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Abstract. We introduce overlap cluster graph modification problems
where, other than in most previous work, the clusters of the target graph
may overlap. More precisely, the studied graph problems ask for a mini-
mum number of edge modifications such that the resulting graph consists
of clusters (maximal cliques) that may overlap up to a certain amount
specified by the overlap number s. In the case of s-vertex overlap, each
vertex may be part of at most s maximal cliques; s-edge overlap is anal-
ogously defined in terms of edges. We provide a complete complexity
dichotomy (polynomial-time solvable vs NP-complete) for the underly-
ing edge modification problems, develop forbidden subgraph characteri-
zations of “cluster graphs with overlaps”, and study the parameterized
complexity in terms of the number of allowed edge modifications, achiev-
ing fixed-parameter tractability results (in case of constant s-values) and
parameterized hardness (in case of unbounded s-values).

1 Introduction

Graph-based data clustering is an important tool in exploratory data analy-
sis [21,25]. The applications range from bioinformatics [2,22] to image process-
ing [24]. The formulation as a graph-theoretic problem relies on the notion of a
similarity graph, where vertices represent data items and an edge between two
vertices expresses high similarity between the corresponding data items. Then,
the computational task is to group vertices into clusters, where a cluster is
nothing but a dense subgraph (typically, a clique). Following Ben-Dor et al. [2],
Shamir et al. [21] initiated a study of graph-based data clustering in terms of
graph modification problems. More specifically, here the task is to modify (add
or delete) as few edges of an input graph as possible to obtain a cluster graph,
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that is, a vertex-disjoint union of cliques. Numerous recent publications build on
this concept of cluster graphs, e.g., [4,7,9,11,13,20]. To uncover the overlapping
community structure of complex networks in nature and society [18], however,
the concept of cluster graphs so far fails to model that clusters may overlap,
and it has been criticized explicitly for this lack of overlaps [7]. In this work
we introduce a graph-theoretic relaxation of the concept of cluster graphs by
allowing, to a certain degree, overlaps between the clusters (which are cliques).
We distinguish between “vertex overlaps” and “edge overlaps” and provide a
thorough study of the corresponding cluster graph modification problems.

The two core concepts we introduce are s-vertex overlap and s-edge overlap,
where in the first case we demand that every vertex in the cluster graph is
contained in at most s maximal cliques and in the second case we demand
that every edge is contained in at most s maximal cliques. Clearly, 1-vertex
overlap actually means that there is no overlap between the cliques (clusters).
Based on these definitions, we study a number of edge modification problems
(addition, deletion, editing) in terms of the two overlap concepts, generalizing
and extending previous work that focussed on non-overlapping clusters.

