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Abstract

The NP-hard 2-Club problem is, given an undirected graph G = (V,E) and ` ∈ N,
to decide whether there is a vertex set S ⊆ V of size at least ` such that the induced
subgraph G[S] has diameter at most two. We make progress towards a systematic
classification of the complexity of 2-Club with respect to a hierarchy of prominent
structural graph parameters. First, we present the following tight NP-hardness results:
2-Club is NP-hard on graphs that become bipartite by deleting one vertex, on graphs
that can be covered by three cliques, and on graphs with domination number two and
diameter three. Then, we consider the parameter h-index of the input graph. The
study of this parameter is motivated by real-world instances and the fact that 2-Club is
fixed-parameter tractable when parameterized by the larger parameter maximum degree.
We present an algorithm that solves 2-Club in |V |f(k) time with k being the h-index
of G. By showing W[1]-hardness for this parameter, we provide evidence that the above
algorithm cannot be improved to a fixed-parameter algorithm. Furthermore, the reduction
used for this hardness result can be modified to show that 2-Club is NP-hard if the
input graph has constant degeneracy. Finally, we show that 2-Club is fixed-parameter
tractable when parameterized by distance to cographs.

Keywords: clique relaxations, cohesive subnetworks, social network analysis,
fixed-parameter tractability, parameter hierarchy, multivariate complexity analysis

1. Introduction

The identification of cohesive subnetworks is an important task in the analysis of social
and biological networks, since these subnetworks are likely to represent communities or
functional subnetworks within the large network. The natural cohesiveness requirement is
to demand that the subnetwork is a complete graph, a clique. However, this requirement
is often too restrictive and thus relaxed definitions of cohesive graphs such as s-cliques [1],
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s-plexes [34], and s-clubs [27] have been proposed. In this work, we study the problem of
finding large s-clubs within the input network. An s-club is a vertex set that induces a
subgraph of diameter at most s. Thus, s-clubs are distance-based relaxations of cliques,
which are vertex sets inducing diameter-one graphs. For constant s ≥ 1, the problem of
finding s-clubs is defined as follows.

s-Club
Input: An undirected graph G = (V,E) and ` ∈ N.
Question: Is there a vertex set S ⊆ V of size at least ` such that G[S] has
diameter at most s?

In this work, we study the computational complexity of 2-Club, that is, the special case
of s = 2. The restriction to this special case is further motivated by the following two
considerations. First, 2-Club is an important special case concerning the applications:
For biological networks, 2-clubs and 3-clubs have been identified as the most reasonable
diameter-based relaxations of cliques [30]. Further, Balasundaram et al. [4] also proposed
to compute 2-clubs and 3-clubs for analyzing protein interaction networks. 2-Club also
has applications in the analysis of social networks [26]. Consequently, all experimental
studies concentrate on finding 2- and 3-clubs [2, 4, 9, 11, 12, 20, 25]. Second, 2-Club
is the most basic variant of s-Club that is different from the Clique problem which is
equivalent to 1-Club. For example, being a clique is a hereditary graph property, that
is, it is closed under vertex deletion. In contrast, being a 2-club is not hereditary, since
deleting vertices can increase the diameter of a graph. Hence, it is interesting to spot
differences in the computational complexity of the two problems.

In the spirit of multivariate algorithmics [17, 24, 29], we aim to describe how structural
properties of the input graph determine the computational complexity of 2-Club. We
want to determine sharp boundaries between tractable and intractable special cases of
2-Club, and whether some graph properties, especially those motivated by the structure
of social and biological networks, can be exploited algorithmically. By arranging the
parameters in a hierarchy (ranging from large to small parameters) we draw a border
line between tractability and intractability to obtain a systematic view on “stronger
parameterizations” (see Section 1.2 for a formal introduction). Most importantly, this
hierarchy allows to transfer tractability and intractability results between parameters
and thus helps in “navigating” through the parameters. Using the hierarchy we can
deduce many (in)tractability results from relatively few algorithms and reductions. Hence,
even if some results are obtained for seemingly uncommon or unmotivated parameters,
they can imply results for several natural parameters. We refer to Komusiewicz and
Niedermeier [24] for a further discussion of the parameter hierarchy and for examples
of its usage to “decompose” the computational intractability of NP-hard problems. A
similar approach was followed for other hard graph problems such as Odd Cycle
Transversal [22] and for the computation of the pathwidth of a graph [7].

The structural properties that we consider, called structural graph parameters, are
usually described by integers; well-known examples of such parameters are the maximum
degree or the treewidth of a graph. Our results use the classic framework of NP-hardness
as well as the framework of parameterized complexity to show (parameterized) tractability
and intractability of 2-Club when parameterized by the structural graph parameters
under consideration. That is, for some graph parameters we show that 2-Club becomes
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NP-hard in case of constant parameter values, whereas for other graph parameters we
show fixed-parameter (in)tractability.

1.1. Related Work

For all s ≥ 1, s-Club is NP-complete on graphs of diameter s+ 1 [4]; 2-Club is NP-
complete even on split graphs and, thus, also on chordal graphs [3]. In contrast, 2-Club is
solvable in polynomial time on bipartite graphs, on trees, and on interval graphs [33].
Golovach et al. [19] consider the complexity of s-Club in special graph classes. For
instance they prove polynomial-time solvability of s-Club on chordal bipartite, strongly
chordal and distance hereditary graphs. Additionally, on a superclass of these graph
classes, called weakly chordal graphs, s-Club is polynomial-time solvable for odd s and
NP-hard for even s [19]. Mahdavi and Balasundaram [25] have shown that it is NP-hard
to decide whether a given s-club is maximal for each fixed s ≥ 2.

The s-Club problem is well-understood from the viewpoint of approximation algo-
rithms [3]: It is NP-hard to approximate s-Club within a factor of n

1
2−ε for any ε > 0. On

the positive side, it has been shown that a largest set consisting of a vertex together with
all vertices within distance

⌊
s
2

⌋
is a factor n

1
2 approximation for even s ≥ 2 and a factor

n
2
3 approximation for odd s ≥ 3. Several heuristics [8, 11, 12], integer linear program-

ming formulations [2, 4, 9], fixed-parameter algorithms [20, 32], and branch-and-bound
algorithms [9] have been proposed and experimentally evaluated [20, 25].

From the viewpoint of parameterized algorithmics, 1-Club is equivalent to Clique
and thus W[1]-hard when parameterized by ` [14]. In contrast, for all s ≥ 2, s-Club
parameterized by ` is fixed-parameter tractable [32]. Furthermore, it is fixed-parameter
tractable when parameterized by the treewidth of G [33]. Additionally, a search tree
algorithm that branches into the two possibilities to delete one of two vertices with
distance more than s achieves a running time of O(2n−` · nm) for the dual parameter
n− ` which measures the distance to an s-club [32].2 This algorithm cannot be improved
to (2− ε)n−` · nO(1) for any ε > 0 if the strong exponential time hypothesis is true [20].
Interestingly, Chang et al. [12] proved that the same search tree algorithm runs in O(1.62n)
time where n is the number of vertices in G .

