
Parameterized Algorithms for
Module Map Problems

Frank Sommer and Christian Komusiewicz

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg,
Germany

{fsommer,komusiewicz}@informatik.uni-marburg.de

Abstract. We introduce and study the NP-hard Module Map problem
which has as input a graph G with red and blue edges and asks to
transform G by at most k edge modifications into a graph which does
not contain a two-colored K3, that is, a triangle with two blue edges
and one red edge, a blue P3, that is, a path on three vertices with two
blue edges, and a two-colored P3, that is, a path on three vertices with
one blue and one red edge, as induced subgraph. We show that Module
Map can be solved in O(2k · n3) time on n-vertex graphs and present a
problem kernelization with O(k2) vertices.

1 Introduction

Graphs are a useful tool for many tasks in data analysis such as graph-based
data clustering or the identification of important agents and connections in so-
cial networks. In graph-based data clustering, the edges in the graph indicate
similarity between the objects that are represented by the vertices. The goal is
to obtain a partition of the vertex set into clusters such that the objects in-
side each cluster should be similar to each other and objects between different
clusters should be dissimilar. One of the central problems in this area is called
Cluster Editing [3], also known as Correlation Clustering [18].

Cluster Editing
Input: An undirected graph G = (V,E) and a non-negative integer k.
Question: Can we transform G into a cluster graph, that is, a disjoint
union of cliques, by deleting or adding at most k edges?

Here, we essentially view the clustering problem as a graph modification problem:
If we can transform G into a cluster graph G′ by at most k edge modifications,
then the connected components of G′ define a partition of V into clusters such
that at most k edges of G contradict this partition; these are exactly the deleted
and inserted edges. In recent years, there has been an increased focus to model
the observed data more precisely by incorporating different edge types. As a con-
sequence, many data analysis tasks are now carried out on graphs with multiple
edge types [7, 15]. In this work, we study a generalization of Cluster Editing
in graphs with two types of edges.

To appear in Proceedings of the 5th International Symposium on
Combinatorial Optimization (ISCO ’18), Marrakesh, Morocco, April 2018.
c© Springer.

Module maps. The problem arises in the construction of so-called module maps
in computational biology [2, 19]. Here, the input is a two-edge-colored graph G =
(V,Eb, Er) with a set Eb of blue edges and a set Er of red edges. In the following,
we will refer to these objects simply as graphs. The vertices of G represent
genes of an organism, the blue edges represent physical interactions between the
proteins that are built from these genes, and the red edges represent genetic
interactions between the genes. These may be inferred, for example from a high
correlation of expression levels of the genes [2]. In the biological application, the
task is to find modules which are groups of genes that have a common function
in the organism.

According to Amar and Shamir [2], the following properties are desirable for
these modules: First, each module should be highly connected with respect to the
physical protein interactions. In other words, within each module there should
be many blue edges. Second, there should be few physical interactions and, thus,
few blue edges between different modules. Third, two different modules A and B
may have a link between them. If they have a link, then there are many genetic
interactions and, thus, many red edges between them; otherwise, there are few
genetic interactions and, thus, few red edges between them. Amar and Shamir [2]
discuss different objective functions for obtaining a module map that take these
properties into account.

We study the problem of obtaining module maps from a graph modification
point of view in the same spirit as Cluster Editing is a canonical graph
modification problem for graph clustering. That is, we first define formally the
set of module graphs which are the graphs with a perfect module map. Then,
the computational problem is to find a module graph that can be obtained from
the input graph by few edge modifications.

Module graphs. By the above, each module is ideally a blue clique and there are
no blue edges between different modules. In other words, the blue subgraph Gb :=
(V,Eb) obtained by discarding all red edges is a cluster graph. Each connected
component of Gb is called a cluster, and we say that a graph G where Gb is
a cluster graph fulfills the cluster property. Moreover, ideally for each pair of
different clusters A and B there are either no edges between u ∈ A and v ∈ B
or each u ∈ A and each v ∈ B are connected by a red edge. In other words, the
graph Gr[A ∪ B] is either edgeless or complete bipartite with parts A and B,
where Gr := (V,Er) is the red subgraph obtained by discarding all blue edges.
This property is called link property, and the red bicliques are called links. The
link property is only defined for graphs that fulfill the cluster property. A graph
has a perfect module map if it satisfies both properties.

