Philipps-Universitat-Marburg

Fachbereich Mathematik und Informatik

Algorithm Engineering for the
Triangle-2-Club Problem

Bachelor Thesis

zur Erlangung des akademischen Grades eines

Bachelor of Science

im Studiengang

Informatik

vorgelegt von:

Philipp Heinrich Kefller
am 27.11.2020

Matrikelnr.: 3074703
Betreuer:
Prof. Dr. Christian Komusiewicz
M.Sc. Niels Griittemeier
M.Sc. Frank Sommer

Philipp Heinrich KeBler The Triangle-2-Club Problem

Contents
1 Introduction 2
2 Preliminaries 4
2.1 Graphs. 4
2.2 Triangle Properties L. 4
2.3 Branching Rule 0o 0o 5
2.4 Data Reduction Rule 5
2.5 Problem Specific Definitions, 6
3 Algorithm 7
3.1 Basic Algorithm, 7
3.2 Data Reduction Rules 8
3.3 Start Vertex Order 12
34 Lower Bound, 13
3.5 Upper-Bound 14
4 Implementation 15
4.1 Graph 15
4.2 Graph Rollback 15
4.3 Marked Vertices 15
4.4 Conflict Graph 16
4.5 Maximal Matching L o oL 16
5 Computational Experiments 17
5.1 Experimental Setup 17
5.2 Evaluation of the Lower Bound 17
5.3 Start Point Statistics 17
54 BestResults. 18
5.5 Comparison to an ILP Solution 18
6 Conclusion 18
7 Appendix 20

Philipp Heinrich KeBler The Triangle-2-Club Problem

1 Introduction

Real world data is often represented as a graph. Finding structures in graphs is
part of many wellknown problems in computer sience. The algorithms to find
such structures are used for example in social media or for online marketing.
Detected structures can help to make suggestions for friends, products, and
almost every other point of intrest for users, companies or scientists. Friendships
in social media, for example, can be depicted in a graph by making a vertex
for each person [4]. If two persons are friends, their vertices are connected by
an edge. Other use cases in social media are for example event summarization
or spam detection. Schinas et al. [13] proposed a summarization framework,
that makes use of a graph-based algorithm to summarize the most relevant
social media posts of an event. In regard of spam detection, graphs are used
for example by Zhang et al. [14] to detect so called spamming groups in social
networks.

One of these well known graph problems is the CLIQUE problem [10]. The
CLIQUE problems purpose is to find a clique of maximum size in a graph. A
clique is a subset of vertices of a graph, where every vertex in the subset is
adjacent to every other vertex in the subset. In social media a clique could
be a group of friends, where everyone is friends with every other person of the
group. For some applications the requirement of a graph to be a clique may
be too restrictive. Consider a group of friends on social media that fulfills the
requirement to be a clique. Now, even if an addidtional person p is friends with
everyone in the clique except one, then this person is not considered part of
the clique. Regardless of how many persons of the clique p is friends with, a
single missing friendship—which is a single missing edge in the graph—excludes
p from the clique. More relaxed problems have been defined in the past to find
various kinds of structures.

The s-CLUB problem can be used as a more relaxed version of CLIQUE. s-
CLUB was first proposed by Mokken [8]. Instead of requiring all vertices in the
subset to be neighbors, an s-club allows a distance of maximum s between these
vertices. Note that, therefore 1-CLUB is equivalent to CLIQUE. Detecting large
2-clubs is not only interesing for graphs of social networks. They also can be
used for biological oder financial networks [9]. Algorithms for finding 2-clubs in
graphs do already exist and were topic of other research. Pajouh et al. [9] pro-
posed an algorithm to find 2-clubs in large-scale networks to reveal information
about the structure of their underlying systems. Other exact algorithms were
proposed by Hartung et al. [5] and Schéfer [12]. To come back to the social
media example, for a group of friends to be a 2-club, not everyone needs to
know every other person. It would be enough to have one friend who knows
everyone else to be part of the 2-club. This can lead to the biggest 2-club just
being the person that has the most friends, together with all his friends, like
shown in Figure la.

To add more restriction, additional requirements for structures can extend
the 2-CLUB problem definition. Komusiewicz et al. [6] presented multiple varia-
tions with different structure requirements for robust 2-clubs, for example hered-
itary or well-connected robust 2-clubs. This includes for example a requirement
for a certain number of neighbours or paths between the vertices of a 2-club.
Another restriction to s-CLUB is a triangle property which forces vertices or
edges of an s-club to be part of a triangle, which was first introduced by Car-

Philipp Heinrich KeBler The Triangle-2-Club Problem

U3

Figure 1: Both graphs in this figure are 2-clubs. Graph a) shows how a centered vertex
forms a 2-club with his neighbors. Graph b) has no center vertex. Since both do not
have a triangle formed by its vertices, neither of them is a triangle-2-club. On the
other hand, graph c) is a triangle-2-club. All vertices and edges in graph c) are part
of a triangle.

valho and Almeida [3]. This requirement forces the solution subset to form
triangles in its induced subgraph in addition to the distance requirement of
a s-club. Figure 1b shows a graph that fulfills the requirements of a 2-club,
but not the requirements of a triangle-2-club. The triangle property requires a
higher connectivity in the graph but also allows multiple groups to just be con-
nected over one common neighbour. An example for a triangle-2-club is shown
in Figure 1lc. To come back to our social media example, a single person who
is part of multiple friendship triangles, forms a triangle-2-club with all of the
triangles he is part of. There is no need of friendships between other persons
of these distinct triangles. Carvalho and Almeida [3] introduced a solution for
the TRIANGLE-s-CLUB problem in form of an integer linear programm (ILP)
formulation. A graph can be transformed into constraints using an ILP formu-
lation, an then be solved by an ILP solver. Another paper proposed by Almeida
and Bras thematizes the complexity and properties of the /-~-TRIANGLE-k-CLUB
problem [1]. An ¢-triangle-k-club requires that each vertex is part of ¢ distinct
triangles in addition to the k-club distance requirement. They also provided
algorithms based on ILPs and results of their computational experiments.

We implemented a branching algorithm to solve the TRIANGLE-2-CLUB
problem. In Section 3, we propose a basic algorithm, as well as methods to
improve running time of the algorithm. This includes data reduction rules that
can be applied to problem instances. We provide details of our algorithm im-
plementation in Section 4. The experimental results of our implementation and
the proposed data reduction rules are shown in Section 5. We also compare the

Philipp Heinrich KeBler The Triangle-2-Club Problem

running time of our results with the ILP results from Carvalho and Almeida [3]
and Almeida and Brés [1].

2 Preliminaries

2.1 Graphs

An undirected graph G is a tuple (V, E) with a set of vertices V and a set
of edges E C {{u,v} : u,v € V}. In addition, n := |V| is the number of
vertices and m := |E| is the number of edges in a graph. If an edge {u, v} exists
between two vertices u and v, these vertices are called adjacent. The number of
vertices adjacent to a vertex v in a graph G is called the degree degeq(v) of v.
A vertex v is isolated in graph G if deg,(v) = 0. A graph G’ := (V',E’) is an
induced subgraph of a graph G = (V, E), if V! C V and E' C E with E’ only
containing edges between vertices in V’'. Formally, for a set of vertices S C V,
G[S] :== (S, {{u,v} € E : u,v € S}) is the induced subgraph of graph G by
vertex set S. To denote the removal of a single vertex v of a graph G = (V, E)
we define G — v := G[V \ v].

