
Matching Cut: Kernelization, Single-Exponential Time
FPT, and Exact Exponential AlgorithmsI

Christian Komusiewicz

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany

Dieter Kratsch

Laboratoire de Génie Informatique, de Production et de Maintenance, Université de

Lorraine, Metz, France

Van Bang Le

Universität Rostock, Institut für Informatik, Rostock, Germany

Abstract

In a graph, a matching cut is an edge cut that is a matching. Matching Cut,
which is known to be NP-complete, is the problem of deciding whether or not
a given graph G has a matching cut. In this paper we show that Match-
ing Cut admits a quadratic-vertex kernel for the parameter distance to cluster
and a linear-vertex kernel for the parameter distance to clique. We further
provide an O∗(2dc(G))-time and an O∗(2dc(G))-time FPT algorithm for Match-
ing Cut, where dc(G) and dc(G) are the distance to cluster and distance to
co-cluster, respectively. We also improve the running time of the best known
branching algorithm to solve Matching Cut from O∗(1.4143n) to O∗(1.3071n)
where n is the number of vertices in G. Moreover, we point out that, unless
NP ⊆ coNP/poly, Matching Cut does not admit a polynomial kernel when
parameterized simultaneously by treewidth, the number of edges crossing the
cut, and the maximum degree of G.

Keywords: Graph problem, NP-hard problem, kernelization, branching
algorithm

IA preliminary version of this article appeared in Proceedings of the 13th International
Symposium on Parameterized and Exact Computation (IPEC ’18), Helsinki, Finland, August
2018.

Email addresses: komusiewicz@informatik.uni-marburg.de (Christian Komusiewicz),
dieter.kratsch@univ-lorraine.fr (Dieter Kratsch), van-bang.le@uni-rostock.de (Van
Bang Le)

Accepted for publication at Discrete Applied Mathematics, Elsevier. December 16, 2019

1. Introduction

In a graph G = (V,E), a cut is a partition V = A ∪̇B of the vertex set
into disjoint, nonempty sets A and B, written (A,B). The set of all edges in G
having an endvertex in A and the other endvertex in B, also written (A,B), is
called the edge cut of the cut (A,B). A matching cut is a possibly empty edge
cut that is a matching. Note that, by our definition, a matching whose removal
disconnects the graph need not be a matching cut.

Another way to define matching cuts is as follows ([16, 8]). A partition
V = A ∪̇B of the vertex set of the graph G = (V,E) into disjoint, nonempty
sets A and B, is a matching cut if and only if each vertex in A has at most
one neighbor in B and each vertex in B has at most one neighbor in A. Not
every graph has a matching cut; the Matching Cut problem is the problem
of deciding whether or not a given graph has a matching cut:

Matching Cut
Instance: A graph G = (V,E).
Question: Does G have a matching cut?

Farley and Proskurowski [13] studied matching cuts in graphs in the context of
network applications. Patrignani and Pizzonia [25] pointed out an application
of matching cuts in graph drawing. Graphs having no matching cut were first
discussed by Graham in [16] under the name indecomposable graphs, and have
been used by Araújo et al. [1] in the context of WDM (Wavelength Division
Multiplexing) networks.

Previous Results and Related Work. Chvátal [8] showed that Matching Cut
is NP-complete, even when restricted to graphs of maximum degree four, and
polynomially solvable for graphs of maximum degree three. These results trig-
gered a lot of research on the computational complexity of Matching Cut
in graphs with additional structural assumptions [5, 7, 19, 21, 20, 24, 25]. In
particular, the NP-hardness of Matching Cut has been further strengthened
to planar graphs of maximum degree four [5] and bipartite graphs of maxi-
mum degree four [21]. As noted previously [19], the NP-hardness reduction by
Chvátal [8] also shows that Matching Cut cannot be solved in 2o(n) time,
where n is the number of vertices of the input graph, if the Exponential Time
Hypothesis (ETH) is true.

Exact exponential algorithms for Matching Cut on graphs without any
restriction have been recently considered by Kratsch and Le [19] who pro-
vided the first exact branching algorithm for Matching Cut running in time
O∗(1.4143n)1, and a single-exponential algorithm of running time 2τ(G)O(n2),
where τ(G) is the vertex cover number. We note that Matching Cut can
be expressed in MSOL, see for example [5]; hence Matching Cut is fixed-
parameter tractable when parameterized by tw(G), the treewidth of G. Aravind

1Throughout the paper we use the O∗ notation which suppresses polynomial factors.

2

et al. [2] presented a tree-decomposition-based dynamic programming algorithm
that solves Matching Cut in O∗(12tw(G)) time and fixed-parameter algorithms
for further parameters describing the structure of the input graph. For exam-
ple, Matching Cut can be solved in O∗(2tc(G)) time where tc(G) ≤ τ(G) is
the size of a smallest twin cover of G [2]. Recently, the dynamic programming
algorithm for Matching Cut parameterized by treewidth was improved to a
running time of O∗(8tw(G)) [15]. Finally, as noted by Gomes and Sau [15], the
treewidth reduction technique [23] can be used to obtain a fixed-parameter al-
gorithm for Matching Cut parameterized by the number of edges crossing the
cut.

Our Contributions. We give the first nontrivial polynomial kernels for Match-
ing Cut by showing that Matching Cut admits a quadratic-vertex ker-
nel for the parameter distance to cluster and a linear-vertex kernel for the
parameter distance to clique. Second, we show that Matching Cut can
be solved by single-exponential algorithms running in time 2dc(G)O(n2) and
2dc(G)O(nm), respectively, where dc(G) is the distance to cluster, dc(G) is the
distance to co-cluster, and m is the number of edges of G. This improves upon
the FPT algorithms for Matching Cut with running time 2τ(G)O(n2) [19],
where τ(G) ≥ max{dc(G),dc(G)} is the vertex cover number of G which can be
much larger than dc(G) and dc(G). Similarly, this improves upon the FPT algo-
rithm with running time O∗(2tc(G)) [2] since tc(G) ≥ dc(G). Third, we provide
a Sat-based O∗(1.3071n)-time randomized algorithm and an exact branching
algorithm for Matching Cut that has time complexity O∗(1.3803n). Both
improve upon the first exact branching algorithm for Matching Cut that has
time complexity O∗(1.4143n) [19].

The polynomial kernel and the fixed-parameter algorithm for the parame-
ter dc(G) have been subsequently generalized to the d-Cut problem where we
ask for a cut (A,B) such that every v ∈ A has at most d neighbors in B and vice
versa [15]. For Matching Cut, these more general algorithms achieve a kernel
with O(dc(G)3) vertices and a running time of 4dc(G)O(dc(G)2n2), respectively.
Hence, our algorithms still constitute the state-of-the-art for Matching Cut
parameterized by dc(G).

Notation and Terminology. Let G = (V,E) be a graph with vertex set V (G) :=
V and edge set E(G) := E. We use n := |V | and m := |E| to denote the number
of vertices and edges in the graph under consideration. A stable set (a clique)
in G is a set of pairwise non-adjacent (adjacent) vertices. The neighborhood of
a vertex v in G, denoted by NG(v), is the set of all vertices in G adjacent to v;
if the context is clear, we simply write N(v). Set deg(v) := |N(v)|, the degree
of the vertex v. For a subset W ⊆ V , G[W] is the subgraph of G induced by
W , and G −W stands for G[V \W]. We write NW (v) for N(v) ∩W and call
the vertices in N(v) ∩W the W -neighbors of v. A graph is a cluster graph if
it is a vertex disjoint union of cliques. The maximal cliques of a cluster graph
are called clusters. A graph is a co-cluster graph if it is a complete multipartite

3

graph or, equivalently, the complement graph of a cluster graph. Observe that
a clique is a cluster graph and a co-cluster graph.

A vertex cover of G is a subset C ⊆ V such that every edge of G has at least
one endvertex in C, that is, V \C is a stable set in G. The vertex cover number
of G, denoted by τ(G), is the smallest size of a vertex cover of G. More generally,
given a graph property P, a distance to P set of a graph G is a subset U ⊆ V
such that G−U has the property P. The distance to P is the smallest size of a
distance to P set. This number is called distance to cluster, denoted by dc(G),
in case P is the set of cluster graphs, it is called distance to co-cluster, denoted
by dc(G), in case P is the set of co-cluster graphs, and it is called distance to
clique, denoted by dq(G), in case P is the set of cliques. By the definition of
cluster graphs and co-cluster graphs, we have τ(G) ≥ max{dc(G),dc(G)} and
dq(G) ≥ max{dc(G),dc(G)} for any graph G.