Definition 1. A graph G = (V,Eb, Er) is a module graph if G satisfies the
cluster property and the link property.

A module graph is shown in Fig. 1. Clearly, not every graph is a module graph.
For example a graph G with three vertices u, v, and w where the edges {u, v}
and {u,w} are blue and the edge {v, w} is red, violates the cluster property. Our

2

e

f

a

b

c
d

Fig. 1: A module graph with the clusters {a, b, c}, {d}, and {e, f}.

aim is to find a module graph which can be obtained from the input graph G
by as few edge transformations as possible.

Module Map
Input: A graph G = (V,Eb, Er) and a non-negative integer k.
Question: Can we transform G into a module graph by deleting or
adding at most k red and blue edges?

Herein, to transform a blue edge into a red edge, we first have to delete the blue
edge and in a second step we may insert the red edge, thus transforming a blue
edge into a red edge has cost two and vice versa.

As in the case of Cluster Editing, the module graph that is obtained by
at most k edge modifications directly implies a partitioning of the input vertex
set into clusters such that at most k vertex pairs contradict the input vertex
pairs. Here, a contradiction is a red edge or a non-edge inside a cluster, a blue
edge between different clusters, or a non-edge between different clusters that
have a link and a red edge between different clusters that have no link. Our
problem formulation is thus related to previous ones [2, 19] but more simplistic:
for example it does not use statistically defined p-values to determine whether
a link between modules should be present or not. As observed previously [2,
19] most formulations of the construction problem for module maps contain
Cluster Editing as a special case. This is also true for Module Map: if
the input has no red edges, then it is not necessary to add red edges, and thus
Module Map is the same as Cluster Editing.

As a consequence, hardness results for Cluster Editing transfer directly
to Module Map. Since Cluster Editing is NP-complete [17] and cannot be
solved in 2o(|V |+|E|) time under a standard complexity-theoretic assumption [11,
16] we observe the following.

Proposition 1. Module Map is NP-complete and cannot be solved in
2o(|V |+|E|) time unless the Exponential-Time Hypothesis (ETH) fails.

Because of this algorithmic hardness, heuristic approaches are used in prac-
tice [2, 19]. In this work, we are interested in exact algorithms for Module
Map. In particular, we are interested in fixed-parameter algorithms that have a
running time of f(k) ·no(1) for a problem-specific parameter k. If k has moderate
values and f grows not too fast, then these algorithms solve the problem effi-
ciently [9]. Motivated by the practical success of fixed-parameter algorithms with
the natural parameter number k of edge transformations for Cluster Edit-
ing [6, 13], we focus on fixed-parameter algorithms for Module Map with the

3

same parameter. We find that viewing Module Map as a graph modification
problem facilitates the algorithmic study of the problem.

A weighted problem variant. In practice, it is useful to consider edge-weighted
versions of the problem, where the input includes a weight function g :

(
V
2

)
→ N+

on vertex pairs. The higher the weight, the more confidence we have in the
observed edge type. To obtain the cost of a set of edge deletions and additions,
we multiply each edge modification {u, v} with the weight g({u, v}). For example,
a blue edge {u, v} with weight ω can be transformed into a non-edge with cost ω
and into a red edge with cost 2ω. This gives the following problem:

Weighted Module Map
Input: A graph G = (V,Eb, Er) with edge weights g :

(
V
2

)
→ N+ and a

non-negative integer k.
Question: Can we transform G into a module graph by edge transfor-
mations of cost at most k?