A path between two vertices vg, vy is a squence vg, v1, ..., V;_1, g of vertices
where any successive vertices in a sequence are adjacent in the graph. The
length of a path is the number of edges on the path. If all vertices in a path are
distinct, the path is called simple. A graph is called connected if there is a path
between any pair of vertices in the graph. The distance distg(u,v) between
two vertices u, v in a graph G is the length of the shortest path between them.
The diameter diam(G) of a graph G is the maximum distance between any two
vertices of the graph. A cycle is a path vy,...,vk_1, vk, where k > 2, the first
k — 1 vertices are distinct, and vy = vg. A graph G is called a tree if G is
connected and does not contain a cycle.

The closed neighborhood N[v] C V of a vertex v in a graph G contains
v and every vertex that is adjacent to v in the graph. Further the closed k-
neighborhood Ni[v] C V includes all vertices whose distance to v is at most
k. Note that N[v] is equivalent to Ni[v]. The open k-neighborhood Ny(v) of a
vertex v isdefined analogously, but does not contain v itself: Ng(v) := Ng[v]\ v.

2.2 Triangle Properties

Recall, that a 2-club is a subset of vertices S in a graph G, such that the distance
between any pair of vertices in G[S] is at most 2. The maximum triangle-2-club
for a given graph G is the maximum cardinality subset S C V that induces
a 2-club in G[S] and in addition satisfies a triangle-property. There are two
differentt Triangle-propertys, where either each vertex (vertez-triangle-property)
or each edge (edge-triangle-property) in a 2-club G[S] needs to be part of a
triangle.

A vertex v is part of a triangle in a graph G, if and only if at least two of
the neighbours of v are adjacent in G.

An edge {v,w} is part of a tringle in a graph, if and only if another vertex
u exists in the graph which is adjacent to both v and w.

Both formulations sound may similar at first. But consider, that a single
non-triangle edge between the vertices in a graph can result in the graph not

Philipp Heinrich KeBler The Triangle-2-Club Problem

Figure 2: The graph shown in this figure is a 2-Club that satisfies the vertex-triangle-
property. Each vertex is part of a triangle. On the other hand the edges {vo,vs},
{vi,v4} and {v2,vs} are not part of an edge triangle. Therefore, the graph in this
figure has two edge-triangle-2-clubs of size 3 each, but is a vertex-triangle-2-club of
size 6 as a whole.

being a edge-triangle-2-club. Figure 2 shows a graph that fulfills the vertex-
triangle property as a whole. However, not every edge in Figure 2 is part of
a triangle. These edges result in the maximum edge-triangle-2-club being of a
smaller size than the maximum vertex-triangle-2-club. Each edge triangle con-
nects three vertices and therefore also forms a vertex triangle. While additional
edges between vertex triangles do not interfere with the vertex-triangle-property,
they may do with the edge-triangle-property. Therefore the edge triangle re-
quirement is more restrictive than the vertex triangle requirement and hence
solutions can be smaller. On the other hand, every edge-triangle-2-club is also
a vertex-triangle-2-club.

2.3 Branching Rule
Let us first define the TRIANGLE-2-CLUB problem as a decision problem.

TRIANGLE-2-CLUB

Input: A graph G = (V,FE) and k € N.

Question: Does G contains a subset S of vertices with |S| > k, such that
G[S] is a 2-club and every vertex in S is part of a vertex-triangle

in G[S]?

A branching rule transforms a decision problem instance I = (G, k) with a graph
G and a natural number & to multiple instances I; = (G1, k1), ... ,Jo = (G, ko)
in polynomial time. Also, (G, k) is a YES-instance if and only if at least one
of the transformed instances has to be a YES-instance. The application of a
branching rule to an instance (G, k) can be displayed by a search tree. The
original instance becomes the root of the tree. The transformed instances are
children (branches) of their original instance. The search tree can get aborted
as soon as a YES-instance is found.

2.4 Data Reduction Rule

A data recution rule is a computable function that transforms a given prob-
lem instance I into another instance I’ in polynomial time. The transformed
instance I’ is a YES-Intstance if and only if the original instance I was a YES-
Instance. In addition, the transformed instance must not be bigger than the
original one.

Philipp Heinrich KeBler The Triangle-2-Club Problem

®

® /]
e\‘@ @

DamOsmnC OBNOERO

Figure 3: Figure a) shows a graph G. The corresponding conflict graph G¢ is shown
in Figure b). Any two vertices with a distance greater than two are considered as
incompatible. In G the distance between vo and v (dist(vo,v2)) is equal to four.
Because of that the conflict graph G¢ contains an edge between vy and v2. On the
other hand, vertices that are close enough to each other (for example v4 and vs or v1
and vg) are not adjacent in the conflict graph.

a)

Data reduction rules can be used for problems of any complexity. However,
if a problem has a time complexity that is higher than polynomial, then the
benefits of a smaller problem instance often exceed the costs of data reduction
rules. The computation of a data reduction rule on such a problem is cheaper
than solving the larger instance.

2.5 Problem Specific Definitions

Recall that a graph can only be a 2-club or a triangle-2-club if the distance
between any pair of vertices is at most two. Therefore, if a graph G contains
two vertices v and w whose distance is greater than two, then v and w are called
incompatible. Otherwise, these vertices are called compatible. Note, a graph G
in which every pair of vertices is compatible is further called conflict free. As
long as there are incompatible vertices in a graph, it can not form a triangle-
2-club. In the algorithm, we can make use of known incompatibilities between
vertices. For example, we can specifically remove vertices with incompatibilites
instead of random vertices while branching.

To keep track of incompatibilites we use a so called conflict graph analogously
to the one described by Komusiewicz et al. [6]. The conflict graph Go = (V, E¢)
of a graph G contains the same set of vertices as G itself. The conflict graph
contains an edge {v,w} € FE¢ if and only if v and w are incompatible in G.
Figure 3 shows a graph and its corresponding conflict graph. It can be used
during the algorithm to determine or count incompatibilities in a graph faster
than it could be done in the original graph. If using a adjacency matrix to
represent edges in the conflict graph, then checking whether two vertices are
compatible takes O(1) time. In order to construct a conflict graph G¢ of a
graph G, we need to detwermine if there is a path with a length of at most two
between every pair of vertices in G. For each of these pairs we need to check at
most m edges to determine if they are incompatible, leading to a cost of O(n?m)
time to construct the conflict graph. Since we are already checking compatibility
for all pairs of vertices, we can also count the number of incompatibilities of each

Philipp Heinrich KeBler The Triangle-2-Club Problem

vertex. If a vertex v gets removed, it can cause new incompatibilities between
vertices of Na(v). Therefore, updating the conflict graph after a vertex removal
also requires O(n?m) time. On sparse graphs or graphs with a large diameter,
it is unlikely that the two-neighbourhood N3 (v) of a removed vertex v contains
every other vertex in the graph. Hence maintaining the conflict graph is cheaper
than reconstructing it in general.

Further, may incomg (v) of a vertex v in a graph G be the number of vertices
v is incompatible with in G. Note that for any graph G and any vertex v in G
incomg(v) = degg,, (v).

3 Algorithm

To solve the TRIANGLE 2-CLUB problem we implemented a branching algo-
rithm. In our algorithm, we use the vertex-triangle-property, described in Sec-
tion 2.2. Further we extended the problem formulation by adding a set of
marked vertices M C V. Marked vertices are vertices of the graph G = (V, E)
that are a mandatory part of the solution.

MARKED TRIANGLE-2-CLUB

Input: (G, M, k), where G is a graph, M a subset of vertices of G and
ke N.

Question: Does GG contains a subset S of vertices of size at least size k,
such that G[S5] is a triangle-2-club and M C 5?7

Recall, that two vertices of G are called incompatible if they can not be part
of the same triangle-2-club because of their distance bein greater than two.

3.1 Basic Algorithm

The algorithm builds a solution by marking some vertices in the graph and delet-
ing others until the remaining graph fulfills the requirements to be a TRIANGLE
2-CLUB.