Throughout the paper we use the concept of monochromatic vertex subsets
and induced subgraphs. Let G = (V,E) be a graph and U ⊆ V . We call U
monochromatic in G if for every matching cut (A,B) of G, either U ⊆ A or U ⊆
B; slightly abusing notation we shall sometimes also call G[U] monochromatic
in G. Note that a complete subgraph Kn is monochromatic if n = 1 or n ≥ 3,
and that a complete bipartite subgraph Kn,m is monochromatic if n ≥ 3 and
m ≥ 2 or vice versa. Moreover, disconnected graphs and graphs having a vertex
of degree at most one admit a matching cut. Hence, we may assume that all
graphs considered are connected and have minimum degree at least two.

Parameterized complexity deals with NP-hard problems whose instances
come equipped with an additional integer parameter k. Its main objective is to
design algorithms whose running time is f(k)·poly(n) for some computable func-
tion f . Problems admitting such algorithms are called fixed-parameter tractable.
Another major concept in parameterized complexity are polynomial (size) ker-
nels. A kernelization algorithm, or simply a kernel, for a parameterized problem
Q is an algorithm A that, given an instance (I, k) of Q, works in polynomial
time and returns an equivalent instance (I ′, k′) of Q such that |I ′| + k′ ≤ g(k)
for some computable function g depending only on k; we say that the kernel
has size g(k). If g is a polynomial, then we say that the kernel is polynomial.
For more information on parameterized algorithms we refer to the standard
monographs [9, 11].

When an algorithm branches on the current instance of size n into r sub-
problems of sizes at most n−t1, n−t2, . . . , n−tr, then (t1, t2, . . . , tr) is called the
branching vector of this branching, and the unique positive root of xn−xn−t1−
xn−t2−· · ·−xn−tr = 0, denoted by τ(t1, t2, . . . , tr), is called its branching num-
ber. The running time of a branching algorithm is O∗(αn), where α = maxi αi
and αi is the branching number of branching rule i, and the maximum is taken
over all branching rules. We refer to [14] for more details on exact branching
algorithms.

4

2. A Polynomial Kernel for the Distance to Cluster

In this section we present a polynomial kernel for the parameter dc(G),
the distance of G to a cluster graph. One reason for considering this param-
eter is that dc(G) is never larger than the vertex cover number τ(G) while
also being arbitrarily smaller in some instances. Hence, achieving a polynomial
kernel for dc(G) strengthens the previous fixed-parameter tractability result
for τ(G) [19]. In addition, we motivate the study of kernelization for the pa-
rameter dc(G) by the following negative result.

Recall that there is an FPT algorithm for Matching Cut when parame-
terized by treewidth [2, 5]. Hence, a natural question is whether Matching
Cut admits a polynomial kernel for this parameter. A further candidate pa-
rameter for a polynomial kernel is the minimum number k of edges crossing
any matching cut; this could be considered the standard solution size parame-
ter for Matching Cut. Finally, a common parameter in kernelizations is the
maximum degree of the input graph. We rule out polynomial kernels for all
three parameters.

Proposition 1. Matching Cut does not admit polynomial kernel with respect
to the sum of the treewidth of G, the minimum number of edges crossing any
matching cut of G, and the maximum degree in G unless NP ⊆ coNP/poly.

Proof. We show that Matching Cut cross-composes into itself (for the cross-
composition framework, see [4]) via the following reduction.

Given G1, . . . , Gt with the same number n of vertices, choose an arbitrary
vertex vi ∈ V (Gi) for each 1 ≤ i ≤ t. Let G be obtained from the disjoint
union of Gi, 1 ≤ i ≤ t, by adding for each 1 ≤ i < t two new vertices ui and wi
and five edges uiwi, uivi, wivi, uivi+1, and wivi+1. Then G has a matching
cut if and only if some Gi has a matching cut: First, if, for some i, (Ai, Bi)
is a matching cut of Gi with vi ∈ Ai, say, then (V (G) \ Bi, Bi) clearly is a
matching cut of G. Second, if (A,B) is a matching cut of G, then {vi, vi+1}, 1 ≤
i < t, is monochromatic because both vertices form triangles with ui and wi.
Thus, {u1, . . . , ut−1, w1, . . . , wt−1, v1, . . . , vt} belongs to A or else to B. Assume
{u1, . . . , ut−1, w1, . . . , wt−1, v1, . . . , vt} ⊆ A, hence A∩V (Gi) 6= ∅ for all i. Then,
as A 6= V (G), there exists some i such that B∩V (Gi) 6= ∅, and (A∩V (Gi), B∩
V (Gi)) clearly is a matching cut of Gi.

The treewidth, the number k of edges crossing the cut, and the maximum
degree of G are clearly bounded by a polynomial of max1≤i≤t |V (Gi)| = n. �

Observe that this result also holds for the restriction of Matching Cut to
planar graphs: in this case, we may assume that all instances Gi are planar and
by fixing a planar embedding for each and choosing vi to be a vertex on the
outer face we obtain that the output instance is also planar.

Summarizing, we have excluded many natural candidate parameters for ker-
nelization which motivates our study of kernelization for dc(G), the distance
of G to a cluster graph. Observe that dc(G) is unrelated to the treewidth of G
in the sense that there are graphs for which dc(G) is much smaller than tw(G)

5

and vice versa. Let U = {u1, . . . , u|U |} denote a distance to cluster set, that
is, G − U is a cluster graph. We may assume that |U | ≤ 3dc(G) since a 3-
approximate distance to cluster set can be computed in time O(dc(G)(n+m))
based on the observation that a graph is a cluster graph if and only if it does
not contain an induced path on three vertices. During the kernelization, we
maintain a partition of U into U1, . . . , U` such that each Ui is monochromatic.
The initial partition contains one set for each vertex of U , that is, Ui := {ui},
1 ≤ i ≤ |U |. We call the sets of the partition the monochromatic parts of U .

During the kernelization, we may merge two sets Ui and Uj , i 6= j, which
is to remove Ui and Uj from the partition and to add Ui ∪ Uj . We say that
merging Ui and Uj is safe if Ui ∪ Uj is monochromatic in G.

The main idea of the kernelization is to find opportunities to merge monochro-
matic parts of U or to transform distinct clusters into a single cluster because
we infer that they form a larger monochromatic set. Intuitively, an opportunity
for merging arises when there are many vertices in V \ U with at least two
neighbors in U . The first step handles some clusters that have no such vertex.

Reduction Rule 1. If V \U contains a degree-one vertex or a cluster C such
that (V \ C,C) is a matching cut, then STOP: “G has a matching cut”.

The rule is trivially safe. After its application, every cluster C contains either
a vertex v with two neighbors in U or there is a vertex in u ∈ U with two
neighbors in C.

To identify clusters that form monochromatic sets together with some mono-
chromatic parts of U , we introduce the following notation, see Figure 1 for an
illustration. For each monochromatic part Ui of U , we let N2(Ui) denote the
set of vertices v ∈ V \ U such that at least one of the following holds:

• v has two neighbors in Ui,

• v is in a cluster of size at least three in G−U that contains a vertex that
has two neighbors in Ui, or

• v is in a cluster C in G−U and some vertex in Ui has two neighbors in C.

Proposition 2. Ui ∪N2(Ui) is monochromatic.

Proof. In the first case, v has two neighbors in the monochromatic set Ui and
thus Ui ∪ {v} is monochromatic. In the second case, the cluster C containing v
is monochromatic and contains a vertex w such that Ui∪{w} is monochromatic.
Hence, Ui ∪ C is monochromatic. In the third case, the cluster C contains two
vertices x and y that form a triangle with some vertex from Ui and thus Ui ∪
{x, y} is monochromatic. If |C| = 2, then x = v or y = v; if |C| > 3, then C is
monochromatic. In both cases Ui ∪ C is monochromatic. �

The next two rules identify monochromatic parts that can be merged because
they belong to overlapping monochromatic sets.

6

u v

xy

z

a

b

c

Ui

N2(Ui)

Figure 1: An example for the definition of N2(Ui) with Ui = {u, v}. We have {x, a} ⊆ N2(Ui)
since x and a have two neighbors in Ui. Moreover, {y, z} ⊆ N2(Ui) since y and z are in a
cluster of size at least three with x. Alternatively, {x, y, z} ⊆ N2(Ui) since u ∈ Ui is adjacent
to x and y. Finally, b /∈ N2(Ui) even though a ∈ N2(Ui), since the cluster {a, b} has only size
two.

Reduction Rule 2. If there is a vertex v that is contained in N2(Ui) and N2(Uj)
for i 6= j, then merge Ui and Uj.

Proof (of safeness). By Proposition 2, {v}∪Ui and {v}∪Uj are monochro-
matic in G. Thus, Ui ∪ Uj ∪ {v} is monochromatic. �

Reduction Rule 3. If there are three vertices v1, v2, and v3 in V that have
two common neighbors u ∈ Ui and u′ ∈ Uj, i 6= j, then merge Ui and Uj.

