearly, the resulting graph G is a DAG. Finally, we set r = 2k.

Correctness. We first note that the construction can be done in O(|V (G)|+ |E(G)|) time.
Now, observe that the number of paths Pi,j,p,q that G contains is bounded by n2(k + 1) (as the
index q equals p+ (j − i)), and that each path Pi,j,p,q consists of at most (k + 1) vertices. Hence,
it holds that |V (G)| ≤ n2(k + 1)2 which directly implies |E(G)| < n4(k + 1)2. Thus, we have
the following observation.

Observation 1. The instance (G, c, `, k, r) can be constructed in O(n4k2) time.

We prove the correctness by proving two lemmata that together imply that the instances
(A,B, k) and (G, c, `, k, r) are equivalent.

Lemma 1. If (A,B, k) is a yes-instance of Max-Duo PSM, then (G, c, `, k, r) is a yes-instance
of Substantially Blue Path.

Proof. Let m be a mapping from A into B preserving at least k duos. Consider the set {A1, . . . , Ar}
of substrings of A containing exactly the first k preserved duos, where we assume that Ai pre-
cedes Ai+1 in A. Consider any Az and let [iz, jz] be the set of positions of Az in A. Since the
mapping preserves the duos in Az, there is a substring B[qz, pz] such that m(iz + s) = qz + s, 0 ≤
s ≤ j − i. This implies that A[iz, jz] = B[qz, pz]. Thus, G contains the path Pz := Piz ,jz ,qz ,pz .

By the above, for each Az, G contains a path Pz containing |Az| − 1 blue edges. Moreover,
for Ai and Aj , the vertices in Pi and Pj have different labels since the mapping m is injective.
Finally, there is a red edge from the last vertex of Pi to the first vertex of Pi+1 since the last
position of Ai is strictly smaller than the first position of Ai+1. Thus, the concatenation of P1,
P2 until Pr gives a path in G. The number of blue edges in this path is exactly k, and the
number of vertices in this path is at most 2k, since every Pi contains at least one blue edge.

Lemma 2. If (G, c, `, k) is a yes-instance of Substantially Blue Path, then (A,B, k) is a
yes-instance of Max-Duo PSM.

Proof. Let P be a solution of the Substantially Blue Path instance. That is, P is a path in G
on at most 2k vertices, all with different labels, containing at least k blue edges. Let {P1, . . . , Pr}
be the set of disjoint paths obtained from P by removing all red edges where we assume that
there is a red edge from Pi to Pi+1 for all i ∈ [r − 1]. Consider some Pz. By the construction
of G, Pz = Pi,j,q,p for some i < j and q < p. Hence, there is a substring A[i, j] of A and a
substring B[q, p] of B such that A[i, j] = B[q, p]. Call these two substrings the substrings of A
and B, respectively, that correspond to Pz. Observe that for Pi and Pj , i < j, the substrings
corresponding to Pi and Pj are disjoint: For the substrings in A this is due to the fact that
the indices of the corresponding substring for Pi are lower than those of the substring of A
corresponding to Pj . For the substrings in B this is due to the fact that the vertices in Pi and Pj

have different labels. Thus, there is a mapping from A into B that maps the corresponding
strings for each path Pi and maps all other positions arbitrarily. The number of duos preserved
by this mapping is at least k.

Altogether, we arrive at the following.

Lemma 3. Given an instance (A,B, k) of Max-Duo PSM, an equivalent instance (G, c, `, k, r)
of Substantially Blue Path where r = 2k can be constructed in O(n4k2) time.
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3 A Randomized Algorithm based on Narrow Sieves

In this section, we adapt the method of narrow sieves that was applied to solve the k-Path
problem [4] to solve Substantially Blue Path. More precisely, our objective is to provide a
constructive proof for the following result.

Lemma 4. There exists a randomized algorithm that solves Substantially Blue Path in
2r · rO(1) · |E(G)| time and polynomial space.

In light of Lemma 3, once we have Lemma 4 at hand, we immediately obtain the following
theorem.

Theorem 1. There exists a randomized algorithm that solves Max-Duo PSM in 4k · kO(1) · n4

time and polynomial space.

In the following, we focus on the proof of Lemma 4. To this end, let (G, c, `, k, r) be an
instance of Substantially Blue Path. Clearly, we can assume that |V (G)| ≤ |E(G)|. To be
able to rely on dynamic programming later, we need to define a notion of a partial solution:

Definition 1. Let P be a directed path in G. Given a vertex v ∈ V (G), s ∈ [r] and b ∈ [r]∪{0},
we say that P is a (v, s, b)-path if the last vertex of P is v, |V (P )| = s and |{e ∈ E(P ) : c(e) =
B}| = b. If for all u,w ∈ V (P ), it holds that `(u) 6= `(v), then we say that P is a good path.

To employ the method of narrow sieves, we need to associate labels with entities whose
uniqueness should be preserved. For this purpose, we have the following definition:

Definition 2. Let P be a (v, s, b)-path. Given f : V (P )→ [r], we say that (P, f) is a (v, s, b)-
pair. If P is good, then we say that (P, f) is a good pair, and if f is an injective function, then
we say that (P, f) is an injective pair. Given L ⊆ [r] such that the image of f is a subset of L,
we say that (P, f) is an L-labeled pair.