Previous work. Perhaps the best studied cluster graph modification problem
is the NP-hard Cluster Editing, where one asks for a minimum number of
edges to add or delete in order to transform the input graph into a disjoint
union of cliques. Cluster Editing has been intensively studied from a theo-
retical [1,3,9,11,13,20] as well as a practical side [4,7]. The major part of this
work deals with the parameterized complexity of Cluster Editing, having led
to efficient search-tree based [3,11] and polynomial-time kernelization [9,13,20]
algorithms. One motivation of our work is drawn from these intensive studies,
motivated by the practical relevance of Cluster Editing and related problems.
As discussed before, however, Cluster Editing forces a sometimes too strict
notion of cluster graphs by disallowing any overlap. To the best of our knowl-
edge, relaxed versions of Cluster Editing have been largely unexplored. The
only approach studying overlapping cliques in the context of Cluster Edit-
ing that we are aware of has been presented by Damaschke [6]. He investigated
the Twin Graph Editing problem, where the goal is to obtain a so-called twin
graph (with a further parameter t specified as part of the input) with a minimum
number k of edge modifications. A t-twin graph is a graph whose “critical clique
graph” has at most t edges, where the critical clique graph is the representa-
tion of a graph that is obtained by keeping for each set of vertices with identical
closed neighborhoods exactly one vertex. Roughly speaking, our model expresses
a more local property of the target graph. The main result of Damaschke [6] is
fixed-parameter tractability with respect to the combined parameter (t, k). We
note that already for s = 2 our s-vertex overlap model includes graphs whose
twin graphs can have an unbounded number t of edges. Hence, s is not a func-
tion of t. Moreover, we expect that for many real-world graphs the number k of
necessary edge modifications is much smaller in our model than in the one of
Damaschke.
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Our results. We provide a thorough study of the computational complexity of
clustering with vertex and edge overlaps, significantly extending previous work
on Cluster Editing and closely related problems. In particular, in terms of
the overlap number s, we provide a complete complexity dichotomy (polynomial-
time solvable versus NP-complete) of the corresponding edge modification prob-
lems, most of them turning out to be NP-complete (see Table 1 in Section 3). For
instance, somewhat surprisingly, whereas Cluster Editing restricted to only
allowing edge additions (also known as Cluster Addition or 1-Vertex Over-
lap Addition) is trivially solvable in polynomial time, 2-Vertex-Overlap
Addition turns out to be NP-complete. We also study the parameterized com-
plexity of clustering with overlaps. On the negative side, we show W[1]-hardness
results with respect to the parameter “number of edge modifications” in case of
unbounded overlap number s. On the positive side, we prove that the problems
become fixed-parameter tractable for every constant s. This result is based on
forbidden subgraph characterizations of the underlying overlap cluster graphs,
which may be of independent graph-theoretic interest. Indeed, it turns out that
the “1-edge overlap cluster graphs” are exactly the diamond-free graphs. Finally,
we develop polynomial-time data reduction rules for two special cases. More pre-
cisely, we show an O(k4)-vertex problem kernel for 1-Edge Overlap Deletion
and an O(k3)-vertex problem kernel for 2-Vertex Overlap Deletion, where
both times k denotes the number of allowed edge modifications. We conclude
with a number of open problems.

Preliminaries. Given a graph G = (V, E), we use V (G) to denote the vertex
set of G and E(G) to denote the edge set of G. Let n := |V | and m := |E|.
The (open) neighborhood N(v) of a vertex v is the set of vertices that are
adjacent to v, and the closed neighborhood N [v] := N(v) ∪ {v}. We use G[V ′]
to denote the subgraph of G induced by V ′ ⊆ V , that is, G[V ′] := (V ′, {{u, v} |
u, v ∈ V ′, {u, v} ∈ E}). Moreover, G − v := G[V \ {v}] for a vertex v ∈ V
and G − e := (V, E \ {u, v}) for an edge e = {u, v}. For two sets E and F
let E∆F := (E \ F ) ∪ (F \ E) (symmetric difference). For a set X of vertices
let EX := {{u, v} | u, v ∈ X, u 6= v} denote the set of all possible edges on X .
Furthermore, for a graph G = (V, E) and a set S ⊆ EV let G∆S := (V, E∆S)
denote the graph that results by modifying G according to S. A set of pairwise
adjacent vertices is called clique. A clique K is a critical clique if all its vertices
have the same neighborhood and K is maximal. A graph property is defined as a
nonempty proper subset of the set of graphs closed under graph isomorphism. A
hereditary graph property is a property closed under taking induced subgraphs.

For a graph property π, the π Editing problem is defined as follows.

Input: A graph G = (V, E) and an integer k ≥ 1.
Question: Does there exist a set S ⊆ V ×V with |S| ≤ k such that G∆S
has property π?

In this paper, we focus attention on π being either the s-vertex overlap prop-
erty or the s-edge overlap property (see Definition 1 in Section 2). The set S
is called a solution. Moreover, we say that the vertices that are incident to an
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edge in S are affected by S and that all other vertices are non-affected. In the
corresponding π Deletion (or π Addition) problem, only edge deletion (or
addition) is allowed.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [8,10,17]. One dimension is the input
size n (as in classical complexity theory), and the other one is the parameter k
(usually a positive integer). A problem is called fixed-parameter tractable (fpt)
if it can be solved in f(k) · nO(1) time, where f is a computable function only
depending on k. This means that when solving a combinatorial problem that is
fpt, the combinatorial explosion can be confined to the parameter. A core tool in
the development of fixed-parameter algorithms is polynomial-time preprocessing
by data reduction. Here, the goal is for a given problem instance x with parame-
ter k to transform it into a new instance x′ with parameter k′ such that the size
of x′ is upper-bounded by some function only depending on k, the instance (x, k)
is a yes-instance iff (x′, k′) is a yes-instance, and k′ ≤ k. The reduced instance,
which must be computable in polynomial time, is called a problem kernel, and
the whole process is called reduction to a problem kernel or simply kernelization.

