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Abstract

We introduce overlap cluster graph modification problems where, other than in
most previous work, the clusters of the target graph may overlap. More precisely,
the studied graph problems ask for a minimum number of edge modifications
such that the resulting graph consists of clusters (that is, maximal cliques) that
may overlap up to a certain amount specified by the overlap number s. In the
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s-edge-overlap is analogously defined in terms of edges. We provide a complexity
dichotomy (polynomial-time solvable versus NP-hard) for the underlying edge
modification problems, develop forbidden subgraph characterizations of “cluster
graphs with overlaps”, and study the parameterized complexity in terms of the
number of allowed edge modifications, achieving fixed-parameter tractability (in
case of constant s-values) and parameterized hardness (in case of unbounded
s-values).

Key words: Cluster graph modification problems, forbidden subgraph
characterization, NP-hardness, fixed-parameter tractability, W[1]-hardness,
data reduction, kernelization

✩An extended abstract of this paper appeared in the proceedings of the 15th International
Computing and Combinatorics Conference (COCOON ’09), volume 5609 in LNCS, pages
516–526, Springer 2009. Main work was done while all authors were in Jena.

Email addresses: michael.fellows@cdu.edu.au (Michael R. Fellows),
jguo@mmci.uni-saarland.de (Jiong Guo), c.komus@uni-jena.de (Christian Komusiewicz),
rolf.niedermeier@uni-jena.de (Rolf Niedermeier), johannes.uhlmann@uni-jena.de
(Johannes Uhlmann)

1Supported by the Australian Research Council. Work done while staying in Jena as a
recipient of a Humboldt Research Award of the Alexander von Humboldt Foundation, Bonn,
Germany.

2Partially supported by the DFG, research project DARE, GU 1023/1.
3Supported by a PhD fellowship of the Carl-Zeiss-Stiftung and the DFG, research project

PABI, NI 369/7.
4Supported by the DFG, research project PABI, NI 369/7.

Preprint submitted to Elsevier September 20, 2010



To appear in Discrete Optimization, 2010

1. Introduction

Graph-based data clustering is an important tool in exploratory data anal-
ysis [31, 32, 36]. The applications range from bioinformatics [3, 33] to image
processing [35]. The formulation as a graph-theoretic problem relies on the
notion of a similarity graph, where vertices represent data items and an edge
between two vertices expresses high similarity between the corresponding data
items. Then, the computational task is to group vertices into clusters, where a
cluster is nothing but a dense subgraph (typically, a clique). Following Ben-Dor
et al. [3], Shamir et al. [32] initiated a study of graph-based data clustering
in terms of graph modification problems. Here, the task is to modify (add or
delete) as few edges of an input graph as possible to obtain a cluster graph, that
is, a vertex-disjoint union of cliques. The corresponding problem is referred to as
Cluster Editing. Numerous recent publications build on this concept of clus-
ter graphs [4, 6, 9, 10, 11, 13, 15, 17, 30]. To uncover the overlapping community
structure of complex networks in nature and society [28], however, the concept
of cluster graphs so far fails to model that clusters may overlap. Consequently,
it has been criticized explicitly for this lack of overlaps [11]. In this work, we
introduce a graph-theoretic relaxation of the concept of cluster graphs by al-
lowing, to a certain extent, overlaps between the clusters (which are cliques).
We distinguish between “vertex-overlaps” and “edge-overlaps” and provide a
thorough study of the corresponding cluster graph modification problems.

The two core concepts we introduce are s-vertex-overlap and s-edge-overlap,
where in the first case we demand that every vertex in the cluster graph is
contained in at most s maximal cliques and in the second case we demand
that every edge is contained in at most s maximal cliques. By definition, 1-
vertex-overlap means that the cluster graph is a vertex-disjoint union of cliques
(that is, there is no overlap of the clusters and, thus, the corresponding graph
modification problem is Cluster Editing). Based on these definitions, we
study a number of edge modification problems (addition, deletion, editing) in
terms of the two overlap concepts, generalizing and extending previous work
that focussed on non-overlapping clusters.

Previous work. Perhaps the most extensively studied cluster graph modifica-
tion problem is the NP-hard Cluster Editing, where one asks for a minimum
number of edges to add or delete in order to transform the input graph into a
disjoint union of cliques. Cluster Editing has been studied from a theoret-
ical [1, 5, 10, 13, 15, 17, 30] as well as a practical side [6, 11]. The majority
of these works deals with the parameterized complexity of Cluster Editing,
having led to efficient search-tree based [5, 15] and polynomial-time kerneliza-
tion [9, 13, 15, 17, 30] algorithms. One motivation of our work is drawn from
these intensive studies, motivated by the practical relevance of Cluster Edit-

ing and related problems. As discussed above, however, Cluster Editing

forces a sometimes too strict notion of cluster graphs by disallowing any over-
lap. To the best of our knowledge, relaxed versions of Cluster Editing and
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the cluster graph concept have been largely unexplored.5 There are only two
approaches studying overlapping cliques in the context of Cluster Editing

that we are aware of. One was proposed by Barthélemy and Brucker [2] under
the name t-Zahn Clustering, where the aim is to obtain by a minimum num-
ber of edge modifications a graph in which each pair of maximal cliques has at
most t− 1 vertices in common. The base case t = 1 is thus equivalent to Clus-

ter Editing. Among other things, Barthélemy and Brucker [2] showed that
2-Zahn Clustering is NP-hard. The model of Barthélemy and Brucker [2]
allows, for constant t, for vertices and edges to be in an unbounded number of
maximal cliques. In contrast, our model limits the number of maximal cliques
that a vertex or clique is contained in, but already for constant s there can be
maximal cliques that intersect in an unbounded number of vertices. The second
approach was presented by Damaschke [10], who investigated the Twin Graph

Editing problem, where the goal is to obtain a so-called twin graph (with a
further parameter t specified as part of the input) with a minimum number k
of edge modifications. A t-twin graph is a graph whose “critical clique graph”
has at most t edges, where the critical clique graph is the representation of a
graph obtained by keeping for each set of vertices with identical closed neigh-
borhoods exactly one vertex. Roughly speaking, our model expresses a more
local property of the target graph. The main result of Damaschke [10] is fixed-
parameter tractability with respect to the combined parameter (t, k). We note
that already for s = 2 our s-vertex-overlap model includes graphs whose twin
graphs can have an unbounded number t of edges. Hence, s is not a function
of t.

Our results. We provide a thorough study of the computational complexity of
clustering with vertex and edge-overlaps, extending previous work on Cluster

Editing and closely related problems. In particular, in terms of the overlap
number s, we provide a complete complexity dichotomy (polynomial-time solv-
able versus NP-hard) of the corresponding edge modification problems, most of
them turning out to be NP-hard (for an overview, see Table 1 in Section 4).
For instance, whereas Cluster Editing restricted to only allowing edge addi-
tions (also known as Cluster Addition or 1-Vertex-Overlap Addition)
is trivially solvable in polynomial time, 2-Vertex-Overlap Addition turns
out to be NP-hard. We also study the parameterized complexity of clustering
with overlaps. On the negative side, we show W[1]-hardness results with respect
to the parameter “number of edge modifications” in case of unbounded overlap
number s. On the positive side, we prove that the problems become fixed-
parameter tractable for the combined parameter (s, k). This result is based on
forbidden subgraph characterizations of the underlying overlap cluster graphs,
that may be of independent graph-theoretic interest. In particular, it turns out
that the “1-edge-overlap cluster graphs” are exactly the diamond-free graphs.
Finally, we develop polynomial-time data reduction rules for two special cases.

5Two recent exceptions are so-called s-plex cluster graphs [19] and (p, q)-cluster graphs [21].
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More precisely, we show an O(k4)-vertex problem kernel for 1-Edge-Overlap

Deletion and an O(k3)-vertex problem kernel for 2-Vertex-Overlap Dele-

tion, where in both cases k denotes the number of allowed edge deletions. We
conclude in Section 7 with a number of open problems.

2. Preliminaries

Given an undirected graph G = (V, E), we use V (G) to denote the vertex
set of G and E(G) to denote the edge set of G. Let n := |V | and m := |E|. The
(open) neighborhood NG(v) of a vertex v is the set of vertices that are adjacent
to v, and the closed neighborhood NG[v] := NG(v)∪{v}. For a vertex set S ⊆ V
let NG(S) :=

⋃

v∈S NG(v) \ S denote the neighborhood of S. The degree of a
vertex v, denoted by degG(v), is the cardinality of NG(v). If G is clear from
the context, we omit the subscript G. We use G[S] to denote the subgraph
of G induced by S ⊆ V , that is, G[S] := (S, {{u, v} | u, v ∈ S, {u, v} ∈ E}).
Moreover, G − v := G[V \ {v}] for a vertex v ∈ V and G − e := (V, E \ {e}) for
an edge e = {u, v}. For two sets E and F let E∆F := (E \F )∪ (F \E) denote
the symmetric difference of E and F . For a set X of vertices let EX := {{u, v} |
u, v ∈ X, u 6= v} denote the set of all possible edges on X . Furthermore, for a
graph G = (V, E) and a set S ⊆ EV let G∆S := (V, E∆S) denote the graph that
results from modifying G according to S. A set of pairwise adjacent vertices is
called a clique. A clique K is a critical clique if all its vertices have an identical
closed neighborhood and K is maximal under this property. A graph property
is defined as a nonempty proper subset of the set of graphs closed under graph
isomorphism. A hereditary graph property is a property closed under vertex
deletion.

For a graph property π, the π Editing problem is defined as follows.

Input: A graph G = (V, E) and an integer k ≥ 1.
Question: Does there exist a set S ⊆ EV with |S| ≤ k such
that G∆S has property π?

In this paper, we focus attention on π being either the s-vertex-overlap
property or the s-edge-overlap property (see Definition 1 in Section 3). The
set S is called a solution. Moreover, we say that the vertices that are incident
to an edge in S are affected by S and that all other vertices are non-affected. In
the corresponding π Deletion (or π Addition) problem, only edge deletion
(or addition) is allowed.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [12, 14, 27]. One dimension is the input
size n (as in classical complexity theory), and the other one is the parameter k
(usually a positive integer). A problem is called fixed-parameter tractable (fpt)
if it can be solved in f(k) · nO(1) time, where f is a computable function only
depending on k. A core tool in the development of fixed-parameter algorithms
is polynomial-time preprocessing by data reduction [7, 20]. Here, the goal is
for a given problem instance x with parameter k, to transform it into a new
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Figure 1: A graph with 2-vertex-overlap and 1-edge-overlap property. The two critical cliques
of size two are encircled by dotted lines; all other vertices form critical cliques of size one.

instance x′ with parameter k′ such that the size of x′ is upper-bounded by some
function only depending on k, the instance (x, k) is a yes-instance if and only
if (x′, k′) is a yes-instance, and k′ ≤ k. The reduced instance, which must
be computable in polynomial time, is called a problem kernel, and the whole
process is called reduction to a problem kernel or kernelization.