Now, we define two central sets of labeled partial solutions. The first one, P, is the set of
all pairs (P, f) that are injective (v, s, b)-pairs for some v ∈ V (G) and s, b ∈ [r] such that b ≥ k.
The second one, Q, is the set of all good pairs (P, f) in P. Note that for every pair (P, f) ∈ Q,
it holds that P is a solution for Substantially Blue Path, and for every solution P for
Substantially Blue Path, by letting f be a function that assigns i to the ith vertex on P ,
we obtain a pair (P, f) ∈ Q. Thus, we have the following observation.

Observation 2. The instance (G, c, `, k, r) is a yes-instance if and only if Q 6= ∅.

With these definitions at hand, we may describe the rough idea of the approach. We represent
all labeled partial solutions of P by a polynomial in such a way that each labeled partial solution
corresponds to one monomial. We will ensure that the partial solutions of P \ Q cancel each
other out which will imply that the polynomial is not identically 0 if and only if Q 6= ∅. To this
end, we now describe how we represent labeled partial solutions by monomials. For every label
i ∈ image(`) and integer j ∈ [r], we introduce the variable xi,j , and for every edge e ∈ E(G), we
introduce the variable ye. This gives the following representation:

Definition 3. Let (P, f) be a (v, s, b)-pair. Then, the monomial associated with (P, f) is defined
as follows.

mon(P, f) =
∏

v∈V (P )

x`(v),f(v) ·
∏

e∈E(P )

ye.

Accordingly, we define the following polynomial (which will be evaluated over a field of
characteristic 2).
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Definition 4. POL =
∑

(P,f)∈P

mon(P, f).

To analyze this polynomial, we first observe that given a monomial associated with a pair
(P, f) ∈ Q, we can uniquely recover the pair (P, f). To see this, consider some monomial M that
is associated with a pair (P, f) ∈ Q. Then, the variables ye of M specify exactly which edges
are used by P , and therefore the path P is recovered. Now, since the pair (P, f) belongs to Q,
we have that P is a good path. Hence, the variables xi,j of M specify exactly how f labels the
vertices of P . In other words, we have the following observation.

Observation 3. For all (P, f) ∈ Q, there does not exist (P ′, f ′) ∈ P \ {(P, f)} such that
mon(P, f) = mon(P ′, f ′).

The following lemma will be used to show that the partial solutions of P \ Q cancel each
other out.

Lemma 5. There exists a function g : P \ Q → P \ Q such that for all (P, f) ∈ P \ Q, it holds
that mon(P, f) = mon(g(P, f)), g(P, f) 6= (P, f), and g(g(P, f)) = (P, f).

Proof. Let < be some order on {{u, v} : u, v ∈ V (P )}. Given (P, f) ∈ P \ Q, define rep(P, f) =
{{u, v} : u, v ∈ V (P ), u 6= v, `(u) = `(v)}. Since P is not a good path, it holds that rep(P, f) 6= ∅.
Hence, it is well defined to let {u, v} be the smallest set in rep(P, f) according to <. We let h
be defined as f except that h(u) = f(v) and h(v) = f(u). Now, we set g(P, f) = (P, h). Clearly,
g(P, f) ∈ P. Note that rep(P, f) = rep(P, h), and hence g(P, f) /∈ Q and g(g(P, f)) = (P, f).
Since (P, f) ∈ P, it holds that f is an injective function; therefore f(v) 6= f(u), which implies
that g(P, f) 6= (P, f). Finally, since `(u) = `(v), it holds that mon(P, f) = mon(g(P, f)).

Let F be a field of characteristic 2 (whose precise size will be determined later). From now
on, we suppose that POL is evaluated over F. Notice that

POL =
∑

(P,f)∈Q

mon(P, f) +
∑

(P,f)∈P\Q

mon(P, f).

By Lemma 5, we have that POL =
∑

(P,f)∈Qmon(P, f). Then, by Observation 3, we have that
POL is not identically 0 if and only if Q is not empty. Hence, by Observation 2, we have the
following lemma.

Lemma 6. The instance (G, c, `, k, r) is a yes-instance if and only if POL is not identically 0.

Due to Lemma 6, our task is to determine whether POL is identically 0. For this purpose, we
need the following notation. Given v ∈ V (G), s ∈ [r], b ∈ [r]∪{0} and L ⊆ [r], let Pv,s,b,L denote

the set of all L-labeled (v, s, b)-pairs (P, f), and POLv,s,b,L =
∑

(P,f)∈Pv,s,b,L

mon(P, f). Moreover,

denote
PL =

⋃
v ∈ V (G), s, b ∈ [r], b ≥ k

Pv,s,b,L,

and POLL =
∑

(P,f)∈PL

mon(P, f). By the principle of inclusion-exclusion, we have that POL =∑
L⊆[r]

(−1)r−|L|POLL. Then, since F is a field of characteristic 2 (refer to [4] for further details)

we obtain the following.