Downey and Fellows [8] developed a formal framework to show fixed-parameter
intractability by means of parameterized reductions. A parameterized reduction
from a parameterized language L to another parameterized language L′ is a
function that, given an instance (x, k), computes in f(k) · nO(1) time an in-
stance (x′, k′) (with k′ only depending on k) such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′.
The basic complexity class for fixed-parameter intractability is called W [1] and
there is good reason to believe that W [1]-hard problems are not fpt [8,10,17].

Due to the lack of space, most proofs are deferred to the full version of this
article.

2 Forbidden Subgraph Characterization

In this section, we first introduce the two graph properties considered in this
work. Then, we present induced forbidden subgraph characterizations for graphs
with these properties.

Definition 1 (s-vertex-overlap property and s-edge-overlap property).
A graph G = (V, E) has the s-vertex-overlap property (or s-edge-overlap prop-
erty) if every vertex (or edge) of G is contained in at most s maximal cliques.

Clearly, a graph having the 1-vertex-overlap property consists of a vertex-
disjoint union of cliques. See Fig. 1 for a graph fulfilling the 2-vertex-overlap and
the 1-edge-overlap property.

Given a graph and a non-negative integer s, we can decide in polynomial
time whether G fulfills the s-vertex-overlap property using a clique enumeration
algorithm with polynomial delay. For each v ∈ V , we enumerate the maximal
cliques in G[N [v]]. We abort the enumeration if we have found s + 1 maximal
cliques. Using for example a polynomial delay enumeration algorithm by Makino
and Uno [16] that relies on matrix multiplication and enumerates cliques with
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Fig. 1. An example with the 2-vertex overlap and 1-edge-overlap properties.

Fig. 2. Forbidden induced subgraphs for the 2-vertex-overlap property. In every
graph, the gray vertex is contained in at least three maximal cliques.

delay O(n2.376), the overall running time of this algorithm is O(s · n3.376). For
the edge case, a similar approach applies. The only difference is that, here,
we consider the common neighborhood of the endpoints of every edge, that is,
N [u] ∩ N [v] for an edge {u, v}.
Theorem 1. Given a graph G and a non-negative integer s, it can be decided
in time O(s ·n3.376) (or O(s ·m ·n2.376)) time whether G has the s-vertex-overlap
(or s-edge-overlap) property.

The next lemma proves the existence of induced forbidden subgraph charac-
terizations for graphs having the s-vertex-overlap or the s-edge-overlap property.

Lemma 1. The s-vertex-overlap property and the s-edge-overlap property are
hereditary.

Hereditary graph properties can be characterized by a finite or infinite set of
forbidden subgraphs [12]. Thus, by Lemma 1, such a characterization must exist.
Here, we show that the forbidden subgraphs have size O(s2) and, hence, that
for fixed s the number of forbidden induced subgraphs is finite. Furthermore, we
can find a forbidden induced subgraph in polynomial time.

Theorem 2. Given a graph G that violates the s-vertex-overlap (or s-edge-
overlap) property, one can find in time O(s ·n3.376 + s2 ·n) (or O(s ·m ·n2.376 +
s2 · n)) time a forbidden induced subgraph of size O(s2).

See Fig. 2 for the induced forbidden subgraphs for graphs with the 2-vertex-
overlap property. Observe that many important graph classes are contained in
the class of graphs with the s-overlap property. In particular, it is easy to see
that the diamond-free graphs are equivalent to graphs with the 1-edge-overlap
property, as stated in Lemma 2. A diamond is the graph that results by deleting
one edge from a four-vertex clique. Diamond-free graphs, that is, graphs that
contain no diamond as an induced subgraph, form a graph class studied for its
own sake [23].

Lemma 2. A graph G has the 1-edge-overlap property iff G is diamond-free.
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Table 1. Classical computational complexity of graph-based data clustering
with overlaps. Herein, “NPC” means that the respective problem is NP-complete
and “P” means that the problem can be solved in polynomial time.

s-vertex-overlap s-edge-overlap

Editing NPC for s ≥ 1 NPC for s ≥ 1
Deletion NPC for s ≥ 1 NPC for s ≥ 1
Addition P for s = 1, NPC for s ≥ 2 P for s = 1, NPC for s ≥ 2

3 A Complexity Dichotomy with Respect to s

This section provides a complete picture of the computational complexity of the
introduced problems. The results are summarized in Table 1.