At the beginning of the algorithm each vertex in the graph is considered a
potential start point for branching. Therefore, each potential start vertex is the
first marked vertex in its instance. So every vertex is considered for a solution
at least once during the algorithm. The algorithm branches until the remaining
marked and unmarked vertices form a triangle-2-club according to the triangle-
property or no vertices are left to remove or mark. The algorithm always saves
the current best solution. Whenever branching finds a new triangle-2-club, that
larger than our current best solution, the old best solution gets discarded and
replaced by the new one. As long as the current graph is not a triangle-2-club
or too small, an unmarked vertex v gets selected from the remaining vertices.
The algorithm branches into two cases:

o (G—v,M,k), and
o (G,MU{v},k).

The first way of branching removes the selected vertex. After branching finishes
for a start vertex the current graph gets rolled back to the state before the
branching started. Each vertex is either part of the solution or not. If it is not,

Philipp Heinrich KeBler The Triangle-2-Club Problem

) b
T (o) (ro—(n)
S 0)

Figure 4: In graph a), the vertices v and v4 are compatible, because their distance is
two. In the graph shown in b), vertex vs is removed. The removal of vs destroys the
shortest path between vz and v4 with a distance of three. The vertices v2 and v4 have
become incompatible through the removal of vs.

the first branching case will lead to a solution, otherwise the second one will.
Every possible combination of vertices is covered by this branching rule. The
algorithm can always find a correct solution.

3.2 Data Reduction Rules

Data reduction rules reduce the size of a problem instance. A smaller problem
instance requires less time to compute. Komusiewicz et al. [6] presented data
reduction rules for different robust variations of the 2-CLUB problem. Some of
these rules can be used as data reduction rules for TRIANGLE-2-CLUB, too, while
others need minor changes. These rules can improve algorithm running time by
reducing the size of the graph, marking vertices or identifying NO-instances
early.

A data reduction rule for the TRIANGLE-2-CLUB problem has to satisfy the
following requirements for reducing an instance (G, M, k).

e The transformed graph G’ does not contain more vertices and edges than

G,
e the transformed set of marked vertices M’ O M, and
o k' < k.

Before defining the reduction rules, some observations can be made, that help
us formulate and discuss the actual reduction rules and their time complexity.

Observation 1. If a graph G contains a pair of vertices that are incompatible
to each other, then G is not a triangle-2-club.

Proof. If two vertices in the graph are incompatible, their distance is greater
than two. Therefore the graph is not a 2-club and hence no triangle-2-club. [
Observation 2. Removing vertices from the graph can make vertices become
incompatible.

The correctness of Observation 2 is demonstrated as an example in Figure 4.

Observation 3. Two incompatible vertices can not become compatible by re-
moving other vertices.

Philipp Heinrich KeBler The Triangle-2-Club Problem

a) b)

®
-O00® OO
® ®

Figure 5: Considering filled vertices as marked, the application of Reduction Rule 2
on marked vertex vy in graph a) causes the removal of vertex v;. This removal makes
the marked vertices vg and vs become incompatible.

Proof. Let G be a graph with two incompatible vertices v and w, hence a dis-
tance distg (v, w) > 2. Deleting vertices can only remove edges with their ad-
jacent vertices and not add new ones. So no other shorter path can be created
by removing vertices and therefore no vertices can become compatible. O

Let us get to the actual reduction rules now. Some of the reduction rules
use the size of a solution the algorithm already found beforehand, to identify
NO-instances.

The first rule provides an important criterion for identifying NO-instances
early. It can be applied at any point during branching.

Reduction Rule 1 (Marked Incompatible Rule). If at any momemt during the
algorithm, the instance contains two incompatible vertices that are both marked,
then this instance is a NO-Instance.

Lemma 1. Reduction Rule 1 is correct and can be computed to exhaustion in
O(n?) time.

Proof. Marked vertices are a mandatory part of the solution. From Observation
1 we conclude that a graph that contains two incompatible vertices, can not form
a triangle-2-club. Therefore this instance is a NO-instance.

In order to check if any pair of marked vertices are incompatible, we need to
check all pairs of marked vertices. If every vertex in the graph is marked, then
we need to check O(n?) pairs of vertices. Since a constant time is required to
check incompatibilieties in the conflict graph, this leads to a time complexity

of O(n?).
This reduction rule only needs to be applied once a time and only after
marking new vertices. O

The next rule can be used to reduce the graph size based on the vertices
that are already marked. Whenever new vertices get marked, this rule can
help reduce the rest of the graph size. This data reduction rule needs to be
applied multiple times at once, since a single application of it can result in new
incompatibilities as Figure 5 shows.

Reduction Rule 2 (Incompatible Resolution). Remove all vertices that are
incompatible to a marked vertex.

Philipp Heinrich KeBler The Triangle-2-Club Problem

Lemma 2. Reduction Rule 2 is correct and can be computed to exhaustion in
O(n?) time.

Proof. Let (G, M, k) be an instance and let v,w € V be two incompatible ver-
tices where v € M and w ¢ M. Since v is marked, it needs to be part of
the solution built up by this branch. Vertex w is incompatible to v and can
therefore not be part of solution containing v. The instance can be reduced to
(G —w,M,kE).

Similar to Reduction Rule 1, checking all pairs of vertices requires O(n?)
time. As shown in Figure 5 a vertex removal can cause other incompatibilities.
This makes O(n) applications of this rule necessary, leading to an overall time
complexity of O(n?). O

With help of the next rule, the graph size can be further reduced by removing
vertices that can not be part of a solution. This rule can be applied after every
vertex removal in the graph but especially before the branching starts. On
sparse graphs, this rule can remove a large number of vertices at the beginning,
which reduces the start vertices the algorithm has to branch on. By making use
of the triangle-property, many verticesmay be removed before and during the
branching.

Reduction Rule 3 (Triangle Rule). Remove every vertex that is not part of
any triangle.

Lemma 3. Reduction Rule 3 is correct and can be computed to exhaustion in
O(nm) time.

Proof. To satisty the vertex-triangle-property each vertex of the solution has to
be part of a triangle. If a vertex is not part of any triangle, it can not be part
of any solution and can be deleted from the graph.

To check if a vertex is part of a triangle requires searching over at most m
edges. If the graph does not contain any triangle vertices, then this reduction
rule needs to go along these m edges for every of the n vertices. This leads to
a time complexity of O(nm) for a single application of this rule.

Deleting a non-triangle vertex can not destroy any triangle in the graph.
Therefore, applying this reduction rule to an instance multiple times at once
will not further reduce it. O

The next reduction rule allows us to delete vertices and identify NO-instances
based on the number of incompatibilities these vertices have. Recall that in a
problem instance (G, M, k), parameter k is the size of the triangle-2-club we
want to find in the graph.

Reduction Rule 4 (Low Compatibility Rule). Remove vertices whose number
of compatible vertices is smaller than k. If a removed vertex was marked, this
instance is a NO-instance.

Lemma 4. Reduction Rule j is correct and can be computed to exhaustion in
O(n?) time.

Proof. Let (G, M, k) be an instance of MARKED TRIANGLE-2-CLUB and v € V
a vertex in this instance. At least incomg(v) vertices need to be removed in
order to make v part of a sulotion. If |V| — incomg(v) is smaller than k, then

10

Philipp Heinrich KeBler The Triangle-2-Club Problem

there can not be a solution of size k that contains v. Therefore, a branch where v
is marked can not lead to a solution greater than k£ — 1. On the other hand, if v
is not marked, v can be removed from the graph since every solution resulting
from this instance that is better than the current one, will not contain v.