Our results. In Section 2, we present a characterization of module graphs by three
forbidden induced subgraphs and show how to determine whether a graph G
contains one of these in linear time. This implies a simple linear-time fixed-
parameter algorithm for Module Map with running time O(3k · (|V | + |E|)),
where |E| = |Eb|+ |Er|.

In Section 3, we present an improved (in terms of the exponential running-
time part) fixed-parameter algorithm for Weighted Module Map with run-
ning time O(2k · |V |3). This algorithm is an extension of a previous algorithm
for Weighted Cluster Editing [5]. In order to transfer the technique to
Weighted Module Map, we solve a more general variant of Weighted Mod-
ule Map that uses a condensed view of the modification costs of an edge in terms
of cost vectors. Here, each possible type of a vertex pair (blue edge, red edge,
or non-edge) corresponds to one component of the cost vector. We believe that
this view can be useful for other graph modification problems with multiple edge
types.

Finally, in Section 4 we show that Weighted Module Map admits a prob-
lem kernel with a quadratic number of vertices. More precisely, we show that
given an instance of Weighted Module Map we can compute in O(|V |3 + k ·
|V |2) time an equivalent instance that has O(k2) vertices. As a corollary, we can
solve Weighted Module Map in O(2k · k6 + |V |3) time by first applying the
kernelization and then using the search tree algorithm.

Related work. Compared to the study of graphs with only one edge type, there
has been little work on algorithms for graphs with multiple edge types which
may be referred to as multilayer graphs [15] or edge-colored (multi)graphs.

Chen et al. [8] introduced Multi-Layer Cluster Editing, a variant of
Cluster Editing with multiple edge types. In this problem, one asks to trans-
form all layers into cluster graphs which differ only slightly. Here, a layer is the
subgraph containing only the edges of one type. Roughly speaking, the task is to
find one cluster graph such that each layer can be transformed into this cluster

4

graph by at most k edge modifications. Chen et al. [8] show fixed-parameter algo-
rithms and hardness results for different parameter combinations. The problem
differs from Module Map in the sense that all edge types play the same role
in the problem definition and that layers are evaluated independently whereas
in Module Map the aim is to obtain one graph with blue and red edges that
fulfills different properties for the blue and red edges. A further problem studied
in this context is Simultaneous Feedback Vertex Set [1] where the aim is
to delete at most k vertices in a multilayer graph such that each layer is acyclic.
Further, Bredereck et al. [7] present several algorithmic and hardness results for
a wide range of subgraph problems in multilayer graphs.

Preliminaries. We follow standard notation in graph theory. For a graph G =
(V,E) and a set V ′ ⊆ V , the subgraph of G induced by V ′ is denoted by G [V ′] :=
(V ′, {{u, v} ∈ E | u, v ∈ V ′}). For two sets A and B, the symmetric difference
A4B := (A ∪ B)\(A ∩ B) is the set of elements which are in exactly one of
the two sets. A solution S for an instance of Module Map is a tuple of edge
transformations (E′b, E

′
r) of size at most k such that the transformed graph G′ =

(V,Eb4E′b, Er4E′r) is a module graph. Herein, the size of (E′b, E
′
r) is |E′b|+ |E′r|.

The graph G′ is called target graph. A solution S is optimal if every other solution
is at least as large as S.

For the basic definitions on parameterized complexity such as fixed-parameter
tractability and kernelization, we refer to the literature [9]. We present our ker-
nelization via reduction rules. A reduction rule is safe if the resulting instance is
equivalent. An instance is reduced exhaustively with respect to a reduction rule if
an application of the rule does not change the instance. A branching rule trans-
forms an instance (I, k) of a parameterized problem into instances (I1, k1), . . .,
(I`, k`) of the same problem such that ki < k. A branching rule is safe if (I, k) is
a yes-instance if and only if there exists a j such that (Ij , kj) is a yes-instance.
A standard tool in the analysis of search tree algorithms are branching vectors;
for further background refer to the monograph of Fomin and Kratsch [10].

Due to lack of space, several proofs are deferred to a long version of the article.

