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Abstract

We investigate the computational complexity of the Densest k-Subgraph problem,
where the input is an undirected graph G = (V,E) and one wants to find a subgraph
on exactly k vertices with the maximum number of edges. We extend previous work
on Densest k-Subgraph by studying its parameterized complexity for parameters
describing the sparseness of the input graph and for parameters related to the solution
size k.

On the positive side, we show that, when fixing some constant minimum density µ
of the sought subgraph, Densest k-Subgraph becomes fixed-parameter tractable with
respect to either of the parameters maximum degree of G and h-index of G. Furthermore,
we obtain a fixed-parameter algorithm for Densest k-Subgraph with respect to the
combined parameter “degeneracy of G and |V | − k”.

On the negative side, we find that Densest k-Subgraph is W[1]-hard with respect
to the combined parameter “solution size k and degeneracy of G”. We furthermore
strengthen a previous hardness result for Densest k-Subgraph [Cai, Comput. J., 2008]
by showing that for every fixed µ, 0 < µ < 1, the problem of deciding whether G contains
a subgraph of density at least µ is W[1]-hard with respect to the parameter |V | − k.

Our positive results are obtained by an algorithmic framework that can be applied to
a wide range of Fixed-Cardinality Optimization problems.
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1. Introduction

Identifying dense regions of graphs is a fundamental computational problem with many
important applications, for example in computational biology [43] and social network
analysis [5]. There are many different definitions of what a dense subgraph is [23, 38]
and for almost all of these formulations, the corresponding computational problems are
NP-hard.

In this work, we study the problem of finding subgraphs with a fixed number k
of vertices and a maximum number of edges. This problem is known as Densest k-
Subgraph. For fixed k, maximizing the number of edges is equivalent to maximizing the
density of a graph G = (V,E) which is defined as 2|E|/(|V |(|V | − 1)). Using this notion,
the NP-hard Densest k-Subgraph problem [23, 35] can be defined as follows.

Densest k-Subgraph
Input: A graph G = (V,E), and a nonnegative integer k.
Task: Find a vertex set S ⊆ V of size exactly k such that G[S] has maximum
density.

Densest k-Subgraph is at least as hard as the well-studied Clique problem which asks
for finding a complete graph of order exactly k. In this work, our aim is to provide a better
picture of when Densest k-Subgraph becomes computationally hard or tractable. To
this end, we consider how two types of parameters influence the complexity of Densest
k-Subgraph.

The first type comprises the classic parameter solution size k and its “dual parame-
terization” |V | − k. Parameters of the second type measure the sparseness of the input
graph G: maximum degree ∆, h-index,2 and degeneracy d. Informally, bounded maximum
degree means that all vertices have few neighbors, bounded h-index means that most
vertices have few neighbors, and bounded degeneracy means that in every subgraph
there is always a vertex with few neighbors. By definition, ∆ ≥ h-index ≥ d. The study
of these three parameters is motivated by two facts: First, many real-world networks
such as biological and social networks are relatively sparse since they contain many
vertices of low degree and only few vertices of high degree (the network “hubs”). Second,
the otherwise notoriously hard Clique problem is much easier on sparse graphs. For
example, all maximal cliques can be enumerated in O(3d/3 · d · |V |) time on graphs with
degeneracy d [21].

We study the complexity of Densest k-Subgraph mostly by considering the following
problem which can be seen as a decision variant of Densest k-Subgraph. Here, one
asks whether there is a k-vertex subgraph with density at least µ, where 0 ≤ µ ≤ 1, is a
fixed rational number. We call such subgraphs µ-cliques, that is, a graph G = (V,E) is a
µ-clique if the density of G is at least µ.

µ-Clique
Input: A graph G = (V,E), and a nonnegative integer k.
Question: Is there a vertex set S ⊆ V of size at least k such that G[S] is
a µ-clique?

2The structural graph parameter h-index was introduced by Eppstein and Spiro [20] in the context of
triangle counting in dynamic graphs. For a definition, see Section 2.
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Throughout this work, we use n to denote the number of vertices in G. As mentioned, we
assume furthermore that µ is a fixed rational number. In other words, µ is independent
of k and n. Our motivation for this assumption is that the dense subgraphs that one
wants to find in many applications should be almost complete graphs.

Densest k-Subgraph is an example of an optimization problem with cardinality
constraints. Our positive algorithmic results for Densest k-Subgraph and µ-Clique
are applicable to a range of such problems. A generic problem formulation (with graph
inputs) can be given as follows.

Fixed-Cardinality Optimization
Input: An undirected graph G = (V,E), an objective function φ : 2V → Q+,
and an integer k.
Task: Find the maximum value φ(S) for any set S ⊆ V such that |S| = k.

In this article we assume that φ is given as an algorithm that receives G and k and S ⊆ V as
input, runs in T (k,G) time and computes φ(S). Note that the cardinality constraint could
also apply to the number of edges of the solution and that, in general, fixed-cardinality
optimization is not restricted to graph inputs.

Related Work. For an overview of Fixed-Cardinality Optimization problems, refer
to [12]; the parameterized complexity of some special cases is studied by Cai [13]. The
random separation method [14] yields fixed-parameter algorithms for a wide range of
special cases of Fixed-Cardinality Optimization and the combined parameter (∆, k)
where ∆ is the maximum degree of G. For the special case of Densest k-Subgraph,
the randomized algorithm takes O(2(∆+1)·k · (∆ + k) · n) time to achieve a constant error
probability. Derandomization of the algorithm adds a factor of (∆k + k)O(log(∆k)) log n
to the running time.

The notion of µ-clique, also called µ-dense graph or µ-quasi clique [41] in the literature,
is an example of a so-called clique relaxation. Surveys of different types of clique relaxations
and the computational problems associated with finding such subgraphs were given
by Balasundaram and Pajouh [3] and Kosub [38].

Specific results concerning µ-Clique and Densest k-Subgraph are as follows. For
µ = 1 the question in µ-Clique becomes to find a complete subgraph of order k, which
is W[1]-hard with respect to the parameter k and fixed-parameter tractable with respect
to the dual parameter n− k [18, 19]. The µ-Clique problem remains NP-hard for every
rational number µ, 0 < µ < 1 [41]. Densest k-Subgraph is NP-hard and W[1]-hard
with respect to k, as it is a generalization of Clique. Moreover, Densest k-Subgraph
is W[1]-hard with respect to the parameter n − k [13]. It is, however, fixed-parameter
tractable with respect to the combined parameter “maximum degree ∆ and k” [14].
Holzapfel et al. [30] showed that Densest k-Subgraph remains NP-hard, even when
looking only for subgraphs with average degree at least 2 + Ω(1/k1−ε) for 0 < ε < 2.
Finding k-vertex subgraphs of average degree at least 2 + O(1/k), however, can be done
in polynomial time [30]. Furthermore, Densest k-Subgraph is NP-hard even in graphs
with maximum degree three and degeneracy two [22]. The “densest subgraph” in the
corresponding reduction, however, has very low, non-constant density. Motivated by
these algorithmic hardness results, approximation algorithms for Densest k-Subgraph
have also received a lot of attention [23, 34, 35]. A trivial exponential-time algorithm
solves Densest k-Subgraph in 2n · poly(n) time by checking all vertex-subsets. Chang
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Table 1: Summary of our results and previous results for µ-Clique and Densest k-Subgraph.
Note that hardness transfers from µ-Clique to Densest k-Subgraph and tractability transfers
in the reverse direction. For fixed-parameter tractability (FPT) results, we write a rough
estimate of the exponential running time factor. Herein, k denotes the order of the sought
µ-clique, ` := n− k, and d denotes the degeneracy of the input graph.

parameter µ-Clique Densest k-Subgraph

max. degree ∆ FPT: ∆O(∆) (Theorem 5), NP-hard for ∆ = 3 [22]
no poly. kernel (Theorem 11)

h-index h FPT: hO(h) (Theorem 6), NP-hard for h = 3 [22]
no poly. kernel (Theorem 11)

degeneracy d in XP (Lemma 4(iii)) NP-hard for d = 2 [22]

(k, d) W[1]-hard (Theorem 10) W[1]-hard (Theorem 10)

` W[1]-hard (Theorem 8) W[1]-hard [13]

(`, d) FPT: (`+ d)O(`) (Theorem 7) FPT: (`+ d)O(`) (Theorem 7)

et al. [15] show that the running time can be improved to 1.7315n · poly(n) and Bourgeois
et al. [10] present improved exponential-time algorithms for some special cases of Densest
k-Subgraph.

A related problem is Minimum Subgraph of Minimum Degree, where the task is
to find a subgraph of order at most k such that each vertex has a given minimum degree.
Minimum Subgraph of Minimum Degree is W[1]-hard with respect to the parameter k
but becomes fixed-parameter tractable on graphs of bounded local treewidth and graphs
with excluded minors [2]. A further related problem, referred to as Densest Subgraph,
is to find a subgraph that has maximum average degree (without constraint on the order).
Densest Subgraph is polynomial-time solvable using network flow techniques [25].

Our Results. We first present a general technique to solve a wide range of fixed-cardinality
optimization problems in graphs with maximum degree ∆. We first show that, in case
the solutions to these problems are constrained to be connected graphs, we obtain a
running time of O((e(∆− 1))k−1 · (∆ + k) · n) · T (k,G), where T (k,G) is the time needed
to evaluate φ on subgraphs of order k. Then we extend this result to a wider class
of objective functions that do not demand connectedness of the solution, but have the
property that connected components can be evaluated independently. The running time
for these problems becomes O((4.2(∆− 1))k−1 · (∆ + k) · n) · T (k,G). The algorithm is
randomized with only false negatives and error probability at most 1/e.