Observation 4. POL =
∑
L⊆[r]

POLL.
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Hence, to determine whether POL is identically 0, it is sufficient to determine whether∑
L⊆[r] POLL is identically 0. To proceed, we need to recall the following well-known lemma.

Lemma 7 ([25, 29, 16]). Let p(x1, x2, . . . , xn) be a nonzero polynomial of total degree at most
d over a finite field K. Then, for a1, a2, . . . , an ∈ K selected independently and uniformly at
random, Pr(p(a1, a2, . . . , an) 6= 0) ≥ 1− d/|K|.

Notice that POL is a polynomial of total degree at most 2r. Therefore, by setting |F| =
2dlog(20r)e, from Lemma 6, Observation 4, and Lemma 7, we have that

Lemma 8. For a random assignment to all variables xi,j and ye, if (G, c, `, k, r) is a no-instance,

then
∑
L⊆[r]

POLL evaluates to 0, and otherwise it does not evaluate to 0 with probability at least

9/10.

According to Lemma 8, to conclude that Lemma 4 is correct, it is sufficient to prove the
following result.

Lemma 9. Given L ⊆ [r] and an assignment to all variables xi,j and ye, the polynomial POLL
can be evaluated in rO(1) · |E(G)| time.

Proof sketch. The evaluation can be performed by a simple procedure based on dynamic pro-
gramming. For the sake of completeness, we present the base cases and recursive formula below.
For simplicity, we abuse notation by using the symbols xi,j and ye to refer to the values assigned
to the variables xi,j and ye, respectively.

The procedure uses a table M , which has an entry M [v, s, b] for all v ∈ V (G), s ∈ [r] and
b ∈ [r] ∪ {0}. The purpose of this entry is to store the value of POLv,s,b,L. Then, the value of

POLL is given by
∑

v ∈ V (G),
s, b ∈ [r], b ≥ k

M [v, s, b].

The basis consists of the following cases:

• If b ≥ s, then M [v, s, b] = 0.

• Else if s = 1, then M [v, s, b] =
∑
i∈L

x`(v),i.

Now, consider an entry M [v, s, b] not computed in the basis. We assume that a reference to
an undefined entry returns 0. Then,

M [v, s, b] =


∑

(u, v) ∈ E(G),
c(u, v) = R

(
(
∑
i∈L

x`(v),i) · y(u,v) ·M [u, s− 1, b]

)


+


∑

(u, v) ∈ E(G),
c(u, v) = B

(
(
∑
i∈L

x`(v),i) · y(u,v) ·M [u, s− 1, b− 1]

)
.

Intuitively, the recursive formula is partitioned into two: the first sum corresponds to the case
where the last arc is red, and the second sum corresponds to the case where the last arc is
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blue. In both cases, we consider all possibilities for the identity of the vertex u appearing before
v—these are all the ingoing neighbors u of v—along with multiplication by the corresponding
variable y(u,v) and either M [u, s − 1, b] or M [u, s − 1, b − 1], all possibilities for the label i of
v (which is represented by the internal sum) along with multiplication by the corresponding
variable x`(v),i. The only difference between the two cases is in the third argument (the number
of blue arcs), which clearly only decreases in the second case.

Finally, we would like to remark that if one is interested in finding a mapping that is a
solution rather than just determining whether such a mapping exists, this goal can be achieved
by standard means of self-reduction. Briefly, if k is not positive, then we are done. Else, if the
algorithm determines that there exists a solution, then we may “guess” (i.e., perform exhaustive
search) a longest substring A′ of A that is mapped by some solution while preserving all duos
in A′ as well as the substring B′ of B to which it is mapped. If our guess is correct, then the
symbol preceding A′ in A is not equal to the symbol preceding B′ in B and the symbol after A′

in A is also not equal to the symbol after B′ in B (if such symbols exist). Then, we may replace
A′ and B′ in A and B, respectively, by some new symbol, decrease k by |A′| − 1, and call the
algorithm recursively. Notice that the length of A′ is at least 2, and hence the size of the input
has decreased.

4 Deterministic Algorithm: Representative Sets

In this section, we adapt the approach in which the method of representative sets is applied to
solve the k-Path problem [20]. More precisely, our objective is to provide a constructive proof
for the following result.

Lemma 10. There exists a deterministic algorithm that solves Substantially Blue Path in

O((1+
√
5

2 )r+o(r) · |E(G)| log |E(G)|) time.

In light of Lemma 3, once we have Lemma 10 at hand, we directly obtain the following
theorem.

Theorem 2. There exists a deterministic algorithm that solves Max-Duo PSM in O((1+
√
5

2 )2k+o(k)·
n4 log n) = O(6.855k · n4 log n) time.

Next, we focus on the proof of Lemma 10. To this end, let (G, c, `, k, r) be an instance of
Substantially Blue Path. Without loss of generality, we can assume that the image of ` is a
subset of [|V (G)|] and that |V (G)| ≤ |E(G)|. Here, a p-set is a set of size p. To describe our
algorithm, we need to present the definition of a representative family.