Lemma 3 shows that if one of the problems is NP-hard for some s ≥ 1, then
it is NP-hard for every s′ ≥ s.

Lemma 3. For s ≥ 1, there is a polynomial-time many-one reduction from s-
Property Operation to (s + 1)-Property Operation, where Property
∈ { Vertex-Overlap, Edge-Overlap } and Operation ∈ { Editing,
Deletion, Addition }.

Since Cluster Editing and Cluster Deletion (equivalent to 1-Vertex-
Overlap Editing and 1-Vertex-Overlap Deletion) are known to be NP-
complete [15,21], we directly arrive at the following theorem.

Theorem 3. s-Vertex-Overlap Editing and s-Vertex-Overlap Dele-
tion are NP-complete for s ≥ 1.

1-Vertex-Overlap Addition is trivially polynomial-time solvable: one has
to transform every connected component into a clique by adding the missing
edges. In contrast, for s ≥ 2, s-Vertex-Overlap Addition becomes NP-
complete.

Theorem 4. s-Vertex-Overlap Addition is NP-complete for s ≥ 2.

Proof. (Sketch) We present a polynomial-time many-one reduction from the
NP-complete Maximum Edge Biclique problem [19] to 2-Vertex-Overlap
Addition (2-VOA). Then, for s ≥ 2, the NP-hardness follows directly from
Lemma 3. The decision version of Maximum Edge Biclique is defined as fol-
lows: Given a bipartite graph H = (U, W, F ) and an integer l ≥ 0, does H
contain a biclique with at least l edges? A biclique is a bipartite graph with all
possible edges.

The reduction from Maximum Edge Biclique to 2-VOA works as follows:
Given a bipartite graph H = (U, W, F ), we construct a graph G = (V, E), where
V := U ∪ W ∪ {r} and E := EF ∪ Er ∪ EU ∪ EW . Herein,

– EF := {{u, w} | u ∈ U, w ∈ W} \ F ,
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r

Fig. 3. Example for the reduction from Maximum Edge Biclique (left graph)
to 2-Vertex-Overlap Addition (right graph).

– EX := {{x, x′} | x, x′ ∈ X, x′ 6= x} for X ∈ {U, W}, and

– Er := {{r, x} | x ∈ U ∪ V }.

That is, the graph (U, V, EF ) is the bipartite complement of H , in G both U
and V are cliques, and r is adjacent to all other vertices in G. See Fig. 3 for
an illustration of this construction. The correctness proof is deferred to the full
version of this article. ⊓⊔

Next, we consider the edge overlap case. First, observe that the reduction
given in the proof of Theorem 4 can be easily modified to show the NP-hardness
of 2-Edge-Overlap Addition: Simply replace the introduced vertex r by an
edge e and connect both endpoints of e to all vertices in the given bipartite graph
of the Maximum Edge Biclique. The correspondence between the solutions of
both instances can be shown in complete analogy with the vertex overlap case.
Note that 1-Edge-Overlap Addition is trivially solvable in polynomial time,
since there exists only one possibility to destroy a diamond by adding edges;
by Lemma 2, diamonds are the only forbidden subgraph of graphs having the
1-edge-overlap property.

Theorem 5. s-Edge-Overlap Addition is NP-complete for s ≥ 2.

Finally, we can show that 1-Edge-Overlap Editing and Deletion are
NP-complete by a reduction from Vertex Cover in cubic graphs. For s > 1,
the NP-hardness follows directly by using Lemma 3.

Theorem 6. s-Edge-Overlap Editing and s-Edge-Overlap Deletion
are NP-complete for s ≥ 1.

4 Parameterized Complexity

Here, we consider the parameterized complexity of our overlap clustering prob-
lems. First, due to Theorem 2, we have a set of forbidden subgraphs for both
properties whose size only depends on s. Thus, using a result of Cai [5], we can
conclude that all three problems with overlap properties are fixed-parameter
tractable with respect to the combined parameter (s, k).
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Theorem 7. π Editing, π Addition, and π Deletion problems with π ∈
{ s-Vertex-Overlap, s-Edge-Overlap } are fixed-parameter tractable with
respect to the combined parameter (s, k).