2 Basic Observations

In the following we present a forbidden subgraph characterization for the prop-
erty of being a module graph. To this end, we define the following three graphs
which are shown in Fig. 2: a blue P3 is a path on three vertices consisting of two
blue edges, a two-colored K3 is a clique of size three, where one edge is red and
the other two are blue, and a two-colored P3 is a path on three vertices with
exactly one blue and one red edge.

To prove Theorem 1 we first show that the subgraph induced by the blue
edges Gb is a cluster graph if and only if G contains no blue P3 and no two-
colored K3.

Lemma 1. A graph G fulfills the cluster property if and only if G contains
neither a blue P3 nor a two-colored K3 as induced subgraphs.

5

Fig. 2: The forbidden induced subgraphs for module graphs. From left to right:
a blue P3, consisting of two (dark) blue edges, a two-colored K3, consisting of
two blue and one (light) red edge and a two-colored P3, consisting of one blue
and one red edge.

Theorem 1. A two-colored graph G is a module graph if and only if G has no
blue P3, no two-colored K3, and no two-colored P3 as induced subgraph.

We now show a simple linear-time fixed-parameter algorithm for Module
Map and Weighted Module Map. The algorithm uses the standard approach
to branch on the graphs of the forbidden subgraph characterization presented in
Theorem 1. The main point is to obtain a linear running time. To this end, we
show that we can determine in O(|V |+ |E|) time if a graph contains any of the
three forbidden subgraphs.

We start by determining if the blue subgraph Gb of the two-colored input
graph G = (V,Eb, Er) is a cluster graph. According to Lemma 1, we have to
determine if G has a blue P3 or a two-colored K3. We can find blue P3s in linear
time. We also would like to find two-colored K3s in linear time. As we show in
the following, however, under a standard assumption in complexity theory it is
impossible to find a two-colored K3 in O(|V |+ |E|) time.

The current best algorithm to determine if a graph G contains a triangle has
a running time of O(|V |ω) time, where ω < 2.376 is the exponent of the time
that is needed to multiply two n× n matrices [14].

Proposition 2. We cannot find a two-colored K3 in a graph G = (V,Eb, Er)
in O(|V |+|E|) time, unless we can detect triangles in O((|V |+|E|)·log |V |) time.

Instead, we obtain a linear-time algorithm by searching in one step for two-
colored K3s and for blue P3s.

Lemma 2. For a two-colored graph G = (V,Eb, Er) we can find in O(|V |+ |E|)
time a blue P3 or a two-colored K3 if G contains either one.

Now we show how to find a two-colored P3 in timeO(|V |+|E|) in a graph G =
(V,Eb, Er) when we assume that G contains no blue P3 and no two-colored K3.

Lemma 3. A two-colored P3 in a graph G = (V,Eb, Er) which contains no
blue P3 and no two-colored K3 can be found in O(|V |+ |E|) time if it exists.

With Lemmas 2 and 3 at hand, it can be determined in O(|V |+ |E|) time if a
graph G = (V,Eb, Er) contains a forbidden subgraph and, thus, also whether G
is a module graph. A simple fixed-parameter algorithm for Module Map now
works as follows: Check whether G is a module graph. If this is the case, then
return ‘yes’. Otherwise, check whether k = 0. If this is the case, return ‘no’.
Otherwise, find one of the three forbidden subgraphs and branch on the pos-
sibilities to destroy it by an edge modification. If G contains a blue P3 with

6

vertex set {u, v, w} and non-edge {u,w}, then transform {u,w} into a blue edge
in the first case, transform {u, v} into a non-edge in the second case, and trans-
form {v, w} into a non-edge in the third case. In each case, decrease k by one
and solve the resulting instance recursively. The treatment of the other forbid-
den subgraphs is similar: If G contains a two-colored P3, transform the blue
edge into a non-edge, or transform the red edge into non-edge, or transform the
non-edge into a red edge (observe that the case where a non-edge is transformed
into blue edge need not be considered since this produces a two-colored K3).
If G contains a two-colored K3, either transform one of the blue edges into a
non-edge or transform the red edge into a blue edge. For each forbidden induced
subgraph, the algorithm branches into three cases and decreases k by at least
one. This leads to a branching vector of (1, 1, 1). Since branching is performed
only as long as k > 0, the overall search tree size is O(3k); the steps of each
search tree node can be performed in O(|V |+ |E|) time. Altogether, we obtain
the following.