Proof (of safeness). The safeness follows from the fact that aKn,m is monochro-
matic for n ≥ 3 and m ≥ 2: Assume that u and u′ are not in the same part of
some matching cut (A,B). Then, at most one vertex of {v1, v2, v3} is in A and
at most one is in B. This is absurd and, thus, {u, u′} is monochromatic which
makes Ui ∪ Uj monochromatic. �

In the following, a cluster consisting of two vertices is an edge cluster, all other
clusters are nonedge clusters. As we will show, after application of the above
rules, we have essentially reached a situation in which there is a bounded number
of nonedge clusters that are not contained in some N2(Ui), we call these clusters
ambiguous. More precisely, we say that a vertex in V \U is ambiguous if it has
neighbors in Ui and Uj where i 6= j. A cluster is ambiguous if it contains at
least one ambiguous vertex. In contrast, we call a cluster fixed if it is contained
in N2(Ui) for some Ui.

Proposition 3. If G is reduced with respect to Rule 1, then every nonedge
cluster in G is ambiguous or fixed.

Proof. Since G is reduced with respect to Rule 1, every cluster C contains at
least one vertex v that has two neighbors in U or there is a vertex u from some
monochromatic part Ui that has two neighbors in C. In the latter case, C is
contained in N2(Ui) and thus fixed. In the first case, if v has two neighbors in
the same part Ui, then C ⊆ N2(Ui) and C is fixed. Otherwise, v is ambiguous
which means that C is ambiguous. �

7

Ui

C ⊆ N2(Ui)

u

v2v1

Ui

C ⊆ N2(Ui)

Figure 2: An example of the application of Rule 6.

Observe that according to this definition, a nonedge cluster may be ambiguous
and fixed at the same time. We will decrease the number of fixed clusters with
the following rule.

Reduction Rule 4. If there are two clusters C1 and C2 that are contained
in N2(Ui), then add all edges between C1 and C2.

Proof (of safeness). Let G denote the graph to which the rule is applied
and let G′ denote the resulting graph. If G′ has a matching cut, then so does G,
because G is a subgraph of G′ on the same vertex set.

For the converse, consider the following: C1 ∪C2 is monochromatic since C1

and C2 are contained in N2(Ui). Thus, if G has a matching cut, then so does G′

because adding edges between vertices of a monochromatic set does not destroy
the matching cut property. �

The next lemma follows from the pigeonhole principle and the fact that the
number of monochromatic parts is at most |U |.

Lemma 1. Let G be an instance of Matching Cut with cluster vertex dele-
tion set U that is reduced with respect to Rule 4. Then G has O(|U |) fixed
clusters.

The next rules will help in bounding the number of vertices in the clusters.

Reduction Rule 5. If there is a cluster C with more than three vertices that
contains a vertex v with no neighbors in U , then remove v.

Proof (of safeness). Let G denote the original graph and let G′ be the
graph obtained from the application of the reduction rule. Since |C| ≥ 4, C is
monochromatic in G and C \ {v} is monochromatic in G′. This and the fact
that v has only neighbors in C immediately implies that G has a matching cut
if and only if G′ has a matching cut. �

After application of Rule 5, every vertex in a cluster of size at least four has
a neighbor in U . The next rule removes unnecessary edges between monochro-
matic parts and clusters; an example application of the rule is shown in Figure 2.

8

Reduction Rule 6. If there is a cluster C with at least three vertices and a
monochromatic set Ui such that C ⊆ N2(Ui), then remove all edges between C
and Ui from G, choose an arbitrary vertex u ∈ Ui and two vertices v1, v2 ∈ C,
and add two edges {u, v1} and {u, v2}. If |Ui| = 2, then add an edge between u′ ∈
Ui \ {u} and v3 ∈ C \ {v1, v2}. Finally, make Ui a clique.

Proof (of safeness). LetG denote the original graph and letG′ be the graph
obtained from the application of the reduction rule. Since C ⊆ N2(Ui), we have,
by Proposition 2, that Ui ∪ C is monochromatic. Thus, if G has a matching
cut (A,B), then without loss of generality we have Ui ∪ C ⊆ A. This implies
that (A,B) is a matching cut of G′ since G′ is obtained from G by removing
and adding certain edges between vertices in Ui ∪ C ⊆ A.

Conversely, assume that G′ has a matching cut. We show that Ui ∪ C is
monochromatic in G′. First observe that C is monochromatic. If |Ui| 6= 2,
then Ui is also monochromatic: if |Ui| = 1, then Ui is trivially monochromatic,
otherwise Ui is a clique of size at least three and thus monochromatic. Con-
sequently, C ∪ Ui is monochromatic as there is one vertex in Ui that forms
a K3 with two vertices of C. If |Ui| = 2, then one vertex u of Ui forms a K3

with two vertices of C and thus {u} ∪ C is monochromatic. The other ver-
tex u′ of Ui has two neighbors in {u} ∪ C and thus {u, u′} ∪ C = Ui ∪ C is
monochromatic. Consequently, G can be obtained from G′ by removing and
adding certain edges between vertices of the monochromatic set Ui ∪ C. As
above, this implies that G has a matching cut. �

After application of these rules, the size of the instance is, with exception of
the edge clusters, already bounded by a polynomial function of |U | as we show
in the following.

Lemma 2. Let G be an instance of Matching Cut with cluster vertex dele-
tion set U that is reduced with respect to Rules 1–6. Then G has

• O(|U |2) ambiguous vertices, and

• O(|U |2) nonedge clusters, each containing O(|U |) vertices.

Proof. First, we show the bound on the number of ambiguous vertices. Choose
for each such vertex v two arbitrary neighbors u ∈ Ui and u′ ∈ Uj , i 6= j, and
call u and u′ the representative neighbors of v. Grouping these vertices according
to their representative neighbors results in at most

(|U |
2

)
groups. Thus, if there

are at least 3 ·
(|U |

2

)
such vertices, then one of these groups, without loss of

generality the group for u ∈ Ui and u′ ∈ Uj , has size at least three by the
pigeonhole principle. Hence, there are three vertices in V \ U that have u ∈ Ui
and u′ ∈ Uj , i 6= j, as common neighbors. This contradicts the fact that
Rule 3 is applied exhaustively. Hence, the number of these vertices is less than
3 ·
(|U |

2

)
= O(|U |2) as claimed.

Next, we bound the number of nonedge clusters. Every nonedge cluster is
fixed or ambiguous by Proposition 3. The number of fixed nonedge clusters

9

is O(|U |) by Lemma 1. Moreover, the number of ambiguous clusters is bounded
by the number of ambiguous vertices which is O(|U |2) by the first statement of
the lemma.

It remains to show that each nonedge cluster C contains O(|U |) vertices.
Consider a cluster C of size at least four. Since G is reduced with respect to
Rule 5, every vertex in C is the neighbor of some vertex in U . Moreover, if
there are two vertices u ∈ Ui and u′ ∈ Uj each with two neighbors in C, then
either (i) C ⊆ N2(Ui) and C ⊆ N2(Uj) for some i 6= j and Rule 2 would apply,
or (ii) Ui = Uj and Rule 6 would apply. Consequently, there is at most one
vertex u ∈ U that has at least two neighbors in C. Since G is reduced with
respect to Rule 6, u has also at most two neighbors in C. All other vertices of U
have at most one neighbor in C. Thus, the overall number of vertices in C is at
most 2 + |{u ∈ U : N(u) ∩ C 6= ∅}| = O(|U |). �

To obtain a first bound on the instance size, it remains to reduce the overall
number of edge clusters. To this end, we consider for each edge cluster {u, v}
the neighborhoods of u and v in U . First, observe that, assuming G is reduced
with respect to Rule 1, u and v have neighbors in U . Now we call an edge
cluster {u, v} simple if u has only neighbors in some Ui and v has only neighbors
in some Uj (possibly i = j). Observe that the number of non-simple edge
clusters is already bounded: Each such cluster is ambiguous because at least
one of its vertices is ambiguous. By Lemma 2, there are O(|U |2) such vertices
and thus O(|U |2) clusters containing them. To obtain a bound on the overall
number of edge clusters, we show that all simple edge clusters can be removed.

Reduction Rule 7. If there is a simple edge cluster {u, v}, then remove u
and v from G.

Proof (of safeness). We show that G − {u, v} has a matching cut if and
only if G has a matching cut.