Downey and Fellows [12] developed a formal framework for showing fixed-
parameter intractability by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, k), computes in f(k) · nO(1) time an
instance (x′, k′) (with k′ only depending on k) such that (x, k) is a yes-instance
of problem P if and only if (x′, k′) is a yes-instance of problem P ′. The basic
complexity class for fixed-parameter intractability is called W [1] and there is
good reason to believe that W [1]-hard problems are not fpt [12, 14, 27]. In this
sense, W [1]-hardness is the parameterized complexity analog of NP-hardness.

3. Recognition and Forbidden Subgraph Characterization

In this section, we first introduce the two graph properties considered in this
work. Then, we show that, for each fixed s, it can be recognized in polynomial
time whether a given graph has the respective overlap property. Moreover,
we will show that the graph properties, for each fixed s, are characterized by
a finite set of forbidden induced subgraphs. More specifically, we show that
the forbidden graphs are all of order s2 and that there is a polynomial-time
algorithm that given a graph, either determines that G fulfills the property or
identifies an induced subgraph of G that is forbidden.

Definition 1 (s-vertex-overlap property and s-edge-overlap property).
A graph G = (V, E) has the s-vertex-overlap property (or s-edge-overlap prop-
erty) if every vertex (or edge) of G is contained in at most s maximal cliques.

Clearly, a graph having the 1-vertex-overlap property consists of a vertex-
disjoint union of cliques. See Figure 1 for a graph fulfilling the 2-vertex-overlap
and the 1-edge-overlap property. Note that this graph has one connected com-
ponent whose critical-clique graph has eight edges. It is thus an 8-twin graph.

For a graph G and a non-negative integer s, we can decide in polynomial
time whether G fulfills the s-vertex-overlap property using a clique enumeration
algorithm with polynomial delay.

5



To appear in Discrete Optimization, 2010

Theorem 1. For a graph G = (V, E) and a non-negative integer s, there is an
algorithm that, in O(s · n3.376) (or O(s · m · n2.376)) time, either

• finds a vertex (or an edge) that is contained in more than s maximal
cliques, or

• correctly concludes that G has the s-vertex-overlap (or s-edge-overlap)
property.

Proof. For each v ∈ V , we enumerate the maximal cliques in G[N [v]]. If
we have found s + 1 maximal cliques in G[N [v]] for some v ∈ V , then we
abort the enumeration and report that v is in more than s maximal cliques.
Otherwise, each v ∈ V is contained in at most s maximal cliques, and the graph
thus fulfills the s-vertex-overlap property. Using for example a polynomial-
delay enumeration algorithm by Makino and Uno [24] that relies on matrix
multiplication and enumerates cliques with delay O(n2.376), the overall running
time of this algorithm is O(s · n3.376).

For the edge case a similar approach applies; the only difference is that
we consider the common neighborhood of the endpoints of every edge, that is,
N [u] ∩ N [v] for an edge {u, v}. 2

The next lemma implies the existence of forbidden induced subgraph charac-
terizations for graphs having the s-vertex-overlap or the s-edge-overlap property.

Lemma 1. The s-vertex-overlap property and the s-edge-overlap property are
hereditary.

Proof. To show that the s-vertex-overlap property is hereditary, it suffices to
show the following.

Claim: If G = (V, E) has the s-vertex-overlap property, then so
does G − v for any v ∈ V .

Assume that G has the s-vertex-overlap property but there exists a vertex v ∈ V
such that G− v does not have the s-vertex-overlap property. Then there exists
a vertex w ∈ NG(v) contained in at least s+1 distinct maximal cliques of G−v,
say C1, . . . , Cs+1. For every 1 ≤ i ≤ s + 1, there exists a maximal clique Ki

of G with Ci ⊆ Ki. Moreover, since in G there are at most s maximal cliques
containing w, there exist i and j, 1 ≤ i < j ≤ s + 1, such that Ki = Kj .
However, since Ci and Cj are two distinct maximal cliques of G− v, there exist
vertices ui ∈ Ci and uj ∈ Cj such that {ui, uj} /∈ E, a contradiction to the fact
that Ki is a clique containing ui and uj.

In complete analogy one shows that the s-edge-overlap property is hereditary,
replacing the vertex w ∈ NG(v) with an edge {u, w} ⊆ NG(v) in the argument
above. 2

Hereditary graph properties can be characterized by a finite or infinite set
of forbidden induced subgraphs [16]. Thus, by Lemma 1, such a set must exist
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Figure 2: The forbidden induced subgraphs for the 2-vertex-overlap property. In every graph,
the gray vertex is contained in at least three maximal cliques.

for “s-vertex-overlap graphs” as well as for “s-edge-overlap graphs”. Here, we
show that the minimal forbidden induced subgraphs contain O(s2) vertices.
For fixed s, the number of minimal forbidden induced subgraphs is thus finite.
Furthermore, we describe an algorithm for efficiently finding a forbidden induced
subgraph.

Theorem 2. For a graph G that violates the s-vertex-overlap (or s-edge-overlap)
property, one can find in O(s · n3.376 + s2 · n) (or O(s ·m · n2.376 + s2 · n)) time
an O(s2)-vertex forbidden induced subgraph.

Proof. We first show the vertex case. Let G be a graph violating the s-vertex-
overlap property and let v be a vertex that is contained in more than s maximal
cliques. From Theorem 1 it follows that such a vertex can be found in O(s·n3.376)
time. Given s+1 maximal cliques K1, . . . , Ks+1 containing v, we find a forbidden
induced subgraph as follows. To “separate” two maximal cliques Ki and Kj, we
need a vertex v1 ∈ Ki \Kj and a vertex v2 ∈ Kj \Ki with {v1, v2} /∈ E. Clearly,
such vertices exist since both Ki and Kj are maximal. To “separate”every pair
of s + 1 maximal cliques we need at most 2

(

s+1
2

)

vertices. These vertices and v
together induce a subgraph of size at most (s+1) ·s+1 and v is contained in at
least s + 1 maximal cliques in this graph. For each pair of cliques, we can find
the separating vertices in O(n) time, scanning the vertex-lists of each clique,
“marking” the vertices that are contained in both cliques, and then keeping one
unmarked vertex of each list. Altogether, we thus need O(s2 · n) time.

For the edge case, we can find in O(s · m · n2.376) time an edge {u, v} that
is contained in at least s + 1 maximal cliques. The vertices needed to “sepa-
rate” the s + 1 maximal cliques K1, . . . , Ks+1 in G[N [v] ∩ N [u]] can be found
analogously to the vertex case. 2

Figure 2 illustrates the minimal forbidden induced subgraphs for graphs with
the 2-vertex-overlap property. Many important graph classes are contained in
the class of graphs with some s-overlap property. In particular, it is easy to
see that diamond-free graphs are equivalent to graphs with the 1-edge-overlap
property. A diamond is the graph that results from a four-vertex clique by
deleting one edge. Diamond-free graphs, that is, graphs containing no diamond
as an induced subgraph, are a natural graph class and have been already studied
in earlier work [2, 34].

Proposition 1. A graph has the 1-edge-overlap property if and only if it is
diamond-free.
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Table 1: Classical computational complexity of graph-based data clustering with overlaps.
Herein, “NPh” means that the respective problem is NP-hard and “P” means that the problem
can be solved in polynomial time.

s-vertex-overlap s-edge-overlap

Editing NPh for s ≥ 1 NPh for s ≥ 1
Deletion NPh for s ≥ 1 NPh for s ≥ 1
Addition P for s = 1, NPh for s ≥ 2 P for s = 1, NPh for s ≥ 2

Proof. Clearly, a diamond does not satisfy the 1-edge-overlap property. Thus,
every 1-edge-overlap graph is diamond-free. Moreover, if a graph does not have
the 1-edge-overlap property, then there must be an edge contained in at least
two maximal cliques. Hence, there is a pair of non-adjacent vertices that are
both adjacent to the endpoints of this edge. Therefore, the graph contains at
least one induced diamond. 2

The property of being diamond-free can also be described as follows: every pair
of maximal cliques has at most one vertex in common. Graphs with the 1-edge-
overlap property are thus precisely the graphs with 2-Zahn property as defined
by Barthélemy and Brucker [2].

4. A Complexity Dichotomy with Respect to Overlap Number s

This section provides a complete picture of the classical computational com-
plexity of the introduced problems. The results are summarized in Table 1.
With the exception of the two basic addition problems for s = 1, all of the
problems turn out to be NP-hard.

First, we show that if one of the problems is NP-hard for some s ≥ 1, then it
is NP-hard for every s′ ≥ s. The basic idea is that, given a problem instance for
some value s, we can reduce to an instance for s+1 by adding for every vertex v
for vertex-overlap (respectively for every pair of distinct vertices u and v for
edge-overlap) one “large” clique that intersects with the original instance only
in v (respectively u and v).

Lemma 2. For s ≥ 1, there is a polynomial-time many-one reduction from
s-Property Operation to (s + 1)-Property Operation, where Prop-

erty ∈ {Vertex-Overlap, Edge-Overlap} and Operation ∈ {Editing,

Deletion, Addition}.

Proof. First, we focus on the case of vertex-overlap. We show the reduc-
tion from s-Vertex-Overlap Editing (s-VOE) to (s+1)-Vertex-Overlap

Editing ((s + 1)-VOE). Moreover, we will observe that the same construction
yields a reduction for the deletion and addition variants as well. Second, we will
show that the reduction can be adapted to the case of edge-overlap.

The reduction from s-VOE to (s+1)-VOE works as follows. Given an s-VOE
instance G = (V, E) and an integer k, we construct an (s + 1)-VOE instance
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Figure 3: Illustration of the reduction from s-Vertex-Overlap Editing to (s + 1)-Vertex-

Overlap Editing. Herein, every rectangular vertex represents a clique on 2k + 2 vertices.

consisting of a graph H = (U, F ) and an integer k′ := k. For the construction
of H , initially, we set H := G. Then, for every vertex v ∈ V , we add a set Cv

of 2k + 2 new vertices to H and we make {v} ∪ Cv a clique. An illustration of
this construction is given in Figure 3.