We then turn to the specific problems of µ-Clique and Densest k-Subgraph.
Table 1 gives an overview of the results for these two problems; note that all negative
results that were obtained for µ-Clique immediately transfer to Densest k-Subgraph.
Our results can be summarized as follows. Finding dense subgraphs is significantly harder
than finding cliques since µ-Clique and Densest k-Subgraph are W[1]-hard with
respect to the parameter (d, k). Furthermore, we show that the W[1]-hardness result
for Densest k-Subgraph parameterized by n− k [13] can also be generalized to hold
for µ-Clique for all µ, 0 < µ < 1. Finally, we show that, in contrast to Densest k-
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Subgraph, µ-Clique is fixed-parameter tractable for the parameters maximum degree ∆
and h-index h of G. In particular, we show that the practically relevant case of finding
subgraphs whose density µ deviates not too much from the maximum density—that
is, 1/µ is small—is still tractable for bounded ∆ or h.

An experimental evaluation of the algorithm presented here for µ-Clique parameter-
ized by the maximum degree ∆ was recently carried out by a superset of the authors [37].

2. Preliminaries

We consider simple undirected graphs G = (V,E) where n := |V | and m := |E|. The
order of a graph is its number of vertices. We use N(v) := {u | {u, v} ∈ E} to denote the
neighborhood of a vertex v. For a vertex set S ⊆ V we denote by N(S) :=

⋃
v∈S N(v) \ S

the neighborhood of S, and by deg(v) the degree of v. We use G[S] := (S, {{u, v} ∈ E |
u, v ∈ S}) to denote the subgraph induced by S. The edge set of a graph G is sometimes
also denoted by E(G).

The degeneracy of a graph G is the smallest integer d such that every induced subgraph
of G has at least one vertex with degree at most d. The h-index of a graph G is the
maximum integer h such that G contains h vertices of degree at least h. The property
of being a µ-clique is not hereditary, but has a “nestedness” property [38, 41]: Every
µ-clique G = (V,E) has an induced subgraph G′ on |V |− 1 vertices that is also a µ-clique.

A parameterized problem is a language L ⊆ Σ∗ × Σ∗. The second component is
the parameter ; the problem L is fixed-parameter tractable if the instance (I, k) can
be solved in f(k) · poly(n) time, where f(k) is a computable function only depending
on k. A parameterized reduction reduces a problem instance (I, k) in f(k) · poly(|I|)
time to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a
yes-instance and k′ ≤ g(k), where g is a function only depending on k. A basic class of
presumed fixed-parameter intractability is W[1]. A parameterized problem L is W[1]-hard
if there is a W[1]-hard problem L′ such that there is a parameterized reduction from L′

to L. A problem kernel for a parameterized problem P is a polynomial-time computable
parameterized reduction R from P to itself, such that there is some computable function g
with the property that, if (I, k) reduces to (I ′, k′) under R, then |I ′|, k′ ≤ g(k). The
function g is called the size of the problem kernel. For more details, we refer the reader
to the literature [19, 24, 40].

3. A Fixed-Parameter Algorithm for Cardinality-Constrained Optimization
Problems

In this section we present our algorithm for Fixed-Cardinality Optimization.
As outlined in the introduction, it is divided into two steps: enumeration of connected
subgraphs (in Section 3.1) and a dynamic programming procedure (in Section 3.2).
Applied to Densest k-Subgraph, we achieve an asymptotic running-time improvement
in the exponential part of the running time in comparison to the Random Separation
method [14]. This example and further ones are given Section 3.3. In Section 4 we apply
our algorithm to µ-Clique.
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3.1. Enumerating Connected Graphs

First, we focus on the case that we only have to consider solutions S such that G[S]
is connected. We can find these by a simple but efficient enumeration of all possible
solutions. Bounding the running time of the enumeration procedure builds on a result of
Bollobás [8, Equation (7)].

Theorem 1 (Bollobás [8]). Let G be a graph with maximum degree ∆ and let v be a
vertex in G. There are at most (e(∆− 1))k−1 subtrees of order k in G that contain v.

As Bollobás [8] notes, since each connected graph has a spanning tree, it follows
that also the number of connected subgraphs of order k in G that contain v is at
most (e(∆− 1))k−1. Building on the above bound, we obtain an enumeration algorithm
as follows.

Theorem 2. Let G = (V,E) be a graph with maximum degree ∆ that is represented as
an adjacency list data structure and let v be a vertex in G. There are O((e(∆− 1))k−1)
connected k-vertex subgraphs of G that contain v and their vertex sets can be enumerated
in O((e(∆− 1))k−1 · (∆ + k)) time.

We call a vertex subset V ′ ⊆ V admissible if it induces a connected subgraph of G
that contains v and is of order at most k. We describe a tree Γ, called search tree below,
where each of its nodes represents an admissible set and each admissible set is represented
by some node in Γ. We then show that the order of Γ is at most O((e(∆− 1))k−1) and
that computing Γ in a depth-first fashion can be implemented to run in O((e(∆− 1))k−1 ·
(∆ + k)) time.

Throughout this section vertex v is fixed. We also fix an arbitrary ordering of the
vertices in G which assigns a unique index to every vertex. Let us describe the search
tree Γ = Γ(G, v, k). Each of its nodes N is associated with a tuple τ(N ) = (P,W ) where
W ⊆ P ⊆ V . We show below that P is admissible. Intuitively, the subtree of Γ rooted
at a node N associated with (P,W ) represents those admissible supersets of P that do
not contain a vertex of N(W ) \ P . For this, we will choose a vertex u ∈ P \W and
generate a child of N for each subset of the neighbors of u that extend P to another
suitable admissible set. To avoid adding further neighbors of u to P deeper in the search
tree Γ—which would correspond to traversing some parts of the search space multiple
times—we use the set W . This set contains all “already processed” vertices that should not
contribute any further neighbors to the admissible set P . Hence, when adding neighbors
of u we have to avoid any neighbor of a vertex in W .

Continuing the definition of Γ, the root of Γ is associated with ({v}, ∅) and the
remaining nodes are defined inductively as follows. Let N be any node in Γ with its
associated tuple (P,W ) such that |W | < |P | < k and N(P ) \N(W ) 6= ∅, and let u be
the vertex with lowest index in P \W . For every subset M ⊆ N(u) \ (N(W ) ∪ P ) that
fulfills |M | ≤ k− |P |, we add a new child to N associated with (P ∪M,W ∪ {u}). (Note
that M = ∅ is one of the choices for M .) There are no further nodes in Γ and this
concludes its definition.

Lemma 1. (i) In each tuple (P,W ) associated with some node of Γ the set P is admissible.
Furthermore, (ii) for each admissible set P , there is a set W such that (P,W ) is associated
with some node of Γ.
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Proof. To prove (i) it suffices to observe that the set P associated with the root is
admissible and that, if P is admissible for some node N , then the set P for each of his
children is. The first part is obvious. For the second part, let N be associated with (P,W )
and let one of its children be associated with (P ′,W ′). Since G[P ] is connected and since
P ′ \ P ⊆ N(u), where u is the vertex with lowest index in P , also G[P ′] is connected. By
definition of Γ moreover |P ′ \ P | ≤ k − |P | and hence, P ′ contains at most k vertices.
Thus, we have proved (i).

It remains to prove (ii). Assume for the sake of contradiction that for some admissible
set P there is no node in Γ associated with the set (P,W ) for any set W . Consider
a node N ′ with associated tuple (P ′,W ′) in Γ with the longest path to the root such
that P ′ ⊆ P and N(W ′) ∩ (P \ P ′) = ∅; clearly, such a node exists. Consider the
vertex u′ ∈ P ′ \W ′ with lowest index and C = N(u′)∩(P \P ′). Note that C∩N(W ′) = ∅
as N(W ′)∩ (P \P ′) = ∅. Then, the child of N ′ with associated tuple (P ′ ∪C,W ′ ∪ {u′})
also fulfills our condition on its tuple but has a longer path to the root. This contradicts
our choice of N ′.

In order to bound the running time of constructing Γ, we divide the nodes of Γ
into different types. The first type are interesting leaves which are leaves N of Γ with
τ(N) = (P,W ) such that |P | = k. The second type are boring leaves which are the
remaining leaves. Note that for boring leaves we have |P | < k and P = W . The third
type are the parents of the interesting leaves and the fourth type are all remaining inner
nodes which we call deep inner nodes.

Lemma 2. The search tree Γ is of order at most
(

3 + 2
2∆−1−2

)
(e(∆− 1))k−1. Moreover,

the number of interesting leaves and number of parents of interesting leaves is at most
(e(∆− 1))k−1 each, there are at most 1

2∆−1−2 (e(∆− 1))k−1 deep inner nodes, and there

are at most
(

1 + 1
2∆−1−2

)
(e(∆− 1))k−1 boring leaves.

Proof. By definition, each node N with associated tuple τ(N ) = (P,W ) and vertex u
with lowest index in P \W has one child for every subset of R(N ) := N(u) \ (P ∪N(W ))

of size at most k − |P |. Hence, node N has at most
∑min{|R(N )|,|P |−k}
i=0

(|R(N )|
i

)
children.