For a vertex v, the number of vertices compatible to v can be determined
by subtracting the number of compatibilities incomg(v) the vertex v has in G
of n. Applying this rule to the graph once, hence takes O(n) time. But by
Observation 2, removing a vertex can cause new incompatiblities, which can
reduce the number of compatibilities a vertex has below the treshold of this
reduction rule. This can make a repeated application of this rule possible to up
to n times. This causes a time complexity of O(n?), not considering the time
required to update the conflict graph. O

Previous reduction rules focused on deleting vertices and identifying NO-
instances. Marking vertices helps these other reduction rules to work better. In
some situations marked vertices depend on other (unmarked) vertices to form a
solution at all. This allows us to mark vertices based on alread existing marks.

Reduction Rule 5 (No Choice Rule 1). Let v be a marked vertex. If every
triangle that contains v also contains another vertex u, then mark u.

Lemma 5. Reduction Rule 5 is correct and can be computed to exhaustion in
O(nm) time.

Proof. Let S be a solution with a vertex v. Furthermore, let w # v be a
vetex of the graph, that is part of every triangle that contains v. Since v € 5,
vertex v is part of at least one triangle. If every triangle that contains vertex v
also contains vertrex w, then v can not be part of any solution that does not
contain w. Therefore the solution S also contains w.

To determine if a marked vertex v shares all its triangles with another vertex,
we need to find all triangles containing v. This means, we need to iterate over
all O(m) edges. Since up to n vertices can be marked, applying this rule once
has a time complexity of O(nm). Fortunately this rule needs to be applied only
once every branching step. If a vertex v causes another vertex w to get marked,
then w either has no other triangles than those shared with v or not. If w has
no other triangles, using the rule again on w has no impact.

Otherwise, if w is part of a triangle that does not contain v, then triangle
vertices of this triangle can not be marked by this rule, since w can not share
every triangle with them. O

An important special case for this rule emerges whenever a marked vertex
is only part of a single triangle. In this case the reduction rule can mark both
other vertices since they both satisfy the requirement of Reduction Rule 5.

The next reduction rule also allows marking vertices, but now those vertices
that are in between already marked vertices.

Reduction Rule 6 (No Choice Rule 2). Let v and w be non-adjacent vertices
and marked. If v and w share exactly one neighbor, then the common neighbor
can be marked.

Lemma 6. Reduction Rule 6 is correct and can be computed in O(n3) time.

11

Philipp Heinrich KeBler The Triangle-2-Club Problem

Proof. Let v and w be two marked vertices that are not adjacent. If these
vertices have exactly one common neighbor u, then u is part of the unique
path between v and w of length of at most two. By removing u, no other
path of length two would exist between v and w, making these marked vertices
incompatible. Therefore, a solution containing v and w also needs to contain wu.

At most n vertices are marked at any time, leading to O(n?) pairs of marked
vertices. Since every vertex has at most n—1 neighbours, we can find all common
neighbor of two marked vertices in O(n) time. This leads to an overall time
complexity of O(n?) for one application of this rule. O

From Observation 1 we conduct that the conflict graph (see Section 2.5) of
a triangle-2-club does not conatin any edges. In order to resolve an existing
conflict without adding edges or vertices, one of the vertices in a conflict has
to be removed. The conflict graph of an instance can help us to identify NO-
instances early on. For this reduction rule we make use of a mazimum matching
on the conflict graph.

A matching A is subset of edges, such that no distinct edges are incident to
the same vertex in the graph. Each vertex in a matching is of degree zero. A
matching is a maximum matching if there is no other matching of greater size
for the graph.

Let us recall, that the a graph G := (V, E) and its corresponding conflict
graph G¢ := (V, E¢) contains the same set of vertices V.

Parameter k of the problem instance (G, M, k) can be used as upper bound
to cancel any maximal matching computation early. If too many vertices would
have to be removed, such that |V| < k the computation can be aborted, since
the result is already big enough to trigger Reduction Rule 7.

Reduction Rule 7 (Maximum Matching Rule). Compute the size b of a maz-
imum matching for the conflict graph Go. If |V| — b is not greater than k, then
the instance is a NO-instance.

Lemma 7. Reduction Rule 7 is correct and can be computed in O(n|Ec|) time.

Proof. Let an instance (G, M, k) be given and G¢ be the corresponding conflict
graph. From Observation 1 we conduct that G is not allowed to have incompat-
ibilities in order to form a Triangle-2-Club. The maximum matching chooses
edges and removes them with their incident vertices. This computes the number
of vertices b that need to get removed to make the graph conflict free. If |[V|—b
is smaller than k, too many vertices of G would need to be removed to make G
conflict free.

The time needed to compute a maximal matching is depending on the num-
ber vertices n and the number of edges in the conflict graph |Ex|. A greedy
approach would randomly select an edge and remove both of its incident ver-
tices. With the deletion of a single vertex, up to |E¢| have to be removed too.
This leads to a time complexity of O(n|E¢|).

The maximal matching does not modify the graph and hence only needs to
be applied after new vertex deletions. O

3.3 Start Vertex Order

The algorithms running time can be further improved by ordering the start
vertices by their neighborhood size. For each start vertex v, the size of its

12

Philipp Heinrich KeBler The Triangle-2-Club Problem

b) c)

ONONO
() ()

Figure 6: Figure a) shows a graph G. Figure b) shows the subgraph induced by N (vo)
and Figure c) shows the subgraph incuded by N(v3). By counting the non-isolated
vertices (and adding one for vertex vo or vsz) a lower bound for a Triangle 2-Club
solution can be found.

two-neighborhood | N3 (v)| can be computed beforehand and then used to order
the start vertices. Branching over start vertices with small neighborhood sizes
requires less time than branching over vertices with large neighborhoods. After a
vertex v was used as start vertex, the algorithm considered all possible solutions
including v. Therefore, if another vertex w is used as a start vertex at a later
time, all solutions that would contain v has already been considered at this
point. Since there cannot be a better solution containing vertex v, it can be
removed from the graph permanently. This results in a decrease of size of the
graph over the course of the algorithm. The removal of vertices also decreases
the size of the remaining vertices neighborhoods, and hence, speeds up their
branching.

3.4 Lower Bound

A lower bound for a problem instance shows how big an optimal solution has
to be at a minimum. These lower bounds can be computed faster than optimal
solutions and can help reducing the running time of the algorithm. If the size
of the current graph is smaller than the lower bound, then this branch can
be aborted. In our algorithm the global lower bound gets determined before
the branching begins. Instead of looking at the two-neighborhood (Nz[v]) of a
vertex v like in the actual algorithm, only direct neighbors are used to compute
a lower bound. A vertex v forms a triangle-2-club with its neighbors that are
not isolated in G[N(v)]. Therefore, a lower bound for v can be determined
by counting these non-isolated vertices. Every non-isolated vertex u in N(v)
is adjacent to at least one other vertex w. Therefore the vertices v,u and w
form a triangle in the graph. Figure 6 shows an example where vertex vy is
the center of the lower bound computation. By applying this method once with
every graph vertex as center a global lower bound can be determined.

13

Philipp Heinrich KeBler The Triangle-2-Club Problem

Figure 7: In Figures a) and b) the vertex labeled vg is considered the center/start
vertex for upper bound computation. All vertices adjacent to these centers have their
degree written next to them. For Figure a), the upper bound for vertex v is the sum
of the degrees of vertices v1,v2,vs and vs and one for vy itself. Therefore the upper
bound in a) is ub’(vo) = 10, which is equivalent to |Na(vo)|. In Figure b) multiple
edges between vertices of N[vg] result in the vertices v1,v2 and vs getting counted
multiple times. The upper bound computed ub’(vo) = 10 > |N2(vo)| = 4

During the algorithm, the lower bound computed at the beginning gets up-
dated to the current best solution. If the size of the current best solution exceeds
the neighborhood size of the next potential start vertex, this start vertex can
not lead to a larger solution.