First, assume thatG−{u, v} has matching cut. Let Ui be the monochromatic
part that contains the neighbors of u in U and let Uj be the monochromatic part
that contains the neighbors of v in U . We distinguish two cases with respect
to Ui and Uj . First, consider the case that Ui and Uj are on the same side of the
cut of G−{u, v}, without loss of generality (Ui∪Uj) ⊆ A. Then, (A∪{u, v}, B)
is a matching cut in G: u and v have only neighbors in A, every other vertex
in A has at most one neighbor in B and every vertex in B has at most one
neighbor in A.

Now consider the case that Ui and Uj are on different sides of the cut, without
loss of generality assume Ui ⊆ A and Uj ⊆ B. By assumption, we have (N(u) \
{v}) ⊆ Ui and (N(v) \ {u}) ⊆ Uj . This implies that (A ∪ {u}, B ∪ {v}) is a
matching cut in G: The only additional edge between A ∪ {u} and B ∪ {v}
is {u, v}.

Conversely, assume G has a matching cut (A,B). Since Rule 1 does not
apply, we have that A is not a subset of {u, v} and, symmetrically B is not a
subset of {u, v}. In other words, A \ {u, v} 6= ∅ and B \ {u, v} 6= ∅ and thus
(A \ {u, v}, B \ {u, v}) is a matching cut in G− {u, v}. �

10

u v w

Ui Uj

C1 C2 C3

Figure 3: Rule 8 applies to the vertices u and v; an application will merge Ui and Uj . The
value of N(u,w) used in Lemma 3 is two: C1 and C3 are ambiguous and each of them contains
two distinct vertices that are neighbors of u and w, respectively.

Thus, with the above rules we obtain a kernel with O(dc(G)
3
) vertices: a

reduced instance has O(|U |2) = O(dc(G)
2
) clusters, each containing O(|U |) =

O(dc(G)) vertices. To obtain a kernel with an overall quadratic number of
vertices, we observe first that after exhaustive application of Rules 2 and 6, every
vertex in a cluster C, where |C| ≥ 3 and C ⊆ N2(Ui) for some i, has at most one
neighbor in any monochromatic set Uj . Thus, it remains to further reduce the
number of vertices in V \U with only one neighbor in any monochromatic set Ui.
This is achieved by the following reduction rule which finds monochromatic parts
of U that can be merged not because they have many common neighbors but,
instead, because they have common neighbors in several nonedge clusters; a
situation in which the rule applies is illustrated in Figure 3.

Reduction Rule 8. If there are two vertices u ∈ Ui and u′ ∈ Uj, i 6= j, and
three distinct nonedge clusters C1, C2, and C3 such that u and u′ have at least
one neighbor in each of them, then merge Ui and Uj.

Proof (of safeness). We show that Ui ∪Uj is monochromatic; by definition
this implies that merging Ui and Uj is safe. Let (A,B) be any matching cut
of G. Each of the three clusters is monochromatic because they are nonedge
clusters. Hence, we can assume without loss of generality, that A contains C1

and C2. Since u has neighbors in C1 and in C2, it has two neighbors in A and
thus Ui ⊆ A. Similarly, Uj ⊆ A. Hence, Ui ∪ Uj is in the same part of the cut.
This holds for all cuts, making Ui ∪ Uj monochromatic. �

Lemma 3. After exhaustive application of Rules 1–8, there are O(|U |2) vertices
in V \ U that are in nonedge clusters and have only one neighbor in U .

Proof. First, by Lemma 1, there areO(|U |) fixed nonedge clusters. By Lemma 2,
these clusters contain O(|U |) vertices each. Thus, the number of vertices in fixed
nonedge clusters that have only one neighbor in U is O(|U |2).

Hence, it remains to bound the number of vertices that have only one neigh-
bor in U and are contained in a nonfixed cluster C. By Proposition 3, these

11

clusters are ambiguous. Each ambiguous cluster C contains an ambiguous ver-
tex with neighbors in Ui and Uj , where i 6= j. Thus, for each vertex of C with
only one neighbor u ∈ U , there is at least one further vertex u′ ∈ U such that u′

has at least one neighbor in C, and u and u′ are not from the same monochro-
matic part U` (because u is in at most one of Ui and Uj). Now, for each u ∈ U
and u′ ∈ U that are in distinct monochromatic parts of U , let N(u, u′) denote
the number of vertex pairs {v, v′} such that there is an ambiguous cluster C
containing v and v′, one of v and v′ is adjacent to u, and the other is adjacent
to u′. By the above discussion, any vertex in an ambiguous cluster C with
exactly one neighbor in U increases the number N(u, u′) for at least one pair of

vertices u and u′. By the pigeonhole principle, if there are more than 3 ·
(|U |

2

)
vertices in ambiguous nonedge clusters that have only one neighbor in U , then
there is some pair of vertices u and u′ such that N(u, u′) ≥ 3. Since u and u′

each have at most one neighbor in every ambiguous cluster, this means that
there are three distinct clusters C1, C2, and C3 which contain neighbors of u
and u′. Because u and u′ are from distinct monochromatic parts, Rule 8 ap-
plies, which contradicts the fact that G is reduced with respect to this rule.
Consequently, the number of vertices in ambiguous nonedge clusters that have
only one neighbor in U is O(|U |2). �

Theorem 1. Matching Cut admits a problem kernel with O(dc(G)
2
) vertices

that can be computed in O(dc(G)
2 · (n2 + nm)) time.

Proof. Note that every instance contains O(dc(G)) vertices in U because we
may assume that |U | ≤ 3dc(G). To obtain the kernel, we need to reduce the size
of V \U . To this end, we first apply exhaustively Rules 1–8. Afterwards, V \U
has O(dc(G)

2
) vertices: By Lemma 2, V \U has O(dc(G)

2
) ambiguous vertices.

Moreover, since G is reduced with respect to Rule 7, we have that every edge
cluster contains an ambiguous vertex. Hence, the number of edge clusters, and
therefore the number of vertices in edge clusters, is O(dc(G)

2
). It remains to

bound the number of vertices in nonedge clusters that are not ambiguous. Each
of these vertices has only one neighbor in U because G is reduced with respect
to Rule 6. By Lemma 3, V \ U has O(dc(G)

2
) vertices that are in nonedge

clusters and have only one neighbor in U .
Finally, the number of vertices that have no neighbors in any set Ui is O(1)

for each cluster because G is reduced with respect to Rule 5, and thus O(dc(G)
2
)

overall.
It remains to bound the running time for the application of the rules. Rule 1

can be applied in time O(n+m) and applies only once. For the remaining rules,
we need to maintain the set N2(Ui) for each Ui. These sets can be computed
in O(dc(G)(n+m)) time. Afterwards, the applicability of each rule can be tested

in O(dc(G)
2
(n+m)) with the bottleneck being Rule 8. Moreover, each rule can

be applied in O(n) time, with the exception of Rule 4 which may take Θ(n2)
time, because it may add Θ(n2) many edges. To make this rule more efficient, we
observe that during the kernelization it suffices to know which vertices belong to
the same cluster, since each cluster induces a complete subgraph. Consequently,

12

we may store the edges in each cluster only implicitly. This gives a running
time bound of O(n) also for Rule 4; we omit the technical details. To obtain the
claimed bound on the running time it is thus sufficient to bound the number
of applications of the rules by O(n): All rules that merge monochromatic parts
can be performed O(dc(G)) = O(n) times overall. For the remaining rules, we
have that Rule 4 can be performed O(n) times, because it decreases the number
of clusters in G−U by one, Rules 5 and 7 can be performed O(n) times, because
they remove at least one vertex from G. Rule 6 can be performed O(n) times
as well: First, Rule 6 is performed at most n on the at most n initial clusters.
Afterwards, any application of Rule 6 is caused by a previous application of
Rule 4, which merges two clusters, or by an application of one of the rules that
merge monochromatic parts. By applying Rule 4 exhaustively before applying
Rule 6, we have that every monochromatic part Ui has at most one cluster of
size at least three that is contained in N2(Ui). Hence, there is an injective
mapping from noninitial applications of Rule 6 to the O(n) many applications
of some rule that merges clusters or monochromatic parts. Consequently, Rule 6
is applied O(n) times in total. �

It is worth noting that if G− U consists of only one cluster, that is, G− U
is a clique C, then Lemma 2 shows that C can be reduced to contain O(|U |)
many vertices.

Corollary 1. Matching Cut admits a linear kernel when parameterized by
dq(G), the distance to clique.