Definition 5 ([20]). Given a universe U and a family S of p-subsets of U , we say that a
subfamily Ŝ ⊆ S t-represents S if for every pair of sets X ∈ S, and Y ⊆ U \X of size t − p,
there exists a set X̂ ∈ Ŝ such that X̂ ∩ Y = ∅.

Intuitively, this definition arises in dynamic programming procedures naturally as follows.
Suppose that we seek a solution of size t, and we have a family S of “partial” solutions of size
p ≤ t. Every set X in S can be potentially “completed” to solution, where all possibilities to
complete it are given by all sets of size t− p disjoint from it (where, possibly, none will actually
give a solution). Then, the notion of a representative family assures that if we can complete
some set X in S to a solution, then there is also a set in Ŝ that can be completed to a solution,
and therefore it is sufficient to work only with the sets in Ŝ.

The papers [20] and [26] present an algorithm, to which we refer as RepAlg, that given a
universe U and a family S of p-subsets of U , computes a subfamily Ŝ ⊆ S of size S(|U |, t, p)
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that t-represents S in |S| · T (|U |, t, p) time, such that the following condition is satisfied:

t∑
p=1

|U | · S(|U |, t, p− 1) · T (|U |, t, p) =

(
1 +
√

5

2

)t+o(t)

· |U | log |U |.

We proceed by presenting a procedure that is based on a combination of dynamic programming
and calls to RepAlg. For this purpose, we use a table M that has an entry M [v, s, b] for all
v ∈ V (G), s ∈ [r] and b ∈ [r] ∪ {0}. Let Pv,s,b denote the set of all good (v, s, b)-paths (see
Definition 1). Given a (v, s, b)-path, define `(P ) = {`(v) : v ∈ V (P )}. Moreover, define
Sv,s,b = {`(P ) : P ∈ Pv,s,b}. The purpose of the entry M [v, s, b] is to store a subfamily of Sv,s,b
that r-represents it. Next, we show how to compute the entries of M . Here, the calls to RepAlg
are done with respect to [|E(G)|] as the universe and t = r.

The basis consists of the following cases:

• If s = 1 but b 6= 0, then M [v, s, b] = ∅.

• Else if s = 1, then M [v, s, b] = {{`(v)}}.

Now, consider an entry M [v, s, b] not computed in the basis. We assume that a reference to
an undefined entry returns an empty set. Then, we first compute the two following families.

• Av,s,b = {X ∪ {`(v)} : (u, v) ∈ E(G), c(u, v) = R,X ∈M [u, s− 1, b], `(v) /∈ X}.

• Bv,s,b = {X ∪ {`(v)} : (u, v) ∈ E(G), c(u, v) = B,X ∈M [u, s− 1, b− 1], `(v) /∈ X}.

Accordingly, we compute M [v, s, b] as follows.

M [v, s, b] = RepAlg(Av,s,b ∪ Bv,s,b).

First, note that running time for the entire computation is bounded by

O(
∑

v∈V (G)

r∑
s=1

r∑
b=0

∑
(u,v)∈E(G)

S(|E(G)|, r, s) · T (|E(G)|, r, s))

= O(
r∑

s=1

r|E(G)| · S(|E(G)|, r, s) · T (|E(G)|, r, s)).

Thus, we have the following observation.

Observation 5. The table M is computed in O((1+
√
5

2 )r+o(r) · |E(G)| log |E(G)|) time.

Next, we prove that the computation of M is correct.

Lemma 11. The computation of M ensures that for all v ∈ V (G), s ∈ [r] and b ∈ [r] ∪ {0},
M [v, s, b] r-represents Sv,s,b.

Proof. We prove the statement by induction on s. In the basis, where s = 1, it is clear that
M [v, s, b] is simply assigned Sv,s,b, and therefore it also 1-represents Sv,s,b. Now, fix some s ≥ 2,
and suppose that the statement is correct for s− 1. To prove that the statement is correct for
s, choose some v ∈ V (G), b ∈ [r] ∪ {0}, X ∈ Sv,s,b and Y ⊆ [|E(G)|] \X such that |Y | = r − s.

We need to show that there exists X̂ ∈ M [v, s, b] such that X̂ ∩ Y = ∅. Note that M [v, s, b]
r-represents Av,s,b ∪ Bv,s,b, and therefore is Av,s,b ∪ Bv,s,b contains a set that is disjoint from Y ,

so does M [v, s, b]. Thus, it is sufficient that we show that there exists X̂ ∈ Av,s,b ∪ Bv,s,b such

that X̂ ∩ Y = ∅.
Since X ∈ Sv,s,b, there exists a good (v, s, b)-path P such that `(P ) = X. Let u be

the vertex on P that precedes v, and let Q be the path obtained by removing v from P .