Next, we show the correctness of the reduction, that is, we show that G has
a solution of size at most k for S-VOE if and only if H has a solution of size at
most k for (s+1)-VOE. First, consider a solution S of size at most k for s-VOE
with input graph G. In the graph that results from modifying G according to S,
every vertex is contained in at most s maximal cliques. Hence, if we modify H
according to S, we obtain a graph in which every vertex is contained in at
most s + 1 maximal cliques. Second, let S′ denote a solution of size at most k
for (s + 1)-VOE for H . Moreover, let H ′ = H∆S′. Since |S| ≤ k, there are
at most 2k vertices that are affected by S. Hence, in H ′ every vertex v ∈ V
is adjacent to a non-empty set Nv ⊆ Cv of non-affected vertices (since |Cv| =
2k + 2). This implies that for every vertex v ∈ V there exists one maximal
clique C′

v containing v with Nv ⊆ C′
v ⊆ Cv. Consequently, every vertex v ∈ V

can be contained in at most s further maximal cliques, and, hence, v can be
contained in at most s maximal cliques in the induced subgraph H ′[V ]. That
is, H ′[V ] fulfills the s-vertex-overlap property and S := S′ ∩ EV is a solution
for s-VOE for G.

It is straightforward to verify that the given construction constitutes a reduc-
tion from s-Vertex-Overlap Deletion and s-Vertex-Overlap Addition

to (s+1)-Vertex-Overlap Deletion and (s+1)-Vertex-Overlap Addi-

tion, respectively. Moreover, it is not hard to verify that adding for every pair
of distinct vertices u and v (instead of every vertex) a clique Cu,v with 2k + 2
vertices, which intersects with the original s-Edge-Overlap Operation in-
stance only in u and v, yields a polynomial-time many-one reduction for the
edge case. The correctness proof works in complete analogy. 2

The following NP-hardness results can be obtained directly from combining
known results with Lemma 2: Since Cluster Editing and Cluster Dele-

tion (equivalent to 1-Vertex-Overlap Editing and 1-Vertex-Overlap

Deletion, respectively) are NP-complete [23, 32], the NP-hardness of s-Vertex-

Overlap Editing and s-Vertex-Overlap Deletion for all s > 1 directly

9
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follows. Furthermore, 1-Edge-Overlap Editing has also been shown to be
NP-complete by a reduction from Cluster Editing [2] that can also be used
to show the NP-hardness of 1-Edge-Overlap Deletion (simply by reducing
from Cluster Deletion instead). The NP-hardness for both the editing and
the deletion variant and s > 1 thus also follows for edge-overlap. Overall, we
arrive at the following theorem.

Theorem 3. s-Vertex-Overlap Editing, s-Vertex-Overlap Deletion,
s-Edge-Overlap Editing, and s-Edge-Overlap Deletion are NP-hard
for s ≥ 1.

It thus remains to determine the classical computational complexity of s-Vertex-

Overlap Addition and s-Edge-Overlap Addition. 1-Vertex-Overlap

Addition is trivially polynomial-time solvable: one has to transform every
connected component into a clique by adding the missing edges. The same
observation can be made for 1-Edge-Overlap Addition, since there exists
only one possibility to destroy a diamond by adding edges; by Proposition 1,
diamonds are the only forbidden subgraph of graphs having the 1-edge-overlap
property.

In contrast, for s ≥ 2, both s-Vertex-Overlap Addition and s-Edge-

Overlap Addition become NP-hard, as we will show in the following.

Theorem 4. s-Vertex-Overlap Addition is NP-hard for s ≥ 2.

Proof. We present a polynomial-time many-one reduction from the NP-hard
Maximum Edge Biclique problem [29] to 2-Vertex-Overlap Addition

(2-VOA). Then, for s ≥ 2, the NP-hardness follows directly from Lemma 2.
The decision version of Maximum Edge Biclique is defined as follows: Given
a bipartite graph H = (U, W, F ) and an integer l ≥ 0, does H contain a biclique
with at least l edges? A biclique is a bipartite graph with all possible edges.

The reduction from Maximum Edge Biclique to 2-VOA works as follows:
For a bipartite graph H = (U, W, F ), we construct a graph G = (V, E), where
V := U ∪ W ∪ {r} and E := EF ∪ Er ∪ EU ∪ EW . Herein,

• EF := {{u, w} | u ∈ U, w ∈ W} \ F ,

• Er := {{r, x} | x ∈ U ∪ W}, and

• EX := {{x, x′} | x, x′ ∈ X, x′ 6= x} for X ∈ {U, W}.

That is, the graph (U, W, EF ) is the bipartite complement of H , in G both U
and W are cliques, and r is adjacent to all vertices in G. See Figure 4 a) for an
illustration of this construction.

For the correctness of the reduction, we show the following.

Claim: In the graph H there is a biclique with at least l edges if and
only if there exists a solution S with |S| ≤ |F | − l for 2-Vertex-

Overlap Addition for G.

10



To appear in Discrete Optimization, 2010

r ra) b)

Figure 4: a) Example for the reduction from Maximum Edge Biclique (left graph) to 2-
Vertex-Overlap Addition (right graph), b) The graph on the left contains a biclique with
four edges (solid edges). Adding the edges not contained in this biclique (dashed edges) to
the graph on the right results in a graph that contains two maximal cliques. The gray vertices
are in both maximal cliques, the white and black vertices are in one maximal clique.

“⇒”: Assume that H contains a biclique with at least l edges. Let U ′ ⊆ U
and W ′ ⊆ W denote the vertices in such a biclique. Further, let F ′ denote the
edges not contained in this biclique. That is, the removal of F ′ from H results in
a graph that consists of the disjoint union of isolated vertices and one complete
bipartite graph with at least l edges. Moreover, |F ′| ≤ |F | − l. Let G′ denote
the graph that results from adding the edges in F ′ to G.

Now, we argue that G′ fulfills the 2-vertex-overlap property, and, hence, S :=
F ′ is a solution for 2-VOA for G. To this end, observe that in G′ any two vertices
u, u′ ∈ U ′ have the same closed neighborhood. The same is true for any two
vertices in W ′, U \U ′, and W \W ′, respectively. With this observation, it follows
that in G′ there are two maximal cliques, namely the clique U ∪ (W \W ′)∪{r}
and the clique W ∪ (U \U ′) ∪ {r}. Hence, every vertex in G′ is contained in at
most two maximal cliques. See Figure 4 b) for an example.
“⇐”: Assume that there exists a solution S with |S| ≤ |F | − l for 2-VOA
for G. Moreover, let G′ denote the graph that results from adding the edges
in S to G. First, note that, since S contains only edges not contained in G,
all edges in S are between U and W , and, hence, S ⊆ F . We show that the
graph H ′ that results from deleting the edges in S from H consists of isolated
vertices and a complete bipartite graph with at least l edges. Assume towards
a contradiction that H ′ is not of the claimed form. Then, either H ′ contains a
connected component with more than one vertex that is not a biclique, or H ′

contains at least two connected components with more than one vertex. We
distinguish both cases, and, in each case, derive a contradiction.

First, assume that H ′ contains a connected component with more than one
vertex that is not a biclique. In this case, H ′ contains an induced P4, an induced
path on four vertices. Without loss of generality, we can assume that the first
and the third vertex, say u and u′, are from U and the second and fourth vertex,
say w and w′, are from W . Since G′[U ∪W ] is the (non-bipartite) complement
graph of H ′, in G′ we have an induced P4 ({u′, u}, {u, w′}, {w′, w}). Since r is
adjacent to all vertices, this implies that G′[{u, u′, w, w′, r}] is isomorphic to the
second graph shown in Figure 2, a contradiction to the fact that G′ fulfills the
2-vertex-overlap property.

Second, assume that H ′ contains at least two connected components with
more than one vertex. Let e = {u, w} and e′ = {u′, w′} with u, u′ ∈ U

11
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and w, w′ ∈ W be two edges from different connected components of H ′. This
implies that G′[{u, u′, w, w′}] is an induced cycle of length four. Further, since r
is adjacent to all vertices, G′[{u, u′, w, w′, r}] is isomorphic to the third graph
shown in Figure 2, a contradiction to the fact that G′ fulfills the 2-vertex-overlap
property. 2

Finally, we consider s-Edge-Overlap Addition. The reduction given in
the proof of Theorem 4 can be easily modified to show the NP-hardness of
2-Edge-Overlap Addition: Simply replace the introduced vertex r by an
edge e and connect both endpoints of e to all vertices in the given bipartite graph
of the Maximum Edge Biclique instance. The correspondence between the
solutions of both instances can be shown in complete analogy with the vertex-
overlap case.

Theorem 5. s-Edge-Overlap Addition is NP-hard for s ≥ 2.

5. Parameterized Complexity

Here, we consider the parameterized complexity of overlap clustering. First,
due to Theorem 2, we have a set of forbidden subgraphs for both properties
whose size only depends on s. Cai [8] showed that edge modification problems
for properties that can be described by forbidden subgraphs of fixed size are
fixed-parameter tractable with respect to the parameter “solution size”. Hence,
we can conclude that for both overlap properties all three problems are fixed-
parameter tractable with respect to the combined parameter (s, k).

Theorem 6. For π ∈ {s-Vertex-Overlap, s-Edge-Overlap}, π Editing,
π Addition, and π Deletion are fixed-parameter tractable with respect to the
combined parameter (s, k).

Next, we consider the parameterization with only k as the parameter. This
means that s can have an unbounded value. For this parameterization, we show
that for both overlap properties the deletion and editing problems are W[1]-hard
by developing a parameterized reduction from the W[1]-complete Set Packing

problem [12]. We leave open the parameterized complexity of the two addition
problems with only k as parameter.

Theorem 7. For π ∈ {s-Vertex-Overlap, s-Edge-Overlap}, π Editing

and π Deletion are W[1]-hard with respect to the parameter k.

Proof. We give the proof details only for s-Vertex-Overlap Deletion (s-
VOD), and then discuss how the reduction can be modified to work for s-
Vertex-Overlap Editing and edge-overlap. We show the W[1]-hardness
of s-VOD by presenting a parameterized reduction from the W[1]-complete
Set Packing problem [12], which is defined as follows:

12
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a) b)

x1x1

u1
u1 u2

s1s1

VYVY

Figure 5: Parts of the graph constructed in the reduction from Set Packing to s-Vertex-

Overlap Deletion. Rectangles depict cliques of size at least k + 1. a) A subgraph con-
taining u1, u2 ∈ VU , s1 ∈ VS , x1 ∈ VX , and VY . Edges are drawn between si ∈ VS

and uj ∈ VU if j ∈ Si. Here, 1 ∈ S1 but 2 /∈ S1. b) Shielding cliques are added for
each triangle in G[VU ∪ VX ∪ VS ] and between xi and VY for all xi ∈ VX .

Input: A family of sets S = {S1, . . . , Sn} over a universe U =
{1, . . . , m} and a nonnegative integer k ≤ n.
Question: Is there a set S′ ⊆ S such that |S′| ≥ k and ∀Si, Sj ∈ S′ :
Si ∩ Sj = ∅?