The main observation behind the fixed-parameter algorithm for ` is that the closed
neighborhood N [v] of any vertex v is an s-club for s ≥ 2. Hence, the maximum degree ∆
in non-trivial instances is less than ` − 1. In yes-instances, however, it also holds
that ` ≤ ∆s + 1. Thus, for constant s, fixed-parameter tractability when parameterized
by ` also implies fixed-parameter tractability when parameterized by the maximum
degree of G. Moreover, s-Club does not admit a polynomial kernel when parameterized
by ` (unless NP ⊆ coNP/poly) [32]. Interestingly, taking for each vertex the vertex
itself together with all other vertices that are in distance at most s forms a so-called
Turing-kernel with at most k2-vertices for even s and at most k3-vertices for odd s [32].
In companion work [20], we considered further structural parameters: We presented a
fixed-parameter algorithm for the parameter treewidth and polynomial kernels for the
parameters (size of a) feedback edge set and the cluster editing number. Additionally, we

2Schäfer et al. [32] considered finding an s-club of size exactly `. The claimed fixed-parameter
tractability when parameterized by n − ` however only holds for the problem of finding an s-club of
size at least `. The other fixed-parameter tractability results hold for both variants.
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showed the non-existence of a polynomial kernel and that the simple search tree algorithm
for the dual parameter n − ` is asymptotically optimal. Somewhat in contrast to this
negative result, we showed that an implementation of the branching algorithm for the
parameter n− ` combined with the Turing-kernelization is among the best-performing
algorithms on real-world and on synthetic instances [20].

1.2. Structural Parameters

We next discuss structural parameters and formally define those that we consider in
this work (see Figure 1 for an illustration of their relations). We remark that there is no
formal definition of what is considered to be a structural parameterization. Intuitively, it
is a quantitative measurement of some structure in the input I which is rather independent
of the problem and of the question whether I is a yes- or no-instance.

We next define the structural parameters under consideration. For a set of graphs Π
(for instance, the set of bipartite graphs) the parameter distance to Π measures the
number of vertices that have to be deleted in the input graph in order to obtain a graph
in Π. We denote by Pt the path on t vertices. Then the set of Pt-free graphs consists
of all graphs not containing any Pt as induced subgraph. The P3-free graphs are called
cluster graphs. In these graphs, the vertex set of each connected component is a clique.
The P4-free graphs are called cographs. A graph where each connected component is an
s-club is called s-club cluster graph. Observe that this is equivalent to requiring that every
shortest path does not contain a Ps+2 as subgraph. Hence, P4-free graphs are 2-club
cluster graphs. Deleting all vertices that are contained in an induced Pt is a factor-t
approximation for the parameter distance to Pt-free graphs. Hence, we may assume
that such a vertex deletion set is provided as an additional input for the corresponding
algorithms.

A graph is a co-cluster graph if its complement graph is a cluster graph. The clique
cover number is the minimum number of cliques in a graph that are needed to cover all
vertices, that is, each vertex is contained in at least one of these cliques. The domination
number of a graph is the minimum size of a dominating set. This is a set such that
each vertex is contained in it or has at least one neighbor in it. An independent set
is a vertex set inducing a graph without edges. A vertex cover is a vertex set whose
deletions transforms G into a graph G′ without edges, that is, the vertex set of G′ is an
independent set in G. A set of edge insertions and deletions is a cluster editing set if it
transforms G into a cluster graph. A set of edges is a feedback edge set if its deletion
results in an acyclic graph. A graph has h-index k, if k is the largest number such that
the graph has at least k vertices of degree at least k. The degeneracy of a graph is the
smallest number d such that each subgraph has at least one vertex of degree at most d.
The bandwidth of a graph G = (V,E) is the minimum k ∈ N such that there is a function
f : V → N with |f(v)− f(u)| ≤ k for all edges {u, v} ∈ E.

We now discuss how these structural parameters form a hierarchy as depicted in Fig-
ure 1. Intuitively, structural parameters are often related in such a way that parameter α
is on all instances smaller than parameter β. For example, distance to P4-free graphs
is always at most as large as distance to P3-free graphs. Formally, a parameter α is
considered to be a stronger parameterization (“smaller”) than β if there is a polynomial f
(usually linear) such that α ≤ f(β) for all instances. This stronger/weaker relationship
between parameters allows to transform hardness results (from weaker to stronger) and
tractability results (from stronger to weaker) between them. Then, “navigating” through
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Figure 1: Overview of the relation between structural graph parameters (see Section 1.2) and of our

results for 2-Club (marked with a 8). An edge from a parameter α to a parameter β below of α means
that β is a stronger parameterization. The box containing the parameter (size of a) vertex cover on
top, consists of parameters for which 2-Club becomes fixed-parameter tractable but does not admit a
polynomial kernel [20]. The box consisting of cluster editing, max leaf #, and feedback edge set contains
parameters admitting a fixed-parameter algorithm and a polynomial kernel [20]. The box at the bottom
contains parameters where 2-Club remains NP-hard even for constant values. It is open whether 2-Club
parameterized by distance to interval or distance to 2-club cluster is fixed-parameter tractable and
whether it admits a polynomial kernel when parameterized by distance to cliques.

the corresponding parameter hierarchy allows for a systematic investigation of the pa-
rameter’s impact on the problem complexity and helps to spot open research questions.
For a detailed discussion of the relations depicted in Figure 1 we refer to Sasák [31], and
Sorge and Weller [35].

1.3. Our Contribution

We make progress towards a systematic classification of the complexity of 2-Club
when parameterized by structural graph parameters. Figure 1 gives an overview of our
results and their implications. In Section 2, we consider the graph parameters clique cover
number, domination number, and some related graph parameters. We show that 2-Club
is NP-hard even if the clique cover number of G is three. In contrast, we show that if
the clique cover number is two, then 2-Club is polynomial-time solvable. Then, we show
that 2-Club is NP-hard even if G has a dominating set of size two. This result is tight
in the sense that 2-Club is trivially solvable in case G has a dominating set of size one.
In Section 3, we study the parameter distance to bipartite graphs. We show that 2-Club
is NP-hard even if the input graph can be transformed into a bipartite graph by deleting
only one vertex. This is somewhat surprising since 2-Club is polynomial-time solvable
on bipartite graphs [33]. Then, in Section 4, we consider the graph parameter h-index.
The study of this parameter is motivated by the fact that the h-index is usually small in
social networks (see Section 4 for a more detailed discussion). On the positive side, we
show that 2-Club is polynomial-time solvable for constant h-index. On the negative side,
we show that 2-Club parameterized by the h-index k of the input graph is W[1]-hard.
Hence, a running time of f(k) · nO(1) is probably not achievable (unless W[1] = FPT).
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Even worse, we prove that 2-Club becomes NP-hard even for constant degeneracy. Note
that degeneracy of a graph is provably at most as large as its h-index.

Finally, in Section 5 we describe a fixed-parameter algorithm for the parameter distance
to cographs and show that it can be slightly improved for the weaker parameter distance
to cluster graphs. Interestingly, these are rare examples for structural graph parameters,
that are unrelated to treewidth and still admit a fixed-parameter algorithm (see Figure 1).
Notably, the fixed-parameter algorithm for treewidth and those for distance to cograph

both have the same running time characteristic 2Θ(2k) · nO(1) and this is, so far, also the
best for the much “weaker” parameter vertex cover [20].

For the sake of completeness, we would like to mention that for the parameters
bandwidth and maximum degree, taking the disjoint union of the input graphs is a
composition algorithm that proves the non-existence of polynomial kernels [6], under the
standard assumption that NP ⊆ coNP/poly does not hold.

1.4. Preliminaries

We only consider undirected and simple graphs G = (V,E) where n := |V | and m :=
|E|. For a vertex set S ⊆ V , let G[S] denote the subgraph induced by S and G − S :=
G[V \ S]. We use distG(u, v) to denote the distance between u and v in G, that is, the
length of a shortest path between u and v. For a vertex v ∈ V and an integer t ≥ 1, denote
by NG

t (v) := {u ∈ V \ {v} | distG(u, v) ≤ t} the set of vertices within distance at most t
to v. Moreover, we set NG

t [v] := NG
t (v) ∪ {v}, NG[v] := NG

1 [v] and NG(v) := N1(v). If
the graph is clear from the context, we omit the superscript G. Two vertices v and w
are twins if N(v) \ {w} = N(w) \ {v} and they are twins with respect to a vertex set X
with X ∩ {v, w} = ∅ if N(v) ∩ X = N(w) ∩ X. The twin relation is an equivalence
relation; the corresponding equivalence classes are called twin classes. The following
simple observation shows that either none or all vertices of a twin class are contained in a
maximum-size s-club.