In particular, the root of Γ has at most 2∆ children and each deep inner node has at
most 2∆−1 children (as some neighbor of u has to be in P already). Assume for the
moment that a search tree Γ∗ = Γ∗(G∗, v∗, k) exists that achieves the maximum possible
number of children in each node. Clearly, search tree Γ∗ contains at least as many nodes
as Γ, because search tree Γ can be embedded into Γ∗ in the natural way. Search tree Γ∗

also contains at least as many deep inner nodes. Furthermore, every boring leaf N of
search tree Γ can be mapped to a unique boring leaf of Γ∗: take the natural embedding
of Γ into Γ∗, the node N ∗ to which N corresponds in Γ∗ and then recursively follow
the (unique) child of N ∗, τ(N ∗) = (P ∗,W ∗) such that no vertex is added to P ∗. Hence,
search tree Γ∗ contains at least as many boring leaves than Γ. Similarly, search tree Γ∗

also contains at least as many interesting leaves.
It thus suffices to bound the numbers of nodes of Γ∗ instead of the corresponding

numbers of nodes of Γ. Let us fix a concrete G∗ and v∗ in Γ∗ = Γ∗(G∗, v∗, k) (in particular,
let us show that Γ∗ as defined above exists). Take as G∗ any tree that is rooted at some
vertex v∗, such that each vertex in G∗ has degree exactly ∆ and that has depth at
least k−1. As there are no two distinct paths from v∗ to any other vertex, in each node N
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of Γ∗ with associated tuple τ(N ) = (P,W ) and vertex u with lowest index in P \W we
indeed have |N(u) \ (P ∪N(W ))| = |N(u) \P | = |N(u)| − 1 = ∆− 1, except for the root,
where we have |N(u) \ (P ∪N(W ))| = |N(u)| = ∆. Hence, Γ∗ achieves the maximum
possible number of children in each node.

We first bound the number of interesting leaves in Γ∗. Since |P | = k in an interesting
leaf N with associated tuple (P,W ), graph G∗[P ] induces an order-k subtree of G∗ that
contains v∗. This mapping from the leaves to the set of order-k subtrees of G∗ that
contain v is injective: Assume the contrary, that is, there are two interesting leaves N1,N2

of Γ∗ that are mapped to the same tree. Consider the node N in Γ∗ with the longest path
to the root such that N lies on both paths from the root to N1 and N2. Consider the
tuple τ(N ) = (P,W ) associated with N , the successors N ′1,N ′2 of N on the corresponding
paths, and their associated tuples τ(N ′1) = (P1,W1), τ(N ′2) = (P2,W2). There is a
vertex w in exactly one of P1, P2 that is not in P , say w ∈ P1 \ P2. Thus, in the tree
induced by leaf N1, the vertex w is present whereas in the tree induced by N2 the vertex w
is missing. This is a contradiction to our assumption.

Hence, there is an injective mapping from the interesting leaves of Γ∗ to the set of
order-k subtrees of G∗ that contain v∗ and, invoking Theorem 1, their number is at
most (e(∆− 1))k−1. Clearly, the set of parents of interesting leaves also has at most this
cardinality.

We next aim to bound the number of deep inner nodes of Γ∗. First note that any
inner node of Γ∗ has at most one boring leaf as child. Hence, if we remove the leaves
from Γ∗, we obtain a tree Γ′ in which each inner node has at least 2∆−1 − 1 children.
Furthermore, as in each non-root node N of Γ′ with associated tuple (P,W ) we have
|N(u)\ (P ∪N(W ))| = |N(u)|−1, each node N is the ancestor of a parent of a interesting
leaf in Γ∗. Thus the leaves in Γ′ are a subset of the parents of interesting leaves in Γ∗, that
is, there are at most (e(∆− 1))k−1 leaves in Γ′. Using that each inner node in Γ′ has at
least 2∆−1 − 1 children, the number of inner nodes in Γ′ is at most 1

2∆−1−2 (e(∆− 1))k−1

which is also the number of deep inner nodes in Γ∗.
Finally, as noted above, each inner node of Γ∗ has at most one boring leaf as child.

Hence, the number of boring leaves is at most
(

1 + 1
2∆−1−2

)
(e(∆− 1))k−1.

A corollary of Lemma 2 is that the number of subgraphs of G that contain v and are
of order at most k is at most 3(e(∆− 1))k−1. Lemma 2 now yields a proof for Theorem 2.

Proof of Theorem 2. We construct Γ in a depth-first fashion, computing the associated
tuples of each node as follows. Clearly, the associated tuple of the root is given. For every
node, we will compute the associated tuples of all children. Hence, when processing a
node of Γ, we may assume that its tuple is given. We represent P and W in a tuple (P,W )
as well as all neighbors N(W ) of vertices in W as a set data structure that allows for
addition and lookup of single elements in O(1) time [11].

Let us describe the procedure for a certain node N associated with tuple τ(N ) =
(P,W ). We first report P as admissible set, which is correct by Lemma 1(i) and can be
done in O(k) time. Then we create a list containing the elements of N(u)\ (P ∪N(W )) in
arbitrary order, where u is the vertex with lowest index in P \W ; vertex u is retrievable in
O(k) time. It is possible to create the list in O(∆) time, because of the set data structures
used for P and N(W ). Once we created the list of N(u) \ (P ∪N(W )), we iterate over
all its sublists L corresponding to some set M with |M | ≤ k − |P | and, for each of them,
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make a recursive call for the child with associated tuple (P ∪M,W ∪ {u}). The recursive
call includes computing the tuple, which is possible in O(k) time, and updating the set
data structure for the vertices in N(W ), possible in O(∆) time. As creating the sublists
is possible in time linear in the number of sublists, processing each node N thus takes
O((∆ + k)) · (C(N ) + 1) time where C(N ) is the number of children of N in Γ.

We now derive the overall running time for constructing Γ. Clearly, each leaf of Γ
contributes O(∆ + k) processing time, amounting to O((e(∆− 1))k−1(∆ + k)) overall by
Lemma 2. The overall processing time contributed by the parents of the leaves is O(∆+k)
times the number of leaves, hence yielding the same asymptotic upper bound. Next, each
remaining node in Γ has at most 2∆ children and hence contributes O(2∆(∆+k)) processing
time. Using the bound on their number from Lemma 2, their overall contribution
is O(2∆(∆ + k)) · 1

2∆−1−2 · (e(∆− 1))k−1 = O((e(∆− 1))k−1 · (∆ + k)).

While the above enumeration scheme seems quite simple, its running time is asymp-
totically almost optimal. It is not hard to show that choosing G to be a (∆ − 1)-ary
tree yields many admissible sets, closely matching the upper bound of Lemma 2. We
show in Appendix A that G has at least 1

(∆−2)k+1

(
(∆−1)k

k

)
admissible sets. Let us derive

bounds for the binomial coefficient occurring here (the upper bound is also needed below
in Section 4).

Proposition 1.

1

e2

√
`

2π(`− 1)k

(
`

`− 1

)`k
(`− 1)k ≤

(
`k

k

)
≤ e

√
`

2π(`− 1)k

(
`

`− 1

)`k
(`− 1)k.

The proof is given in Appendix B. Using this estimate we obtain that in the worst case
the number of admissible sets can be at least

c

(
∆− 1

∆− 2

)(∆−1)k

· (∆− 2)k

∆k3/2

for some constant c > 0 independent of k and ∆. Let us consider the ratio ρ “upper
bound divided by lower bound” for fixed k. The kth root of the ratio ρ is

Θ

 e(∆− 1)(
∆−1
∆−2

)∆−1

(∆− 2)

 = Θ

 e(
∆−1
∆−2

)∆−2

 = Θ

 e(
1 + 1

∆−2

)∆−2


and, as lim∆→∞ (1 + 1/(∆− 2))

∆−2
= e, the ratio approaches some constant.

Even though the number of connected subgraphs of a fixed order of a graph is a
fundamental issue in graph theory, we are not aware of an algorithmic treatment as
above. Katrenic and Schiermeyer [33], Bonnet et al. [9] and Hermelin et al. [28, Lemma
5] use connected subgraph enumeration as a subroutine but they give a worse upper
bound of O(∆2k). Using Theorem 2, we can achieve the following by simply starting the
enumeration process from each vertex in G.

Theorem 3. Let (G,φ, k) be an instance of Fixed-Cardinality Optimization such
that

9



1. G has maximum degree ∆,
2. φ(S) = 0 if G[S] is not connected,
3. and φ(S) can be evaluated in T (k,G) time.

Then, (G,φ, k) can be solved in O((e(∆− 1))k−1 · (∆ + k) · n) · T (k,G) time.

There are many natural Fixed-Cardinality Optimization problems that fulfill
the conditions of Theorem 3. For example, if we take φG(S) to be the diameter of G[S],
we arrive at an optimization version of the s-Club problem [3, 4, 44] which asks to find
a subgraph of order k that has diameter at most s. Note that this problem is nontrivial
only if k > ∆. As a consequence, the above theorem improves on the previously reported
overall running time of O((k − 2)k · k! · kn+ nm) for s-Club parameterized by k [44].

We note that for this specific set of special cases of Fixed-Cardinality Optimiza-
tion, we obtain, compared to the random separation method, an improved exponential
part of the running time. Moreover, our algorithm is deterministic and runs in linear
time for fixed values of ∆ and k if T (k,G) ≤ f(k,∆) for some function f .

3.2. Combining Solutions from Different Connected Graphs

In the case of general objective functions φ, the optimal solution for φ could be a
vertex set S such that G[S] is not connected. This is in particular the case for Densest
k-Subgraph: If the input graph consists for example of two cliques of order k/2 that
are connected by a long path of degree-two vertices, then, for sufficiently large k, the
optimal solution consists exactly of the two cliques and it is thus disconnected. However,
the objective function of Densest k-Subgraph has, as many objective functions for
Fixed-Cardinality Optimization, the useful property that connected components
can be considered independently when evaluating the function. This can be formalized in
a general way as follows.