Consider an instance I = (S, k) of Set Packing. Without loss of generality
we can assume that k < m and k < n. We construct an s-VOD instance (G =
(V, E), k) as follows. The vertex set V is comprised of six subsets VU , VS , VX ,
VY , VC , and VP :

• VU := {u1, . . . , um} contains one vertex for each element i ∈ U .

• VS := {s1, . . . , sn} contains one vertex for each Si ∈ S.

• VX := {x1, . . . , xk} contains k vertices and VY := {y1, . . . , y2k+1} contains
2k + 1 vertices; together they serve as a “selection” gadget.

• VC contains vertices that are part of some “shielding” cliques. With these
cliques, we can enforce that some edges will never be edited.

• VP contains “padding” cliques that are used to increase the number of
maximal cliques for certain vertices.

First, we describe the construction of the graph G[VU ∪ VS ∪ VX ∪ VY ], then we
describe how the additional cliques are added to this graph. For a vertex si ∈ VS

corresponding to set Si and a vertex uj ∈ VU corresponding to an element j ∈
U , we add the edge {uj, si} if j ∈ Si. Furthermore, we connect each xi ∈
VX by edges to all vertices in VU ∪ VS . Finally, we make VY a clique and
connect each y ∈ VY to all vertices in VX ∪VS . This concludes the construction
of G[VU ∪ VS ∪ VX ∪ VY ]. An example is shown in Figure 5a.

Next, the shielding cliques are added. For each xi ∈ VX we add the vertex
set Cxi := {cxi

1 , . . . , cxi

k+1} to VC . Furthermore, we make Cxi∪{xi}∪VY a clique.

13
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This construction ensures that deleting the edge {xi, sj} for a vertex xi ∈ VX

and sj ∈ VS decreases the number of maximal cliques that contain xi by one: the
maximal clique K = {xi, sj} ∪ VY is destroyed and the clique K ′ = {xi} ∪ VY

which after deleting {xi, sj} is the maximal subset of K that is a clique is
a subset of the clique {xi} ∪ VY ∪ Cxi . Furthermore, no additional maximal
cliques are created by the deletion of {xi, sj}.

Then, for each edge {ui, sj}, and for each xl ∈ Vx, we add the vertex set
Cui,sj ,xl := {cui,sj ,xl

1 , . . . , c
ui,sj ,xl

k+1 } to VC and we make {ui, sj , xl} ∪ Cui,sj ,xl

a clique. This clique has the following purpose: if we delete an edge {sj , xl},
then we increase the number of maximal cliques that contain ui. Altogether, the
shielding cliques ensure that in order to decrease the number of maximal cliques
for a vertex xi ∈ VX with at most k edge deletions, one can only delete edges
between xi and VS . An example of these shielding cliques is shown in Figure 5b.

Before we describe how the padding cliques are added, we compute the
number of maximal cliques in G[VU ∪ VS ∪ VX ∪ VY ∪ VC ] that each vertex v ∈
VU ∪ VX is contained in. We denote this number for some vertex v by #(v).

• Each vertex ui ∈ VU is contained in #(ui) = |N(ui)∩VS |·k ≤ n·k maximal
cliques: For each sj ∈ N(ui) ∩ VS and each xl ∈ VX the set {ui, sj , xl} ∪
Cui,sj ,xl is a maximal clique since VX and VS are independent sets and by
the definition of VC ; no other maximal cliques contain ui.

• Each vertex xi ∈ VX is contained in

#(xi) =
∑

sj∈VS

(|N(sj) ∩ VU | + 1) + 1 ≤ n · (m + 1) + 1

maximal cliques: For each sj ∈ VS and for each ul ∈ N(sj) ∩ VU the
set {xi, sj , ul}∪Cul,sj ,xi is a maximal clique, for each sj ∈ VS the set {xi, sj}∪
VY is a maximal clique, and {xi}∪VY ∪Cxi is a maximal clique; no other
maximal cliques contain xi.

We add padding cliques of size k+1 that are “attached” to the vertices in VU

and VX as follows. For each ui ∈ VU , we add n · (m+1)− 1−#(ui) size-(k +1)
vertex sets Cui

l to VP , where 1 ≤ l ≤ n · (m + 1)− 1 −#(ui). For each Cui

l , we
make {ui}∪Cui

l a clique. Then, for each xi ∈ VX , we add n · (m+1)+1−#(xi)
size-(k +1) vertex sets Cxi

l to VP , where 1 ≤ l ≤ n · (m+1)+1−#(xi). Again,
for each Cxi

l , we make {xi} ∪ Cxi

l a clique. Note that since k < m and k < n,
the number of added cliques is nonnegative.

This concludes the construction of G. Note that in G

• each vertex ui ∈ VU is contained in exactly n · (m+1)−1 maximal cliques
(by the definition of #(ui) and the number of added padding cliques),

• each vertex xi ∈ VX is contained in exactly n · (m+1)+1 maximal cliques
(by the definition of #(xi) and the number of added padding cliques),

• each vertex yi ∈ VY is contained in exactly n ·k+ k < n · (m+1) maximal
cliques (one maximal clique for each pair of xj ∈ VX and sl ∈ VS , and one
maximal clique for each {xj} ∪ Cxj , xj ∈ VX),

14
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• each vertex si ∈ VS is contained in exactly k · (|N(si) ∩ VU | + 1) < n ·
(m + 1) maximal cliques (one maximal clique for each pair of xj ∈ VX

and ul ∈ N(si) ∩ VU and, furthermore, for each xj ∈ VX the maximal
clique {si, xj} ∪ VY ), and

• each vertex v ∈ VP ∪ VC is contained in exactly one maximal clique.

Finally, we set s := n · (m + 1). Clearly, the construction can be performed in
polynomial time. The main idea of the reduction can be described as follows.
For each vertex in VX we have to reduce the number of maximal cliques it is
contained in. This can only be done by deleting edges between VX and VS . This
corresponds to selecting a set in the Set Packing instance. However, we also
force that for each vertex in VU the number of maximal cliques it is contained
in increases at most by one. Hence, at most one of its neighbors in VS can be
“selected”. This corresponds to the disjointness of the sets of the Set Packing

solution.
To show the W[1]-hardness of s-VOD parameterized by k, we prove the

following.

Claim: (I, k) is a yes-instance for Set Packing if and only if (G, k)
is a yes-instance for (n · (m + 1))-VOD.

“⇒”: Let S′ be a size-k solution of Set Packing, and assume without loss of
generality that S′ = {S1, . . . , Sk}. We obtain a solution S′ of (n ·(m+1))-VOD

by setting S′ := {{xi, si} | 1 ≤ i ≤ k}. Let G′ := G∆S′. To see that G′ fulfills
the (n ·(m+1))-vertex-overlap property, we only need to consider vertices v ∈ V
such that there is at least one edge that has been removed from G[N [v]], since
for the other vertices the number of maximal cliques containing them has not
changed.

First, since S′ is a solution for Set Packing, for each ui ∈ VU , there is
at most one sj ∈ N [ui] with 1 ≤ j ≤ k. Hence, at most one edge in G[N [ui]]
has been removed. Let {sj , xj} denote such an edge. There is one maximal
clique in G that contains ui, sj , and xj , namely, {ui, sj , xj} ∪ Cui,sj ,xj . After
the deletion of {sj , xj}, we have two maximal cliques that contain the vertices
from Cui,sj ,xj , namely Cui,sj ,xj ∪ {ui, sj} and Cui,sj ,xj ∪ {ui, xj}. Hence, for
each ui ∈ VU the number of maximal cliques has increased by at most one.
Therefore, each ui ∈ VU is in at most n · (m + 1) maximal cliques.

Next, we show that for each vertex xi ∈ Vx the number of maximal cliques
has decreased by one. This can be seen as follows. For each xi ∈ VX , we have
removed only the edge {si, xi} in G[N [xi]]. This means that the number of max-
imal cliques that contain xi cannot increase. Furthermore, by removing {si, xi}
we destroy the maximal clique {si, xi} ∪ VY , since the clique {xi} ∪ VY is a
subset of the existing shielding clique {xi} ∪ VY ∪ Cxi . The number of max-
imal cliques that contain xi has thus decreased by one. Hence, each xi ∈ Vx

is now in exactly n · (m + 1) maximal cliques. For each vertex in v ∈ VY the
number of maximal cliques that it is contained in has not increased, since for
each {xi, si} that was deleted, the maximal clique {si, xi}∪VY is destroyed, the
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clique VY ∪ {si} becomes a new maximal clique, and the clique VY ∪ {xi} is a
subset of the clique VY ∪ {xi} ∪ Cxi .

For each vertex si ∈ VS , the number of maximal cliques that contain si

has not increased, since if an edge in G[N [si]] has been deleted, then it is the
edge {si, xi}. Since this edge is incident to si, its deletion does not increase the
number of maximal cliques that contain si. Hence, each si ∈ VS is still in at
most n · (m + 1) maximal cliques.

Finally, each v ∈ VP ∪VC is contained in at most two maximal cliques in G′,
since each v ∈ VP ∪VC is contained in at most one maximal clique in G, and at
most one edge in G[N [v]] has been deleted.

Altogether, each vertex in G′ is contained in at most n · (m + 1) maximal
cliques and S′ is thus a size-k solution for n · (m + 1)-VOD.

“⇐”: Let S′ be a size-k solution for (G, k) and G′ := G∆S′.
First, we show that for each xi ∈ VX , at least one edge between xi and VS

must be deleted. To see this, consider the following. There are n · (m + 1) + 1
maximal cliques that contain xi. Hence, the number of maximal cliques contain-
ing xi must be reduced by at least one. The vertex xi is contained in two types
of maximal cliques: those that contain a shielding or a padding clique and those
that contain xi, VY , and one vertex sj ∈ VS . Note that with k edge deletions, we
cannot decrease the number of maximal cliques that contain both xi and some
shielding (or padding) clique. This can be seen as follows. The shielding and
padding cliques are pairwise vertex-disjoint in G and with k edge deletions, for
each shielding or padding clique there remains at least one vertex that is adja-
cent to xi in G′. Next, consider the cliques that contain xi, VY , and one vertex
from VS . In G, there are exactly |VS | cliques of this type. Suppose S′ does not
delete any edges between xi and VS . We show that in this case G′ contains at
least |VS | cliques of this type. Consider some sj ∈ VS . Since VY has size 2k +1,
there is in G′ at least one vertex y ∈ VY that is adjacent to xi and sj . Hence,
for each sj there is at least one maximal clique that contains xi, sj , and y.
Since VS is an independent set, this means that there are at least |VS | maximal
cliques of this type in G′. Hence, the number of cliques that contain xi has
not decreased in the case that we do not delete any edge between xi and VS .
Therefore, a size-k solution S′ contains for each xi ∈ VX an edge from xi to a
vertex from VS .