Proposition 3. Module Map can be solved in O(3k · (|V |+ |E|)) time.

For Weighted Module Map, we can use the same algorithm: since the edge
weights are positive integers, the parameter decrease is again at least 1 in each
created branch of the search tree algorithm. A subtle difference is that, due to
the edge weight function g, the overall instance size is O(|V |2).

Proposition 4. Weighted Module Map can be solved in O(3k · |V |2) time.

3 An Improved Search Tree Algorithm

To improve the running time, we adapt a branching strategy for Cluster Edit-
ing [5]. To apply this strategy, we first introduce a generalization of Weighted
Module Map. Then, we explain our branching strategy. Finally, we solve cer-
tain instances in polynomial time to obtain an O(2k · |V |3)-time search tree
algorithm.

A more flexible scoring function. To describe our algorithm for Weighted
Module Map, we introduce a more general problem since during branching, we
will merge some vertices. To represent the adjacencies of the merged vertices, we
generalize the concept of edge weights: Recall that in Weighted Module Map,
transforming a blue edge with weight ω into a non-edge costs ω and transforming
it into a red edge costs 2ω. Hence, the two transformation costs are directly re-
lated. From now on, we allow independent transformation costs for the different
possibilities. To this end, we introduce an edge-cost function s :

(
V
2

)
→ R3 for

all pairs of vertices {u, v} of a given graph G where s(u, v) := (bu,v, nu,v, ru,v).
This vector (bu,v, nu,v, ru,v) is called cost vector. Herein, bu,v is the cost of mak-
ing {u, v} blue, nu,v is the cost of making {u, v} a non-edge and ru,v is the cost
of making {u, v} red. For a short form of the cost vector we also write (b, n, r)u,v.
If there is no danger of confusion we omit the index of the associated vertices

7

u and v. For example, let {u, v} be a blue edge in an instance of Weighted
Module Map with weight ω. Then we get cost vector (0, ω, 2ω).

We call a vertex pair {u, v} with its cost vector (b, n, r) a blue pair if b = 0
and n, r > 0, a non-pair if n = 0 and b, r > 0, and a red pair if r = 0 and b, n > 0.
As for unweighted graphs, three vertices u, v, and w form a blue P3 if {u, v}
and {u,w} are blue and {v, w} is a non-pair, they form a two-colored K3 if {u, v}
and {u,w} are blue and {v, w} is red, they form a two-colored P3 if {u, v} is
blue, {u,w} is red and {v, w} is a non-pair. Finally, a graph G is called a pair
module graph if each pair {u, v} of vertices in G is a blue pair, a non-pair or a
red pair and G contains no blue P3, two-colored K3 and two-colored P3.

We do not allow arbitrary scoring functions but demand the following three
properties. The first property restricts the relation between the three costs.

Property 1. For each cost vector (b, n, r)u,v, we have b + r ≥ 2n.

Property 1 is essentially a more relaxed version of the property that transforming
a blue edge into a red edge is at least as expensive as transforming this edge first
into a non-edge and subsequently into a red edge.

Property 2. In each cost vector s(u, v) either all components are non-negative
integers or all three are non-negative and half-integral. In the latter case, at least
two components are equal to 1/2.

A cost vector (b, n, r)u,v where all three components are half-integral is called
half-integral. All other cost vectors are called integral. Half-integral cost vectors
will be introduced during the algorithm for technical reasons.