Definition 1. Let G = (V,E) be a graph, let φ : 2V → Q be an objective function,
let S, T ⊆ V be arbitrary disjoint vertex sets, and let χ : Q × Q → Q such that χ
is nondecreasing in both arguments individually. We call φ component sub-χ if the
functions φ and χ fulfill that φ(S) ≤ χ(φ(W ), φ(S\W )) where W is an arbitrary connected
component of G[S]. Furthermore, we call φ super-χ if φ(S ∪ T ) ≥ χ(φ(S), φ(T )). If both
properties hold for φ, we call it component χ-linear.

Informally, the idea behind component χ-linearity is as follows. The value of φ(S)
can be evaluated by first evaluating subsets S1, S2 ⊆ S of S. If φ is component χ-linear,
the only possibility that the value of φ(S) is much larger than a “combination” of φ(S1)
and φ(S2) is if there are edges between S1 and S2. Hence, connected components of G[S]
can be first evaluated separately and then be combined.

It is easy to check that, taking φ(S) as the number of edges in G[S] and χ(a, b) =
a+ b we obtain an objective function corresponding to Densest k-Subgraph which is
component +-linear. In the following, we extend our enumeration algorithm to Fixed-
Cardinality Optimization with component χ-linear objective functions. We then
demonstrate in Section 3.3 why we think that the above general definition of component
χ-linearity is useful. Our algorithm for Fixed-Cardinality Optimization, based on
the color coding technique [1], is randomized with false negatives. It can be derandomized
with an additional running time factor of 2O(k) · log n [1].

10



Let S be a vertex set of order k such that φ(S) is maximum. The basic idea of color
coding is to color the vertices of the input graph uniformly at random with a set C of k
colors and to hope that S is colorful, that is, for each color in C there is exactly one vertex
in S that has received this color. With some nonzero probability, the coloring will satisfy
this property. Assuming the graph is colored this way, first use the enumeration algorithm
to find all connected components of G[S]. Then combine these connected graphs by
applying dynamic programming. The color-coding/enumeration/dynamic programming
routine is repeated sufficiently enough to achieve constant error probability. The details
are as follows.

Apply the coloring to the vertex set. After the coloring, first compute for every
subset C ′ of C the connected subgraph G[S′] that maximizes φ(S′) among all connected
subgraphs whose vertices have color set C ′. This can be easily achieved by adapting
the enumeration algorithm of Theorem 2 to only report colorful connected graphs and
then evaluating φ for each enumerated colorful graph G[S′]. We fill a table D storing the
currently best value for each color subset as follows. We initialize D by setting D(C ′) :=
−∞ for all C ′ ⊆ C. If during the enumeration we find some S′ with color set C ′

and D(C ′) ≤ φ(S′), then we set D(C ′)← φ(S′). After the enumeration of all connected
subgraphs the entry D(C ′) contains exactly the maximum objective value among all
connected subgraphs with color set C ′. Afterwards, we find the maximum objective value
of any graph with color set C using another table T . Here, the entry in T (C ′) for some
color set C ′ ⊆ C contains the maximum of φ(S) for all vertex sets S with color set C ′.
We can fill T (C ′) by the following recurrence:

Lemma 3.
T (C ′) = max{D(C ′), max

C′′⊂C′
χ(T (C ′′), T (C ′ \ C ′′))}.

Proof. We first prove that the left hand side is at most as large as the right hand side
and then the other direction.

“≤”: Let S ⊆ V be a “witness” for T (C ′), that is, G[S] is colorful with color
set C ′ and φ(S) = T (C ′). If G[S] is connected, then T (C ′) = D(C ′), as required.
If G[S] is disconnected, then for an arbitrary connected component W of S we have
T (C ′) ≤ χ(φ(W ), φ(S \W )) because φ is component sub-χ. Since χ is nondecreasing we
have

χ(φ(W ), φ(S \W )) ≤ χ(D(C ′′), T (C ′ \ C ′′)) ≤ χ(T (C ′′), T (C ′ \ C ′′))

where C ′′ is the set of colors in G[W ]. Thus T (C ′) ≤ χ(T (C ′′), T (C ′ \ C ′′)).
“≥”: We have T (C ′) ≥ D(C ′) by definition. Let S and T , S ∩ T = ∅, be witnesses

for T (C ′′) and T (C ′ \ C ′′), respectively, for a set C ′′ ⊆ C ′. Since φ is super-χ, we
have φ(S ∪ T ) ≥ χ(φ(S), φ(T )) and hence also T (C ′) ≥ χ(T (C ′′), T (C ′ \ C ′′)).

Thus, after filling T according to the above recurrence, the maximum objective value of
any colorful solution of order k is stored in T (C).

By repeating the above algorithm O(ek) times one can achieve a constant error
probability that in one of the repetitions, called trials, the solution has indeed obtained a
colorful coloring. If T (k,G) is an upper bound on the time needed to evaluate φ, and χ,
then this leads to an overall running time of O((e2(∆− 1))k−1 · (∆ + k) · n) · T (k,G) for
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the algorithm: For each trial the table T can be evaluated in O(3k) · T (k,G) time,3 and
thus the dominating part of the running time is the subgraph enumeration procedure.

In the following, we describe how this running time can be further improved by
employing a known speed-up trick for color coding [17, 31]. The idea is to increase
the number of colors, that is, to use ck colors, c > 1, when coloring the vertices. This
modification has two effects. On the one hand, it increases the probability that the
solution is colorful which reduces the number of necessary trials. On the other hand, it
increases the running time needed for the dynamic programming, since the table now
has Θ(2ck) entries. Hence, there is a running time trade-off between the two parts of the
algorithm. In our application, we can observe that the dominating part of the running
time for each trial is the subgraph enumeration which does not depend on the number of
colors but only on k. Hence, it makes sense to increase the number of colors as long as
the dynamic programming part is still faster than the subgraph enumeration part. As a
result, we can achieve a sizable speed-up, the concrete analysis is as follows.

First, the probability Pc, c > 1, that an optimal solution S ⊆ V is colorful when
coloring V uniformly at random with ck colors is

Pc =

(
ck
k

)
k!

(ck)k
≥ 1

e2

√
c

2π(c− 1)k

(
c

c− 1

)ck
(c− 1)k

√
2πkk+ 1

2
1

(eck)k

=
1

e2

√
c

c− 1

((
c

c− 1

)c
c− 1

ec

)k
=

1

e2

√
c

c− 1

((
c

c− 1

)c−1
1

e

)k
where the inequality holds due to Stirling’s approximation and Proposition 3. We make
d1/Pce coloring trials. The probability to have at least one trial in ` such that the optimal
solution S is colorful is 1− (1− Pc)`. The probability of success is thus at least 1− 1/e
because 1− (1− Pc)1/Pc ≥ 1− 1/e. Then the enumeration of the connected subgraphs
takes O(1/Pc · (e(∆− 1))k−1 · (∆ + k) · n · T (k,G)) time overall, whereas the dynamic
programming part contributes O(1/Pc · 3ck) · T (k,G) time. Hence, if we choose c in such
a way that 3ck ∈ O((e(∆− 1))k−1), then the overall running time is dominated by the
enumeration procedures. We claim that this is the case if we let c be smallest possible
such that c ≥ (1− 1/k) · log3(e(∆− 1)) and such that ck is an integer. First we note that
it is possible to choose c in this way, that is, (1− 1/k) · log3(e(∆− 1)) ≥ 1. Indeed, this
is true if and only if log3 e+ log3(∆− 1) ≥ k/(k − 1). Note that ∆, k ≥ 3 without loss
of generality,4 and thus log3 e+ log3(∆− 1) ≥ 3/2 and 3/2 ≥ k/(k − 1). Hence we may
choose c in this way. We see 3ck ∈ O((e(∆ − 1))k−1) as follows. Because increasing c
by 1/k increases the integer part of ck, we have c ≤ (1− 1/k) log3(e(∆− 1)) + 1/k and
thus 3ck ≤ 3(k−1) log3(e(∆−1))+1 = 3(e(∆− 1))k−1. Since the probability Pc is monotone

3We include the function T in this time bound since the values produced by φ and χ could be very
large in the general case.

4If ∆ ≤ 2 then the number of order k subgraphs is linear in the number of vertices and if k ≤ 2 then
the number of order-k subgraphs is O(∆n). In both cases enumeration is possible in linear time in the
number of subgraphs, and, together with color coding and dynamic programming, it is not hard to obtain
a running time of O(3k · ∆ · n) · T (k,G) for optimizing the objective function.
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∆ 3 4 5 6 10

γ/(∆− 1) 4.2 3.8 3.6 3.5 3.4
γ 8.4 11.3 14.4 17.5 29.8

Table 2: Approximate values of the base γ in the exponential running time factor in the improved color
coding/dynamic programming routine.

ascending for increasing c, the overall running time is in the order of

1

Plog3(e(∆−1))
· (e(∆− 1))k−1 · (∆ + k) · n · T (k,G)

∼

((
log3(e(∆− 1))− 1

log3(e(∆− 1))

)log3(e(∆−1))−1

e2(∆− 1))

)k−1

· (∆ + k) · n · T (k,G)

=

(loge(∆−1)

e(∆− 1)

3

)log3
e(∆−1)

3

e2(∆− 1)

k−1

· (∆ + k) · n · T (k,G).

It seems complicated to bring the base in the exponential term, let us call the base γ,
into a more readable form. We give some numerical evaluations in Table 2.