Second, we show that for each si ∈ VS there is at most one edge incident
to si that is deleted by S′, and thus that S′ corresponds to a size-k subset
of S. Suppose, otherwise, that for some si ∈ VS , at least two incident edges,
say {si, xi} and {si, xj} have been deleted. Then, for each ul ∈ VU ∩ N(si) the
number of maximal cliques that contain ul has increased by at least two, since,
instead of the two maximal cliques {si, xi, ul}∪Cul,si,xi and {si, xj , ul}∪Cul,si,xj

that are destroyed, there are now four maximal cliques (two for each deleted
edge, one that contains si and one that contains xi or xj , respectively). Then,
however, uj is in more than n · (m + 1) maximal cliques, which contradicts
that S′ is a solution. Hence, we can assume without loss of generality that S′ :=
{{si, xi} | 1 ≤ i ≤ k}.
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Finally, we show that the set S′ := {Si | 1 ≤ i ≤ k} is a solution of the
Set-Packing instance (I, k). To this end we show that each u ∈ VU can have
at most one neighbor in {si | 1 ≤ i ≤ k}. Otherwise, the number of maximal
cliques that contain u has increased by at least two, a contradiction to the fact
that S′ is a solution. Hence, S′ is a size-k subset of S such that every u ∈ U is
contained in at most one Si ∈ S′.

Altogether, we have shown the equivalence between the solutions of s-Vertex-

Overlap Deletion and Set Packing. This implies that s-Vertex-Overlap

Deletion is W[1]-hard, when parameterized only by k.

For s-Vertex-Overlap Editing, the construction has to be modified as
follows. Instead of adding only one clique VY , we add a clique Ci

j for each pair of
vertices xi and sj . This ensures that adding edges between distinct sj , sl ∈ VS

does not reduce the number of cliques that each xi is contained in. Note also
that edge additions between distinct ui, uj ∈ VU and between VU and VS do not
decrease the number of cliques that a vertex from xi is contained in because of
the large shielding cliques for each triangle in G[VU ∪VS ∪VX ]. Hence, the only
choice to decrease the number of cliques that each xi ∈ VX is contained in is
again the deletion of an edge between xi and VS . The correctness proof then
works in complete analogy with the deletion case.

For s-Edge-Overlap Deletion and Editing, we replace each vertex
of v ∈ VU ∪ VX with two adjacent vertices, and add further “shielding cliques”
that ensure that the edge between these two vertices is not deleted. The cor-
rectness proofs work analogously; we omit the details. 2

6. Two Kernelization Results for Edge Deletion

Nontrivial overlap clustering problems seem to be algorithmically more de-
manding than clustering without overlaps. We present polynomial-time ker-
nelization algorithms for the two most basic NP-hard clustering problems with
nontrivial overlap.

6.1. An O(k4)-vertex problem kernel for 1-Edge-Overlap Deletion

We present a kernelization for 1-edge-overlap Deletion, which, by Propo-
sition 1, is equivalent to the problem of destroying diamonds by at most k edge
deletions. We introduce four data reduction rules for this problem and show that
a yes–instance reduced with respect to these rules has O(k4) vertices. Rules 1, 2,
and 4 find parts of the graph that need not be modified by optimal solutions,
whereas Rule 3 identifies edges that must be in any solution of size at most k.

Rule 1. If there is a maximal clique K containing only edges which are not in
any other maximal clique, then remove all edges of K.

Lemma 3. Rule 1 is correct and can be carried out in O(m2) time.

Proof. Let G denote the input instance and G′ be the graph resulting from
applying Rule 1 to a maximal clique K in G. To show the correctness of Rule 1,
we prove the following.
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Claim: (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

“⇒”: Let S denote an optimal solution for G. Then S contains no edge from K.
To see this, observe that the only possible way to create a diamond containing
some edge from K is to delete edges from K. However, since all edges of K
are not in a diamond in G, an optimal solution will never delete them. This
means that K remains a maximal clique in G∆S and no two vertices of K have
common neighbors outside of K. Thus, removing the edges of K from G∆S
does not create any diamond and S is also a solution for G′.
“⇐”: Observe that after applying Rule 1 to K, no two vertices of K have
common neighbors in G′, since otherwise the edge connecting these two vertices
would be contained in a diamond in G. Therefore, we can add the edges of K
to the graph G′′ := G′∆S, where S is an optimal solution for G′, without
destroying the 1-edge-overlap property of G′′.

To check the applicability of Rule 1, we compute for each edge whether it is in
only one maximal clique K. If so, we check further for all edges of K, whether K
is the only maximal clique in which these edges are contained. Clearly, this is
doable in O(m2) time. 2

Rule 2. Remove all isolated vertices.

Rule 2 is clearly correct and can be performed in linear time. After the
exhaustive application of Rule 1, Rule 2 is sufficient to remove all vertices from G
that are not in a diamond, as we show in the following.

Proposition 2. Let G be a graph that is reduced with respect to Rules 1 and 2.
Then every vertex in G is contained in a diamond.

Proof. Assume towards a contradiction that G contains a vertex v that is
not contained in any diamond. Since G is reduced with respect to Rule 2,
v has at least one neighbor. Furthermore, since v is not contained in any dia-
mond, G[N(v)] is a cluster graph, that is, a disjoint union of cliques. Let K be
one of the cliques of G[N(v)]. Clearly, K∪{v} is a maximal clique in G. Further-
more, since v is not contained in any diamond, there is no vertex u ∈ V \ N [v]
that is adjacent to more than one vertex in K. Hence, none of the edges
of G[K ∪ {v}] is contained in any other maximal clique K ′ 6= K ∪ {v}. This
contradicts G being reduced with respect to Rule 1. 2

Rule 3. If there is an edge e = {u, v} such that the complement graph of
G[N(u) ∩ N(v)] contains a matching of size greater than k, then remove e,
add e to the solution, and decrease the parameter k by one.

Lemma 4. Rule 3 is correct and can be carried out in O(m2
√

n) time.

Proof. For e = {u, v}, let Ge denote G[N(u) ∩ N(v)]. Every edge e′ in the
complement graph Ge of Ge implies a diamond in G consisting of the endpoints
of e′ and u and v. Therefore, every matching of Ge corresponds to a set of
diamonds in G, whose edge sets pairwise only have e in common. Hence, to
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destroy all these diamonds, we either delete e or delete one edge for every
diamond. A matching of size greater than k thus forces the deletion of e. Since
a maximum matching can be computed in O(m

√
n) time [26], the applicability

of Rule 3 can be checked in O(m2
√

n) time by iterating over all edges of G. 2

The final data reduction rule shrinks large cliques whose vertices have iden-
tical neighborhoods, so-called critical cliques (see Section 2 for a formal defini-
tion).

Rule 4. If there is a critical clique K with more than k + 3 vertices, then
arbitrarily remove vertices from K until |K| = k + 3.

Lemma 5. Rule 4 is correct and can be carried out in O(m + n) time.

Proof. It suffices to prove that, for every critical clique K with at least k + 3
vertices, every optimal solution of size at most k does not delete edges incident
to the vertices of K. Assume towards a contradiction that there is an optimal
solution S of size at most k that deletes an edge {u, v} with u ∈ K. Let G′ :=
G∆S and let G′′ be the graph resulting by adding {u, v} to G′. Then, since S
is optimal, G′′ must contain a diamond containing {u, v}, and thus one vertex x
which, in G′′, is adjacent to u and v. Since |K| ≥ k+3, we have |K \{u, v, x}| ≥
k. Moreover, since |S \ {u, v}| ≤ k − 1, there must be a vertex y ∈ K \ {u, v, x}
with NG(y) \ (K \ {u, v, x}) = NG′′(y) \ (K \ {u, v, x}). Thus, since K is a
critical clique, this means y is in G′ adjacent to all of u, v, and x. This directly
implies that G′′[{u, v, x, y}] is a clique and thus G′[{u, v, x, y}] is a diamond,
contradicting that S is a solution.

The running time of Rule 4 follows from the fact that all critical cliques of
a graph can be computed in O(m + n) time [22]. 2

Making combined use of Rules 1–4, we obtain a polynomial-size problem kernel
for 1-Edge-Overlap Deletion.

Theorem 8. 1-Edge-Overlap Deletion admits a problem kernel with O(k4)
vertices which can be found in O(m3

√
n) time.

Proof. Let G denote an input graph reduced with respect to the above four
data reduction rules, and let S be a solution of size at most k. Partition the
vertices of the graph G′ := G∆S into two subsets, one set X containing the
vertices that are endpoints of edges deleted by S, and Y := V \X . Clearly, |X | ≤
2k. It thus remains to show that |Y | = O(k4). Define for each edge e ∈ S the
set Ye containing the vertices in Y that, in G, occur together with e in at least
one diamond. By Proposition 2, Y =

⋃

e∈S Ye. First, we show that every
maximal clique K in G′[Y ] is contained in Ye for some e ∈ S. Second, we show
that for each e ∈ S at most 4k maximal cliques of G′[Y ] are contained in Ye,
which means that there can be at most 4k2 maximal cliques in G′[Y ]. Finally,
we show that each of these cliques contains O(k2) vertices, which yields the
claimed overall bound on the number of vertices.
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First, we show that for every maximal clique K in G′[Y ] there is an edge e ∈
S with K ⊆ Ye. In G, there is a maximal clique K ′ containing K and, by
Rule 1, K ′ has an edge {u, v} which is in two maximal cliques, and thus there
is a vertex x ∈ K and a vertex w ∈ V \ K ′ such that G[{u, v, w, x}] is a
diamond. Note that if |K ∩ {u, v}| = 2, then no edge of G[{u, v, w, x}] is
contained in G[X ], contradicting the fact that S is a solution. We distinguish the
cases that |K∩{u, v}| is either 1 or 0. First, consider the case that |K∩{u, v}| =
1. Without loss of generality, let u ∈ K and v ∈ K \K ′. Note that {v, w} is the
only edge of G[{u, v, w, x}] with both endpoints in X , and hence {v, w} ∈ S.
We show that for every x′ ∈ K it holds that G[{u, v, w, x′}] is a diamond, and,
hence, K ⊆ Yv,w. Assume towards a contradiction that there is a vertex x′ ∈ K
such that G[{u, v, w, x′}] is not a diamond. Observe that G[{u, v, w, x′}] is a
clique and, hence, G′[{u, v, w, x′}] is a diamond, contradicting the fact that S is a
solution. Second, consider the case that |K∩{u, v}| = 0, that is, u, v ∈ K ′\K. If
for every vertex x′ it holds that G[{u, v, w, x′}] is a diamond, then K ⊆ Y ′

e for at
least one e′ ∈ {{u, v}, {v, w}, {u, w}}. Otherwise, there is a vertex x′ ∈ K such
that G[{u, v, w, x′}] is a clique. Then, however G[{v, w, x, x′}] is a diamond and
the first case applies since {x′, v} is contained in two maximal cliques and x′ ∈ K
and v ∈ K ′ \ K.