9



Note that `(Q) = X \ {`(v)}. Thus, if c(u, v) = R, then Q is a good (u, s − 1, b)-path and
therefore X \ {`(v)} ∈ Su,s−1,b, and otherwise Q is a good (u, s− 1, b− 1)-path and therefore
X \ {`(v)} ∈ Su,s−1,b−1. First, let us assume that X \ {`(v)} ∈ Su,s−1,b. By the inductive
hypothesis, M [u, s− 1, b] r-represents Su,s−1,b, and therefore M [u, s− 1, b] contains a set Z such
that Z ∩ (Y ∪ {`(v)}) = ∅. Thus, Z ∪ {`(v)} ∈ Av,s,b, and we conclude that the statement
is correct. Now, let us assume that X \ {`(v)} ∈ Su,s−1,b−1. By the inductive hypothesis,
M [u, s− 1, b− 1] r-represents Su,s−1,b−1, and therefore M [u, s− 1, b− 1] contains a set Z such
that Z ∩ (Y ∪ {`(v)}) = ∅. Thus, Z ∪ {`(v)} ∈ Bv,s,b, and again we conclude that the statement
is correct.

With these lemmas at hand, we are ready to prove Lemma 10.

Proof. By Observation 5 and Lemma 11, we first compute M , ensuring that the condition in

Lemma 11 is satisfied, in O((1+
√
5

2 )r+o(r) · |E(G)| log |E(G)|) time. Then, we conclude that the
input instance is a yes-instance if and only if there exist v ∈ V (G), s ∈ [r] and b ∈ [r] such
that b ≥ k and M [v, s, b] 6= ∅. On the one hand, since for all v ∈ V (G), s ∈ [r] and b ∈ [r],
M [v, s, b] ⊆ Sv,s,b, it is clear that if we accept, the input instance is indeed a yes-instance. On
the other hand, if the input instance is a yes-instance, then there exist v ∈ V (G), s ∈ [r] and
b ∈ [r] such that b ≥ k and Sv,s,b 6= ∅. Then, since M [v, s, b] 0-represents Sv,s,b, it holds that
M [v, s, b] 6= ∅, and therefore we accept.

5 A Cubic Problem Kernel

In this section we will show that Max-Duo PSM admits a kernel of size O(k3). Let (A,B, k) be
an instance of Max-Duo PSM, and let S ∈ {A,B}. If S = A, then we let S = B. Analogously,
if S = B, then we let S = A.

Let m be a map of S into S, and let D be a set of duos. We denote by m(D) = {(m(i),m(i+
1)) | (i, i+ 1) ∈ D} the image of D under m. We say that m preserves D if m preserves each duo
in D. Let CA and CB be sets of duos. We say that the pair (CA, CB) is complete for (A,B, k) if
whenever there is a map m of A into B that preserves k duos, then there is a subset D ⊆ CA

with |D| = k and a map m′ such that m′ preserves D and m′(D) ⊆ CB . The size of (CA, CB) is
defined as |CA|+ |CB|. Let f : N→ N be a function. A complete pair (CA, CB) of size f(k) for
(A,B, k) can be used to construct a kernel (A′, B′, k) of size O(f(k)) for (A,B, k).

Theorem 3 ([2, Section 4.2]). Let (CA, CB) be a complete pair of size f(k) for (A,B, k). Then
one can construct in O(f(k)) time related strings A′ and B′, each of size O(f(k)) such that
(A,B, k) is a yes-instance of Max-Duo PSM if and only if (A′, B′, k) is a yes-instance of Max-Duo
PSM.

Using Theorem 3, it is sufficient to show that one can obtain in polynomial time a complete
pair (CA, CB) for (A,B, k) of size O(k3). To construct this pair, we proceed roughly as follows.
First, we use the observation that the instance is a trivial yes-instance if some k consecutive duos
can be matched. We call such a sequence of consecutive duos a block. The above observation
implies that to add all the duos of a matched block to the complete pair, it is sufficient to
identify one duo of each preserved block and then add all duos which are in distance at most k.
The main part of the kernelization is thus identify one duo of each block. We first observe that
if a certain type of duos, called rare duos, occurs too often, then we have a yes-instance. We
then exploit that each block either contains a rare duo or is matched to a block containing a
rare duo. The most difficult part of the kernelization is to identify at least one duo in each block
that is matched to a rare duo. We identify these blocks by considering, for each rare duo, a
sufficient number of duos of large blocks that match this duo. In other words, the duos that are
not added to the kernel are those that are not rare, not close to rare duos, and not part of a
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long block that matches a block with a rare duo. We now give the formal description of the
kernelization algorithm.

A block of size s is a set X = {(i, i + 1), (i + 1, i + 2), ..., (i + s − 1, i + s)} consisting of
s consecutive duos. We say that (i, i + 1) is the root of X. If S is a string of length at least
i + s, then we let str(S,X) = S[i, i + s] be the substring of S corresponding to the positions
that occur in X. The following observation is immediate.

Observation 6. Let (A,B, k) be an instance of Max-Duo PSM and let m be a map of A into B
that preserves a block X of size k. Then (A,B, k) is a yes-instance of Max-Duo PSM. Moreover,
the instance (A′, B′, k) where A′ = str(A,X) and B′ = str(B,m(X)) is also yes-instance of
Max-Duo PSM.