Note that, choosing c as above, the base in the exponential factor of Pc tends to one
for increasing ∆. Thus the overall running time of the algorithm tends to O((e(∆− 1))k ·
(∆ + k) · n) · T (k,G) as ∆ increases. For example, for all ∆ ≥ 5 we obtain the upper
bound of O(((e+ 0.9)(∆− 1))k · (∆ + k) · n) · T (k,G). Concrete values for γ are given in
Table 2. Concluding, we obtain the following theorem.

Theorem 4. Let (G,φ, k) be an instance of Fixed-Cardinality Optimization such
that

1. G has maximum degree ∆ > 2,
2. φ is component χ-linear,
3. and φ as well as χ can be evaluated in T (k,G) time.

Then, (G,φ, k) can be solved in O(γk−1 · (∆ + k) · n) · T (k,G) time, reporting a yes-
instance as a no-instance with probability at most 1/e. Here γ = (logβ(β/3))log3(β/3)eβ
and β = e(∆− 1). In particular, γ ≤ 4.2 · (∆− 1).

3.3. Concrete Examples for Component Linear Functions

We conclude this section with concrete examples for Definition 1 and Theorem 4.
First, the algorithm above applied to Densest k-Subgraph has a worst-case running
time of O((4.2 · (∆ − 1))k−1 · (∆ + k) · k2 · n). Using random separation, Densest
k-Subgraph can be solved in 2O(∆k) · (∆ + k) · n time with one-sided error and constant
error probability [14]; our algorithm thus improves on this running time.

Second, an objective function that is not component χ-linear for any function χ as in
Definition 1 is φ(S) defined as “maximum size of an independent set in G[S]”. To see
this, take any function χ that fulfills the two properties demanded by Definition 1. Then,
χ(φ(S), φ(T )) ≤ max{φ(S), φ(T )}: For any i and j, the complete bipartite graph with
partite sets A and B of size i and j, respectively, fulfills φ(A ∪ B) = max{|A|, |B|} =
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max{φ(A), φ(B)}. Since φ is super-χ we thus have χ(i, j) ≤ max{i, j}. However, for
vertex sets S and a connected component W in G[S] we have

φ(S) = φ(W ) + φ(S \W ) ≤ χ(φ(W ), φ(S \W )) ≤ max{φ(W ), φ(S \W )}

because φ is component sub-χ. This is absurd because for nonempty W and S \W we
clearly have φ(W ) + φ(S \W ) > max{φ(W ), φ(S \W )}.

Third, we demonstrate the merit of stating Definition 1 in the present general way.
Suppose we are given a graph G = (V,E) and are asked to decide whether among the
densest k-vertex subgraphs of G, there is one with a connected component of size at
least `. We may define a corresponding objective function

φ(S) := |E(G[S])| · 2dlog ke + max{|W | |W is a connected component of G[S]},

that is, the last dlog ke bits of φ(S) are reserved for the size of a largest connected
component of G[S]. Then we can define a function χ(a, b) that sums the first bits and
takes the maximum of the last dlog ke bits. This function is monotone ascending in both
arguments and it is easy to check that φ is component sub-χ. To see that it is super-χ it
suffices to observe that the number of edges in G[S ∪ T ] is at least as large as the sum
of the edges in G[S] and G[T ] for disjoint S, T and similarly for the size of the largest
component. Hence φ is component χ-linear and we may apply Theorem 4 to decide the
above property of G.

Finally, we note that our framework is applicable to a subclass of Fixed-Cardinality
Optimization, the so-called fixed-cardinality graph partitioning problems [9, 45]. In
these problems a graph G = (V,E) and an integer p is given and the task is to decide if
there is a k-vertex subset S ⊆ V such that φ(S) := a|E(S)|+ b|δ(S)| is at least p. Here,
a, b, and k are fixed constants, E(S) is the set of edges in G[S], and δ(S) is the set of
edges with exactly one endpoint in S. It is not hard to show that, whenever a ≥ 2b,
then φ is component +-linear (see Appendix C). Thus Theorem 4 is also applicable to
any fixed-cardinality graph partitioning problem with a ≥ 2b. Combining Theorem 4
with an O(∆k · poly(n))-time algorithm of Bonnet et al. [9] for the case a ≤ 2b yields
an algorithm for general fixed-cardinality graph partitioning problems with running
time O(γk−1 · poly(n)), where γ is as defined in Theorem 4. For all ∆ ≥ 4 the resulting
algorithm improves on the running time upper bound O(4k+o(k) ·∆k · poly(n)) achieved
recently by Shachnai and Zehavi [45].

4. Application to µ-Clique

We now describe how to use the algorithms presented for Fixed-Cardinality
Optimization in order to obtain fixed-parameter algorithms for µ-Clique. More
precisely, this will lead to fixed-parameter algorithms for the parameters maximum
degree ∆ of G and the h-index of G, and for the combined parameter that comprises n−k
and degeneracy d of G. Before presenting these algorithms, we observe relationships
between the order of µ-cliques and the sparsity parameters under consideration.

4.1. Upper-Bounding the Solution Size

The relation between the order of a µ-clique and its maximum degree, h-index and
degeneracy is as follows.
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Lemma 4. A µ-clique with
(i) maximum degree ∆ has order at most ∆/µ+ 1.

(ii) h-index h has order at most h·(h−1)+2·(n−h)·h
µ·(n−1) < 2·h

µ .

(iii) degeneracy d has order less than (4 · d+ µ)/2 · µ.

Proof. Let G be a µ-clique of order n.
(i): If G has maximum degree ∆ it has at most n ·∆/2 edges. Since its density is at

least µ it has at least µ ·
(
n
2

)
edges. Combining the two statements we get

µ · n · (n− 1)

2
≤ n ·∆

2

and thus n ≤ ∆/µ+ 1.
(ii): If G has h-index h it has at most h vertices of degree more than h. Hence, at

least n− h vertices have degree at most h. Let H denote the set of at most h vertices
that have degree more than h, and let EH denote the set of edges with both endpoints
in H. Clearly, |EH | ≤

(
h
2

)
. Since all vertices in V \H have degree at most h, there can be

at most (n− h) · h edges incident with these vertices. Hence, the total number of edges
in G is at most

(
h
2

)
+ (n − h) · h. Combining this with the lower bound µ ·

(
n
2

)
for the

edge number of G we get

µ · n · (n− 1)

2
≤ h · (h− 1)

2
+ (n− h) · h

and thus

n ≤ h · (h− 1) + 2 · (n− h) · h
µ · (n− 1)

≤ 2 · h
µ

.

(iii): If G is d-degenerate, it has at most d · (n− d+1
2 ) edges. Thus,

µ · n · (n− 1)

2
≤ d · (n− d+ 1

2
)

which implies

n ≤ 2 · d+ µ+
√

4d2 − 4d2µ+ µ2

2 · µ
<

4 · d+ µ

2 · µ
.

The upper bound h·(h−1)+2·(n−h)·h
µ·(n−1) on the order of µ-cliques is tight as a graph

consisting of a clique of order h and of n− h further vertices that are an independent set
but adjacent to all vertices of the clique has density exactly µ if n is equal to the upper
bound. It is not hard to see that also the upper bound for the order with respect to the
maximum degree is tight. The bound with respect to the degeneracy can be improved
slightly, but this is not the main focus of this article.

4.2. Parameterization by Maximum Degree

The fixed-parameter algorithms for this parameterization can be obtained by a
straightforward application of the generic algorithms described in Section 3 with the size
bounds given by Lemma 4.
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In most application settings for µ-Clique, one would add the further constraint that
the solution has to induce a connected subgraph. By Lemma 4, we have k ≤ ∆/µ+ 1.
Furthermore, for each vertex set S ⊆ V of order at most k, we can compute the number
of edges in G[S] in O(k · ∆) time: for each vertex v of S find all neighbors of v in S
by traversing its adjacency list once. Hence, T (k,G), the time needed to compute the
objective function, is O(k ·∆) in this case. Plugging both bounds into the time bound
given by Theorem 3, we obtain the following.

Proposition 2. For any fixed µ, 0 < µ < 1, we can determine in O((e(∆ − 1))∆/µ ·
∆3/µ2 · n) time whether G contains a connected µ-clique of order k. Herein, ∆ is the
maximum degree of G.

For the general case, in which the solution S may be disconnected, we may use the
running time given in Theorem 4 instead, since the objective function “number of edges
in a graph” is component linear.

Theorem 5. For any fixed µ, 0 < µ < 1, µ-Clique can be solved in time O((4.2 · (∆−
1))∆/µ ·∆3/µ2 · n), reporting a yes-instance as a no-instance with probability at most 1/e.
Herein, ∆ is the maximum degree in the input graph.

4.3. Parameterization by h-index.

We now describe how to extend our fixed-parameter results to also hold for the
parameter h-index of the input graph. In many practical applications the h-index is much
smaller than the maximum degree. For example, social and biological networks have few
so-called hubs, that is, vertices of very high degree, and many low-degree vertices. Hence,
the h-index is a better parameter than the maximum degree ∆ for these graphs.

The main idea of the algorithm is as follows. Let H be the set of the h vertices with
degree at least h, and assume that S is a vertex set of size k such that G[S] is a µ-clique.
First, by trying all 2h subsets of H, guess the set HS of vertices that are in S ∩H. Fix
one such set HS . It remains to determine which vertices of V \ H belong to S. The
number of edges in S depends on the number of edges between S \HS and HS and of
the number of edges between vertices of HS . Hence, our goal in the following is simply to
find a subgraph of V \H that maximizes this number.

Accordingly, we compute for every vertex v ∈ V \H the number degHs
(v) of neighbors

of v in HS . Define the value φ(S′), S′ ⊆ V \H, of a subgraph G[S′] of the graph G[V \H]
to be

φ(S′) := |E(G[S′])|+
∑
v∈S′

degHs
(v).