Observation 1. Let S be an s-club in a graph G = (V,E) and let u, v ∈ V be twins.
If u ∈ S and |S| > 1, then S ∪ {v} is also an s-club in G.

We briefly recall the relevant notions from parameterized complexity (see [14, 18, 28]).
A problem is fixed-parameter tractable (FPT) with respect to a parameter k if there is a
computable function f such that any instance (I, k) can be solved in f(k) · |I|O(1) time.
A problem is contained in XP if it can be solved in |I|f(k) time for some computable
function f . A kernelization algorithm reduces any instance (I, k) in polynomial time to
an equivalent instance (I ′, k′) with |I ′| ≤ g(k) and k′ ≤ g(k) for some computable g. The
instance (I ′, k′) is called kernel of size g. If g is a polynomial it is called a polynomial kernel.

The problem class W[1] is a basic class of presumed parameterized intractability. A
parameterized reduction maps an instance (I, k) in f(k) · |I|O(1) time to an equivalent
instance (I ′, k′) with k′ ≤ g(k) for some functions f and g. A parameterized reduction
from a W[1]-hard problem L to a W[1]-hard problem L′ proves W[1]-hardness of L′ and
thus makes fixed-parameter algorithms for L′ unlikely.

Remark: Note that one can check in O(nm) time whether a graph is an s-Club by
applying a breadth-first search starting from each vertex.
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1.5. Guess and Clean

When parameterizing 2-Club with a structural parameter that measures the (vertex-
deletion) distance to some graph class Π (e. g. distance to cographs), the input (G, `)
is formally extended by a vertex subset X of G such that G − X ∈ Π. A common
“preprocessing” step in most of our algorithms, which we call guess and clean, is to
first guess the set X ∩ S by branching into all 2|X| cases to select X ∩ S for a fixed
maximum-size 2-club S in G. Then, in each branch we clean the graph G by first deleting
all vertices in X \S and then, recursively, deleting all vertices that have (in the remaining
graph) distance more than two to any vertex in X ∩ S (they cannot be contained in
2-club containing X ∩ S). Afterwards, it remains to solve each of the 2|X| “cleaned”
instances. Such an instance consists of a graph G′ = (V ′, E′) and the set X ∩ S where
G′ − (X ∩ S) ∈ Π and distG′(u, v) ≤ 2 for all u ∈ X and v ∈ V ′. The task is to find a
2-club of size at least ` containing X ∩ S. For each fixed-parameter algorithm that uses
this scheme we thus only describe the algorithm that solves the cleaned instance. Many
of these algorithms will again branch into cases to fix some vertices (in addition to X ∩S)
to be contained in the desired 2-club. For each branch, we again perform “cleaning
step”, that is, all vertices that do not have distance at most two to all fixed vertices are
recursively deleted. If a cleaning step deletes a fixed vertex, then the algorithm is aborted.

2. Clique Cover Number and Domination Number

In this section we provide several hardness proofs for parameters in the “red box” in
Figure 1. Specifically, we prove that on graphs of diameter at most three, 2-Club is
NP-hard even if either the clique cover number is three or the domination number is two.
We first show that these bounds are tight. The size of a maximum independent set is
at most the size of a clique cover. Moreover, since each maximal independent set is a
dominating set, the domination number is also at most the size of a clique cover.

Lemma 1. For s ≥ 2, s-Club can be solved in O(nm) time on graphs where the size of
a maximum independent set is at most two.

Proof. Let G = (V,E) be a graph where the size of maximum independent set is at most
two. If a maximum independent set in G has size one or G has diameter at most s, then V
is an s-club. Moreover, a connected graph with a maximum independent set size two has
diameter at most three, because one could select an independent set of size three on a
shortest path of length four. Hence we are left with the case of 2-Club and G having
a maximum size-two independent set and diameter three. Thus there are two vertices
v, u ∈ V with dist(v, u) = 3. We next prove that N2[v] or N2[u] is a largest 2-club in G and
thus can be determined in O(nm) time by a breadth-first search starting from each vertex.

We first show that for each maximum 2-club S it holds that either v ∈ S or u ∈ S.
Assume that v /∈ S, implying by the maximality of S that S ∪ {v} is not a 2-club. From
this and from N [v] ∪ N [u] = V (by the maximality of the independent set {u, v}) it
follows that there is a vertex in w ∈ N [u] ∩ S such that distG[S∪{v}](v, w) > 2. Thus w
has distance (at least) two to every vertex in N(v) ∩ S. This implies that all vertices
in N(v) ∩ S have a neighbor in N [u] ∩ S, as otherwise they would have distance three
to w. Hence, u ∈ S by the maximality of S.
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Next, observe that the set N [v] (N [u]) is a clique because two non-adjacent vertices
in N(v) (N(u)) together with u (with v) would form an independent set of size three,
respectively. Since N [v] and N [u] are cliques, it follows that N2[v] and N2[u] are 2-clubs
and, clearly, N2[v] is the largest 2-club containing v and, analogously, N2[u] is the largest
2-club containing u. Thus, N2[v] or N2[u] is a largest 2-club in G.

Every graph with a clique cover number of two has a maximum independent set of
size two. Hence, the above result directly implies a polynomial-time algorithm for graphs
with a clique cover number of two. Observe that the clique cover number of a graph
is exactly the chromatic number of its complement. Hence, 2-Club can be solved in
polynomial time on bipartite graphs [33] and on complement graphs of bipartite graphs.

The following theorem shows that the bound on the maximum independent set size
in Lemma 1 is tight.

Theorem 1. 2-Club is NP-hard on graphs with clique cover number three and diameter
three.

Proof. We describe a reduction from Clique. Let (G = (V,E), k) be a Clique in-
stance and n := |V |. If n = 1, then we output (P2+k, 2 + k), which is an equiv-
alent instance of 2-Club having the desired properties. Otherwise, we construct a
graph G′ = (V ′, E′) consisting of three disjoint vertex sets, that is, V ′ = V1 ∪ V2 ∪ VE .

Further, for i ∈ {1, 2}, let Vi = V Vi ∪ V
big
i , where V Vi is a copy of V and V big

i is a
set of n5 vertices. Let u, v ∈ V be two adjacent vertices in G and let u1, v1 ∈ V1,
u2, v2 ∈ V2 be the copies of u and v in G′. Then add the vertices euv and evu to VE and
add the edges {v1, evu}, {evu, u2}, {u1, euv}, {euv, v2} to G′. Furthermore, add for each

vertex v ∈ V the vertex set V vE = {e1
v, e

2
v, . . . , e

n3

v } to VE and make v1 and v2 adjacent
to all these new vertices. Finally, make the following vertex sets cliques: V1, V2, VE ,
and V big

1 ∪V big
2 . Observe that G′ has diameter three and that it has a clique cover number

of three.
We now prove that G has a clique of size k ⇔ G′ has a 2-club of size at least k′ =

2n5 + kn3 + 2k + 2
(
k
2

)
.

“⇒:” Let C be a clique of size k in G. Let Sc ⊆ V V1 ∪ V V2 contain all the copies of
the vertices of C. Furthermore, let SE := {euv | u1 ∈ Sc ∧ v2 ∈ Sc} and Sb := {eiv | v ∈
C ∧ 1 ≤ i ≤ n3}. We now show that S′ := Sc ∪SE ∪Sb ∪V big

1 ∪V big
2 is a 2-club of size k′.

First, observe that |V big
1 ∪ V big

2 | = 2n5 and |Sc| = 2k. Hence, |Sb| = kn3 and |SE | = 2
(
k
2

)
.