Next, we consider the parameterization with only k as the parameter. This
means that s can have an unbounded value. To show W[1]-hardness, we develop
a parameterized reduction from the W[1]-complete Set Packing problem [8].

Theorem 8. s-Vertex(Edge)-Overlap Deletion(Editing) is W[1]-hard
with respect to the parameter k in the case of unbounded s.

5 Two Kernelization Results for Edge Deletion

Not surprisingly, all nontrivial overlap clustering problems we study here seem to
become significantly more demanding than clustering without overlaps. Hence,
to start with, we subsequently present two kernelization results for the two most
basic NP-hard clustering problems with nontrivial overlaps. We defer the cor-
rectness proofs of the considered data reduction rules to the full version of this
article. It is easy to see that they can be executed in polynomial time.

First, we present a kernelization for 1-edge Overlap Deletion, which, by
Lemma 2, is equivalent to the problem of destroying diamonds by at most k edge
deletions. We introduce four data reduction rules for this problem and show that
an instance that is reduced with respect to all these rules has O(k4) vertices.

Rule 1. If there is a maximal clique C containing only edges which are not in
any other maximal clique, then remove all edges of C.
Rule 2. If there is a matching of size greater than k in the complement graph
of the graph that is induced by the common neighbors of the two endpoints of
an edge e, then remove e, add e to the solution, and decrease the parameter k
by one.
Rule 3. Remove all vertices that are not in any diamond.
Rule 4. If there is a critical clique with more than k + 2 vertices, then remove
vertices until only k + 2 vertices remain.

Theorem 9. 1-Edge Overlap Deletion admits a problem kernel with O(k4)
vertices which can be found in O(m3

√
n + m2n2) time.

Proof. Let G denote an input graph reduced with respect to the four reduction
rules. Partition the vertices of the graph G′, resulting by applying a solution S
to the input graph G, into two subsets, one set X containing the vertices that
are endpoints of edges deleted by S and Y := V \X . Further, construct for each
edge e ∈ S a set Ye containing the vertices in Y that occur together with e in
some diamonds. By Rule 3, Y =

⋃
e∈S Ye.

First, we show that for every maximal clique C in G′[Y ] it holds that C ⊆ Ye

for an edge e ∈ S: In G, there is a maximal clique C′ containing C and, by
Rule 1, C′ has an edge e = {u, v} which is in two maximal cliques. If e ∈ S, then
every vertex in C should be in Ye; otherwise, there must be a vertex w /∈ C′
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that is adjacent to both u and v. One of the edges {u, w} and {v, w} must then
be in S. Thus, every vertex in C must build a diamond with this deleted edge
and C is contained in either Y{u,w} or Y{v,w}.

Next, we prove that, for every edge e = {u, v} ∈ S, at most 4k maximal
cliques of G′[Y ] are subsets of Ye. Clearly, all vertices in Ye must be adja-
cent to one of u and v. Let Nu,v denote the common neighbors of u and v
in Ye. Obviously, Nu,v is an independent set and, by Rule 2, |Nu,v| ≤ 2k.
Let Nv := (N(v) \ N(u)) ∩ Ye and Nu := (N(u) \ N(v)) ∩ Ye. Since Nu,v is an
independent set, no vertex from Nv∪Nu can be adjacent to two vertices in Nu,v.
Then, we can partition the vertices in Nu ∪ Nv into at most 4k subsets accord-
ing to their adjacency to the vertices from Nu,v = {x1, . . . , xl} with l ≤ 2k,
every subset Nu,xi

(or N(v, xi)) containing the vertices in N(u) ∩ N(xi) (or
N(v) ∩ N(xi)). It is easy to see that each of these subsets is a clique, since,
otherwise, we would have some undestroyed diamond. With the same argument,
there cannot be an edge between Nu,xi

and Nu,xj
with i 6= j. Moreover, the

edges between Nu,xi
and Nv,xj

, if there are any, do not belong to the maximal
cliques that are contained in Ye. The reason is that the two endpoints of such
an edge cannot have common neighbors in Ye; otherwise, there would be some
undestroyed diamond. Thus, we have at most 4k maximal cliques in G′[Y ] which
are entirely contained in Ye.