The task is to find a vertex set S′ ⊆ V \H of order k − |HS | that maximizes φ(S′). The
overall maximum number of edges for any subgraph of order k containing HS is then this
value plus the number of edges in G[HS ]. The overall optimum solution is simply the
maximum among all possible choices of HS .

The running time of this algorithm can be bounded as follows. We try 2h different
possibilities for HS . For each possibility, we first compute degHs

(v) for each vertex
in V \ H which can be performed in O(h · n) time since all vertices in V \ H have
degree at most h. Then, we solve Fixed-Cardinality Optimization with φ as defined
above. Clearly, φ is component +-linear. Furthermore, by Lemma 4 we have k <
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2h/µ and thus also k − |HS | < 2h/µ. Since the maximum degree in G[V \ H] is h,
solving each instance of Fixed-Cardinality Optimization can thus be performed
in O((4.2 · (h− 1))2h/µ · h2/µ2 · n) time.

Altogether, we obtain the following.

Theorem 6. µ-Clique can be solved in time O(2h ·(4.2 ·(h−1))2h/µ ·h2/µ2 ·n), reporting
a yes-instance as no-instance with probability at most 1/e where h is the h-index of the
input graph.

4.4. Parameterization by Degeneracy and Dual Parameter

Our final application of the generic algorithm will lead to a fixed-parameter tractability
result for Densest k-Subgraph parameterized by the combined parameter degeneracy d
and ` := n− k. As we will show in the next section, it is not possible to achieve fixed-
parameter tractability for either d or ` alone. Hence, it is interesting to study their
combination. Recall that in µ-Clique we fix some constant minimum density µ of the
sought graph. This is necessary to bound the maximum value of k and, ultimately, obtain
feasible running time bounds. For the combined parameter (d, `) this constraint can be
dropped leading to an algorithm for Densest k-Subgraph. The algorithm is mainly
based on the following observation.

Lemma 5. Let G = (V,E) be a graph and let S ⊆ V such that |S| = k and G[S] has
maximum density among all subgraphs of order k. Then, there is no vertex in V \ S that
has degree at least `+ d, where ` = n− k.

Proof. Assume that there is a vertex v of degree at least `+ d in V \ S. Since v has at
most `− 1 neighbors in V \ S, it has at least d+ 1 neighbors in S. However, because G is
d-degenerate, there is a vertex u of degree at most d in G[S]. Thus, G[(S \ {u}) ∪ {v}] is
a graph with at least one edge more than G[S]. This contradicts the fact that G[S] is
densest possible.

Note that we can regard Densest k-Subgraph as the problem of deleting a set of
exactly ` vertices while removing the least possible number of edges. In other words, we
aim to solve a minimization variant of Fixed-Cardinality Optimization where φ is
defined as

φ(S) :=

(∑
v∈S

deg(v)

)
− |E(G[S])|.

We can translate this easily into a maximization variant by changing the sign of the
function and adding a normalizing term of n to the contribution of each vertex. Formally,
we aim to solve Fixed-Cardinality Optimization with

φ(S) :=

(∑
v∈S

n− deg(v)

)
+ |E(G[S])|.

Note that this objective function is component +-linear: The first part of the sum is
independent of the edges in the subgraph and the second part is simply a sum of the
edges. Hence, if a set S consists of two connected components, the value of φ(S) is the
sum of the objective values of the two, that is, φ is component sub-+. Further, if S and T
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are disjoint, then φ(S ∪ T ) is the sum of the two objective values plus the number of
edges going between S and T in G meaning that φ is super-+. Consequently, we can
apply Theorem 4 to the corresponding problem.

By Lemma 5 we can focus on the subgraph G′ of G that contains only the vertices of
degree at most `+d. Computing G and computing the value of n−deg(v) for each vertex
of G′ can be performed in O(m) time. Further, the solution size is constrained to be
exactly `. Finally, evaluating φ(S) for a vertex set in S can be performed in O((`+d) · |S|)
time. Altogether, this results in the following.

Theorem 7. Densest k-Subgraph can be solved in O((4.2 ·(`+d−1))` ·`2 ·n+m) time,
reporting a yes-instance as no-instance with probability at most 1/e, where ` := n − k
and d is the degeneracy of the input graph.

5. Hardness Results

In this section, we present two reductions that show the limits of the approach
presented above. That is, we show that we cannot replace the h-index by the smaller
parameter in Theorem 6, retaining fixed-parameter tractability. Similarly, it is not possible
to drop the degeneracy or ` from the parameterization in Theorem 7. It is noteworthy
that the second result stands in contrast to Clique which does admit a fixed-parameter
algorithm with respect to `.

5.1. W[1]-hardness for Parameterization by Dual

First, we show that considering only the dual parameter ` leads to W[1]-hardness also
in the case of µ-Clique.

Theorem 8. For any fixed µ, 0 < µ < 1, µ-Clique is W[1]-hard with respect to the
parameter ` = n− k.

To present the corresponding reduction we need to construct a gadget graph of a given
density and some further properties as follows.

Lemma 6. Given four positive integers a, b, c, and d, where a < b and d ≤ c(c− 1)/2,
we can construct in poly(a, b, c, d) time a graph G such that
− G is 2(a− 1)-connected, has maximum degree at most 2a, and
− adding c vertices and d edges to G results in a graph that has density exactly a/b and
has average degree more than a.

The proof is similar to the proof in [26, Lemma 2]. We make a small tweak to obtain
bounded maximum degree.

Proof of Lemma 6. Without loss of generality, assume that b − a > 1 and that a > 1.
Otherwise we can show the claim using 2a instead of a and 2b instead of b. We set the
number of vertices of G to n := (2b− 1)c and the number of edges to m := ac(2bc− 1)−d.
First, since

2m < 2ac(2bc− 1) ≤ 2(b− 2)c(2bc− 1)

= (2bc− 4c)(2bc− 1)

< (n− 3c)(n+ c)

< n(n− 1)
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there is indeed a simple graph with the claimed number of edges. Moreover, since

m

n
=
ac(2bc− 1)− d

(2bc− 1)c
= a− d

(2bc− 1)c
,

it holds that a ≥ m/n > a− 1. Thus, we can first add (a− 1)n edges to G in polynomial
time such that G is 2(a− 1)-connected and has maximum degree at most 2(a− 1) [27].
Then, we add the remaining at most n edges to G such that they allow for a partition
into two matchings, increasing the maximum degree by at most two.

The density of the graph G′ that results from adding c vertices and d edges to G is

2(m+ d)

(n+ c)(n+ c− 1)
=

2(ac(2bc− 1)− d+ d)

(2bc− c+ c)(2bc− c− 1 + c)
=

2ac(2bc− 1)

(2bc)(2bc− 1)
=
a

b
.

The average degree of G′ follows directly.

The above construction is also used in Section 5.2. We are now ready to prove
Theorem 8.

Proof of Theorem 8. We reduce from the W[1]-hard Clique problem [18, 19]. Let (G =
(V,E), s) be an instance of Clique, that is, G is an undirected graph, and we ask
whether G contains a clique of order s. Assume without loss of generality that µ = a/b,
and that a = δ|V | for some integer constant δ > 2. In the following, we describe how to
construct a graph G∗ such that deleting n− k vertices from G∗ yields a µ-clique if and
only if G has a clique of order s.

The idea of the construction can be roughly described as follows. We add to G a large
and dense graph H = (W,F ) that has minimum degree much larger than |V |. Then, we
add edges between H and G such that in the resulting graph G∗, all vertices from V
have degree |V |. Then we show that G∗ is not a µ-clique and that, because of the way H
is constructed, only by deleting exactly s vertices from V that induce a clique in G we
can obtain a subgraph of G∗ that has density µ and at least |W |+ |V | − s vertices. The
crucial observation that helps proving that we must delete a clique is that

1. by deleting a clique, we remove |V |+(|V |−1)+. . .+(|V |−s+1) = |V |·s−(s−1)·s/2
edges from G∗, and

2. by deleting a set of vertices that is not a clique, we remove more edges from G∗.
Next, we describe the details of the construction. We construct H = (W,F ) such that

it fulfills the following condition: A graph that contains H as induced subgraph and

– |V | − s additional vertices and

– |E|+
(∑

v∈V (|V | − degG(v))
)
− (|V | · s− (s− 1) · s/2) additional edges

has density exactly µ = a/b. By Lemma 6 we can construct H in poly(a, b, |V |) time such
that it fulfills this condition and such that

– H is 2(a− 1)-connected, and

– a graph that contains H and the above described additional number of vertices and
edges has average degree more than a.
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(b) The connections to the gadget
graph H that is added to G. For
each vertex v of G we add 4 −
deg(v) edges between v and H.

.

.

.

.

.

.

.

HG

(c) Deleting in G∗ a clique of order
three from G deletes 3 · 4 − 3 = 9
edges from G∗. If a set of three
deleted vertices is not a clique
in G, more edges are deleted.

Figure 1: An illustration of the reduction presented in the proof of Theorem 8.

Initially, let G∗ := (V ∪W,E ∪ F ) be the disjoint union of the graphs G and H. Then
we add for each vertex v ∈ V exactly |V | − degG(v) edges to G∗ between v and H
(the neighbors of v in H can be chosen arbitrarily). After adding these edges, every
vertex v ∈ V has degree exactly |V | in G∗. A schematic illustration is presented in Figure 1.