3.5 Upper-Bound

In Subsection 3.3 we described how start vertices can be excluded based on their
initial neighborhood size. But removing used start vertices reduces the number
of remaining vertices over the course of the algorithm. To handle these changes
in the graph, an upper bound can be computed for a vertex before using it as
start vertex.

Formally, an upper bound ¢ for a start vertex v in an instance is a natural
number, such that every solution s for this instance that contains vertex v
satisfies |s| < /.

For the algorithm, the upper bound is the number of vertices that are com-
patible to a potential start vertex v:

ub(v) = [Na[v]|

If the computed upper bound for a start vertex is smaller than the current best
solution, this start vertex can be skipped.

In terms of correctness, considering a vertex v as center of a solution, the
greatest possible solution containing v is v itself and every vertex that is com-
patible to v, which is Na[v].

Actually counting all vertices in a two-neighborhood is expensive. Instead,
we may also use the degree of the vertices that are adjacent to the vertex v only:

ub'(v) =1+ Z deg(w)

weN (v)

This approach can lead to counting vertices multiple times if they are adjacent
in the subgraph induced by v’s open two-neighborhood. Since the results of the

14

Philipp Heinrich KeBler The Triangle-2-Club Problem

second approach—using the vertex degrees—are at least as big as the results
of the first one, the computed upper bound can not be smaller than the real
one and can therefore be used for skipping start vertices. On the other hand,
fewer start vertices may be skipped due to the potentially higher upper bound.
Since ub’ > ub, ub’ is also an upper bound. Figure 7 shows both upper bounds
on different graphs.

4 Implementation

We used Java SE version 1.7 to implement our algorithm. No additional pack-
ages were required.

4.1 Graph

To represent a graph G = (V, E) in our implementaion we use of the classes
HashSet and HashMap. For the set of vertices V—Ilabeled with integer numbers—
a HashSet provides a fast check for presence of an element. The set of edges F
is organized in an adjacency list. A HashMap uses the integer label of vertices to
assign each vertex a distinct HashSet, containing its neighbors. This HashSet
contains the integer labels of every adjacent vertex. This approach causes re-
dundancy by saving every edge twice but it also gives us the ability to use a
simple implementation for undeleting vertices during the algorithm.

4.2 Graph Rollback

Making copys of the input graph in order to modify it needs a lot of time and
space. The graph implementation provides functionality to delete and undelete
vertices.

The actual rollback in the implementation is handled by the Rollback Stack.
It contains every deleted vertex in the reverse order of deletion. At any point
in an algorithm run, a rollback point can be set by saving the element on top of
the Rollback Stack. After any number of deletions the graph can be rolled back
to the state of the rollback point by undeleting the top element on the Rollback
Stack until the saved element appears as top element again.

As described in Section 4.1, the graph uses a HashMap to represent adjacency.
The HashMap contains a HashSet of neighbor vertices for each vertex. By re-
taining the HashSet of neighbors for deleted vertices, these deleted vertices can
be undeleted in reverse order.

Let v,w € V be vertices and {v,w} € E. When deleting v, its integer label
will be removed from w’s adjacency HashSet and deleted from the HashSet
of vertices. After the deletion of vertex v, the HashMap entry of v remains
untouched. To undelete v, its unchanged integer label can be brought back into
the vertex HashSet. Now, everything left to do is iterating over the neighbors
of v and adding v to of their adjacency HashSet each.

4.3 Marked Vertices

The set of marked vertices is represented by a HashSet. Vertices get marked over
the course of the algorithm by the branching or by data reduction rules. For the

15

Philipp Heinrich KeBler The Triangle-2-Club Problem

marks made by reduction rules, another stack is needed to reverse these changes
on rollback. Every vertex that gets marked, also is pushed onto the Rollback
Stack for Marked Vertices to unmark vertices back to a certain moment.

4.4 Conflict Graph

By computing all incompatabilities between vertices in the two-neighborhood
of the start vertex beforehand and updating the conflict graph dynamically
during the algorithm, the time required for each compatibility check is constant.
In order to construct the conflict graph we need to know which vertices are
compatible, hence are close enough in the original graph.

4.4.1 Constructing the Conflict Graph

The construction of the conflict graph has already been described in Subsec-
tion 2.5. Recall, that for the construction, we need to determine the compati-
bility for every pair of vertices of the original graph. For two vertices v and w we
can determine if they are incompatible by iterating over the adjacency HashSet
of v. If one of the vertices in the adjacency HashSet of v is also present in the
adjacency HashSet of w, then v and w are compatible.

4.4.2 Updating the Conflict Graph during the Algorithm

The conflict graph G¢ needs to be dynamically updated during the algorithm
every time a vertex gets deleted or undeleted in the graph. Since the set of
vertices in the conflict graph is the same as in the original graph G, we can
imitate every delete or undelete operation that is performed on G in G¢.

Deleting a vertex can cause new conflicts, which leads to new edges in G¢.
For the TRIANGLE-2-CLUB problem the deletion of an vertex v can cause new
incompatibilities between vertices in Nj[v]. These new incompatibilities for
every deleted vertex need stored and then discarded when undeleting v. For
this purpose a HashMap contains a list of every edge that was added on v’s
deletion. The integer label of v is used as key in the HashMap. As soon as v
gets undeleted, every added edge gets removed. This method requires vertices
to get undeleted in the exact reverse order they were deleted. For this reason
a Rollback Stack is added to the graph. The correct order for undeletion is
guaranteed through the graph rollback described in Section 4.2.

4.5 Maximal Matching

Recall that a maximal matching chooses edges, and removes them together with
their incident vertices until no edges are left in the graph. Actually removing
edges for every maximum matching computation is expensive. Instead, we use
another HashSet to keep track of the vertices of choosen edges. Edges can be
found by iterating over the adjacency HashMap until a stored HashSet is not
empty. The key v of this HashMap entry and a value w in the stored HashSet
are two adjacent vertices of the graph. If v and w are not marked yet, then our
matching bound algorithm marks them, and therefore considers the edge {v, w}
as chosen for the maximum matching. The iteration continues until all vertices
are marked over their incident edges or the number of marked vertices exceeds
the maximum number of vertex deletions described in Section 3.2.

16

Philipp Heinrich KeBler The Triangle-2-Club Problem

5 Computational Experiments

In this section, we show and evaluate the experimental results of our implemen-
tation on real-world graphs. This evaluation includes overall algorithm run-
ning time and the benefits of introduced data reduction rules (see Section 3.2).
We used graphs from the 10th DIMACS challenge [2], publicly available at
http://dimacs.rutgers.edu/Challenges/, the Koblenz network collection [7] and
the Network Data Repository with Interactive Graph Analytics and Visualiza-
tion [11].

5.1 Experimental Setup

All experiments were performed on a single thread of an Intel(R) Xeon(R) Silver
4116 CPU with 2.1 GHz, with 24 CPUs and 128 GB of RAM running JAVA
SE on the OpenJDK 14.0.1. The source code was written in JAVA SE 9.0.1.
All time measurements started on algorithm call and do not contain the time
required to read and initialize the graph itself.

5.2 Evaluation of the Lower Bound

Figure 8 shows the relative size of the initial lower bound solution to the final
solution after the algorithm terminated. The computation of the initial lower
bound was described in Subsection 3.4. In 60 out of 74 graphs the initial lower
bound was equal to the final result. The minimum relative size of all computed
lower bounds was 50.6%. On average the initial lower bound was 97.29% of
the final result. Computing the initial lower bound took the longest on the
graph ’soc-youtube-snap’ with 27 seconds needed. We observed the greatest
difference between lower bound and final result size on graphs with a very high
connectivity. The graph ‘graphAllActors’, on wich the lower bound performed
the worst, contains 1986 vertices and 103.121 edges.