Finally, we show that if two vertices u, v ∈ Y are contained in exactly the
same sets of maximal cliques in Y , then they have the same neighborhood in G.
Assume that this is not true. Then, u and v must have different neighborhoods
in X . Let w ∈ X be a neighbor of u but not of v. Since every two maximal cliques
in Y can intersect in at most one vertex (due to the 1-edge overlap property),
there can be only one maximal clique in Y containing both u and v. Assume
that this maximal clique is contained in Ye for an edge e ∈ S. Moreover, there
must be another clique C in G containing w and u, but not v. By Rule 1, C
must contain an edge which is part of two maximal cliques. This implies that the
vertices w and u have to be in Ye′ for an edge e′ ∈ S and e 6= e′. This means that
there has to be a maximal clique in Ye′ containing u but not v, contradicting
that u and v are contained in the same sets of maximal cliques in Y .

Putting all the arguments together, we can now show an upper bound for the
number of vertices in the reduced instance. Clearly, |X | ≤ 2k. To bound |Y |, note
that we have at most k Ye’s. Each of them contains at most 4k maximal cliques
of G′[Y ]. Since every maximal clique of G′[Y ] is contained in Ye for one e ∈ S, we
have altogether at most 4k2 maximal cliques in G′[Y ]. It remains to show a size
bound for each of these cliques. From the vertices in one clique K, only 4k2 of
these can be in more than one maximal clique in Y , since every two such cliques
overlap in at most one vertex. The remaining vertices of K then have identical
neighborhoods. Thus, by Rule 4, K contains at most 4k2 + k + 2 vertices. This
yields the required size bound on |Y | and, therefore, on the reduced instance. ⊓⊔

Next, we provide a kernelization for 2-Vertex Overlap Deletion. In the
following, we say that a vertex is satisfied if it is contained in at most two
maximal cliques, and a clique is satisfied if all its vertices are satisfied. A clique
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is a neighbor of an other clique if they share some vertex or edge. Here, the
polynomial-time executable data reduction rules read as follows.

Rule 1. If there is a critical clique K with more than k+1 vertices, then remove
vertices from K until only k + 1 vertices remain.

Rule 2. If there exists a satisfied maximal clique K and K’s neighbors are all
satisfied, then remove all edges in K that are not in other maximal cliques.

Rule 3 Let G be a graph reduced with respect to Rule 1. Let K be a maximal
clique of G. Consider ℓ maximal cliques K1, . . . , Kℓ fulfilling the following two
conditions:
1.) K ∩ Ki 6= ∅, 1 ≤ i ≤ ℓ, and
2.) all vertices in Ki are satisfied, 1 ≤ i ≤ ℓ.

If
∑ℓ

i=1 |Ki ∩ K| ≥ 3k + 4, then delete all edges between K1 ∩ K and K \ K1.

Rule 4. Remove connected components that fulfill the 2-vertex overlap property.

Theorem 10. 2-Vertex Overlap Deletion admits a problem kernel with
O(k3) vertices.

6 Conclusion

We have studied for the first time new cluster graph modification problems mo-
tivated by the practical relevance of clustering with overlaps [7,18]. Naturally,
studying a so far unexplored set of problems, there remain many challenges for
future work. We list only a few of them. First, it is conceivable that the forbid-
den subgraph characterizations we developed for cluster graphs with overlaps
can be further refined. Second, it is desirable to improve the upper bounds on
our fixed-parameter algorithms (including the kernelization results) and to fur-
ther extend the list of fixed-parameter tractability results (in particular, achiev-
ing kernelization results for problems other than 1-Edge Overlap Deletion
and 2-Vertex-Overlap Deletion). Third, corresponding experimental stud-
ies (like those undertaken for Cluster Editing, see [4,7]) are a natural next
step. Fourth, the polynomial-time approximability of our problems remains un-
explored. Fifth and finally, it seems promising to study overlaps in the context of
the more general correlation clustering problems (see [1]) or by relaxing the de-
mand for (maximal) cliques in cluster graphs by the demand for some reasonably
dense subgraphs (as previously considered for Cluster Editing [14]).
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