The above observation implies a trivial problem kernel of size O(k) whenever some block of
size k can be preserved. In the remainder of this section we thus assume that no map m of A
into B preserves a block of size k. Our algorithm is based on the notion of rare duo, which we
define next. For each two symbols a, b ∈ Σ, and each string S ∈ {A,B}, we let

n(S, a, b) := |{i : 1 ≤ i ≤ |S| − 1, S[i, i + 1] = ab}|

be the number of occurrences of the length-two string ab as a substring of S. We say that a length-
two string ab is rare for S if ab occurs as a sub-string of both S and S and n(S, a, b) ≤ n(S, a, b).
Observe that if ab occurs as many times in S as it occurs in S, then ab is rare for both S and S.
We say that a duo (i, i + 1) is rare for S if S[i, i + 1] is rare for S. We let rare(S) be the set of
duos that are rare for S.

Lemma 12. If either |rare(A)| ≥ 4k or |rare(B)| ≥ 4k, then (A,B, k) is a yes-instance.

Proof. The duo graph associated with A and B is the bipartite graph G(A,B) = (VA∪̇VB, E)
defined as follows.

VA = {(i, i + 1) | 1 ≤ i ≤ n− 1} VB = {(j, j + 1) | 1 ≤ j ≤ n− 1}

E = {[(i, i + 1), (j, j + 1)] | A[i, i + 1] = B[j, j + 1]}
Intuitively, each of the sets VA and VB contains all pairs of consecutive positions from [n].

A duo (i, i + 1) in VA is adjacent to a duo (j, j + 1) in VB if and only if the length-two string
A[i, i + 1] and B[j, j + 1] can be matched to each other.

If e = [(i, i+ 1), (j, j + 1)] is an edge of G(A,B), then we say that (i, i+ 1) is the left endpoint
of e and (j, j + 1) is the right endpoint of e. If M is a matching in G(A,B), then we let MA be
the set of duos in VA that are left endpoints of edges in M , and MB be the set of duos in VB

that are right endpoints of edges in M .
Assume that either |rare(A)| ≥ 4k or |rare(B)| ≥ 4k. Then G contains a matching M of

size at least 4k. Moreover, given a matching M of size at least 4k for the graph G(A,B), one
can construct a sub-matching M ′ of M of size at least k such that M ′ directly gives a map
preserving at least k duos [6]. Therefore, the instance is a yes-instance in this case.

In the remainder of this section we thus assume that there are less than 4k duos that are
rare for A, and less than 4k duos that are rare for B. This implies that we may add all rare
duos to the sets CA and CB without surpassing the desired size bound of O(k3).

Let S be a string in {A,B}. We say that a duo (j, j + 1) is a match for a duo (i, i + 1) in S
if there exists a map m of S into S that preserves (i, i + 1), and (m(i),m(i + 1)) = (j, j + 1). If
X and Y are blocks, then we say that Y is a match for X in S if there exists a map m of S
into S such that m preserves X, and m(X) = Y .

Observation 7. Let S ∈ {A,B} and let (j, j + 1) be a match for (i, i+ 1) in S. Then if (i, i+ 1)
is not rare for S, (j, j + 1) is rare for S.

11



Algorithm 1

1: procedure Roots(S, i, i + 1)
2: R = ∅
3: k′ ← size of the maximal block which is rooted at (i, i + 1), rare for S, and has a
4: match in S. Note that k′ ≤ k − 1.
5: for ` = k′ to 1 do
6: X ← unique block of size ` rooted at (i, i + 1)
7: for j = 1 to n− 1 do
8: if |R| < 2k − 1 and (j, j + 1) is a root for a match of X in S and
9: |j′ − j| > k for each j′ such that (j′, j′ + 1) ∈ R then

10: R← R ∪ {(j, j + 1)}
11: output R

Proof. Since (j, j + 1) is a match for (i, i + 1) in S, there is some length-two string ab such that
S[i, i + 1] = S[j, j + 1] = ab. Since (i, i + 1) is not rare for S, the string ab occurs strictly more
often in S than it occurs in S. In other words, n(S, a, b) > n(S, a, b). This implies that (j, j + 1)
is rare for S.

This observation is useful because it tells us that for each match in a map, one of the two
duos is rare, so by adding all the rare duos to CA and CB, we essentially pick up one half of
each match. We now consider two types of matched blocks that may occur in the solution. First,
there may be pairs of matched blocks X and Y that both contain nonrare duos. We can add all
duos of these blocks by considering a sufficiently large neighborhood of all rare duos. To this
end, for each i ∈ {1, ..., n− 1}, let

Bk(i) = {(i′, i′ + 1) | i′ ∈ {1, ..., n− 1}, i− k ≤ i′ ≤ i + k}

denote the ball of radius k around the duo (i, i + 1)
The following lemma essentially implies that by adding the ball of radius k around each rare

duo, we add all pairs of matched blocks that both contain at least one nonrare duo.