The final property demands that each vertex pair whose cost vector is not
half-integral has exactly one component equal to zero. This guarantees the un-
ambiguous construction of a pair module graph from each vertex pair.

Property 3. Each integral cost vector (b, n, r)u,v contains exactly one component
which is equal to zero.

Properties 1–3 are fulfilled by the scoring function obtained from Weighted
Module Map instances. Moreover, we can observe the following.

Proposition 5. Let (b, n, r)u,v be a cost vector fulfilling Property 1–3.

– If {u, v} is blue, then n ≥ 1 and r ≥ 2n.
– If {u, v} is red, then n ≥ 1 and b ≥ 2n.
– If {u, v} is half-integral, then n = 1/2.

Proof. The first two claims follow from the fact that (b, n, r) has only integer
components in these cases and that only one component is zero. The third claim
can be seen as follows. By Property 2, all three components are half-integral and
at least two of them are equal to 1/2. By Property 1, b + r ≥ 2n. If n > 1/2,
then b = 1/2 = r and Property 1 is violated. Thus, n = 1/2. ut

We may now define Module Map with Scoring Function (MMS).

8

MMS
Input: A graph G with an edge-cost function s :

(
V
2

)
→ R3 which fulfills

Properties 1–3 and a non-negative integer k.
Question: Can we transform G into a pair module graph with transfor-
mation costs at most k?

Our aim is to show the following.

Theorem 2. MMS can be solved in O(2k · |V |3) time.

Merge-based branching. We branch on blue pairs since each forbidden subgraph
contains at least one blue edge. In one case we will delete this blue edge and in
the other case we will keep this blue edge.

Definition 2. A blue pair {u, v} forms a conflict triple with a vertex w if {u,w}
and {v, w} are not both blue, not both non-pairs, or not both red.

To resolve all conflict triples, we branch on blue pairs that are contained
in at least two conflict triples. In the corresponding branching, similar to the
approach of Böcker et al. [5], we merge the vertex pair {u, v} in one of the cases.

Definition 3. Let (G, s, k) be an instance of MMS. Merging two vertices u
and v is the following operation: Remove u and v from G and add a new vertex u′.
For all vertices w ∈ V \ {u, v} set s(u′, w) := s(u,w) + s(v, w).

We call s(u′, w) the join of s(u,w) and s(v, w). Note that s(u′, w) may not
fulfill Properties 1–3. Because of this, we have to reduce joint cost vectors as
far as possible. Herein, reducing (b, n, r) by a value t is to decrease each of its
components by t. Simultaneously we can reduce the parameter k by t.

Reduction Rule 1. Let {u, v} be a vertex pair with cost vector (b, n, r). If
(b, n, r) has a unique minimum component, then reduce (b, n, r) and parameter k
by min (b, n, r). Otherwise, reduce (b, n, r) and parameter k by min (b, n, r)−1/2.

Let x = min(b, n, r) be a minimal value of (b, n, r). If x is unique, then we can
reduce (b, n, r) by x, since afterwards exactly one component of the cost vector is
equal to zero. Otherwise, we cannot reduce the cost vector by x, since afterwards
at least two components have value zero, a contradiction to Property 3. Clearly,
we could reduce the vector by x−1, but this would not give a parameter decrease
for vectors such as (1, 1, 3). According to the bookkeeping trick introduced in [5],
in such a case, we reduce this vector by x−1/2 to circumvent the above problem.
For example, we reduce the vector (1, 1, 3) by 1/2 and get vector (1/2, 1/2, 5/2).

Branching Rule 1. Let (G, s, k) be an instance of MMS. If (G, s, k) contains
a blue pair {u, v} and two distinct vertices w and w′ that form a conflict triple
with {u, v}, then branch into two cases:

Case 1 : Set bu,v := k + 1. Afterwards apply Reduction Rule 1.
Case 2 : Merge the vertex pair {u, v}. Afterwards apply Reduction Rule 1.

9

Lemma 4. Branching Rule 1 is safe.