Second, we show that, for every edge e = {u, v} ∈ S, at most 4k maximal
cliques of G′[Y ] are subsets of Ye. Clearly, all vertices in Ye must be adjacent to
at least one of u and v. Let Nu,v denote the common neighbors of u and v in Ye.
Since G′ is diamond-free, Nu,v is an independent set and, by Rule 3, |Nu,v| ≤ 2k.
Let Nu := (N(u) \ N(v)) ∩ Ye and Nv := (N(v) \ N(u)) ∩ Ye. Since Nu,v is
an independent set, no vertex from Nu ∪ Nv can be adjacent to two vertices
in Nu,v. Then, we can partition the vertices in Nu ∪Nv into at most 4k subsets
according to their adjacency to the vertices from Nu,v = {x1, . . . , xl} with l ≤
2k, every subset Nu,xi

(or Nv,xi
) containing the vertices in N(u) ∩ N(xi) (or

N(v) ∩N(xi)). Each subset Nu,xi
is a clique, since otherwise two non-adjacent

vertices from Nu,xi
would form a diamond with xi and u. The same holds

for each Nv,xi
. Furthermore, there cannot be an edge between Nu,xi

and Nu,xj

with i 6= j, since otherwise two adjacent vertices w ∈ Nu,xi
and y ∈ Nu,xj

would
form a diamond with u and xi. Moreover, there is no maximal clique K of G′[Y ]
completely contained in Ye and containing an edge {a, b} such that a ∈ Nu,xi

and b ∈ Nv,xj
for i, j ∈ {1, . . . , ℓ}. Suppose that such a clique K exists. Note

that a and b must have a common neighbor in G—otherwise, the edge {a, b} is
a maximal clique to which Rule 1 applies, and thus it would have been removed.
Hence, any maximal clique containing a and b also contains at least one further
vertex w. In case K ⊆ Ye, this further vertex is in N(u) ∪ N(v). Suppose
without loss of generality that w ∈ N(u). Then G′[{u, a, b, w}] is a diamond,
contradicting the diamond-freeness of G′.

In summary, we have at most 4k maximal cliques in G′[Y ] which are entirely
contained in Ye. Since there are at most k different Ye’s, and since every maximal
clique in G′[Y ] is completely contained in at least one Ye, there can be at
most 4k2 maximal cliques in G′[Y ].

Finally, we show that every maximal clique K in G′[Y ] contains O(k2) ver-

20



To appear in Discrete Optimization, 2010

tices. This can be seen as follows. From the vertices of K, only 4k2 many
can be in more than one maximal clique in G′[Y ], since every two cliques
in G′[Y ] overlap in at most one vertex. Moreover, as argued above, K ⊆ Ye for
some e = {u, v} ∈ S and there is exactly one vertex in K which is adjacent to
both u and v. Let K ′ denote the remaining vertices of K, that is, each vertex of
K ′ has no neighbors in Y \K and is adjacent to at most one of u and v. We show
that |K ′| ≤ 2k+k+3. Clearly, we can assume that |K ′| > 2, since otherwise the
claim is trivially fulfilled. Note that K ′ ⊆ N(u) or K ′ ⊆ N(v), since otherwise
there would be a vertex a ∈ K ′ that is adjacent to u but not to v and a ver-
tex b ∈ K ′ that is adjacent to v but not to u. Moreover, since |K ′| > 2 there is a
vertex x′ ∈ K ′ that is either adjacent to u or v. Assume without loss of general-
ity that {x′, u} ∈ E. Then, however G′[{a, b, u, x′}] is a diamond. We now claim
that for every vertex w ∈ X \ {u, v}, either K ′ ⊆ N(w) or |N(w) ∩ K ′| ≤ 1.
Assume the claim is not true. Then we have two vertices a, b ∈ K ′ ∩ N(w)
and one vertex c ∈ K ′ \ N(w). This implies that there is a diamond consisting
of a, b, c, w in G′, contradicting that G′ is diamond-free. This claim implies that
all except for at most 2k vertices in K ′ have the same neighborhood in X . This
means that they have the same neighborhood in G and thus they form a critical
clique. By Rule 4, there can be at most k+3 of such vertices. Hence, K contains
altogether at most 4k2 + 1 + 2k + k + 3 vertices.

Summarizing, we have at most 4k2 maximal cliques in G′[Y ], and each clique
contains at most 4k2 + 3k + 4 vertices. Hence, |Y | = O(k4). Since each of the
four data reduction rules is performed at most O(m) times, the running time
follows from Lemmas 3–5. 2

6.2. An O(k3)-vertex kernel for 2-Vertex-Overlap Deletion

We present four polynomial-time data reduction rules for 2-Vertex-Overlap

Deletion and show that a yes–instance reduced with respect to these rules
has O(k3) vertices. In the following, we say that a vertex is satisfied if it is
contained in at most two maximal cliques and a clique is satisfied if all its ver-
tices are satisfied. Moreover, a maximal clique all whose vertices are satisfied is
called a satisfied maximal clique. The first data reduction rule reads as follows.

Rule 1. If there is a critical clique K with more than k + 1 vertices, then
arbitrarily remove vertices from K until |K| = k + 1.

The following lemma helps in showing the correctness of Rule 1. It says that
there always exists an optimal solution S such that all vertices having the same
closed neighborhood in the input graph G also have the same closed neighbor-
hood in G∆S, and, hence, are contained in the same maximal cliques in G∆S.
Thus, the following lemma is a stronger claim than Guo’s corresponding re-
sult [17, Lemma 2], which says that for a specific critical clique K of the input
graph G there exists an optimal solution S ⊆ E such that K is part of a critical
clique in G∆S.

Lemma 6. There is an optimal edge modification set S ⊆ E such that every
critical clique K of G is part of a critical clique in G∆S.
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Proof. Let K1, . . . , Kℓ denote the critical cliques of G and let S′ ⊆ E denote
an optimal edge deletion set. We show that one can transform S′ into an edge
deletion set S with |S| ≤ |S′| such that for every i, 1 ≤ i ≤ ℓ, there is a critical
clique K ′ in G∆S with Ki ⊆ K ′.

If each Ki is contained in a critical clique in G∆S′, then the lemma trivially
holds for S = S′. Hence, in the following we consider the case that there is
an i, 1 ≤ i ≤ ℓ, such that Ki is not contained in a critical clique in G∆S′.
We show that we can iteratively apply the following “local modification” until
each Ki is contained in a critical clique. Consider an arbitrary critical clique Ki

such that Ki is not contained in one critical clique in G∆S′. Let A1, . . . , Ap

denote the critical cliques in G∆S′ with Aj ∩ Ki 6= ∅ for all 1 ≤ j ≤ p. Note
that p > 1. Let Bj := Aj ∩ Ki for all 1 ≤ j ≤ p. Moreover, let v ∈ Ki denote a
vertex such that S′

v := S′∩{{v, w} | w ∈ V \Ki} has minimum cardinality among
all vertices in Ki and without loss of generality let v ∈ B1. Transform G∆S′

as follows into a graph G′ = (V, E′). In G′, Ki is a clique and NG′(Ki) =
NG∆S′(B1) \ Ki, that is, undo all edge deletions between the vertices in Ki,
and, for each vertex x ∈ Ki \ B1, delete the edges between x and NG∆S′(x) \
(Ki ∪NG∆S′(B1)) and undo the edge deletions between x and NG∆S′(B1) \Ki

(note that in G we have {x, y} ∈ E for each y ∈ NG∆S′(B1) \ Ki). Observe
that, by the choice of v, for each x the number of edge deletions is at most the
number of edges deletions that are undone. Thus, in G′, every vertex in Ki is
incident to at most |S′

v| edge modifications, and, hence, the edit distance of G′

to G is at most the edit distance of G∆S′ to G. Moreover, by construction, all
vertices in Ki have an identical closed neighborhood, and, hence, Ki is part of
a critical clique in G′.

Next, we show the correctness of this transformation, that is, we show that G′

has the 2-vertex-overlap property. Then, we show that the modification does
not increase the number of critical cliques intersecting with Kj (j 6= i). For both
proofs the following interpretation is helpful. Observe that the transformation
from G∆S′ to G′ can be seen as follows. First, all vertices in Ki\B1 are deleted.
Then they are added one-by-one, making each vertex adjacent to each vertex
in the (current) closed neighborhood of v. Next, we show that G′ has the 2-
vertex-overlap property. To this end, first note that since the 2-vertex-overlap
property is hereditary (see Lemma 1) deleting a vertex does not destroy the 2-
vertex-overlap property. Moreover, adding a vertex x and making it adjacent to
the vertices in the closed neighborhood of an existing vertex v does not destroy
the 2-vertex-overlap property.

Finally, we show that in G′ the number of critical cliques intersecting with Kj

(j 6= i) does not increase. To this end, recall the alternative interpretation of the
transformation (that is, first deleting the vertices in Ki \ B1 and subsequently
adding these vertices and making them adjacent to the vertices in the closed
neighborhood of v). Since two vertices with an identical neighborhood have an
identical neighborhood after the deletion of a third vertex, deleting a vertex
does not increase the number of critical cliques. Moreover, adding a vertex and
making it adjacent to each vertex in the closed neighborhood of an existing
vertex does not change the critical cliques of the graph (except for the critical
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clique containing the new vertex whose size is increased by one).
In summary, after the modification Ki is contained in one critical clique

of G′ and for every other critical clique Kj , the number of critical cliques of G′

intersecting with Kj does not increase. Moreover, the resulting graph G′ has
the 2-vertex-overlap property and the edit distance of G′ to G is at most the edit
distance of G∆S′ to G. Hence, we can apply the local modification described
above until every critical clique is contained in one critical clique of the resulting
graph. 2

According to Lemma 6, if one deletes an edge incident to a vertex in a
critical clique, then one has to delete an edge for every vertex in this critical
clique. Hence, if there exists a critical clique of size greater than k + 1, then
we need to keep only k + 1 of these vertices, because at most k edges may be
deleted. Therefore, Rule 1 is correct. Note that all critical cliques of a graph
can be found in linear time [25]. Hence, Rule 1 can be carried out in O(m + n)
time.

Rule 2. If there exists a satisfied maximal clique K such that all vertices
in N(K) are satisfied, then remove every edge e such that K is the only maxi-
mal clique containing e.