Thus, S′ has the desired size. To verify that S′ is indeed a 2-club, for each pair of vertices
from the sets SC , SE , Sb, V

big
1 , V big

2 the following table shows whether they are adjacent
(ad.) or it indicates in which of the sets they have a common neighbor.

SC ∩ V V1 SC ∩ V V2 SE ∪ Sb V big
1 V big

2

SC ∩ V V1 ad. SE ∪ Sb ad. or SE ∪ Sb ad. V big
1

SC ∩ V V2 - ad. ad. or SE ∪ Sb V big
2 ad.

SE ∪ Sb - - ad. V V1 V V2
V big

1 - - - ad. ad.

V big
2 - - - - ad.
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“⇐:” Let S′ be a maximum-size 2-club in G′ of size at least k′. Observe that G′

consists of |V ′| = 2n5 + 2n+ 2m+ n4 vertices. Since |V | − k′ ≤ 2n+ 2m+ n4 < n5 for

n ≥ 2, at least one vertex of V big
1 and of V big

2 is in S′. Since any two vertices in V big
i are

twins, for i ∈ {1, 2}, and S′ is of maximum-size, by Observation 1 all vertices of V big
1 ∪V big

2

are contained in S′. Analogously, it follows that at least k sets V v
1

E , V v
2

E , V v
3

E , . . . , V v
k

E

are completely contained in S′. Since S′ is a 2-club, the distance from vertices in V big
i to

vertices in V v
j

E is at most two. Hence, for each set V v
j

E in S′ the two neighbors vj1 and vj2
of vertices in V v

j

E are also contained in S′. Since the distance of vi1 and vj2 for vi1, v
j
2 ∈ S′

is also at most two, the vertices evivj and evjvi are part of S′ as well. Consequently, vi

and vj are adjacent in G. Therefore, the vertices v1, . . . , vk form a size-k clique in G.

Since a maximum independent set is also a dominating set, Theorem 1 implies that
2-Club is NP-hard on graphs with domination number three and diameter three. In
contrast, for domination number one 2-Club is trivial. The following theorem shows
that this cannot be extended.

Theorem 2. 2-Club is NP-hard even on graphs with domination number two and
diameter three.

Proof. We present a reduction from Clique. Let (G = (V,E), k) be a Clique instance
and assume that G does not contain isolated vertices. We construct the graph G′ as follows.
First copy all vertices of V into G′. In G′ the vertex set V will form an independent
set. Now, for each edge {u, v} ∈ E add an edge vertex e{u,v} to G′ and make e{u,v}
adjacent to u and v. Let VE denote the set of edge vertices. Next, add a vertex set C of
size n+2 to G′ and make C∪VE a clique. Finally, add a new vertex v∗ to G′ and make v∗

adjacent to all vertices in V . Observe that v∗ plus an arbitrary vertex from VE ∪C are a
dominating set of G′ and that G′ has diameter three. We complete the proof by showing
that G has a clique of size k ⇔ G′ has a 2-club of size at least |C|+ |VE |+ k.

“⇒:” Let K be a size-k clique in G. Then, S := K ∪ C ∪ VE is a size-|C|+ |VE |+ k
2-club in G: First, each vertex in C ∪ VE has distance two to all other vertices of S.
Second, each pair of vertices u, v ∈ K is adjacent in G and thus they have the common
neighbor e{u,v} in VE .

“⇐:” Let S be a 2-club of size |C|+ |VE |+ k in G′. Since |C| > |V ∪ {v∗}|, it follows
that there is at least one vertex c ∈ S ∩ C. Since c and v∗ have distance three, it follows
that v∗ 6∈ S. Now since S is a 2-club, each pair of vertices u, v ∈ S ∩ V has at least one
common neighbor in S. Hence, VE contains the edge vertex e{u,v}. Consequently, S ∩ V
is a size-k clique in G.

3. Distance to Bipartite Graphs

A 2-club in a bipartite graph is a biclique (a complete bipartite graph). Finding a
biclique with a maximum number of vertices can be done via matching in bipartite graphs,
hence 2-Club is polynomial-time solvable on bipartite graphs [33]. However, we show that
2-Club is already NP-hard on graphs that become bipartite by deleting only one vertex.

Theorem 3. 2-Club is NP-hard even on graphs with distance one to bipartite graphs.

Proof. We reduce from the NP-hard Maximum 2-SAT problem.

9



Ci = x ∨ ¬x′

ciVC

xt xf x′t x′fV 1
X

x1
t · · · xmnt x1

f · · · xmnfV 2
X

x1 x2 · · · xmn3VF

neighborhood
of v∗

Figure 2: Schematic illustration of the reduction provided in the proof of Theorem 3. The main idea
behind the construction is as follows. The size of the desired 2-club forces to contain the majority of the
vertices in VF and V 2

X . This has two consequences: For each x ∈ X either xt or xf must be contained
in a 2-club; otherwise two vertices from VF and V 2

X have distance three. Hence, the vertices from V 1
X

in the 2-club represent a truth assignment. Furthermore, since V 2
X has only neighbors in V 1

X and since
the subgraph induced by V 1

X ∪ V
2
X is bipartite, the subsets of V 1

X and V 2
X in a 2-club induce a complete

bipartite graph. Finally, to fulfill the bound on the 2-club size, at least k vertices from VC are in the
2-club; these vertices can only be added if the corresponding clauses are satisfied by the represented truth
assignment.

Maximum 2-SAT
Input: A set C = {C1, . . . , Cm} of clauses over a variable set X = {x1, . . . , xn}
where each clause Ci contains two literals.
Question: Is there an assignment β for X that satisfies at least k clauses of C?

Given an instance of Maximum 2-SAT, we construct an equivalent instance of 2-Club as
follows. If n ≤ 4 or m ≤ 2, then the Maximum 2-SAT instance has constant size. We can
thus solve it in constant time and output an equivalent instance of 2-Club having constant
size and the desired properties. Otherwise, we construct an undirected graph G = (V,E),
where the vertex set V consists of the four disjoint vertex sets VC , VF , V 1

X , V 2
X , and one

additional vertex v∗. The construction of the four subsets of V is as follows (see Figure 2
for an illustration and a description of the main idea).

The vertex set VC contains one vertex ci for each clause Ci ∈ C. The vertex set VF
contains for each variable x ∈ X exactly mn3 vertices x1, . . . , xmn

3

. The vertex set V 1
X

contains for each variable x ∈ X two vertices: xt which corresponds to assigning true
to x and xf which corresponds to assigning false to x. The vertex set V 2

X is constructed
similarly, but for every variable x ∈ X it contains 2 ·mn vertices: the vertices x1

t , . . . x
mn
t

which correspond to assigning true to x, and the vertices x1
f , . . . x

mn
f which correspond to

assigning false to x.
Next, we describe the construction of the edge set E. The vertex v∗ is made adjacent

to all vertices in VC ∪ VF ∪ V 1
X . Each vertex ci ∈ VC is made adjacent to the two vertices

in V 1
X that correspond to the two literals in Ci. Each vertex xi ∈ VF is made adjacent

to xt and xf , that is, the two vertices of V 1
X that correspond to the two truth assignments
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for the variable x. Finally, each vertex xit ∈ V 2
X is made adjacent to all vertices of V 1

X

except to the vertex xf . Similarly, each xif ∈ V 2
X is made adjacent to all vertices of V 1

X

except to xt. This completes the construction of G which can clearly be performed in
polynomial time. Observe that the removal of v∗ makes G bipartite: each of the four
vertex sets is an independent set and the vertices of VC , VF , and V 2

X are only adjacent to
vertices of V 1

X . It remains to prove that (C, k) is a yes-instance of Maximum 2-Sat ⇔ G
has a 2-club of size at least

mn4︸︷︷︸
|VF |

+ mn2︸︷︷︸
|V 2
X |/2

+ n︸︷︷︸
|V 1
X |/2

+k + 1.