5.3 Start Point Statistics

As mentioned in Section 3.3, the order of start vertices can improve the algo-
rithms runnning time. Tables 2 and 3 show some metrics regarding the choice of
start vertices. Ordering the start vertices, in most cases, does not require a lot of
time. However, on large graphs, for example ‘coPapersCiteseer’ it took almost
four minutes to sort the vertices in ascending order of their two-neighborhood
size. Unfortunatly, the algorithm did not terminate on this graph, therefore we
can not put this time in relation to the overall runnning time.

Column SP shows how many of the n vertices of the graph were used as
start vertices. The differnce between n and SP origin in the initial application
of data reduction rules before the branching. For the majority of graphs, the
number of potential start vertices is close to n. In some cases, many vertices
can be sorted out by Reduction Rule 3, which removes vertices that are not
part of a triangle. Column ¢5[s] shows how much time was required to perform
this initial data reduction. The application of this initial reduction is cheap,
considering how many vertices it removes on sparse graphs, for example graph
'soc-youtube-snap’.

17

Philipp Heinrich KeBler The Triangle-2-Club Problem

Column Sk shows how many of the start vertices SP got skipped. If the
inital neighborhood size of a start vertex v is smaller or equal to the current
best solution, then the algorithm will not branch with v as first marked vertex.
Otherwise, if the initial neighborhood size of vertex v could potentially produce
a solution of greater size, the upper bound for this vertex is computed first.
In the course of the algorithm the number of vertices in the graph decreases,
and therefore a new computation is required for the upper bound. The number
of skips caused by the computed upper bound wub’, described in Section 3.5, is
shown in column USk. Note that the upper bound skips are included in Sk.

5.4 Best Results

We ran all of the shown graphs in multiple settings. These settings included
disabling the application of the matching bound rule and the no-choice rule.
This results show the fastest run for each graph where the algorithm terminated.
The time limit was set to one hour. All times are in seconds and rounded up to
the next 0.1 second. Tables 4 and 5 show these results.

5.5 Comparison to an ILP Solution

In the introduction we mentioned that ILP formulations for the TRIANGLE-2-
CLUB problem have already been proposed by Carvalho and Almeida [3] and
Almeida and Bras [1]. We used their results to validate the correctness of our
results, as well as to compare the running time of the ILPs to our implementa-
tion. The runnning times are compared in Table 1. Carvalho and Almeida [3]
showed experimental results of their formulation on real-world graphs for dif-
ferent variations of triangle-k-clubs. The [k2T] problem formulation fits with
our definition of the problem as well as the choosen vertex-triangle-property.
Unfortunately, their running times were rounded up to seconds. More recent
results were shown by Almeida and Brés [1]. We compared our results to the
ones produced by their 1-triangle-2-club formulation. If results for the same
graph were shown in both of the referenced works, we chose the faster of these
results for comparison.

For small graphs, the ILP running time is similar to the running time of our
implementation. Considering that times below one second were rounded up,
there is no noticeable diffrence in graphs with up to 100 vertices. On medium
size graphs, between 100 and 2500 vertices, results get more diverse. The ILP
performed better on graphs with a high connectivness, while our algorithm
performs better on sparse graphs. On the large-scale graphs our implementation
outperforms the ILP formulation. It is to mention that the large graph testet in
the refereced papers also were relativly sparse—to the favor of our algorithm—
but it were the only results available for comparison.

6 Conclusion

The basic algorithm version was not able to solve medium or lage sized graphs
within a reasonable time without the use of data reduction rules or the other
proposed ways to make it faster. As shown in Section 5, the basic algorithm
benefits a lot from ordering the graphs vertices based on their neighborhood

18

Philipp Heinrich KeBler The Triangle-2-Club Problem

Table 1: Comparison of the algorithm running time of our algorithm with the
time of the ILP solutions. All times presented in the columns ‘our’ and ‘ILP’ are
measured in seconds. In one of the papers used for comparison the times were
rounded up to whole seconds. We have no valid result of our implementation
for the polblogs graph, scince the algorithm did not terminate in the time limit
of one hour.

Graph Name n our ILP Graph Name n our ILP
karate 34 0.1 0.00 games120 120 0.7 11.00
dolphins 62 0.1 0.01 miles500 128 0.7 6.00
huck 74 0.1 1.00 anna 138 0.6 1.00
lemis 77 0.1 1.00 5-Fulllns_3 154 0.1 1.00
jean 80 0.2 1.00 jazz 198 9.8 0.76
3-Fulllns_3 80 0.1 1.00 celegansneural 297 13.2 1.02
david 87 0.2 1.00 email 1,133 71.4 10,334.20
mug88_1 88 0.1 1.00 polblogs 1,490 - 31.26
1-Fulllns_4 93 0.2 1.00 netscience 1,589 0.1 0.18
mugl00-1 100 0.1 1.00 add20 2,395 4373 172.43
mugl00-25 100 0.1 1.00 power 4,941 0.1 0.08
polbooks 105 0.3 0.05 add32 4,960 5.5 176.07
adjnoun 112 0.3 0.04 hep-th 8,361 5.0 626.66
4-Fulllns_3 114 0.1 1.00 PGPgiantcompo 10,680 18.3 490.16
football 115 0.6 2.96

size, as well as the initial computation of the lower bound. Besides the rules for
data reduction, the lower bound sticks out the most. For the majority of graphs
it finds a solution that is close or equal to a maximum solution. This allows the
algorithm to skip a lot of branching.

A crucial component of our algorithms implementation was the ability to
rollback the graph instead of making physical copies to work on. Even with
the rollback stacks, the implementation had a high need of memory to store the
original graph, the graph to work on as well as the conflict graph. This is caused
by the used data structures. The timely benefits of the used data structures
came with a tradeoff in memory requirements.

The data reduction rules further improved the algorithm. Removing non-
triangle vertices before branching reduces the size sparse graphs, and therefore
also allowed to skip the branching of these vertices. The incompatible resultion
rule also further enabled the removal of non-triangle vertices.

Not all rules for data reduction performed as well as we expected. The
matching bound rule only improved runtime on a small number of graphs. In
most cases, the costs of constructing and maintaining the conflict graph—which
was required in order to use the matching bound rule—exceeded the timely ben-
efits of the rules application. On the other hand, the application of the matching
bound rule was able to reduce the depth of branching by aborting branches early.
The no-choice rule showed similar flaws. Depending on the graphs structure, in
some cases the no-choice rule was able to mark many vertices, wich enabled the
incompatible resolution rule to remove vertices. Especially on sparse graphs, it
was able to improve the algorithms running time. Otherwise, on graphs with a
high connectivity, the no-choice rules costs of application exceeded its benefits.

New or more optimized data reduction rules are a possible toppic for further
research. This may allow exact algorithms to perform better than their ILP

19

Philipp Heinrich KeBler The Triangle-2-Club Problem

counterparts, even on graphs with a high connectivity. In addition, heuristics
could be developed to dynamically enable and disable the use of the matching
bound rule and the no-choice rule depending on the graphs structure.

A possible improvement to the implementational part of our algorithm would
be more optimized data structures to store the graphs. The integer labeling of
vertices, as well as the fact that no vertices are added over the course of the
algorithm, would allow more efficient ways of storing vertex data.

Another toppic for further research may be the implementation of an exact
algorithm for the edge-triangle-property, as well as an adaption of the proposed
reduction rules for this problem variant. Other problem variants, for example
the /-TRIANGLE-k-CLUB problem which was solved using ILPs by Almeida and
Brds Almeida and Brds [1] may be intresting for future research.