We complete the construction of the µ-Clique instance by setting k := n− s (recall
that n denotes the number of vertices in the µ-Clique instance, that is, n = |V |+ |W |).
Clearly, the described construction can be performed in polynomial time. Note that
the parameter of the Clique instance is s and the parameter of the µ-Clique instance
is n − k = s, that is, the reduction is parameter-preserving. To prove the theorem, it
remains to show that.

(G, s) is a yes-instance of Clique ⇔ (G∗, k) is a yes-instance of µ-Clique

⇒: Let S := {v1, . . . , vs} be an order-s clique in G. We show that G∗−S is a µ-clique
with k vertices. Clearly, the overall number of vertices in G∗−S is n− s = k. The overall
number of edges in G∗−S is |F |+ |E|+

(∑
v∈V (|V | − degG(v))

)
− (|V | · s− (s− 1) · s/2)

which can be seen as follows. First, note that, by construction, G∗ has |F | + |E| +(∑
v∈V (|V | − degG(v))

)
edges. Hence, it remains to show that the number of edges that

have at least one endpoint in S is |V | · s− (s− 1) · s/2. Since S is a size-s clique and since
each vertex v ∈ S has degree exactly |V | in G∗, each vertex v ∈ S has exactly |V |− (s−1)
neighbors in (W ∪V ) \S. Furthermore, there are exactly

(
s
2

)
= (s− 1) · s/2 edges in G[S].

Hence, the overall number of edges with at least one endpoint in S is

s · (|V | − (s− 1)) + (s− 1) · s/2) = |V | · s− (s− 1) · s/2.

The claimed overall number of edges in G∗−S follows. Consequently, G∗−S is a µ-clique.
⇐: Let S ⊆W ∪ V be a vertex set such that G∗ − S is a µ-clique of order at least k.

Clearly, |S| ≤ s. We show that G contains an order-s clique by showing the following
claims. First, we show that it can be assumed that S ⊆ V . Second, we show that |S| = s.
Finally, we show that G[S] is a clique.

First, we show that it can be assumed that S ⊆ V . Suppose that S contains some
vertex w ∈ W . Note that w has in G∗ at least 4|V | − s > |V | neighbors in W \ S
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since H (which is a subgraph of G∗) is 4|V |-connected (because we have chosen a such
that 2(a − 1) ≥ 4|V |). Let v be some arbitrary vertex in V \ S. Clearly, v has degree
at most |V | in G∗ − S. Therefore, deleting the set S′ := {v} ∪ S \ {w} from G∗ yields
a graph that has more edges than G∗ − S and, obviously, the same number of vertices.
Since G∗ − S is a µ-clique, so is G∗ − S′. This “replacement procedure” can be applied
as long as S contains a vertex from W . Hence, we can assume without loss of generality
that S ⊆ V .

Second, we show that |S| = s. More precisely, we show that for all vertex sets S :=
{v1, . . . , vi} of size i < s it holds that G∗ − S has density less than µ. Let S′ :=
{v1, . . . , vi, . . . , vs} be an arbitrary size-s superset of S. Note that G∗ − S′ has at most

|F |+ |E|+

(∑
v∈V

(|V | − degG(v))

)
− (|V | · s− (s− 1) · s/2)

edges which can be seen as follows. The number of edges in G∗ is m := |F | + |E| +(∑
v∈V (|V | − degG(v))

)
. The graph G∗1 := G∗ − v1 has at most m− |V | edges, since the

minimum degree in G∗ is |V |. Consequently, the graph G∗2 := G∗1 − v2 has at most m−
|V | − (|V | − 1) edges, the graph G∗3 := G∗2− v3 has at most m− |V | − (|V | − 1)− (|V | − 2)
edges, and so on. Hence, the number of edges in G∗ − S′ is at most

m− |V | − (|V | − 1)− . . .− (|V | − s+ 1)

= |F |+ |E|+

(∑
v∈V

(|V | − degG(v))

)
− (|V | · s− (s− 1) · s/2).

This means, by construction of H, that G∗ − S′ has density at most µ. For illustrative
purposes, suppose that G∗−S is obtained from G∗−S′ by adding, one by one, the vertices
from S′ \ S. Furthermore, note that G∗ − S′ has, again by construction of H, average
degree more than a > 2|V |. Finally, note that the vertices that are added to G∗−S′ have
degree at most |V | in the final graph G∗ − S. This means that G∗ − S must have density
less than µ since G∗ − S′ has average degree at least 2|V | and adding a vertex to a graph
whose degree is (after it has been added to the graph) less than the average degree of
the graph before the vertex has been added reduces the density (note that by adding at
most s < |V | vertices to G∗ − S′ we always produce a graph with average degree more
than |V |). Summarizing, the graph G∗ − S has density less than µ if |S| < s.

Finally, we show that G[S] is a clique. Note that, as argued above, G∗ − S has
at most F | + |E| +

(∑
v∈V (|V | − degG(v))

)
− (|V | · s − (s − 1) · s/2) edges. Hence, by

construction of H and by the fact that G∗ − S is a µ-clique, it also holds that G∗ − S
has exactly this many edges. Let mS denote the number of edges in G[S]. The number
of edges that are removed from G∗ by the deletion of S is

∑
v∈S |V | −mS , since every

vertex has degree exactly |V | in G∗. It follows that mS = (s− 1) · s/2) and, therefore,
that G[S] is a clique.

Somehow counter-intuitively, the reduction used to prove Theorem 8 suggests that in
order to obtain a graph with density µ it might be of advantage to delete a clique from the
input graph. Hence, one cannot expect that the set of removed vertices induces a sparse
graph. From the above reduction, we also obtain a lower bound on the running time of
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algorithms for µ-Clique. This bound is based on the exponential-time hypothesis (ETH)
which assumes that 3SAT cannot be solved in 2o(n) time [32, 39].

Theorem 9. For any fixed µ, 0 < µ ≤ 1, µ-Clique cannot be solved in time 2o(∆) ·poly(n)
unless the exponential time hypothesis (ETH) fails. Herein, ∆ is the maximum degree of
the input graph.

Proof. Unless the ETH fails, Clique does not have algorithms with running time 2o(n) [32].
We observe that the reduction used in Theorem 8 produces instances with maximum
degree at most cn, where n is the number of vertices in the Clique instance and c a
constant. Thus, since the h-index is upper bounded by the maximum degree, if there is
an algorithm with the claimed running time for µ-Clique, there is also a subexponential
algorithm for Clique and the ETH fails.

To observe the bound on the maximum degree, consider the graph G∗ in the construc-
tion. Every vertex in G∗ that stems from G has degree exactly n = |V |. Every vertex
in H has degree at most 2a = 2δn for some constant δ by Lemma 6 and the way we have
chosen a in the construction. In the course of the construction, every vertex in H gets at
most n additional neighbors that stem from G, and, thus, the maximum degree in G∗ is
at most (2δ + 1)n.

Clearly, Theorem 9 also excludes algorithms with running time 2o(h) where h is the
h-index of the input graph. We remark that the number of vertices in the produced
instance can only be bounded by a quadratic polynomial in the number of vertices of the
clique instance. Hence, the exclusion of subexponential algorithms for µ-Clique with
respect to the number of vertices and 0 < µ < 1 does not follow from Theorem 8.

5.2. W[1]-hardness for Parameterization by Degeneracy and Solution Size

Next, we show that the parameter h-index cannot be replaced by the smaller parameter
degeneracy.

Theorem 10. For any fixed µ, 0 < µ < 1, µ-Clique is W[1]-hard parameterized by (d, k),
where d denotes the degeneracy of the input graph.

Proof. We reduce from Clique. Let (G = (V,E), s) be an instance of Clique. An
equivalent instance of µ-Clique, 0 < µ < 1, is constructed from G as follows. First,
replace every edge {u, v} ∈ E by a length-two path, that is, remove {u, v} from the
graph, insert a new vertex s{u,v}, and make it adjacent to u and v. In the following,
let S := {se : e ∈ E} denote the set of added vertices, and let G1 denote the graph
constructed in this way. Next, we make a useful observation and then continue the
description of the construction.

The graph G1 has the following property.

An induced subgraph G1[K] of G1 of order s+
(
s
2

)
has at most 2 ·

(
s
2

)
edges.

In case of equality, K ∩ V induces a clique of order s in G.

This can be shown as follows. Let K1 := K ∩ V denote the vertices of K that are also
vertices of G, and let K2 := K \K1 denote the other vertices of K. By construction,
every vertex v ∈ K2 has in G1[K] degree at most two. Furthermore, every vertex of K1

has in G1[K] only neighbors that are in K2 and vice versa. Consequently, the number
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of edges in G1[K] is at most 2 · |K2|. Assume that G1[K] has more than 2 ·
(
s
2

)
edges.

Then, |K2| >
(
s
2

)
and thus |K1| < s. In the following, let x := s − |K1| = |K2| −

(
s
2

)
denote the number of “excess” vertices from K2. Clearly, there are at most

(
s−x

2

)
vertices

in K2 that have two neighbors in K1. Hence, the total number of edges in G1[K] is at
most 2 ·

(
s−x

2

)
+ (x +

(
s
2

)
−
(
s−x

2

)
) =

(
s−x

2

)
+ x +

(
s
2

)
. Simple calculus shows that for

all x with 0 ≤ x < s− 2 this number is decreasing with increasing x. In case x ≥ s− 2,
the number of edges in G is clearly at most

(
s
2

)
+ s − 1. In summary, this shows that

no subgraph of G1 of order s +
(
s
2

)
can have more than 2 ·

(
s
2

)
edges. It also follows

that 2 ·
(
s
2

)
edges can only be achieved in case |K1| ≥ s, and since the number of edges is

at most 2 · |K2| this implies |K1| = s. Finally, this means that each pair of vertices in K1

has a common neighbor in K2. By construction, K1 thus is a clique in G.
To conclude our construction, we add a gadget graph as described in Lemma 6: Let µ =

a/b and without loss of generality, let a ≥ 3. Then, we add the gadget graph H such that it
is 2(a−1) ≥ 4-connected, and adding s+

(
s
2

)
vertices and 2

(
s
2

)
edges makes H have density

exactly µ. Furthermore, H can be constructed in time poly(a, b, s+
(
s
2

)
, 2
(
s
2

)
). Let G∗ be

the disjoint union of G1 and H. Set the instance of µ-Clique to (G∗, s+
(
s
2

)
+ |V (H)|).