“⇒”: Let β be an assignment for X that satisfies k clauses C1, . . . , Ck of C. Consider
the vertex set S that consists of VF , v∗, the vertex set {c1, . . . , ck} ⊆ VC that corresponds
to the k satisfied clauses, and for each x ∈ X of the vertex set {xt, x1

t , . . . , x
mn
t } ⊆

V 1
X ∪ V 2

X if β(x) = true and the vertex set {xf , x1
f , . . . , x

mn
f } ∈ V 1

X ∪ V 2
X if β(x) = false.

Clearly, |S| = mn4 + mn2 + n + k + 1. In the following, we show that S is a 2-club.
Herein, let S1

X := V 1
X ∩ S, S2

X := V 2
X ∩ S, and SC := VC ∩ S.

First, v∗ is adjacent to all vertices in SC ∪ VF ∪ S1
X . Hence, all vertices of S \ S2

X are
within distance two in G[S]. By construction, the vertex sets S1

X and S2
X form a complete

bipartite graph in G: A vertex xit ∈ S2
X is adjacent to all vertices in V 1

X except xf
which is not contained in S1

X . The same argument applies to some xif ∈ S2
X . Hence, the

vertices of S2
X are neighbors of all vertices in S1

X . This also implies that the vertices
of S2

X are in G[S] within distance two from v∗ and from every vertex in VF since each
vertex of VF ∪ {v∗} has at least one neighbor in S1

X . Finally, since the k vertices in SC
correspond to clauses that are satisfied by the truth assignment β, each of these vertices
has at least one neighbor in S1

X . Hence, every vertex in S2
X has in G[S] distance at most

two to every vertex in SC .
“⇐”: Let S be a 2-club of size at least mn4 + mn2 + n + k + 1, and let S1

X :=
V 1
X ∩ S, S2

X := V 2
X ∩ S, SF := VF ∩ S and SC := VC ∩ S. Since |VC |+ |V 1

X |+ |V 2
X |+ 1 ≤

m + 2n + 2mn2 + 1 < mn3 for n ≥ 5 and m ≥ 3, S contains more than mn4 − mn3

vertices from VF . Consequently, for each x ∈ X there is an index 1 ≤ i ≤ mn3 such that
xi ∈ SF . Similarly, since |VC |+ |V 1

X |+ |VF |+ 1 ≤ m+ 2n+mn4 + 1 < mn4 +mn2 for
n ≥ 5 and m ≥ 3, we have S2

X 6= ∅.
We next show that for each x ∈ X it holds that either xt or xf is contained in S1

X .
Since S is a 2-club, every vertex pair xi ∈ SF and u ∈ S2

X has at least one common
neighbor in S. By construction, this common neighbor is a vertex of S1

X and thus it is
either xt or xf . Moreover, by the observation above for each x ∈ X at least one xi is
contained in SF . Thus, for each x ∈ X at least one of xt and xf is contained in S1

X .
Now observe that, G[S1

X ∪ S2
X ] is a complete bipartite graph, since S1

X and S2
X are

independent sets and S2
X has only neighbors in S1

X . This implies that if for some x ∈ X
there exist indices 1 ≤ i, j ≤ mn such that xit and xjf are in S2

X , then xt and xf are

not in S1
X . This contradicts the above observation that at least one of xt and xf is

in S1
X . Moreover, since |VC | + |V 1

X | + 1 ≤ m + 2n + 1 < mn for n ≥ 5 and m ≥ 3 and
|S \ VF | > mn2, we have |S2

X | > mn2 − mn. It follows that for each x ∈ X there is
an index 1 ≤ i ≤ mn such that either xit ∈ S2

X or xif ∈ S2
X . Finally, this implies that

either xt or xf is not contained in S1
X .
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Summarizing, S has at most mn4 vertices from VF , at most mn2 vertices belonging
to S2

X , exactly n vertices belonging to S1
X , and thus there are k + 1 vertices in SC ∪ {v∗}.

Since S is a 2-club that has non-empty S2
X , every one of the at least k vertices from SC

has at least one neighbor in S1
X . Because for each x ∈ X either xf or xt is in S1

X , the n
vertices from S1

X correspond to an assignment β of X. By the above observation, this
assignment satisfies at least k clauses of C.

4. Average Degree, Degeneracy, and h-Index

2-Club is fixed-parameter tractable for the parameter maximum degree which can
easily be shown for the algorithm of Schäfer et al. [32]. It has been observed that in
large-scale biological [23] and social networks [5] the degree distribution often follows a
power law, implying that there are some high-degree vertices while most vertices have low
degree. This suggests considering stronger parameters such as h-index, degeneracy, and
average degree [15]. For any graph it holds that avg. degree ≤ 2 ·degeneracy ≤ 2 ·h-index,
see also Figure 1 for other relationships. Furthermore, analyzing the coauthor network
derived from the DBLP dataset3 with more than 715,000 vertices, maximum degree 804,
h-index 208, degeneracy 113, and average degree 7 shows that also in real-world social
networks these parameters are considerably smaller than the maximum degree (see [20]
for an analysis of these parameters on a broader dataset).

Unsurprisingly, 2-Club is NP-hard on graphs of constant average degree.

Proposition 1. For any constant α > 2, 2-Club is NP-hard on connected graphs with
average degree at most α.

Proof. Let (G, `) be an instance of 2-Club where ∆ is the maximum degree of G. We can
assume that ` > ∆+2 ≥ 3 since, as shown for instance in the proof of Theorem 1, 2-Club
remains NP-hard in this case. We add a path P to G and an edge from an endpoint
of P to an arbitrary vertex v ∈ V , resulting in the graph G′. Thereby, putting at least
d 2m
α−2 − ne vertices in P ensures that G′ has average degree at most α.

We next prove the (G, `) is a yes-instance if and only if (G′, `) is a yes-instance. Clearly,
any 2-club in G is also a 2-club in G′. Reversely, let S′ be a 2-club in G′ of size at least `.
Since the degree of v in G′ is at most ∆ + 1, S′ contains at least one vertex, say u, that is
not a neighbor of v. In case of u ∈ P , by construction it would follow that S′ ⊆ P ∪ {v}
and thus S′ is a path with at most three vertices. This implies that S′ ∩ P = ∅ and
thus S′ is also a 2-club in G.

We remark that the bound provided in Proposition 1 is tight: Consider a con-
nected graph G with average degree at most two, that is, 1

n

∑
v∈V deg(v) ≤ 2. Because∑

v∈V deg(v) = 2m, it follows that n ≥ m and, thus, the feedback edge set of G contains
at most one edge. As 2-Club is fixed-parameter tractable when parameterized by the
(size of a) feedback edge set [20], it follows that 2-Club can be solved in polynomial time
on connected graphs with average degree at most two.

Proposition 1 suggests considering “weaker” parameters such as degeneracy or h-index
of G (see Figure 1). Recall that having h-index k means that there are at most k vertices

3The dataset and a corresponding documentation are available online (http://dblp.uni-trier.de/
xml/). Accessed Feb. 2012
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with degree greater than k. Since social networks have small h-index [20], fixed-parameter
tractability when parameterized by the h-index would be desirable. Unfortunately,
we show that 2-Club is W[1]-hard when parameterized by the h-index and NP-hard
with constant degeneracy. Following this result, we show that there is “at least” an
XP-algorithm implying that 2-Club is polynomial-time solvable for constant h-index.

We reduce from the W[1]-hard Multicolored Clique problem [16]. Therein, given
a coloring c : V → {1, . . . , k} of the vertices V of a graph, a subset of C ⊆ V is called a
multicolored clique if C is a clique and c(v) 6= c(v′) for all {v, v′} ⊆ C with v 6= v′.

Multicolored Clique
Input: An undirected graph G = (V,E), k ∈ N, and a (vertex) coloring
c : V → {1, . . . , k}.
Question: Is there a multicolored clique of size k in G?