3. Single-exponential FPT Algorithms

In this section, we consider Matching Cut parameterized by the distance
to cluster and by the distance to co-cluster. Recall that co-cluster graphs are pre-
cisely the complete multipartite graphs. We show that Matching Cut can be
solved in time 2dc(G)O(n2) and in time 2dc(G)O(nm). While Gomes and Sau [15]
presented a direct dynamic programming algorithm for the more general d-Cut
problem, this algorithm has a worse running time of 4dc(G)O(dc(G)2n2) for
Matching Cut. Recall that we may assume that all graphs considered are
connected, have minimum degree at least two and that a clique Q is monochro-
matic if |Q| 6= 2. Finally, observe that minimum distance to cluster sets and
minimum distance to co-cluster sets can be computed in 1.92dc(G) ·O(n2) time
and 1.92dc(G) ·O(n2) time, respectively [6].

3.1. Distance to Cluster

Next, we provide an FPT algorithm solving Matching Cut running in
single-exponential time 2dc(G)O(n2).

Lemma 4. Let U ⊂ V (G) such that G−U is a cluster graph. Given a partition
(A,B) of U , it can be decided in time O(n2) if G has a matching cut (X,Y)
such that A ⊆ X and B ⊆ Y .

13

Proof. We first consider the case where A or B is empty, say B = ∅. Thus, A =
U and we are searching for a matching cut (X,Y) such that U ⊆ X. If G− U
has some cluster Q such that (Q,V (G)\Q) is a matching cut, then we are done.
Otherwise, consider some matching cut (X,Y) such that U ⊆ X. For each
cluster Q of G − U we have Q ⊆ X or Q ⊆ Y : For the clusters of size at least
three and those of size one this is true because they are monochromatic in G. For
each cluster {u, v} of size two observe the following. Since (V (G)\{u, v}, {u, v})
is not a matching cut, either

• u and v have a common neighbor in U , or

• |N(u) ∩ U | ≥ 2 or |N(v) ∩ U | ≥ 2.

In the first case, {u, v} is monochromatic and thus we have {u, v} ⊆ X. In the
second case u and v are in the same part of the cut as U : One of u and v, say u
has two neighbors in U , thus u ∈ X. Now v has two neighbors inX, one neighbor
is u and the other neighbor is some vertex in U . Consequently, {u, v} ⊆ X in
this case as well. Summarizing, U ⊆ X and for each cluster Q of G − U we
have Q ⊆ X or Q ⊆ Y . Since there is no matching cut between U and a
cluster Q of G − U , this implies Q ⊆ X. Hence, U ∪ (V (G) \ U) ⊆ X and
thus Y = ∅. Therefore, G has no matching cut (X,Y) such that U ⊆ X.

Now assume that A and B are nonempty. We let F := V (G) \ (A ∪ B)
denote the free vertices, the vertices that we have not assigned to A or B. The
algorithm first applies Rules 9–12 given in [19] to recognize situations where
there is no matching cut or to identify vertices that can be moved from F to A
or B; the correctness of these rules is easy to see, some of them are illustrated
in Figure 4.

Reduction Rule 9. If an A-vertex has two B-neighbors or a B-vertex has two
A-neighbors, then STOP: “G has no matching cut separating A, B”.

Reduction Rule 10. (1) If v ∈ F , |N(v) ∩ A| ≥ 2, and |N(v) ∩ B| ≥ 2,
then STOP: “G has no matching cut separating A, B”. (2) If v ∈ F and
|N(v) ∩ A| ≥ 2, then A := A ∪ {v}. (3) If v ∈ F and |N(v) ∩ B| ≥ 2, then
B := B ∪ {v}.

Reduction Rule 11. (1) If v ∈ A has two adjacent F -neighbors w1, w2, then
A := A ∪ {w1, w2}. (2) If v ∈ B has two adjacent F -neighbors w3, w4, then
B := B ∪ {w3, w4}.

Reduction Rule 12. (1) If there is an edge xy in G such that x ∈ A, y ∈ B,
and N(x) ∩N(y) ∩ F 6= ∅, then STOP: “G has no matching cut separating A,
B”.
(2) If there is an edge xy in G such that x ∈ A and y ∈ B, then add N(x) ∩ F
to A, and add N(y) ∩ F to B.

If none of the Rules 9–12 can be applied, then

14

v

u s

t

w

x

A B

C1 C2 C3

Figure 4: The application of the reduction rules and a resulting 2-Sat formula for a parti-
tion (A,B) of U . The vertex w will be added to B by Rule 12 (2) since its neighbor in B
is incident with an edge between A and B. Afterwards, the vertex x will be added to B
by Rule 10 (3) since it now has two neighbors in B. After these reduction rules, the set F
contains four vertices s, t, u, v all of which belong to R. In addition to the clauses ensuring
that each vertex goes to A or B, we add clauses (¬uB ∨ ¬vA), (¬sB ∨ ¬tA), (¬uB ∨ ¬sB),
and (¬vA ∨ ¬tA). The satisfying assignment implied by uA = vB = sA = tB = true corre-
sponds to a matching cut with {u, s} ⊆ A and {v, t} ⊆ B.

• the A,B-edges of G form a matching cut in G[A ∪ B] = G − F due to
Rule 9,

• every F -vertex is adjacent to at most one A- and at most one B-vertex
due to Rule 10,

• the F -neighbors of any A-vertex and the F -neighbors of any B-vertex
form an independent set due to Rule 11, and

• every A-vertex adjacent to a B-vertex has no F -neighbor and every B-
vertex adjacent to an A-vertex has no F -neighbor due to Rule 12.

Note that G[F] is a cluster graph. Let Q be the set of all monochromatic
clusters in G[F] and let R := F \

⋃
Q∈Q V (Q). That is, each member in Q is a

cluster with one vertex or a cluster with at least three vertices, and each vertex
in R belongs to a 2-vertex cluster in G[F]. Now, create a boolean formula φ as
follows:

• For each Q ∈ Q we have two boolean variables QA and QB (indicating all
vertices of Q should be added to A, respectively, to B).

• For each vertex u ∈ R we have two boolean variables uA, uB (indicating
u should be added to A, respectively, to B).

The clauses of φ are as follows:

(c1) For each Q ∈ Q: (QA ∨QB), (¬QA ∨¬QB). These clauses ensure that Q
will be moved to A or else to B.

(c2) For each vertex u ∈ R: (uA ∨ uB), (¬uA ∨ ¬uB). These clauses ensure
that u will be moved to A or else to B.

15

(c3) For each two adjacent vertices u, v ∈ R:

(c3.1) If u has neighbors in A andB, if v has neighbors in A andB, if u and v
have neighbors in A, or if u and v have neighbors in B: (uA ↔ vA),
(uB ↔ vB). Each of these nonstandard clauses corresponds to adding
two standard 2-Sat clauses. For example, (uA ↔ vA) is equivalent
to (uA ∨ ¬vA) ∧ (¬uA ∨ vA). They ensure that either u and v are
both moved to A, or both are moved to B.

(c3.2) If |N(u) ∩ A| = |N(v) ∩ B| = 1 and N(u) ∩ B = N(v) ∩ A = ∅:
(¬uB ∨ ¬vA). This clause ensures that in case u goes to B, v must
also go to B, and in case v goes to A, u must also go to A.

(c3.3) If |N(u) ∩ B| = |N(v) ∩ A| = 1 and N(u) ∩ A = N(v) ∩ B = ∅:
(¬uA ∨ ¬vB). This clause ensures that in case u goes to A, v must
also go to A, and in case v goes to B, u must also go to B.

(c4) For z, z′ ∈ Q ∪R:

(c4.1) If z, z′ have a common neighbor in A: (¬zB ∨ ¬z′B). This clause
ensures that in this case, z or z′ must go to A.

(c4.2) If z, z′ have a common neighbor in B: (¬zA ∨ ¬z′A). This clause
ensures that in this case, z or z′ must go to B.

Then φ is the conjunction of all these clauses over all Q ∈ Q and all u ∈ R, see
Figure 4 for some example clauses. We now show the equivalence of φ and the
problem of finding a matching cut with A on one side and B on the other.

Claim: G has a matching cut (X,Y) with A ⊆ X and B ⊆ Y if and
only if φ is satisfiable.

Suppose first that (X,Y) is a matching cut of G such that A ⊆ X and
B ⊆ Y . Then, clearly, Q ⊆ X or Q ⊆ Y for any Q ∈ Q. Define an assignment
for φ as follows.

• for each v ∈ R set vA = true, vB = false if v ∈ X and vA = false,
vB = true if v ∈ Y ,

• for each Q ∈ Q set QA = true, QB = false if Q ⊆ X and QA = false,
QB = true if Q ⊆ Y .

It is a routine to check that φ is satisfied by this assignment.
Conversely, suppose that there is a satisfying assignment for φ. Then set

X :=A ∪ {v ∈ R : vA is true} ∪
⋃

Q∈Q,QA=true

Q,

Y :=B ∪ {v ∈ R : vB is true} ∪
⋃

Q∈Q,QB=true

Q.