Now we prove that Properties 1–3 remain true if we set bu,v := k + 1 for a
blue pair {u, v} and apply Reduction Rule 1, and if we merge a blue pair {u, v}
and apply Reduction Rule 1.

Lemma 5. Let {u, v} be a blue pair in an instance (G, s, k) of MMS, and
let (G′, s′, k′) be obtained by setting bu,v := k + 1 and applying Reduction Rule 1
or by merging u and v and applying Reduction Rule 1. Then, (G′, s′, k′) is an
instance of MMS. In particular, s′ fulfills Properties 1–3.

We now show that if we merge a blue pair {u, v} where {u,w} and {v, w}
are not both blue, non-, or red, then Reduction Rule 1 reduces the resulting cost
vector (b, n, r)u′,w by at least 1/2.

Proposition 6. Let s(u′, w) be a joint cost vector that is the join of two cost
vectors s(u,w) and s(v, w), where {u,w} and {v, w} are not both blue, non- or
red. Then Reduction Rule 1 applied to s(u′, w) decreases k by at least 1/2.

Now we show that increasing b for blue pairs decreases k by at least 1.

Lemma 6. Let {u, v} be a blue pair and let (b∗, n, r) be the cost vector that
results from (b, n, r) by setting b = k + 1. Then, applying Reduction Rule 1
to (b∗, n, r) decreases k by at least 1 or this instance has no solution.

Proof. Form Proposition 5 we conclude: b = 0, n ≥ 1 and r ≥ 2n. If n ≥ k,
then each component of (b∗, n, r) will be larger than k. Hence there exists no
solution for this instance. Thus, the reduced cost vector is integral with a unique
minimum component. Consequently, it is reduced by at least 1. ut

Now consider the instances obtained by an application of Branching Rule 1.
In Case 1, the new parameter is at most k − 1 due to Lemma 6. In Case 2, the
new parameter is also at most k − 1 because {u, v} is in two conflict triples.
By Proposition 6 this means that we create two cost vectors which are both
reduced by at least 1/2.

Corollary 1. Branching Rule 1 has a branching vector of (1, 1) or better.

Applying Branching Rule 1 states that every blue pair which is contained in at
least two conflict triples has branching vector (1, 1) or better. Branching Rule 2
deals with blue pairs {u, v} which are contained in exactly one conflict triple
with vertex w where {u,w} and {v, w} give a join that can be reduced by at
least 1.

Branching Rule 2. If (G, s, k) contains a blue pair {u, v} and a vertex w such
that u, v, and w form a conflict triple and the joined vertex pair can be reduced
by at least 1, then branch into the following two cases:

Case 1 : Set bu,v := k + 1. Afterwards apply Reduction Rule 1.
Case 2 : Merge the vertex pair {u, v}. Afterwards apply Reduction Rule 1.

Lemma 7. Branching Rule 2 is correct and has branching vector (1, 1) or better.

10

Solving the remaining instances in polynomial time. We now show that instances
to which Branching Rules 1 and 2 do not apply can be solved efficiently.

Lemma 8. Let (G, s, k) be an instance of MMS. If Branching Rules 1 and 2
do not apply, then (G, s, k) can be solved in O(|V |2) time.

We now can prove Theorem 2.

Proof (of Theorem 2). First, check for each blue pair {u, v} if Branching Rule 1
or 2 applies. This needs O(|V |3) time. If this is the case, we will branch on {u, v}.
According to Corollary 1 and Lemma 7, Branching Rules 1 and 2 have a branch-
ing vector of (1, 1) or better. This implies a search tree size of O(2k) because we
only branch as long as k > 0. In one case, we set bu,v := k + 1, which can be
done in constant time. In the other case, we merge u and v. Hence, we delete the
vertices u and v from the graph and replace them by a new vertex u′ and join all
incident pairs of vertices. These are n pairs. So we can calculate the cost vector
for each new, joined pair in O(|V |) time. In both cases we reduce the parameter
accordingly. Hence, we need O(|V |3) time per search tree node. By Lemma 8,
MMS can be solved in O(|V |2) time if Branching Rules 1 and 2 do not apply.
Hence, we obtain a O(2k · |V |3)-time algorithm for MMS. ut