Lemma 2. There are two polynomial-time computable reductions that compute for any
instance (G, c, k) of Multicolored Clique an equivalent 2-Club-instance (G′, `) such
that G′ has diameter three and, additionally, in reduction i) G′ has h-index at most k+ 7
and in reduction ii) G′ has degeneracy six.

Proof. The only difference between both reductions is the construction of a so-called
coloring gadget. We first describe the common part.

Let (G, c, k) with G = (V,E), n := |V | and c : V → {1, . . . , k} be an instance of
Multicolored Clique. We may assume without loss of generality that there is no
edge between equally-colored vertices in G (otherwise they can be safely removed). If
n ≤ 4 then solve the instance (in constant time) and output a constant size equivalent
instance of 2-Club having the desired properties. Otherwise, we construct a graph G′

and choose ` ∈ N such that (G′, `) is a yes-instance for 2-Club if and only if (G, c, k) is
a yes-instance for Multicolored Clique. Eventually, G′ consists of a vertex gadget for
each vertex in V , an edge vertex for each edge in E, an anchor gadget, and a coloring
gadget. We first provide the description of the vertex gadgets and the edge vertices.

Vertex Gadget & Edge Vertex: For each vertex v ∈ V create a vertex gadget
by adding the α-vertices {αv1, . . . , αvn}, the β-vertices {βv1 , . . . , βvn+1}, and the γ-vertices
{γv1 , . . . , γvn}, and {ωvα, ωvγ}. Add edges such that (αv1, β

v
1 , γ

v
1 , α

v
2, β

v
2 , γ

v
2 , . . . , α

v
n, β

v
n, γ

v
n, ω

v
α,

βvn+1, ω
v
γ , α

v
1) induces a cycle. Add the three vertices U = {uα, uβ , uγ} (set U exists only

once and it belongs to the anchor gadget) and add edges from all α- (β-, γ-)vertices to uα
(uβ , uγ), respectively. Add the edges {ωvα, uα} and {ωvγ , uγ} for the ω-vertices ωvα, ω

v
γ .

Furthermore, for a fixed ordering V = {v1, . . . , vn} add for each edge {vi, vj} ∈ E
an edge vertex ei,j that is adjacent to each of {αvij , β

vi
j , γ

vj
i } (the α- and the γ-vertex

neighbor are in different vertex gadgets). The following property holds:

1. Each α-, β-, γ-, ω-vertex is adjacent to exactly one vertex in U and has only one
common neighbor with each of the other two vertices in U . Furthermore, for each
edge vertex ei,j it holds that its neighbor αvij (βvij , γ

vj
i ) is the only common neighbor

with uα (uβ , uγ), respectively.

Basic Idea: The idea of the construction is that U will be forced to be contained in
any 2-club S of size at least ` (by the anchor gadget). Hence by Property 1 it follows
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Vγ
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Vα,β,γ

uα

uβ

uγ

U
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r1

r2

l
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uα uβ uγ

Anchor
gadget

l r∗ r1 r2

wviα w
vj
γ cg

Coloring
gadget

αvij βvij γvij ei,j

α
vj
i β

vj
i γ

vj
i

Vertex gad-
get for vi

Figure 3: Schematic illustration of the reduction in the proof of Lemma 2. Part a) shows the anchor
gadget and Part b) shows the rest of the construction. Part a): The vertices {uα, uβ , uγ , l, r∗, r1, r2} are
the only vertices that have neighbors outside the anchor gadget and {l, r∗, r1, r2} forms a clique. All
edges are drawn from a vertex to a gray-colored box, meaning that, this vertex is adjacent to all vertices
within the box. All vertices from one of the sets {Vα,β,γ , Vα, Vβ , Vγ} are twins and uα (uβ , uγ) is the
only common neighbor between Vα,β,γ and Vα (Vβ , Vγ), respectively. Together with the choice of ` this
forces the vertices in U = {uα, uβ , uγ} to be contained in all 2-clubs of size at least `. Part b): All edges
between the anchor gadget vertices {uα, uβ , uγ , l, r∗, r1, r2} and all other vertices are depicted. Coloring
gadget i) is illustrated by vertex cg , assuming that vi is of color g and vj is of different color.

that if an α-vertex is contained in S, then the unique β- and γ-vertex in its neighborhood
has to be contained in S as well (here, ω-vertices behave like “normal” α/γ-vertices).
Since this argument symmetrically holds for β- and γ-vertices, it follows that either
all or none of the vertices from a vertex gadget are contained in S. Analogously, each
edge vertex ei,j ∈ S needs to have a common neighbor with each vertex of U . Thus, by
Property 1 from ei,j ∈ S it follows that the vertex gadgets corresponding to vi and vj
are completely contained in S. By connecting the ω-vertices appropriately we will ensure
that S cannot contain two vertex gadgets that correspond to equally-colored vertices
in G. Furthermore, we choose the value of ` such that S contains exactly

(
k
2

)
edge

vertices and thus by Property 1 also the k corresponding vertex gadgets, implying that
the corresponding vertices in G form a multicolored clique. To complete the construction
we next add the anchor gadget and the coloring gadget.

Anchor Gadget: The construction is as follows (see Figure 3 a)): Add the vertices
{l, r∗, r1, r2} which are together with U the only vertices having neighbors outside the
anchor gadget. Add four vertex sets Vα, Vβ , Vγ , Vα,β,γ each of size n3 and add edges from
each vertex in Vα,β,γ to each in U∪{l}. Additionally, add edges from each vertex in Vα (Vβ ,
Vγ) to uα (uβ , uγ) and add an edge from each of Vα∪Vβ∪Vγ to each of {r∗, r1, r2}. Finally,
add edges such that {l, r∗, r1, r2} is a clique and an edge from r∗ to each vertex in U .

Denoting by VA the set of all anchor gadget vertices, the following property follows
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directly from the anchor gadget construction.

2. Any vertex that is adjacent to one of {l, uα, uβ , uγ} and to one of {r∗, r1, r2} has
distance at most two to all vertices in VA \ U .

Connecting Vertex and Anchor Gadget: Recall that so far only U has neighbors
outside the anchor gadget. We describe via properties how to connect the anchor gadget
to the vertex gadgets and the edge vertices.

3. ωvα is adjacent to r1 and ωvγ is adjacent to r2 for all v ∈ V .

4. All α-, β-, and γ-vertices are adjacent to r1 and r2. All edge vertices are adjacent
to each of {l, r1, r2}.

Coloring Gadget: We next construct the so-called coloring gadget that guarantees
that only those vertex pairs {ωvα, ωv

′

γ } have a common neighbor (and thus can be contained
in any 2-club) for which c(v) 6= c(v′). We will give two different constructions of the
coloring gadget where the first guarantees an h-index of at most k + 7 and the second
guarantees degeneracy six. Denoting coloring gadget vertices by VC we will prove that
both constructions fulfill the following properties:

5. Each vertex in VC is adjacent to each of {l, r∗, r1, r2}.

6. Any pair {ωvα, ωv
′

γ }, v 6= v′, has a common neighbor in VC if and only if c(v) 6= c(v′).

Coloring gadget i): For each color i ∈ {1, . . . , k} add a vertex ci and let VC =
{c1, . . . , ck} the vertex set containing these vertices. Add an edge between a vertex ωvα
and ci if c(v) = i and an edge from ωvγ to ci if c(v) 6= i (Property 6). Finally, add edges
such that each vertex in VC is adjacent to each vertex in {l, r∗, r1, r2} (Property 5).

Note that the h-index of G′ is at most |VC | + |U | + |{l, r∗, r1, r2}| = k + 7, as the
vertices in VC ∪ U ∪ {l, r∗, r1, r2} are the only ones that might have degree at least k + 7.