7 Appendix

20

Philipp Heinrich KeBler The Triangle-2-Club Problem

Percentage of lower bound
= =2
~ oo
. L

FS0
90
F60
Fot

x graphallActors
* robot24cl_mats
x bn-mouse_retina_1
1 ca-HepPh X
football ¥
bn-cat-mixed-species_brain_1 x
games120 X
BooksEdges x
polbooks x
arenas-jazz
jazz
miles500 X
psmigr_1 x
econ-beause
1-Fullins_4 *
3-Fullins_3 *
4-Fullins_3*
5-Fullins_3 *
b AuthorsFPruneds *
LesmisEdges x
adjnoun x
adjnoun_adjacency_adjacency x
anna
arenas-email *
bio-celegans x
bio-celegans-dir x
bio-diseasome
bio-dmela *
bio-yeast x
bio-yeast-protein-inter x
bn-fly-drosophila_medulla_1 *
ca-AstroPh %
ca-CSphd x
ca-CondMat >
ca-Erdos992 %
ca-Groc®
ca-netscience *
ca-sand iiauths.><
citationCiteseer %
coAuthorsCiteseer *
coAuthorsDBLP *
coPapersCiteseer >
coPapersDBLP %
comsol *
contiguous-usa
7 david %
b dolphins %
heart2 %
huck %
inf-USAire7 *
inf-euroroad *
inf-openflights *
inf-power
jean®
karate %
karateClub *
lesmis %
moreno_zebra_zebra x
mugloo 1%
mugloo_25 %
mugss_1 %
soc-academia %
soc-advogato *
soc-anybeat ¥
soc-brightkite *
soc-delicious
soc-firm-hi-tech ®
soc-hamsterster X
soc-twitter-follows *
soc-wiki-Vote %
tech-RL-caida >
b xt X
ucidata-zachary *

x

Figure 8: This plot shows the how close the initial lower bound was to the result size.
A red marker indicates that the initially computed lower bound is equal to the final
result size.

21

Philipp Heinrich KeBler The Triangle-2-Club Problem

Table 2: Column SP contains the number of vertices that where used as start
points. The difference between the number of vertices n and the number of
start points SP is caused by the initial application of data reduction rule. This
initial data reduction removed non-triangle vertices from the graph. Column
Sk is the number of start points that where skipped in any way. USk is how
many of the skipped start points where skipped because of the computed upper
bound ub’. Column t¢;[s] contains the time required to sort the start points in
ascending order. Column t5[s] shows how long it took to perform the initial
data reduction.

Graph Name n SP Sk USk ti[s] t2[s]
moreno_zebra_zebra 27 27 18 9 0.1 0.0
soc-firm-hi-tech 33 29 21 16 0.1 0.1
karate 34 32 23 18 0.1 0.1
ucidata-zachary 34 32 22 17 0.1 0.1
contiguous-usa 49 48 30 16 0.1 0.0
dolphins 62 46 26 13 0.1 0.1
bn-cat-mixed-species_brain_1 65 65 26 21 0.1 0.1
huck 74 67 56 27 0.1 0.1
lesmis 77 57 49 7 0.1 0.1
3-Fulllns_3 80 34 34 0 0.1 0.1
jean 80 57 AT 7 0.1 0.1
ca-sandi_auths 86 54 51 8 0.1 0.1
david 87 77 55 7 0.1 0.1
mug88_1 88 74 45 16 0.1 0.1
1-Fulllns 4 93 77T 43 25 0.1 0.1
mugl00_25 100 85 47 19 0.1 0.1
mugl100_1 100 89 44 24 0.1 0.1
polbooks 105 104 76 63 0.1 0.1
BooksEdges 105 104 76 63 0.1 0.1
adjnoun 112 79 58 25 0.1 0.1
4-Fulllns_3 114 40 40 0 0.1 0.1
football 115 115 31 31 0.1 0.1
games120 120 120 35 24 0.1 0.1
miles500 128 128 64 13 0.1 0.1
anna 138 112 97 46 0.1 0.1
5-Fulllns_3 154 46 46 0 0.1 0.1
jazz 198 192 92 56 0.1 0.1
inf-USAir97 332 272 189 55 0.1 0.1
ca-netscience 379 351 343 57 0.1 0.1
robot24cl_matb 404 402 173 140 03 0.1
bio-celegans 453 444 373 147 0.1 0.1
bio-celegans-dir 453 444 430 201 0.1 0.1
econ-beause 507 504 39 31 1.5 0.1
bio-diseasome 516 417 415 55 0.1 0.1
soc-wiki-Vote 889 490 414 89 0.1 0.1
bn-mouse_retina_1 1076 1072 2 0 3.0 0.1
arenas-email 1133 840 619 327 0.1 0.1
inf-euroroad 1174 83 81 0 0.1 0.1

22

Philipp Heinrich KeBler The Triangle-2-Club Problem

Table 3: Column SP contains the number of vertices that where used as start
points. The difference between the number of vertices n and the number of
start points SP is caused by the initial application of data reduction rule. This
initial data reduction removed non-triangle vertices from the graph. Column
Sk is the number of start points that where skipped in any way. USk is how
many of the skipped start points where skipped because of the computed upper
bound ub’. Column ¢;[s] contains the time required to sort the start points in
ascending order. Column ¢5[s] shows how long it took to perform the initial
data reduction.

Graph Name n SP Sk USk ti[s] ta[s]
bio-yeast 1,458 236 230 21 0.1 0.1
comsol 1,500 1,500 0 0 0.6 0.1
bn-fly-drosophila_medulla_1 1,781 1,144 981 520 0.2 0.1
bio-yeast-protein-inter 1,870 262 258 23 0.1 0.1
ca-CSphd 1,882 15 15 0 0.1 0.1
graphAllActors 1,986 1,986 0 0 2.5 0.1
heart2 2,339 2,339 1 0 7.7 0.1
soc-hamsterster 2,426 2,059 1946 567 0.3 0.1
inf-openflights 2,939 2,041 103 0 0.3 0.1
psmigr_1 3,140 3,140 2 0 26.8 0.1
ca-GrQc 4,158 3,348 3,314 347 0.1 0.1
inf-power 4,941 951 948 7 0.1 0.1
ca-Erdos992 5,094 921 856 116 0.1 0.1
soc-advogato 6,551 3,490 3 0 1.1 0.1
bio-dmela 7,393 1,280 988 287 0.1 0.1
AuthorsFPruned3 10,265 9,848 9,833 662 0.3 0.1
ca-HepPh 11,204 9,952 61 0 1.8 0.1
soc-anybeat 12,645 4,931 7 0 2.3 0.1
ca-AstroPh 17,903 16,856 210 0 2.3 0.1
ca-CondMat 21,363 19,474 19,404 2,009 0.7 0.1
soc-brightkite 56,739 25,551 898 0 2.9 0.4
tech-RL-caida 190,914 87,896 87,896 4,087 4.3 0.8
soc-academia 200,169 129,296 1,965 0 25.2 1.0
coAuthorsCiteseer 227,320 196,714 196,688 1128 3.6 0.5
citationCiteseer 268,495 175,480 11 0 12.7 1.1
coAuthorsDBLP 299,067 253,024 252,971 11,557 5.1 0.8
soc-twitter-follows 404,719 16,477 132 0 3.7 2.1
coPapersCiteseer 434,102 428,008 4,194 0 233.2 0.6
soc-delicious 536,108 63,132 9 0 9.2 3.7
coPapersDBLP 540,486 530,300 2,121 0 167.2 0.8
soc-youtube-snap 1,134,890 261,730 261,730 27,660 143.6 3.6

23

Philipp Heinrich KeBler The Triangle-2-Club Problem

Table 4: Part 1 of best results of all runs. Column T2C is the size of a maximum
triangle-2-club in the graph. The algorithm aborted after reaching the set time
limit of 3,600 seconds.