Lemma 13. Let S ∈ {A,B}, X be a block of size at most k − 1 containing a duo (i, i + 1)
that is not rare for S, and let m be a map of S into S such that X is preserved by m. Then
(m(i),m(i + 1)) is rare for S and m(X) ⊆ Bk(m(i)).

Proof. Since (i, i + 1) is preserved by m, (m(i),m(i + 1)) is a match for (i, i + 1) in S. Since
(i, i + 1) is not rare for S, by Observation 7, (m(i),m(i + 1)) is rare for S. Since m preserves X
and since |X| ≤ k − 1, m(X) is a block of size at most k − 1. Therefore, all duos in m(X) must
be in the ball of radius k around (m(i),m(i + 1)), that is, m(X) ⊆ Bk(m(i)).

We now turn to the second type of matched pairs of blocks, those where one block X of S
has only rare duos for S; we call such a block X rare. Since X is rare, it is rooted at some
rare duo (i, i + 1). To obtain the complete set, we need to add duos in S. This is done by the
procedure Roots which receives as input a string S and a duo in S and returns a set of duos
Roots(S, i).

Intuitively, for each block X that is rare for S and rooted at (i, i + 1), the set Roots(S, i)
contains a selection of roots of matches for X in the string S. This selection is made according
to two criteria. First, roots of matches for larger blocks are added first. Second, the roots in
Roots(S, i) are sufficiently far apart from each other. In particular, no root of Roots(S, i) is
contained in the ball of radius k of any other root of Roots(S, i). Now consider the set

F (S, i) =
⋃

(j,j+1)∈Roots(S,i)

B2k(j).
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Intuitively, F (S, i) consists of all duos that are sufficiently close to duos in Roots(S, i). The
next lemma states that if some map m of S into S preserves some block X that is rooted at
(i, i + 1) and rare for S, then this map can be transformed into a map m′ that preserves X, that
sends X to a subset of F (S, i), and that is equal to m on every duo outside X.

Lemma 14. Let m be a map of S into S, D be a set of duos such that |D| = k, and X ⊆ D be
a block that is rooted at (i, i + 1), that is rare for S, and that is preserved by m. Then there is a
map m′ of S into S satisfying the following properties.

1. X is preserved by m′,

2. m′(X) ⊆ F (S, i), and

3. (m′(i′),m′(i′ + 1)) = (m(i′),m(i′ + 1)) for each (i′, i′ + 1) ∈ D \X.

Proof. Assume that m(X) is not contained in F (S, i). We show how to transform m into a map m′

that satisfies the properties of the lemma. Let (j, j + 1) be the root of m(X) in S. First, observe
that, by the construction of F (S, i), this implies that for every duo (j′, j′ + 1) ∈ Roots(S, i)
we have (j, j + 1) /∈ Bk(j). Now this implies |Roots(S, i)| = 2k − 1, because otherwise the
procedure would have added at least one further duo since (j, j + 1) fulfills the conditions of
Lines 8 and 9 of Algorithm 1. Moreover, since the roots are added in decreasing order of the
lengths of the matched blocks, every duo in Roots(S, i) is the root of a block of length |X| in S
that matches X.

Now, note that each duo (q, q + 1) is contained in at most two balls of radius k rooted at
duos in Roots(S, i). In other words, there are at most two duos (j1, j1 + 1) ∈ Roots(S, i)
and (j2, j2 + 1) ∈ Roots(S, i) such that (q, q + 1) ∈ Bk(j1) and (q, q + 1) ∈ Bk(j2). Therefore,
since |D \X| ≤ k − 1, the set D \X intersects at most 2k − 2 balls of radius k rooted at duos
in Roots(S, i). This implies that there is at least one duo (j′, j′ + 1) ∈ Roots(S, i) such that
Bk(j′) ∩ (D \X) = ∅. Moreover, (j′, j′ + 1) is the root of a match for X in S as argued above.
Therefore, we may set m′ as the map of S into S that preserves X, that sends the root of X to
(j′, j′ + 1), and that is equal to m on every duo (i′, i′ + 1) ∈ D \X.

Now, for each S ∈ {A,B}, consider the following set CS of duos.

CS =

 ⋃
(i,i+1)∈rare(S)

Bk(i)

 ∪
 ⋃
(i,i+1)∈rare(S)

F (S, i)

 . (1)

In other words, for each duo (i, i + 1) that is rare for S, CS contains all duos in the ball of
radius k around (i, i + 1). Moreover, for each duo (i, i + 1) that is rare for S, CS contains all
duos in the set F (S, i). The following lemma states that if there is a map of S into S preserving
k duos, then we may assume that these duos are mapped to CS .

Lemma 15. Let D be a set of duos such that |D| = k. Let m be a map of S into S that preserves
all duos in D. Then there is a map m′ of S into S that preserves D, and such that m′(D) ⊆ CS.