Coloring gadget ii): For each pair {ωvα, ωv
′

γ } with c(v) 6= c(v′) add a vertex cv,v′ that

is adjacent to each of {ωvα, ωv
′

γ } (Property 6). Finally, denoting all these new vertices
by VC we add an edge from each vertex in VC to each vertex in {l, r∗, r1, r2} (Property 5).

We next prove that G′ has degeneracy six by giving an elimination order, that is, an
order of how to delete vertices of degree at most six that results in an empty graph: In the
anchor gadget each of the vertices in Vα, Vβ , Vγ , Vα,β,γ has maximum degree four and hence
they can be deleted. Then, delete all α-, β-, γ-, ω-vertices and edge vertices as each of them
has degree six. In the remaining graph all vertices in VC have neighborhood {l, r∗, r1, r2}
and thus can be deleted. Then, delete the degree-one vertices {uα, uβ} and the clique
{l, r∗, r1, r2}.

Having described the construction of G′ we finally set

` = k(3n+ 3)︸ ︷︷ ︸
k vertex gadgets

+ 4n3 + 7︸ ︷︷ ︸
anchor gadget

+

(
k

2

)
︸︷︷︸

(k2) edge vertices

+ |VC |︸︷︷︸
coloring gadget

. (1)

Correctness: It remains to prove that (G, c, k) is a yes-instance of Multicolored
Clique ⇔ (G′, `) is a yes-instance of 2-Club.
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“⇒” Let C be a multicolored clique in G of size k. We construct a set S ⊆ V ′ of
size ` and prove that it is a 2-club in G′. The set S contains each vertex gadget that
corresponds to some vertex in C, the coloring gadget, the anchor gadget, and any edge
vertex ei,j with vi, vj ∈ C. See Equation (1) to verify that |S| = `.

It remains to prove that S is a 2-club and thus consider the distances in G′[S]. We
first prove that all vertices in VC have distance at most two to all other vertices in S.
This follows from the fact that each vertex gadget vertex, each edge vertex, and each
vertex in VA has a neighbor in {l, r∗, r1, r2} and thus by Property 6 has distance at most
two to all vertices in VC .

We next prove that all vertices in VA have distance at most two to all vertices
in S. Since all vertex gadget vertices are adjacent to one vertex in U and to one of
{r1, r2} it follows by Property 2 that they have distance at most two to all vertices in
S ∩ (VA \ U). Similarly, as all edge vertices are adjacent to {l, r1, r2} (Property 4), again
by Property 4 it follows that edge vertices have distance at most two to all vertices in
S ∩ (VA \U). Furthermore, since S contains each vertex gadget entirely and thus also the
set {αvij , β

vi
j , γ

vj
i } for each edge vertex ei,j , it follows that all vertex gadget vertices and all

edge vertices have distance at most two to all vertices in VA. It remains to show that each
vertex pair from VA has distance at most two: Each vertex in VA has a neighbor in the
clique {l, r∗, r1, r2} and thus they all have distance at most two to all these clique vertices.
Since the vertices in each of the sets Vα,β,γ , Vα, Vβ , Vγ are twins it follows that any vertex
pair from one of these sets has distance at most two. Moreover, vertices {uα, uβ , uγ , r∗}
ensure that, in fact, each vertex pair from Vα,β,γ ∪ Vα ∪ Vβ ∪ Vγ has distance at most two.
Additionally, each vertex in Vα,β,γ ∪ Vα ∪ Vβ ∪ Vγ is a neighbor of all of {uα, uβ , uγ} or is
adjacent to r∗ which is a neighbor of {uα, uβ , uγ}, proving that they all have distance at
most two to all vertices in VA. Finally, observe that uα, uβ , and uγ have the common
neighbor r∗.

Finally, we consider the vertex gadget vertices and edge vertices. By Property 4 all α-,
β-, γ-vertices and edge vertices have two common neighbors {r1, r2}. Additionally, ωvα is
adjacent to r1 and ωvγ is adjacent to r2, implying that each pair, except those consisting
of two ω-vertices, have the common neighbor r1 or r2. Finally, since C is a clique and S
contains the corresponding vertex gadgets and edge vertices, it follows that each pair
of ω-vertices in S either have a common neighbor because they are in the same vertex
gadget or they have common neighbor in VC (Property 6). This proves that S is a 2-club
of size at least `.

“⇐”: Let S be a size at least ` 2-club in G′. We first prove that VA ⊆ S. Towards
this, we first prove that S contains from each of the vertex sets Vα, Vβ , Vγ , Vα,β,γ at least
one vertex. The maximum number of vertices in G′ that is not contained in S is

|V ′| − ` = n(3n+ 3)︸ ︷︷ ︸
n vertex gadgets

+ 4n3 + 7︸ ︷︷ ︸
anchor gadget

+ |E|︸︷︷︸
edge vertices

+ |VC |︸︷︷︸
coloring gadget

−`

(1)
= (n− k)(3n+ 3) + |E| −

(
k

2

)
< n3 (since n > 4).

Since each of Vα, Vβ , Vγ , Vα,β,γ has size n3 it follows that at least one vertex from each
of them is contained in S. From this it directly follows that U ⊆ S, since uα (uβ , uγ) is
the only common neighbor of a vertex in Vα,β,γ and one in Vα (Vβ , Vγ), respectively.
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From Equation 1 it follows that at least k(3n+ 3) +
(
k
2

)
vertices from the union of the

vertex gadget vertices and edge vertices are contained in S. Since by Property 1 either all
or none of the vertices of a vertex gadget are contained in S, from Property 6 it follows
that S does not contain two vertex gadget vertices corresponding to two different but
equally-colored vertices v and v′ in G (the vertices {ωvα and ωv

′

γ } would have no common
neighbor). Hence, S contains vertices from at most k different vertex gadget vertices.
However, since by Property 1 for each edge vertex ei,j ∈ S it holds that the vertex gadget
corresponding to vi and also the one for vj is contained in S, it follows that S contains

exactly k vertex gadgets and, correspondingly,
(
k
2

)
edge vertices. Finally, from Property 1

it follows that the edges corresponding to the
(
k
2

)
edge vertices in S must have their

endpoints in the k vertices corresponding to the k vertex gadgets in S. Hence, the vertices
in G corresponding to the vertex gadgets in S form a clique of size k in G.

Lemma 2 has several consequences.

Corollary 1. 2-Club is NP-hard on graphs with degeneracy six.

Corollary 2. 2-Club parameterized by h-index is W[1]-hard.

The reduction in Lemma 2 is from Multicolored Clique and the new parameter
is linearly bounded in the old one. Combining this with the results of Chen et al. [13]
leads to the following stronger running time bound.

Corollary 3. 2-Club cannot be solved in no(k)-time on graphs with h-index k unless
the exponential time hypothesis fails.

We next prove that there is an XP-algorithm for the parameter h-index. Therein,
we mainly exploit the fact that if a graph G has h-index k, then there is a set X of
at most k vertices such that G −X has maximum degree at most k. Since 2-Club is
fixed-parameter tractable when parameterized by the maximum degree, one can find
largest 2-clubs in the connected components of G−X and when combining them to a
larger 2-club S one needs to ensure that they share common neighbors in X ∩ S.

Theorem 4. 2-Club can be solved in O(2k
4+k · n2k · n2m) time where k is the h-index

of the input graph.

Proof. We give an algorithm that, given a guessed and cleaned input (G, `,X), finds in

O(2k
4 · n2k · n2m) time a maximum 2-club in G that contains X where k denotes the

h-index of G. Therein, X is the set of vertices in G with degree greater than k. By
definition of the h-index, |X| ≤ k. For the proof of correctness fix any maximum 2-club S
in G with X ⊆ S. Throughout the algorithm via branching we will guess some vertices
contained in S and we will collect them in the set P . We initialize P with X.