4 A Polynomial Problem Kernel

We also obtain a problem kernelization for Weighted Module Map that yields
problem kernel with O(k2) vertices. The basic idea is the following: Let {u, v} be
a vertex pair of an instance (G = (V,Eb, Er), k, g) of Weighted Module Map.
We investigate if it is possible that the vertex pair {u, v} can be a blue, non-,
or red edge in any target graph of a size-k solution. To this end, we estimate
for each edge type the induced costs of transforming {u, v} into this type; this
approach was also used for Cluster Editing [5, 12].

Theorem 3. Weighted Module Map admits a problem kernel of O(k2) ver-
tices which can be found in O(|V |3 + k · |V |2) time.

5 Conclusion

There are many open questions: Does Module Map admit a problem kernel
with O(k) vertices? Can we compute a constant-factor approximation in polyno-
mial time? Is Module Map NP-hard when Gb is a cluster graph? Is Module
Map fixed-parameter tractable for smaller parameters, for example when pa-
rameterized above a lower bound as it was done for Cluster Editing [4]?

References

[1] A. Agrawal, D. Lokshtanov, A. E. Mouawad, and S. Saurabh. Simultaneous
feedback vertex set: A parameterized perspective. In Proc. 33rd STACS,
volume 47 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

11

[2] D. Amar and R. Shamir. Constructing module maps for integrated anal-
ysis of heterogeneous biological networks. Nucleic Acids Research, 42(7):
4208–4219, 2014.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learn-
ing, 56(1-3):89–113, 2004.

[4] R. van Bevern, V. Froese, and C. Komusiewicz. Parameterizing edge mod-
ification problems above lower bounds. Theory of Computing Systems, 62
(3):739–770, 2018.

[5] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. Going weighted:
Parameterized algorithms for cluster editing. Theoretical Computer Science,
410(52):5467–5480, 2009.

[6] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011.

[7] R. Bredereck, C. Komusiewicz, S. Kratsch, H. Molter, R. Niedermeier, and
M. Sorge. Assessing the computational complexity of multi-layer subgraph
detection. In Proc. 10th CIAC, volume 10236 of LNCS, pages 128–139,
2017.

[8] J. Chen, H. Molter, M. Sorge, and O. Suchý. A parameterized view on
multi-layer cluster editing. CoRR, abs/1709.09100, 2017.

[9] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

[10] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in
Theoretical Computer Science. An European Association for Theoretical
Computer Science Series. Springer, 2010.

[11] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Vil-
langer. Tight bounds for parameterized complexity of cluster editing. In
Proc. 30th STACS, volume 20 of LIPIcs, pages 32–43. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[12] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data
clustering: Exact algorithms for clique generation. Theory of Computing
Systems, 38(4):373–392, 2005.

[13] S. Hartung and H. H. Hoos. Programming by optimisation meets param-
eterised algorithmics: A case study for cluster editing. In Proc. 9th LION,
volume 8994 of LNCS, pages 43–58. Springer, 2015.

[14] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal
on Computing, 7(4):413–423, 1978.

[15] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter. Multilayer networks. J. Complex Networks, 2(3):203–271, 2014.

[16] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded
modifications. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

[17] M. Krivánek and J. Morávek. NP-hard problems in hierarchical-tree clus-
tering. Acta Informatica, 23(3):311–323, 1986.

[18] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
Discrete Applied Mathematics, 144(1-2):173–182, 2004.

[19] I. Ulitsky, T. Shlomi, M. Kupiec, and R. Shamir. From E-maps to module
maps: dissecting quantitative genetic interactions using physical interac-
tions. Molecular Systems Biology, 4(1):209, 2008.

12

	Parameterized Algorithms for Module Map Problems