Since G1 has degeneracy at most two, and the gadget graph H can be constructed in
time poly(s) (observe that we can assume a and b to be constants), the degeneracy of
the constructed graph is upper bounded by some polynomial in s. For the correctness of
our construction, first observe the following. If G has a clique C on s vertices, then H
together with C ∪ SC form a µ-clique in G∗, where SC = {s{u,v} : u, v ∈ C}. This follows
by the definition of H. For the reverse direction, we prove that we can assume that every
µ-clique M in G∗ of order at least s+

(
s
2

)
+ |V (H)| contains every vertex of H. If this is

true, then, it follows that |M ∩ V (G1)| = s+
(
s
2

)
, and, hence, M ∩ V (G) induces a clique

on s vertices in G because of the property of G1 we have shown above. Assume that M
does not contain some i vertices of H. Then, consider the vertices in S ∩M . Each of
these vertices has degree at most two and the removal of them makes M ∩ V (G1) an
independent set. Thus, we may remove the vertices in S ∩M from M , if |S ∩M | < i,
remove some further vertices in M ∩ V (G1) from M , and add all the missing vertices
of H to M . The removal implies losing at most 2i edges, but in adding the missing
vertices of H we gain at least 2i edges, since, by construction, H is 4-connected. Thus,
the correctness of the construction follows.

We can use the reduction behind Theorem 10 to also exclude polynomial-size problem
kernels for the parameters maximum degree and h-index.

Theorem 11. For any fixed µ, 0 < µ < 1, µ-Clique does not admit a polynomial-size
problem kernel with respect to either maximum degree or h-index unless NP ⊆ coNP/poly.

Proof. It suffices to prove the statement for the larger maximum degree parameter. For
this, we observe that the reduction used in the proof of Theorem 10 implies a cross-
composition [7] from Clique into µ-Clique parameterized by maximum degree. A
cross-composition from a problem L ⊆ Σ∗ into a parameterized problem P is an algorithm
that, given t strings x1, x2, . . . , xt ∈ Σ∗, computes an instance x∗ of P with parameter
value k such that its running time is bounded by a polynomial in

∑t
i=1 |xi|, k is bounded

by a polynomial in maxti=1 |xi|, and x∗ ∈ P if and only if xi ∈ L for some 1 ≤ i ≤ t.5 If

5For readability, we simplified the more general definition of cross-composition here.
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a parameterized problem that has a cross-composition from an NP-hard problem also
admits a polynomial-size problem kernel, then NP ⊆ coNP/poly [7].

Let several instances of Clique be given and without loss of generality, assume that
each instance asks for a clique of order k′.6 Merge the instances into one instance of
Clique by taking the disjoint union of the graphs. It is clear that this graph contains a
clique of given order if and only if one of its connected components does. Then, apply the
reduction used in Theorem 10 to the resulting graph. To obtain that this procedure is a
cross-composition, it remains to show that the maximum degree in the created instance
is bounded by a polynomial in the maximum size of the input instances. This follows
since the reduction used for Theorem 10 does not merge any connected components and
the introduced gadget graph has size polynomial in k′. Thus, there is cross-composition
from Clique into µ-Clique parameterized by the maximum degree.

6. Outlook

There are many possibilities for future research on the computational problems
considered in this work. Obviously, it would be interesting to improve the presented
algorithms. For the case of Fixed-Cardinality Optimization, a running time of ∆o(k) ·
poly(n) is unlikely: Clique is a special case of this problem and such a running time
would imply no(k)-time algorithms for Clique which contradict the ETH [16]. Hence,
one could focus on improving the constants in the base of the exponential function here.
For µ-Clique, it would be interesting to obtain a running time of 2O(∆/µ) · poly(n)
or to show that such a running time is unlikely under the usual complexity-theoretic
assumptions. Furthermore, it would be interesting to obtain polynomial-size Turing
kernels [6] for µ-Clique and any of the considered parameters. Also, is there a better
polynomial-time algorithm for µ-Clique on planar graphs than the trivial brute-force
XP-algorithm for degeneracy? Finally, a further restriction that can be made in the area
of community detection is to bound the size of the neighborhood of the µ-cliques. Efficient
algorithms exploiting such bounds would be interesting and also practically relevant.
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[44] A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier. Parameterized computational complexity
of finding small-diameter subgraphs. Optimization Letters, 6(5):883–891, 2012.

[45] H. Shachnai and M. Zehavi. Parameterized algorithms for graph partitioning problems. In Proceedings
of the 40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’14),
volume 8747 of Lecture Notes in Computer Science, pages 384–395. Springer, 2014.

Appendix A. A Lower Bound on the Number of Connected Subgraphs

For the lower bound, we use the fact that the number of `-ary ordered trees with
k inner vertices is exactly 1

(`−1)k+1

(
`k
k

)
(see Hilton and Pedersen [29], for example). In

ordered trees the order of the children of a vertex matters. For example, adding two
children to the “left” leaf of a vertex with two leaf children yields a different binary
ordered tree than adding two children to the “right” leaf. More formally, an `-ary ordered
tree is uniquely described by a vector in N` for each vertex u, such that the number of
vertices induced by the subtree of the ith child of u is exactly the ith entry in u’s vector
and each vertex has either ` or zero children.

Lemma 7. For every pair of integers k and ∆ there is a graph G with maximum degree ∆
and a vertex v such that there are at least 1

(∆−2)k+1

(
(∆−1)k

k

)
connected subgraphs of order

at most k that contain v.

Proof. Take G to be a tree with root v where every vertex has either zero or ∆−1 children
and the path of each leaf to v is of length at least k. Give the children of every vertex
in G an arbitrary order and consider an arbitrary ordered rooted tree T with k vertices
such that every vertex has at most ∆− 1 children. Observe that T induces a subtree of G
by identifying the roots and then embedding the remaining vertices in the natural way.
In fact, in this way we obtain a bijection between the subtrees of G of order k and the
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corresponding ordered trees of order k. Furthermore, by taking an arbitrary ordered tree
of order k such that each vertex has at most ∆− 1 children and adding leaves to each
vertex which has less than ∆− 1 children we obtain a (∆− 1)-ary ordered tree with k
inner vertices. Vice versa, removing all leaves from a (∆ − 1)-ary ordered tree with k
inner vertices we obtain a corresponding tree of order k. Hence, the number of k-vertex
subtrees of G is lower-bounded by the number 1

(∆−2)k+1

(
(∆−1)k

k

)
of (∆− 1)-ary ordered

trees with k inner vertices.

Appendix B. Bounds on a Special Binomial Coefficient

Proposition 3.

1

e2

√
`

2π(`− 1)k

(
`

`− 1

)`k
(`− 1)k ≤

(
`k

k

)
≤ e

√
`

2π(`− 1)k

(
`

`− 1

)`k
(`− 1)k.

Proof. Both bounds employ Stirling’s approximation, we use it in the form
√

2π``+1/2e−` ≤ `! ≤
√

2π``+1/2e−`+1,

see Robbins [42]. We get(
`k

k

)
=

(`k)!

((`− 1)k)!k!
≤ (`k)`k+ 1

2 e−`k+1

√
2π((`− 1)k)(`−1)k+ 1

2 e−(`−1)kkk+ 1
2 e−k

=
(`k)`k+ 1

2 e√
2π((`− 1)k)(`−1)k+ 1

2 kk+ 1
2

= e

√
`k

2π(`− 1)k2
· (`k)`k

((`− 1)k)(`−1)kkk
,

where the last fraction is equal to(
`k

(`− 1)k

)`k
·
(

(`− 1)k

k

)k
.

Thus (
`k

k

)
≤ e

√
`

2π(`− 1)k

(
`

`− 1

)`k
(`− 1)k.

The lower bound is obtained in a similar way, we omit the details.

Appendix C. Component +-linearity of the Objective Function in Fixed-
Cardinality Graph Partitioning Problems

Recall that, in fixed-cardinality graph partitioning problems, φ(S) := a|E(S)|+b|δ(S)|
where a and b are problem-specific constants and G(V,E) is the input graph. Recall the
definitions of E(S) and δ(S). We extend the definition of δ to δ(S, T ), which denotes the
set of edges with one endpoint in S and one in T for disjoint vertex sets S, T . Clearly, for
any two disjoint vertex sets S, T , we have

φ(S ∪ T ) = a|E(S ∪ T )|+ b|δ(S ∪ T )|
= a(|E(S)|+ |E(T )|+ |δ(S, T )|) + b(|δ(S)|+ |δ(T )| − 2|δ(S, T )|)
= φ(S) + φ(T ) + (a− 2b) · |δ(S, T )|.
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Hence, if T is a connected component of S ∪ T , then φ(S ∪ T ) = φ(S) + φ(T ) and thus φ
is component sub-+. Further, if a− 2b ≥ 0, that is, a ≥ 2b, then φ is super-+, showing
that φ is component +-linear.
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