Observe first that, as the clauses (c1), (c2) are satisfied, V (G) = X ∪ Y and
X ∩ Y = ∅. Next suppose, by contradiction, that u ∈ X has two neighbors

16

v, w in Y . If u ∈ A, then v, w ∈ F (as Rules 9 and 12 are not applicable) and
v, w are non-adjacent (as Rule 11 is not applicable). But this contradicts the
assumption that the clauses (c4.1) are satisfied. If u ∈ F , then at least one of
v, w is in F (as Rule 10 is not applicable). If both v, w are in F , then u, v, w
belong to a clique Q ∈ Q (as G[F] is a cluster graph). But this contradicts the
assumption that the clauses (c1) are satisfied. So, let v ∈ F and w ∈ B, say.
Since the clauses (c4.1) are satisfied and u ∈ X, v ∈ Y , it holds that u, v ∈ R.
Since the clauses (c3.1) are satisfied, N(u) ∩ A = ∅ and N(v) ∩ B = ∅. Since
deg(v) ≥ 2, v has a neighbor in A. But this contradicts the assumption that
the clauses (c3.3) are satisfied. Thus, no vertex in X can have two neighbors in
Y , and similarly, no vertex in Y can have two neighbors in X, which proves the
claim.

The length of the formula φ is O(n2). Since 2-Sat can be solved in linear
time (cf. [3, 10, 12]), the above discussion yields an O(n2)-time algorithm for
deciding if G has a matching cut (X,Y) such that A ⊆ X and B ⊆ Y . �

Running the algorithm of Lemma 4 for all partitions (A,B) of U , where U is a
minimum distance to cluster set of the input graph G, one obtains

Theorem 2. Matching Cut can be solved in time 2dc(G)O(n2).

3.2. Distance to Co-cluster

We now provide an FPT algorithm solving Matching Cut running in
single-exponential time 2dc(G)O(nm).

Lemma 5. Let U ⊂ V (G) such that F = V (G) \ U induces a co-cluster graph.
Given a partition (A,B) of G[U], it can be decided in time O(nm) if G has a
matching cut (X,Y) such that A ⊆ X and B ⊆ Y .

Proof. Let F1, . . . , Ft be the maximal independent sets ofG[F] (thus, F1, . . . , Ft
are the cliques in G[F]). If t = 1 (thus, F is an independent set) or |Fi| = 1 for
all 1 ≤ i ≤ t (thus, F is a clique), then G[F] is a cluster graph, and we proceed
in time O(n2) similarly as in the case of distance to cluster. So, let t ≥ 2 and
assume |F1| ≤ |F2| ≤ · · · ≤ |Ft| and |Ft| ≥ 2. We distinguish three cases.

Case 1. t ≥ 3, or t = 2 and |F1| ≥ 2, |F2| ≥ 3.
In this case, F is monochromatic. Thus, G has a matching cut (X,Y) such
that A ⊆ X and B ⊆ Y if and only if X = A ∪ F and Y = B, or X = A and
Y = B ∪ F . As testing if (X,Y) is a matching cut can be done in linear time
O(n+m), Case 1 is settled.

Case 2. t = 2 and |F1| = |F2| = 2.
In this case G[F] is a 4-cycle, and we have six possible extensions of (A,B) to
a matching cut (X,Y). Thus, Case 2 can be settled in linear time.

Case 3. t = 2 and |F1| = 1.
Let F1 = {u}, F2 = {v1, . . . , vr} for some r ≥ 2. Thus, G[F] is a star with
r edges uvi, 1 ≤ i ≤ r. In this case, G has a matching cut (X,Y) such that
A ⊆ X and B ⊆ Y if and only if

17

• X = A ∪ F and Y = B, or

• X = A and Y = B ∪ F , or

• X = A ∪ {vi} and Y = B ∪ F \ {vi} for some 1 ≤ i ≤ r, or

• X = A ∪ F \ {vi} and Y = B ∪ {vi} for some 1 ≤ i ≤ r.

Thus, we can decide in time O(r)O(n + m) = O(nm) if one of these 2r + 2
partitions (X,Y) is a matching cut extending (A,B). �

Running the algorithm of Lemma 5 for all partitions (A,B) ofG[U], where U is
a minimum distance to co-cluster set of the input graph G, one obtains

Theorem 3. Matching Cut can be solved in time 2dc(G)O(nm).

4. Improved Exact Exponential Algorithms

In this section, we give two exact exponential algorithms for Matching Cut
both improve the best known running time of O∗(1.4143n). The first one is Sat-
based and runs in time O∗(1.3280n) or in randomized time O∗(1.3071n).2 The
second one is a branching algorithm without any Sat-subroutine and runs in
time O∗(1.3803n). Though the running time of the branching algorithm is worse
than for the Sat-based algorithm, the used branching rules and the idea of the
termination lemma in the analysis are interesting on their own. Moreover, it is
interesting to know how fast a Sat-free algorithm can be compared to a Sat-
based algorithm for Matching Cut. In fact, very recently, a similar branching
algorithm for Matching Cut restricted to graphs with minimum degree at
least 469 which has running time O∗(1.0099n) has been obtained in [18]. Given
the current knowledge, such a running time for solving Matching Cut cannot
be achieved by reducing to 3-Sat.

4.1. Sat-based Algorithms

Deciding if a graph G = (V,E) has a matching cut can be reduced in poly-
nomial time to O(n2) 3-Sat instances each of which has n = |V | variables. The
reduction is as follows. Let G = (V,E) be a connected graph with minimum
degree at least two. Construct a 3-Cnf formula as follows. For each vertex
v ∈ V we create a Boolean variable xv. For each two neighbors u and w of v,
we introduce a clause ¬(xv ∧ (¬xu ∧ ¬xw)) ≡ (¬xv ∨ xu ∨ xw), meaning that it
is not allowed that v and its two neighbors u and w belong to different parts of
a matching cut of G. Now, fix two vertices a, b ∈ V and let

φ(a, b) = (xa) ∧ (¬xb) ∧
∧
v∈V

∧
u,w∈N(v)

(¬xv ∨ xu ∨ xw).

2This algorithm was suggested by a reviewer; we are deeply grateful for her or his sugges-
tion.

18

Obviously, φ(a, b) can be constructed in time O
(∑

v∈V
(
deg(v)

2

))
= O(n3). Fur-

thermore, G has a matching cut separating a and b if and only if the for-
mula φ(a, b) is satisfiable: If (A,B) is a matching cut of G with a ∈ A and
b ∈ B, then φ(a, b) is satisfied by setting xv = true for v ∈ A and false for
v ∈ B. Conversely, if there is a satisfying assignment for φ(a, b), then (A,B)
with A = {v ∈ V | xv = true} and B = {v ∈ V | xv = false} is a matching
cut of G separating a and b.

Thus, by using the fastest known deterministic algorithm [22] and the fastest
known randomized algorithm for 3-Sat [26, 17], we obtain

Theorem 4. There is a (deterministic) O∗(1.328n)-time Sat-based algorithm
and a randomized O∗(1.3071n)-time Sat-based algorithm for Matching Cut.

Note that the same reduction applies to d-Cut, that is, any instance G =
(V,E) of d-Cut can be reduced in polynomial time to O(|V |2) instances of
(d+ 2)-Sat such that G has a d-cut if and only if at least one of these (d+ 2)-

Cnf formulas is satisfiable. Since k-Sat can be solved in 2(1−
c

k−1)n time for some
constant c > 1 [26], this implies that d-Cut can be solved in time O∗(2(1−

c
d+1)n)

for some constant c > 1.

4.2. A Sat-free Branching Algorithm

Our algorithm takes as input a graph G = (V,E) and decides whether or
not there is an edge set M ⊆ E such that M is a matching cut of G. As above,
we may assume that G is connected and has minimum degree at least two. The
idea is to compute a partition of the vertex set into subsets A and B such that
A and B are nonempty unions of components of G−M and all M -edges have
one endvertex in A and the other in B. Our algorithm consists of reduction
rules and branching rules that label the vertices of the input graph by either
A or B but never change the graph G. Finally we provide a termination lemma
stating that if neither a reduction rule nor a branching rule can be applied, then
there is a matching cut in the graph G, respecting the current partial partition
into A and B.

The branching algorithm below will be executed for all possible pairs a, b ∈
V , hence O(n2) times. To do this set A := {a}, B := {b}, and F := V \ {a, b}
and call the branching algorithm. At each stage of the algorithm, A and/or B
will be extended or it will be determined that there is no matching cut that
separates A from B.