To prove the correctness of Rule 2, we need the following two lemmas.

Lemma 7. Let K and K ′ be two maximal cliques with K ∩ K ′ 6= ∅. If all
vertices in K ∩ K ′ are satisfied, then

1. there is no edge between K \ K ′ and K ′ \ K, and

2. K is vertex-disjoint to all other maximal cliques intersecting with K ′.

Proof. First, we prove part 1. Assume towards a contradiction that there
exist two vertices v ∈ K \ K ′ and u ∈ K ′ \ K such that v and u are adjacent.
Let x ∈ K ∩ K ′. Clearly, {u, v, x} forms a clique. Let X denote an arbitrary
maximal clique containing {u, v, x}. Note that X is neither K (since u 6∈ K)
nor K ′ (since v 6∈ K ′). Hence, x is contained in at least three maximal cliques,
a contradiction to the fact that all vertices in K ∩ K ′ are satisfied.

Next, we prove part 2. Assume towards a contradiction that there exists
a maximal clique K ′′ with K ∩ K ′′ 6= ∅ and K ′ ∩ K ′′ 6= ∅. Since the vertices
in K∩K ′ are satisfied, K ′′ intersects with K and K ′ only in K \K ′ and K ′ \K,
respectively. Hence, there exists a vertex in K \K ′ and a vertex in K ′ \K both
contained in K ′′, a contradiction to part 1 of the lemma. 2

Lemma 8. Let K be a satisfied maximal clique in G. If there exists a vertex v ∈
K such that N [v] = K, then there exists an optimal solution S such that v is
contained in exactly one maximal clique in G∆S.

Proof. Let S be an optimal solution for G such that every critical clique of G is
part of a critical clique in GS := G∆S. By Lemma 6, such a solution must exist.
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Assume towards a contradiction that v is contained in two maximal cliques K1

and K2 in GS . Let W denote the set of vertices in the connected component
of GS [K] containing v and let X ⊆ S denote the edge deletions between vertices
of W . Note that X 6= ∅ since K1 ∪ K2 ⊆ W . We show that S′ := S \ X is a
solution, which contradicts the optimality of S. More precisely, we show that
in GS′ := G∆S′ every vertex is satisfied.

Since in GS′ there is no edge {x, y} with x ∈ W and y ∈ K \W (otherwise, y
would be in a connected component with v in GS) it holds that NGS′

(W ) ⊆
V \ K. Moreover, since we only undo edge deletions between vertices of W it
suffices to show that the vertices in NGS′

(W ) ∪ W are satisfied (for all other
vertices the graph induced by their closed neighborhood does not change).

First, consider a vertex u ∈ NGS′
(W ). Recall that u ∈ V \ K. Let B :=

K ∩NG(u). Observe that since K is satisfied B is a critical clique in G. Hence,
by Lemma 6, B is part of a critical clique in GS and u is adjacent to all vertices
of B (that is, B = NGS

(u) ∩ W ). Clearly, this implies that B = NGS′
(u) ∩ W .

Thus, the graphs induced by the closed neighborhoods of u in GS and GS′ are
identical. Hence, u is satisfied.

Second, consider a vertex w ∈ W . We argue that w is contained in a
maximal clique completely contained in W . Let B denote the critical clique
of G containing w. Note that B ⊆ K. By Lemma 6 it follows that B ⊆ W and
that all vertices in B have an identical closed neighborhood in GS . Since W
contains more than one critical clique in GS (note that v is contained in two
maximal cliques in GS), by definition of W there exists a vertex x ∈ W \ B
adjacent to w in GS . Let Q denote a maximal clique of GS with {x, w} ⊆ Q.
We show that Q ⊆ W . Assume towards a contradiction that Q \ W 6= ∅ and
let z ∈ Q \ W . Let B′ := NG(z) ∩ K. Since K is satisfied, B′ forms a critical
clique in G. Moreover, since w ∈ B′ we have B′ = B, contradicting the fact
that x ∈ W \B. Hence, there exists a maximal clique Q in GS contained in W .
This means that there exists at most one further maximal clique K ′ in GS

containing w and vertices from V \K. Hence, w is in GS′ contained in at most
two maximal cliques, namely W and K ′ (if existent). 2

Lemma 9. Rule 2 is correct and can be carried out in O(m · n) time.

Proof. Let G = (V, E) be a graph containing a satisfied maximal clique K such
that all vertices in NG(K) are satisfied. Moreover, let G′ = (V ′, E′) denote the
graph that results from removing all edges contained only in K.

To show the correctness of Rule 2, we need the following. Let B := {B1, . . . , Bℓ}
denote the critical cliques of G contained in K. Note that, since K is satisfied, for
every Bi there exists at most one further maximal clique Ki in G with Bi ⊆ Ki.
Furthermore, by Lemma 7, it follows that the Ki’s are pairwise vertex-disjoint.

Claim: (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

“⇒”: Let S be an optimal solution of size at most k for G and let GS := G∆S.
We show that S′ := S \ EK is a solution for G′, where EK denotes the set of
all possible edges between two vertices of K. Let G′

S′ := G′∆S′. According to
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Lemma 6, we can assume that every Bi is completely contained in at most two
maximal cliques in GS . In particular, this means that S does not contain edge
deletions between two vertices of the same Bi. Hence, G′

S′ differs from GS in
that all edges between different Bi’s are deleted. Moreover, every vertex x ∈
V \ K being adjacent in GS to a vertex of Bi is adjacent in GS to every vertex
in Bi but not to any other vertex in K. Since G′

S′ differs from GS in that
all edges between different Bi’s are deleted, the graphs induced by the closed
neighborhood of every vertex in x ∈ V \K in GS and G′

S′ are identical. Hence,
these vertices are satisfied and it remains to show that all vertices in the Bi’s
are satisfied.

To this end, we argue that every Bi is contained in at most two maximal
cliques in G′

S′ . First, consider the case that Bi is contained in two maximal
cliques C1

i and C2
i in GS . If C1

i ⊆ Ki and C2
i ⊆ Ki, then there cannot be any

edge between Bi and K \ Bi in GS since otherwise Bi would be contained in
three maximal cliques (note that by Lemma 7 there is no edge between Cj

i \ K

and K \Cj
i , j ∈ {1, 2}). Hence, the graphs induced by the closed neighborhood

of a vertex in Bi in GS and G′
S′ are identical. If C1

i ⊆ K and C2
i ⊆ Ki,

then C1
i ∩C2

i = Bi, since a vertex in C2
i \Bi is adjacent in GS to all vertices in Bi

but not to any other vertex in K. Hence, after deleting the edges between Bi

and K \ Bi, the vertices of Bi are contained in exactly one maximal clique,
namely C2

i ⊆ Ki. Second, for the case that Bi is contained in exactly one
maximal clique in GS , the argumentation works in analogy. In summary, G′

S′

fulfills the 2-vertex-overlap property.
“⇐”: Let S denote an optimal solution of size at most k for G′, and let G′

S :=
G′∆S. We show that S is solution for G as well, that is, we show that in GS :=
G∆S every vertex is satisfied. Note that for every Bi every vertex of Bi is
contained in exactly one satisfied maximal clique in G′, namely Ki. Thus,
by Lemma 8, we can assume that every Bi is completely contained in exactly
one satisfied maximal clique K ′

i ⊆ Ki in G′
S . Further, recall that all K ′

i’s are
pairwise vertex-disjoint and every vertex in K ′

i \ Bi is adjacent in G′
S to all

vertices in Bi but not to any other vertex in K. Hence, if we add all missing
edges between the vertices of K in G′

S (resulting in GS), then none of the added
edges is between two neighbors of vertices in K ′

i \ K. Hence, these vertices are
satisfied in GS . Moreover, since these are the only vertices in V \ K having
in G′

S at least two neighbors in K, all vertices in V \ K are satisfied in GS .
Finally, all vertices in K are clearly contained in at most two maximal cliques
in GS , namely in K and in at most one further clique K ′

i ⊆ Ki (note that,
in GS , the common neighborhood for two vertices from different Bi’s is K).

For the running time, note that one can compute the set U of all satisfied
vertices in O(m · n) time as follows. For each v ∈ V , build G[N [v]] and then
check in O(|N [v]|2) time whether G[N [v]] contains at most two maximal cliques.
The running time for computing U hence sums up to

O(
∑

v∈V

deg(v)2) = O(n ·
∑

v∈V

deg(v)) = O(n · m).

After that, consider the vertices in U one by one. Every vertex u ∈ U is
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contained in at most two maximal cliques K1 and K2. These two cliques can
be computed in O(|N [v]|2) time for every u ∈ U . Finally, check in O(m) time
whether K1 or K2 fulfills the precondition of Rule 2. Hence, the overall running
time for one application of Rule 2 is bounded by O(n·m+

∑

u∈U (deg(v)2+m)) =
O(m · n). 2

Rule 3. Let G be a graph reduced with respect to Rule 1. Let K be a maximal
clique of G. If there are maximal cliques K1, . . . , Kℓ fulfilling the following three
conditions:
1.) K ∩ Ki 6= ∅, 1 ≤ i ≤ ℓ,
2.) all vertices in Ki, 1 ≤ i ≤ ℓ are satisfied, and

3.)
∑ℓ

i=1 |Ki ∩ K| ≥ 3k + 4,
then remove all edges between K1 ∩ K and K \ K1.

To prove the correctness of Rule 3, we need the following lemma.

Lemma 10. Let G = (V, E) denote a graph reduced with respect to Rule 1.
Let K and K1, . . . , Kℓ be maximal cliques in G fulfilling Conditions 1 and 2 of
Rule 3 and suppose that

∑ℓ

i=1 |Ki ∩ K| ≥ 2k + 2. If (G, k) is a yes–instance,
then there exists an optimal solution of size at most k not deleting any edge
between vertices of K.

Proof. Suppose that there exists an optimal solution S of size at most k for G
and let GS := G∆S. Assume towards a contradiction that S contains an
edge {v, w} with v, w ∈ K. In the following, we refer by {u1, . . . , ut} to the

vertices in
⋃ℓ

i=1(Ki ∩ K). Since all Ki’s are satisfied, according to Lemma 7
the Ki’s are pairwise vertex-disjoint. Because t ≥ 2k + 2, one of the ui’s is
non-affected by S. Without loss of generality, assume that u1 is one of these
non-affected vertices and u1 ∈ K1. Let B1 := K ∩ K1. Clearly, B1 is a critical
clique in G. By Lemma 6, we have that B1 is (part of) a critical clique in GS ,
and, hence, all vertices in B1 are non-affected. This implies that neither v nor w
is contained in B1. Let z ∈ K1 \ K. Since u1 is non-affected by S, this im-
plies {z, u1} ∈ E(GS). Moreover, by Lemma 7 (and Condition 2 of Rule 3), it
follows that {z, v} and {z, w} are not contained in E and hence not in E(GS).
This implies that u1 is contained in at least three maximal cliques in GS : the
vertices u1, v, w, and z induce a star with center vertex u1 and three leaves (see
first graph in Figure 2). This is a contradiction to the fact that S is a solution.