Proof. Assume towards a contradiction that this is not the case and let m be the map such that
|m(D) ∩ CS | is maximal among all maps of S into S that preserve D. Since m(D) 6⊆ CS , there
is some maximal block X in S such that X is preserved by m and m(X) 6⊆ CS . Note that X
is rare since since, otherwise, m(X) would contain a rare duo (j, j + 1) and then m(X) would
be contained in Bk(j) ⊆ CS . Since X is rare, Lemma 14 applies to X and D. Thus, there is
a mapping m′ such that X is preserved by m′, m′(X) ⊆ F (S, i) and m′ agrees with m on all
duos in D \X. By construction, F (S, i) ⊆ CS , and thus |m′(D) ∩ CS | > |m(D) ∩ CS |. Since m′

preserves D as well, this contradicts the choice of m.
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Let CA and CB be sets of duos constructed according to Equation 1. We can show that
(CA, CB) is complete for (A,B, k) by applying Lemma 15 twice. More precisely, once with
respect to maps of A into B, and once with respect to maps of B into A.

Lemma 16. The pair (CA, CB) is complete for (A,B, k).

Proof. Let D1 be a set of duos of size k. Let m1 be a map of A into B which preserves all duos
in D1. Then by Lemma 15 there is a map m2 of A into B which also preserves all duos in D1,
but with the property that m2(D1) ⊆ CB . Now let D2 = m2(D1), and m3 = m−12 be the inverse
of m2. In other words, m3 is a map of B into A such that for each i ∈ [n], m2(i) = j if and only
if m3(j) = i. Then m3 preserves all duos in D2. By Lemma 15 there is a map m4 of B into A
that also preserves all duos in D2 and, additionally, fulfills the property that m4(D2) ⊆ CA.

Let D3 = m4(D2), and let m5 = m−14 be the inverse of m4. Then m5 is a map of A into B
that preserves D3 ⊆ CA and such that m5(D3) = D2 ⊆ CB. Since |D3| = |D2| = k, the pair
(CA, CB) is complete for (A,B, k).

Now, we can upper-bound the size of CS and the time needed to construct CS , thus arriving
at our main theorem.

Theorem 4. Given an instance I = (A,B, k) of Max-Duo PSM, one can construct in
O(|Σ|2 · n + k3 · n) time an instance I ′ = (A′, B′, k) of Max-Duo PSM with |A′| and |B′|
bounded by O(k3) such that I is a yes-instance if and only if I ′ is a yes-instance.

We first show the running time to construct the kernel.

Proposition 1. For each S ∈ {A,B}, |CS | = O(k3) and CS can be constructed in O(|Σ|2·n+k3n)
time.

Proof. By assumption |rare(S)| ≤ 4k. Additionally, for each i, the ball Bk(i) has size at most
2k+1. Finally, for each duo (i, i+1) that is rare for S, the set F (S, i) has at most (2k−1)(4k+1)
duos. Therefore, |CS | ≤ 4k(2k + 1) + 4k(2k − 1)(4k + 1) = O(k3).

Now let us analyze the time to construct CS . First, the construction of the sets rare(S) and
rare(S) takes O(|Σ|2 · n) time, since we just need to count for each length-two string ab ∈ Σ×Σ,
the number of times n(S, a, b) that ab occurs in S and the number of times n(S, a, b) that ab
occurs in S. Now, for each position i ∈ {1, ..., n−1}, we add (i, i+1) to rare(S) if S[i, i+1] = ab
and n(S, a, b) ≤ n(S, a, b). Analogously, we add (i, i + 1) to rare(S) if S[i, i + 1] = ab and
n(S, a, b) ≤ n(S, a, b).

Now, the construction of the set Roots(S, i) according to Algorithm 1 takes O(k2 · n) time.
Since Roots(S, i) ≤ 2k − 1, and by assumption |rare(S)| ≤ 4k, the construction of F (S, i) also
takes O(k2 · n) time. Analogously, the construction of F (S, i) takes O(k2 · n) time. Therefore,
the construction of CS takes O(|Σ|2 · n + k3 · n) time.

Proof of Theorem 4. First, if some map m of A into B preserves a block X of size k, then
(A,B, k) is a yes-instance for Max-Duo PSM and we can output in O(1) time an equivalent
instance of constant size. We note that the existence of such a map m can be verified in O(n)
time by solving the Longest Common Substring problem for A and B.

Second, if rare(A) ≥ 4k or rare(B) ≥ 4k, then (A,B, k) is a yes-instance for Max-Duo
PSM, and we can output in O(1) time an equivalent instance of constant size.

Now since no map preserves a block of size k, and if both rare(A) < 4k and rare(B) < 4k,
then by Lemma 16, the pair (CA, CB) constructed according to Equation 1 is complete for
(A,B, k). Additionally, by Proposition 1, |CA| = |CB| = O(k3), and both CA and CB can be
constructed in O(|Σ| · n + k3 · n) time.

Since the complete pair (CA, CB) constructed has size O(k3), we can apply Theorem 3 to
construct in O(k3) time an instance (A′, B′, k) for Max-Duo PSM of size O(k3) such that
(A′, B′, k) is a yes-instance if and only if (A,B, k) is a yes-instance. Therefore, the overall time
to construct (A′, B′, k) is upper-bounded by O(|Σ|2 · n + k3 · n).
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