We describe our algorithm by a list of reduction and branching rules given
in preference order, that is, in an execution of the algorithm on any instance
of a subproblem one always applies the first rule applicable to the instance,
which could be a reduction or a branching rule. A reduction rule produces one
subproblem while a branching rule results in at least two subproblems, with
different extensions of A and B. Note that G has a matching cut that separates
A from B if and only if in at least one recursive branch, extensions A′ of A and
B′ of B are obtained such that G has a matching cut that separates A′ from

19

B′. Typically a rule assigns one or more free vertices, vertices of F , either to A
or to B and removes them from F , that is, we always have F := V \ (A ∪B).

First our algorithm applies Reduction Rules 9–12 mentioned in Section 3 to
the current instance (in the order of the rules). In addition, we need two new
reduction rules.

Reduction Rule 13. If there are vertices u, v ∈ F such that N(u) = N(v) =
{x, y} with x ∈ A, y ∈ B, then A := A ∪ {u}, B := B ∪ {v}.

Proof (of safeness). We show that G has a matching cut separating A and
B if and only if G has a matching cut separating A ∪ {u} and B ∪ {v}.

First, assume that (X,Y) is a matching cut of G with A ⊆ X and B ⊆ Y .
If u ∈ X, then v must belong to Y , hence (X,Y) is a matching cut separating
A ∪ {u} and B ∪ {v}. If u ∈ Y , then v must belong to X. In this case, as
N(u) = N(v) = {x, y}, the cut (X \ {v}∪ {u}, Y \ {u}∪ {v}) is a matching cut.
This matching cut clearly separates A ∪ {u} and B ∪ {v}.

The other direction can be seen as follows: any matching cut of G separating
A ∪ {u} and B ∪ {v} separates A and B, too. �

Reduction Rule 14. (1) If there are vertices u, v ∈ F such that N(u) =
N(v) = {x, y} with x ∈ A, y ∈ F , then A := A ∪ {u}.
(2) If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈
F, y ∈ B, then B := B ∪ {v}.

Proof (of safeness). The proof is similar to the safeness proof for Reduction
Rule 13. We show the proof for part (1), the proof for part (2) is symmetric.

First, assume that (X,Y) is a matching cut of G with A ⊆ X and B ⊆ Y .
If u ∈ X, then (X,Y) is clearly a matching cut separating A ∪ {u} and B. If
u ∈ Y , then v must belong to X. In this case, as N(u) = N(v) = {x, y}, the
cut (X \ {v} ∪ {u}, Y \ {u} ∪ {v}) is a matching cut which separates A ∪ {u}
and B.

The other direction can be seen as follows: any matching cut of G separating
A ∪ {u} and B separates A and B, too. �

Our algorithm consists of six branching rules dealing with small configurations.
These are connected (not necessarily induced) subgraphs with at most eight
vertices, some of them already belonging to A or B. The six configurations (B1)–
(B6) are shown in Figure 5; each configuration corresponds to one branching
rule. The Branching Rules (B1) and (B2) are new, the last four have been used
in [19]. Moreover, compared to [19] we do a better branching on configuration
(B5).

To determine the branching vectors which correspond to our branching rules,
we set the size of an instance (G,A,B) as its number of free vertices, that is,
|V (G)| − |A| − |B|.

Branching Rule (B1). We branch into two subproblems. First, add v1 to B.
Then v2 has to be added to B and v3 has to be added to A. Second, add v1 to A.
Then v2 has to be added to A too. Hence the branching vector is (3, 2).

20

A

A

v1

v2

v3

(B1)

A

B

v1 v2

v3(B2)

A

v4

v1 v2

v3(B3)

B

v1

v2

v3 v4

(B4)

A

A

B

v1 v2

v3v4 (B5)

A

A

v1 v2

v3v4

v5 v6

(B6)

Figure 5: Branching configurations: Vertices with label A and B belong to A, respectively, to
B; vertices with labels vi are in F .

Branching Rule (B2). We branch into two subproblems. First, add v2 to B.
Then v1 has to be added to A and v3 has to be added to B. Second, add v2 to A.
Then v3 has to be added to A too. Hence the branching vector is (3, 2).

Branching Rule (B3). We branch into two subproblems. First, add v2 to B.
This implies that v1 has to be added to A, and that v3 and v4 have to be added
to B. Second, add v2 to A. Hence the branching vector is (4, 1).

Branching Rule (B4). On this configuration we branch into two subproblems,
similar to (B3). First, add v3 to A. This implies that v4 has to be added to B,
and that v1 and v2 have to be added to A. Second, add v3 to B. Hence the
branching vector is (4, 1).

Branching Rule (B5). We branch into two subproblems. First, add v2 to A.
This implies that v3 has to be added to B and then v4 has to be added to A.
Second, add v2 to B. Then v1 must be added to A. Hence the branching vector
is (3, 2).

Branching Rule (B6). We branch into four subproblems. First, add v5 to A.
This implies that v2 and v3 have to be added to A. Next, add v5 to B. There
are three choices to label v2 and v3: AB,BA,BB. In the first two choices, v6
has to be added to B and v1 or v4 has to be added to A. In the last choice, v1
and v4 have to be added to A. Hence the branching vector is (3, 5, 5, 5).

The branching numbers of the branching vectors of our algorithm are 1.3803
(Branching Rules (B3) and (B4)), 1.3734 (Branching Rule (B6)) and 1.3248
(Branching Rules (B1), (B2), and (B5)). Consequently, the running time of our
algorithm is O∗(1.3803n).

Termination Lemma. Now, the question is: What happens in case any of the
reduction and branching rules is not longer applicable to the current instance
(G,A,B)?

Note that (A,B ∪ F) is already a matching cut of G, or else the set A′ of
vertices in A having at least two neighbors in F is nonempty. We will see that if

21

N(A′)∩ F contains a vertex of degree at least three, then there exists a config-
uration (B2) or (B3), and the branching process will continue. In particular, if
none of the branching rules is applicable, then every vertex in N(A′) ∩ F must
have degree two. In this case, we can finally show that G has a matching cut
(X,Y) such that A ⊆ X and B ⊆ Y . We formalize this situation as follows.

Definition 1. Let (G,A,B) be an instance of the algorithm. Let A′ = {a ∈
A : |N(a) ∩ F | ≥ 2}. A is called final if every vertex in N(A′) ∩ F has degree
two.

Lemma 6. If A is not final and none of the reduction rules is applicable to
(G,A,B), then (G,A,B) has a configuration (B2) or (B3).

Proof. If A is not final, then there exists a vertex v ∈ N(A′) ∩ F with degree
at least three. (Recall that G has minimum degree at least two.) As Reduction
Rule 10 is not applicable, v has exactly one neighbor in A. Thus, let a ∈ A′
be the neighbor of v in A. Let v1, v2 ∈ F ∪ B be two other neighbors of
v. Since Reduction Rule 10 is not applicable at most one of v1 and v2 may
belong to B. Moreover, since Reduction Rules 11 and 12 are not applicable,
a is adjacent to none of v1 and v2. Thus, by definition of A′, a has another
neighbor u ∈ F \ {v, v1, v2}. Now, if both v1, v2 are not in B, then a, u, v, v1, v2
form configuration (B3). Otherwise, we may assume v1 ∈ B without loss of
generality which implies that a, u, v, v1, v2 form configuration (B2). �

Lemma 7. Let (G,A,B) be an instance such that all reduction and branching
rules are not applicable. Then G has a matching cut (X,Y) such that A ⊆ X
and B ⊆ Y (and such a matching cut can be computed in polynomial time).

Proof. It follows from Lemma 6 that A is final. Hence every vertex in F ′ :=
N(A′) ∩ F has degree two.

Write F ′′ = {u ∈ F \ F ′ : u has two neighbors in F ′}, and set

X = A ∪ F ′ ∪ F ′′ and Y = V (G) \X.

Note that F ′ is a stable set (since Reduction Rule 11 and Branching Rule (B1)
are not applicable). See Figure 6.

We claim that the edge set (X,Y) is a matching cut.
First we show that every vertex in X has at most one neighbor in Y . This

can be seen as follows:

• Every vertex x ∈ A has at most one neighbor in Y . This is because
Reduction Rules 9 and 12 are not applicable, and, by definition of X, x
has at most one neighbor in F \ (F ′ ∪ F ′′).

• Every vertex v ∈ F ′ has at most one neighbor in Y , as deg(v) = 2 and v
has a neighbor in A′ ⊆ A.

22

A

A′

X Y = B ∪ (F \ (F ′ ∪ F ′′))

Figure 6: When A is final: F ′-vertices: black circles; F ′′-vertices: big black squares, B-
vertices: white squares.