Graph Name n m Time [s] T2C
moreno_zebra_zebra 27 111 0.1 15
soc-firm-hi-tech 33 91 0.1 17
ucidata-zachary 34 78 0.1 15
karate 34 78 0.1 15
karateClub 34 78 0.1 15
contiguous-usa 49 107 0.1 9
dolphins 62 159 0.1 12
bn-cat-mixed-species_brain_1 65 730 0.2 55
huck 74 301 0.1 53
lesmis 7 254 0.1 32
LesmisEdges 7 254 0.1 32
jean 80 254 0.2 32
3-Fulllns_3 80 346 0.1 20
ca-sandi_auths 86 124 0.1 11
david 87 406 0.2 73
mug88_1 88 146 0.1 5
1-Fulllns_4 93 593 0.2 33
mugl00_1 100 166 0.1 5
mugl00_25 100 166 0.1 5
polbooks 105 441 0.3 28
BooksEdges 105 441 0.3 28
adjnoun 112 425 0.3 48
adjnoun_adjacency_adjacency 112 425 0.3 48
4-Fulllns_3 114 541 0.1 24
football 115 613 0.6 16
games120 120 638 0.7 16
miles500 128 1,170 0.7 40
anna 138 493 0.6 61
5-Fulllns_3 154 792 0.1 28
jazz 198 2,742 9.8 103
inf-USAir97 332 2,126 9.9 137
ca-netscience 379 914 0.1 33
robot24cl_matb 404 14,261 87.6 344
bio-celegans-dir 453 2,025 13.6 238
bio-celegans 453 2,025 41.8 238
econ-beause 507 39,428 2.3 503
bio-diseasome 516 1,188 0.1 49
soc-wiki-Vote 889 2914 14.3 91
bn-mouse_retina_1 1,076 90,811 3,600.2 -
arenas-email 1,133 5,451 71.4 69
inf-euroroad 1,174 1417 0.1 5
bio-yeast 1,458 1,948 0.1 15
comsol 1,500 48,119 14221 180
bn-fly-drosophila_medulla_1 1,781 8,911 25.9 899

24

Philipp Heinrich KeBler The Triangle-2-Club Problem

Table 5: Part 2 of best results of all runs. Column T2C is the size of a maximum
triangle-2-club in the graph. The algorithm aborted after reaching the set time
limit of 3,600 seconds.

Graph Name n m Time [s] T2C
bio-yeast-protein-inter 1,870 2,203 0.1 15
ca-CSphd 1,882 1,740 0.1 6
graphAllActors 1,986 103,121 3,601.6 -
heart2 2,339 340,229 3,618.8 -
soc-hamsterster 2,426 16,630 2.8 270
inf-openflights 2,939 15,677 250.6 242
psmigr_1 3,140 410,781 3,600.9 -
ca-GrQc 4,158 13,422 2.7 82
inf-power 4,941 6,594 0.1 14
ca-Erdos992 5,094 7,515 4.8 46
soc-advogato 6,551 39,432 3,634.0 -
bio-dmela 7,393 25,569 248.7 82
AuthorsFPruned3 10,265 37,086 14 224
ca-HepPh 11,204 117,619 3,611.6 -
soc-anybeat 12,645 49,132 3,640.3 -
ca-AstroPh 17,903 196,972 3,620.3 -
ca-CondMat 21,363 91,286 867.2 277
soc-brightkite 56,739 212,945 3,309.7 -
tech-RL-caida 190,914 607,610 6.8 1,039
soc-academia 200,169 1,022,441 3,610.0 -
coAuthorsCiteseer 227,320 814,134 45.7 1,234
citationCiteseer 268,495 1,156,647 3,653.3 -
coAuthorsDBLP 299,067 977,676 1,066.8 333
soc-twitter-follows 404,719 713,319 3,621.8 -
coPapersCiteseer 434,102 16,036,720 3,655.3 -
soc-delicious 536,108 1,365,961 3,610.4 -
coPapersDBLP 540,486 15,245,729 3,607.4 -
soc-youtube-snap 1,134,890 2,987,624 171.3 25,698

25

Philipp Heinrich KeBler The Triangle-2-Club Problem

References

[1]

[10]

[11]

[12]

Maria Teresa Almeida and Raul Bras. The maximum [-triangle k-club
problem: Complexity, properties, and algorithms. Computers € Operations
Research, 111:258-270, 2019.

David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders,
Christian Schulz, and Dorothea Wagner. Benchmarking for graph clustering
and partitioning. In Encyclopedia of Social Network Analysis and Mining.
2nd Ed. Springer, 2018.

Filipa D. Carvalho and Maria Teresa Almeida. The triangle k-club problem.
Journal of Combinatorial Optimization, 33(3):814-846, 2017.

Salvatore Catanese, Pasquale De Meo, Emilio Ferrara, and Giacomo Fi-
umara. Analyzing the facebook friendship graph. Computing Research
Repository, abs/1011.5168, 2010.

Sepp Hartung, Christian Komusiewicz, and André Nichterlein. Param-
eterized algorithmics and computational experiments for finding 2-clubs.
Journal of Graph Algorithms and Applications, 19(1):155-190, 2015.

Christian Komusiewicz, André Nichterlein, Rolf Niedermeier, and Marten
Picker. Exact algorithms for finding well-connected 2-clubs in sparse real-
world graphs: Theory and experiments. European Journal of Operational
Research, 275(3):846-864, 2019.

Jérome Kunegis. KONECT: the Koblenz network collection. In WWW
(Companion Volume), pages 1343—-1350. International World Wide Web
Conferences Steering Committee / ACM, 2013.

Robert J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:
161-173, 1979.

Foad Mahdavi Pajouh, Esmaeel Moradi, and Balabhaskar Balasundaram.
Detecting large risk-averse 2-clubs in graphs with random edge failures.
Annals of Operations Research, 249(1-2):55-73, 2017.

Panos M. Pardalos and Gregory P. Rodgers. A branch and bound algorithm
for the maximum clique problem. Computers & Operations Research, 19
(5):363-375, 1992.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In Association for the Ad-
vancement of Artificial Intelligence, pages 4292-4293. AAAT Press, 2015.

Alexander Schéfer. Fzxact Algorithms for s-Club Finding and Related
Problems. Dissertation, Friedrich-Schiller-Universitat Jena, 2009. URL
https://pure.mpg.de/rest/items/item_1587743_4/component/
file_1587742/content.

Manos Schinas, Symeon Papadopoulos, Yiannis Kompatsiaris, and Peri-
cles A. Mitkas. Mgraph: multimodal event summarization in social media
using topic models and graph-based ranking. International Journal of Mul-
timedia Information Retrieval, 5(1):51-69, 2016.

26

Philipp Heinrich KeBler The Triangle-2-Club Problem

[14] Qunyan Zhang, Chi Zhang, Peng Cai, Weining Qian, and Aoying Zhou.
Detecting spamming groups in social media based on latent graph. In
ADC, volume 9093 of Lecture Notes in Computer Science, pages 294-305.
Springer, 2015.

27

Philipp Heinrich KeBler The Triangle-2-Club Problem

Selbststandigkeitserklarung

Hiermit versichere ich, Philipp Heinrich Kefller, dass ich die vorliegende Ar-
beit selbststandig verfasst, ganz oder in Teilen noch nicht als Priifungsleis-
tung vorgelegt und keine anderen als die angegebenen Hilfsmittel benutzt habe.
Samtliche Stellen der Arbeit, die benutzten Werken im Wortlaut oder dem
Sinn nach entnommen sind, habe ich durch Quellenangaben kenntlich gemacht.
Dies gilt auch fiir Zeichnungen, Skizzen, bildliche Darstellungen und dergleichen
sowie fiir Quellen aus dem Internet. Mir ist bewusst, dass es sich bei Plagiaris-
mus um akademisches Fehlverhalten handelt, das sanktioniert werden kann.

Ort, Datum Unterschrift

28