2

Lemma 11. Rule 3 is correct and can be carried out in O(m · n) time.

Proof. Let G = (V, E), K, and K1, . . . , Kℓ be as described in Rule 3. Further-
more, let Bi := Ki ∩ K for every 1 ≤ i ≤ ℓ. Again, since all Ki’s are satisfied,
the Bi’s are critical cliques and according to Lemma 7 the Ki’s are pairwise
vertex-disjoint. Let G′ = (V, E′) be the graph resulting from one application of
Rule 3. We show the following.
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Claim: (G, k) is a yes–instance if and only if (G′, k) is a yes–instance.

“⇒”: Let S denote an optimal solution of size at most k for G and let GS :=
G∆S. We show that S is a solution for G′. Let G′

S := G′∆S. By Lemma 10,
S does not delete any edge within K. Together with Lemma 6 this implies that
in GS , B1 is contained in K and in at most one further maximal clique K ′

1 ⊆ K1.
Note that G′

S results from GS by deleting all edges between B1 and K \ B1.
Since by Lemma 7, there is no edge between K ′

1 \ K and K \ K ′
1, this does not

create any unsatisfied vertices.
“⇐”: Let S′ denote an optimal solution of size at most k for G′ and let G′

S′ :=
G′∆S′. We show that in GS′ := G∆S′ all vertices are satisfied. Note that
in G′, K1 forms a clique whose vertices are all satisfied and that the vertices
in B1 are contained in exactly one maximal clique, namely K1. Hence, accord-
ing to Lemma 8, we can assume that B1 is contained in exactly one maximal
clique K ′

1 ⊆ K1 in G′
S′ . Moreover, note that for every 1 ≤ i ≤ ℓ, since G is

reduced with respect to Rule 1 and since Bi is a critical clique in G, it holds
that |Bi| ≤ k + 1. In particular, |B1| ≤ k + 1 and since

∑ℓ

i=1 |Bi| ≥ 3k + 4, we

have
∑ℓ

i=2 |Bi| ≥ 2k+2 and ℓ ≥ 3. Hence,
∑ℓ

i=2 |(K \B1)∩Ki| ≥ 2k+2. More-
over, it is not hard to verify that K \ B1 forms a maximal clique in G′. Thus,
by Lemma 10, S′ does not delete any edge between two vertices from K \ B1.
Hence, K \ B1 is a maximal clique in G′

S′ . Note that GS′ results from G′
S′ by

inserting all edges between a vertex in B1 and the vertices in K \ B1. Clearly,
this does not change the number of maximal cliques for a vertex in V \K, since,
by Lemma 7, none of these has neighbors in both B1 and K \ B1. Finally, all
vertices in K clearly are satisfied.

For the running time note the following. First, as argued in the proof of
Lemma 9, we can compute the set U of all satisfied vertices in O(n · m) time.
Hence, in the following we assume that for each vertex in the graph, we can de-
termine in O(1) time whether it is satisfied or not. Then, for every vertex u ∈ U
we proceed as follows. Vertex u is contained in at most two maximal cliques K ′

and K ′′. These two cliques can be computed in O(deg(u)2) time. Next, we
check whether K ′ and K ′′ can play the role of K and K1 in Rule 3. Consider
the case that K = K ′ and K1 = K ′′. Clearly, we can check in O(deg(u)) time
whether all vertices in K ′′ are satisfied. It remains to verify that there are at
least 3k+4 vertices in the intersections of satisfied maximal cliques with K ′. We
argue that this is possible in O(m) time. We first label all vertices in K ′ that
are contained in exactly two maximal cliques by ‘+’. All other vertices in K ′

are labeled by ‘−’. Next, we iterate over the edge set. For an edge {x, y} ∈ E
if y 6∈ K ′ and not satisfied and x is labeled ‘+’ then mark x with ‘−’. After
that, if a satisfied vertex v ∈ K ′ is contained in a second maximal clique con-
taining non-satisfied vertices, then this vertex clearly is labeled ‘−’. Hence, all
vertices labeled by ‘+’ are contained in the intersections of satisfied maximal
cliques with K. Thus, to check whether Rule 3 can be applied we just need to
count the number of ‘+’-vertices in K. In summary, the overall running time
is O(m · n +

∑

u∈U (deg(u)2 + m)) = O(m · n). 2

Rule 4. Remove connected components fulfilling the 2-vertex-overlap property.
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Theorem 9. 2-Vertex-Overlap Deletion admits a problem kernel with
O(k3) vertices.

Proof. Let G = (V, E) be a graph reduced with respect to Rules 1–4. We
show that if G has a solution of size at most k, then the number of vertices of G
is O(k3).

Assume that G has a solution S of size at most k and let GS := G∆S.
Further, let X denote the vertices affected by S and let Y := V \X . First, note
that |X | ≤ 2k. Hence, it remains to show |Y | = O(k3).

Let K1, . . . , Kt denote the maximal cliques of GS containing at least one
vertex of X . Note that t ≤ 4k since a vertex x ∈ X is contained in at most
two maximal cliques in GS . Furthermore, define K ′

i := Ki ∩ Y , 1 ≤ i ≤ t and
let Z := {Z1, . . . , Zq} denote the set of all other maximal cliques of GS . For
every 1 ≤ i < j ≤ t let K ′

i,j := K ′
i ∩ K ′

j. Note that every K ′
i,j is part of a

critical clique in GS , since it belongs to two maximal cliques. Furthermore,
since the vertices in K ′

i,j are non-affected, they are also part of a critical clique
in G. As a consequence, we have |K ′

i,j | ≤ k + 1 since G is reduced with respect
to Rule 1. Let K ′

i,cc denote the vertices of K ′
i that are contained only in the

maximal clique Ki in GS . By the same argument as above, |K ′
i,cc| ≤ k + 1.

Finally, let Ai := K ′
i \ (K ′

i,cc ∪
⋃

j 6=i K ′
i,j) denote the other vertices of K ′

i. Note

that Ai ⊆
⋃q

i=1 Zi.
Next, we show that

a) every vertex in Ai is contained in at most two maximal cliques in G,

b) for 1 ≤ j ≤ q, every vertex in Zj is contained in at most two maximal
cliques in G,

c) for 1 ≤ j ≤ q, every Zj has a nonempty intersection with at least one Ai,
1 ≤ i ≤ t,

d) for 1 ≤ i ≤ t, |Ai| ≤ 3k + 3 , and

e) q ≤ (3k+4) ·4k and, for 1 ≤ j ≤ q, |Ij | ≤ 4k+4, with Ij := Zj \(
⋃t

i=1 Ai).

a) Consider an arbitrary vertex y ∈ Ai. Note that y is adjacent in GS only to
the vertices Ki \K ′

i of X . Since Ki \K ′
i is a clique in GS , no edge between the

vertices in Ki \ K ′
i is deleted. Hence, no edge between any two neighbors of y

is deleted and, therefore, y is contained in the same number of maximal cliques
in G as in GS .

b) A vertex y ∈ Zj is either contained in Ai, 1 ≤ i ≤ t, or all its neighbors
are non-affected. In the first case, y is satisfied according to a). In the second
case, y is clearly contained in at most two maximal cliques in G.

c) Assume that there exists a Zj that does not intersect with any Ai for some i,
1 ≤ i ≤ t. Then, Zj intersects only with other elements from Z. Hence, Zj

and all of Zj’s neighbors are satisfied and, as a consequence, Rule 2 applies,
contradicting the fact that G is reduced.
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d) Assume that there exists an i with |Ai| ≥ 3k + 4. Without loss of generality,
let Z1, . . . , Zp be the sets in Z intersecting with Ai. Hence, Ai ⊆

⋃p

j=1 Zj (recall

that Ai ⊆ ⋃q

j=1 Zj) and as a consequence |Ai| =
∑p

j=1 |Zj ∩ Ai| ≥ 3k + 4.
Moreover, according to b), all Zj ’s are satisfied. Thus, Rule 3 applies to a
maximal clique K with Ai ⊆ K in G, contradicting the fact that G is reduced.

e) First, since every Zj has nonempty intersection with some Ai and since
any other Zh, h 6= j, cannot intersect with Ai in the same vertices as Zj ,
it follows that |Z| ≤ (3k + 3) · 4k. Second, assume that there exists an Ij

with |Ij | > 4k + 4. Since G is reduced with respect to Rule 1, there are at
most k + 1 vertices in Ij that are contained in the single maximal clique Zj

(these vertices form a critical clique in G). All other vertices of Ij are contained
in some Zh with h 6= j. Let Z ′

1, . . . , Z
′
p denote the sets in Z having nonempty

intersection with Zj. Since |Ij | > 4k + 4, it holds that
∑p

r=1 |Zj ∩Z ′
r| > 3k + 3,

and, as a consequence, Rule 3 applies, contradicting the fact that G is reduced.

Putting everything together, one obtains

|Y | ≤
t

∑

i=1

|K ′
i| +

q
∑

j=1

|Ij |

≤
t

∑

i=1

(|K ′
i,cc| + |Ai| +

t
∑

j=1

|K ′
i,j |) + |Z| · (4k + 4)

≤ 4k · (k + 1 + (3k + 3) + 4k · (k + 1)) + (3k + 3) · 4k · (4k + 4).

2

7. Conclusion

We have provided here a first theoretical study of a set of new cluster graph
modification problems motivated by the practical relevance of clustering with
overlaps [11, 28]. Naturally, studying a set of problems that is so far barely
explored, there remain many challenges for future work. We list only a few of
them. First, it is conceivable that the forbidden subgraph characterizations
we developed for cluster graphs with overlaps can be further refined. Sec-
ond, it is desirable to improve the upper bounds on our fixed-parameter al-
gorithms (including the kernelization results) and to further extend the list of
fixed-parameter tractability results (in particular, achieving kernelization re-
sults for problems other than 1-Edge-Overlap Deletion and 2-Vertex-

Overlap Deletion). Third, corresponding experimental studies (like those
undertaken for Cluster Editing, see [6, 11]) are a natural next step. Fourth,
the polynomial-time approximability of our problems remains unexplored. Fifth
and finally, it seems promising to study overlaps in the context of the more
general correlation clustering problems (see [1]) or by relaxing the demand for
(maximal) cliques in cluster graphs by the demand for some reasonably dense
subgraphs (as recently considered in the context of clustering without over-
laps [18, 19, 21]).
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