• Every vertex v ∈ F ′′ has at most one neighbor in Y . By contradiction,
assume that v has two neighbors in Y . Then, as Reduction Rule 10 is
not applicable, v has a neighbor u ∈ Y \ B. Let v1, v2 be two neighbors
of v in F ′ and let a1, a2 ∈ A′ be the neighbor of v1 and v2, respectively.
Note that a1 6= a2, as otherwise Reduction Rule 14 would be applicable
on a1, v1, v2 and v. Now, let v′i ∈ F ′ \ {vi} be another neighbor of ai in
F ′, i = 1, 2. Then a1, a2, v1, v

′
1, v2, v

′
2, v, and u form configuration (B6), a

contradiction. Thus, v has at most one neighbor in Y , as claimed.

Next we show that every vertex in Y has at most one neighbor in X. This can
be seen as follows:

• Assume to the contrary that y ∈ B has two neighbors u1, u2 ∈ X. Then,
as Reduction Rules 9 and 12 are not applicable, u1, u2 ∈ F ′ ∪ F ′′. First,
suppose u1, u2 ∈ F ′, and let ui ∈ N(ai) for some ai ∈ A′, i = 1, 2. As
Reduction Rule 13 is not applicable, a1 6= a2. Then a1, u1, u

′
1, a2, u2, u

′
2,

and y form configuration (B5), where u′i is a neighbor of ai in F ′ \ {ui},
a contradiction. So let u1 ∈ F ′′, say. Let v1, v2 be two neighbors of u1
in F ′. Since Reduction Rule 11 is not applicable, u2 6= v1, v2. But then
v1, v2, u1, y, and u2 form configuration (B4), a contradiction again. Thus,
no vertex in B has two neighbors in X.

• Assume to the contrary that v ∈ F \ (F ′ ∪ F ′′) has two neighbors in X.
Consider first the case that a neighbor u of v is in F ′′. Let v1, v2 be two
neighbors of u in F ′ and let ai ∈ A′ be adjacent to vi, i = 1, 2. Now, as
Reduction Rule 14 is not applicable, a1 6= a2. Hence a1, a2, v1, v

′
1, v2, v

′
2, u,

and v form configuration (B6), a contradiction again. Thus, v cannot have

23

a neighbor in F ′′. Moreover, as v 6∈ F ′′, v has at most one neighbor in F ′,
and, as Reduction Rule 10 is not applicable, v has at most one neighbor
in A. Thus, a neighbor u1 of v must be in F ′ and another neighbor u2
of v must be in A. Then a, u1, u

′
1, u2, v form a configuration (B1), where

a ∈ A′ is the neighbor of u1 (note that a 6= u2 because Reduction Rule 11
is not applicable) and u′1 is another neighbor of a in F ′, a contradiction.
Thus, no vertex in Y \B has two neighbors in X.

We have seen that (X,Y) is a matching cut. �

Theorem 5. There is a branching algorithm that solves Matching Cut in
time O∗(1.3803n).

5. Conclusions

We provided three algorithms for Matching Cut: a Sat-based exponential
algorithm of running time O∗(1.3071n), a fixed-parameter algorithm of running
time 2dc(G)O(n2) where dc(G) is the distance to cluster number, and a fixed-
parameter algorithm of running time 2dc(G)O(nm) where dc(G) is the distance
to co-cluster number. Our results improved the O∗(1.4143n)-time exact algo-
rithm and the 2τ(G)O(n2)-time and O∗(2tc(G))-time algorithms previously given
in [19] and [2], where τ(G) ≥ max{dc(G),dc(G)} is the vertex cover number
of G and tc(G) ≥ max{dc(G),dc(G)} is the twin cover number of G. More-
over, we found a quadratic vertex-kernel for Matching Cut for the distance
to cluster, and a linear vertex-kernel for the distance to clique.

There are many possible directions for future research. Does Matching
Cut admit a linear vertex-kernel for the distance to cluster? Even for the
parameter vertex cover number τ(G), a linear vertex-kernel is open. Moreover,
it is open whether the problem admits a polynomial kernel for the distance to
forests (known as feedback vertex set number) or the distance to cographs. It
would also be interesting to study exact exponential algorithms for the problem
of enumerating all matching cuts of a graph and to obtain bounds on their
number in general graphs. It is natural to ask whether Matching Cut can be
solved faster than via the Sat-based O∗(1.3071n)-time algorithm.

Finally, we recall that the polynomial kernel for the parameter dc(G) has
been generalized from Matching Cut to d-Cut where each vertex in A may
have at most d neighbors in B and vice versa [15]. A further study of d-Cut
seems to be a promising topic for future research.

References

[1] Araújo, J., Cohen, N., Giroire, F., Havet, F., 2012. Good edge-labelling of
graphs. Discr. Appl. Math. 160, 2502–2513.

[2] Aravind, N.R., Kalyanasundaram, S., Kare, A.S., 2017. On structural
parameterizations of the matching cut problem, in: Proceedings of the 11th

24

International Conference on Combinatorial Optimization and Applications
(COCOA ’17), Springer. pp. 475–482.

[3] Aspvall, B., Plass, M.F., Tarjan, R.E., 1979. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf. Process. Lett.
8, 121–123.

[4] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S., 2014. Kernelization lower
bounds by cross-composition. SIAM J. Discrete Math. 28, 277–305.

[5] Bonsma, P.S., 2009. The complexity of the matching-cut problem for planar
graphs and other graph classes. J. Graph Theory 62, 109–126.

[6] Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M., 2016. A fast branching
algorithm for cluster vertex deletion. Theory Comput. Syst. 58, 357–376.

[7] Borowiecki, M., Jesse-Józefczyk, K., 2008. Matching cutsets in graphs of
diameter 2. Theor. Comput. Sci. 407, 574–582.

[8] Chvátal, V., 1984. Recognizing decomposable graphs. J. Graph Theory 8,
51–53.

[9] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk,
M., Pilipczuk, M., Saurabh, S., 2015. Parameterized Algorithms. Springer.

[10] Davis, M., Putnam, H., 1960. A computing procedure for quantification
theory. J. ACM 7, 201–215.

[11] Downey, R.G., Fellows, M.R., 2013. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science, Springer.

[12] Even, S., Itai, A., Shamir, A., 1976. On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput. 5, 691–703.

[13] Farley, A.M., Proskurowski, A., 1982. Networks immune to isolated line
failures. Networks 12, 393–403.

[14] Fomin, F.V., Kratsch, D., 2010. Exact Exponential Algorithms. Springer.

[15] Gomes, G.C.M., Sau, I., 2019. Finding cuts of bounded degree: complexity,
FPT and exact algorithms, and kernelization, in: Proceedings of the 14th
International Symposium on Parameterized and Exact Computation (IPEC
2019), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. Accepted for
publication.

[16] Graham, R.L., 1970. On primitive graphs and optimal vertex assignments.
Ann. N. Y. Acad. Sci. 175, 170–186.

[17] Hertli, T., 2014. 3-SAT faster and simpler—unique-SAT bounds for PPSZ
hold in general. SIAM J. Comput. 43, 718–729.

25

[18] Hsieh, S., Le, H., Le, V.B., Peng, S., 2019. Matching cut in graphs with
large minimum degree, in: Proceedings of the 25th International Confer-
ence on Computing and Combinatorics (COCOON ’19), Springer. pp. 301–
312.

[19] Kratsch, D., Le, V.B., 2016. Algorithms solving the matching cut problem.
Theor. Comput. Sci. 609, 328–335.

[20] Le, H., Le, V.B., 2019. A complexity dichotomy for matching cut in (bi-
partite) graphs of fixed diameter. Theor. Comput. Sci. 770, 69–78.

[21] Le, V.B., Randerath, B., 2003. On stable cutsets in line graphs. Theor.
Comput. Sci. 301, 463–475.

[22] Liu, S., 2018. Chain, generalization of covering code, and deterministic al-
gorithm for k-SAT, in: Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming (ICALP ’18), Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik. pp. 88:1–88:13.

[23] Marx, D., O’Sullivan, B., Razgon, I., 2013. Finding small separators in
linear time via treewidth reduction. ACM T. Algorithms 9, 30:1–30:35.

[24] Moshi, A.M., 1989. Matching cutsets in graphs. J. Graph Theory 13,
527–536.

[25] Patrignani, M., Pizzonia, M., 2001. The complexity of the matching-cut
problem, in: Proceedings of the 27th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG ’01), Springer. pp. 284–295.

[26] Paturi, R., Pudlák, P., Saks, M.E., Zane, F., 2005. An improved
exponential-time algorithm for k-SAT. J. ACM 52, 337–364.

26

	Introduction
	A Polynomial Kernel for the Distance to Cluster
	Single-exponential FPT Algorithms
	Distance to Cluster
	Distance to Co-cluster

	Improved Exact Exponential Algorithms
	Sat-based Algorithms
	A Sat-free Branching Algorithm

	Conclusions