Consider the at most 2k twin classes of the vertices in V \X with respect to X. The

algorithm first branches into the O(n2k) cases to guess for each twin class T any vertex
from T ∩ S, called the center of T . Clearly, if T ∩ S = ∅, then there is no center and we
delete all vertices in T . Add all the centers to P and clean the graph.

Two twin classes T and T ′ are in conflict if NG(T )∩NG(T ′)∩X = ∅. Now, the crucial
observation is that, if T and T ′ are in conflict, then all vertices in (T ∪T ′)∩S are contained
in the same connected component of G[S\X], since otherwise they would not have pairwise
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distance at most two. However, this implies that all vertices in T ∩ S have pairwise
distance at most four in G[S \X]: In G[S] there is a length at most two path for each
pair v ∈ T and w ∈ T ′ not containing any vertex from X (by definition of T and T ′ being
in conflict). Thus there is a length at most four path for any pair from T (T ′) in G[S \X].

Hence, for each twin class T with center c that is in conflict to any other twin class
it holds that T ∩ S ⊆ NG−X

4 [c] and since G−X has maximum degree at most k, one can

guess NS
4 [c] := NG−X

4 [c] ∩ S by branching into at most 2k
4

cases. Delete all vertices in T
guessed to be not contained in NS

4 [c], add NS
4 [c] to P , and clean the graph. Note that

the remaining graph is a 2-club, since P contains X and the intersection of S with each
twin class that is in conflict to any other twin class. By definition of twin classes that
are in conflict, it holds that all other twin classes share a common neighbor in X.

5. Distance to (Co-)Cluster Graphs and Cographs

In this section we present fixed-parameter algorithms for 2-Club parameterized by
distance to co-cluster graphs, by distance to cluster graphs, and by distance to cographs.

All these algorithms have running time 2Θ(2k) · nO(1) which is roughly similar to the one
obtained for treewidth [20]. For the weaker parameters the constants in the exponential
part of the running time are smaller. Hence, none of the algorithms “dominates” one
of the other algorithms even with distance to cographs being a stronger parameter than
distance to cluster graphs or distance to co-cluster graphs (see Figure 1). As already
mentioned, even for the considerably weaker parameter vertex cover the best known

algorithm has running time 2Θ(2k) · nO(1) [20]. In contrast, the parameter distance to
clique which is unrelated to vertex cover admits a O(2k ·nm)-time algorithm, even in case
of the general s-Club problem: Each clique is a 2-club. Hence, the parameter distance
to clique is at most as large as the dual parameter n− `. Thus, the O(2n−` · nm)-time
algorithm [32] has the claimed running time.

5.1. Distance to Co-Cluster Graphs and Distance to Cluster Graphs

We first present an algorithm for 2-Club parameterized by the distance to co-cluster
graphs. A graph is a co-cluster graph if its complement graphs is a cluster graph. Hence,
these graphs are disjoint unions of independent sets and between different independent
sets all possible edges are present.

Theorem 5. 2-Club is solvable in O(2k · 22k · nm) time where k denotes the distance
to co-cluster graphs.

Proof. Let (G, `,X) be a 2-Club instance where X has |X| = k and G−X is a co-cluster
graph. Note that the co-cluster graph G − X is either a connected graph or it does
not contain any edge. If G − X is an independent set, the set X is a vertex cover
and we thus apply the algorithm we gave in companion work [20] to solve the instance

in O(2k · 22k · nm) time.
Hence, assume that G−X is connected. Since G−X is a co-cluster graph, this implies

that G − X is a 2-club. Thus, if ` ≤ n − k, then we can trivially answer yes. Hence,
assume that ` > n− k or, equivalently, k > n− `. Then, applying the O(2n−`nm)-time
algorithm [32] directly solves the problem in O(2knm) time.

18



Next, we present a fixed-parameter algorithm for the parameter distance to cluster
graphs.

Theorem 6. 2-Club is solvable in O(2k · 42k · nm) time where k denotes distance to
cluster graphs.

Proof. Let (G = (V,E), X, `) be guessed and cleaned input instance with G−X being a
cluster graph and |X| = k. Let T = T1, . . . , Tp be the set of twin classes of V \X with
respect to X and let C1, . . . , Cq denote the clusters of G−X. Two twin classes T and T ′

are in conflict if N(T ) ∩N(T ′) ∩X = ∅. The three main observations exploited in the
algorithm are the following: First, if two twin classes Ti and Tj are in conflict, then all
vertices of Ti that are in a 2-club and all vertices from Tj that are in a 2-club must be in
the same cluster of G−X. Second, every vertex from G−X can reach all vertices in X
only via vertices of X or via vertices in its own cluster. Third, if one 2-club-vertex v ∈ S
is in a twin class v ∈ Ti and in a cluster v ∈ Cj , then all vertices that are in Ti and in Cj
can be added to S without violating the 2-club property.

We exploit these observations in a dynamic programming algorithm. In this algorithm,
we create a two-dimensional table A where an entry A[i, T ′] stores the maximum size of
a set Y ⊆

⋃
1≤j≤i Cj such that the twin classes of Y are exactly T ′ ⊆ T and all vertices

in Y have in G[Y ∪X] distance at most two to each vertex from Y ∪X.
Before filling the table A, we calculate a value s(i, T ′) that stores the maximum

number of vertices we can add from Ci that are from the twin classes in T ′ and fulfill the
requirements in the previous paragraph. This value is defined as follows. Let CT

′

i denote
the maximal subset of vertices from Ci whose twin classes are exactly T ′. Then, s(i, T ′) =
|CT ′

i | if CT
′

i exists and every pair of non-adjacent vertices from CT
′

i and from X have
a common neighbor. Otherwise, set s(i, T ′) = −∞. Note that as a special case we
set s(i, ∅) = 0. Furthermore, for two subsets T ′′ and T̃ define the predicate conf(T ′′, T̃ )
as true if there is a pair of twin classes Ti ∈ T ′′ and Tj ∈ T̃ such that Ti and Tj are in
conflict, and as false, otherwise.

Using these values, we now fill A with the following recurrence:

A[i, T ′] = max
(
{−∞} ∪ {A[i− 1, T̃ ] + s(i, T ′′) | (T̃ ∪ T ′′ = T ′) ∧ ¬ conf(T̃ , T ′′)}

)
This recurrence considers all cases of combining a set Y for the clusters C1 to Ci−1 with
a solution Y ′ for the cluster Ci. Herein, a positive table entry is only obtained when
the twin classes of Y ∪ Y ′ are exactly T ′ and the pairwise distances between Y ∪ Y ′
and Y ∪ Y ′ ∪X in G[Y ∪ Y ′ ∪X] are at most two. The latter property is ensured by the
definition of the s() values and by the fact that we consider only combinations that do
not put conflicting twin classes in different clusters.

Now, the table entry A[q, T ′] contains the size of a maximum vertex set Y such that
in G[Y ∪X] every vertex from Y has distance two to all other vertices. It remains to
ensure that the vertices from X are within distance two from each other. This can be done
by only considering a table entry A[q, T ′] if each non-adjacent vertex pair x, x′ ∈ X has
either a common neighbor in X or in one twin class contained in T ′. The maximum size
of a 2-club in G is then the maximum value of all table entries that fulfill this condition.

The running time can be bounded roughly as O(2k · 42k ·nm): We try all 2k partitions

of X and for each of these partitions, we fill a dynamic programming table with 22k · n
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entries. The number of overall table lookups and updates is O(42k · n) since there are 42k

possibilities for the sets T ′′, T̃ . Since each Ci is a clique, the entry s(i, T ′) is computable
in O(nm) time and the overall running time follows.

5.2. Distance to Cographs

We now describe a fixed-parameter algorithm for 2-Club parameterized by distance
to cographs. Recall that cographs are exactly the P4-free graphs. Hence, any connected
component of a cograph is a 2-club.

Theorem 7. 2-Club is solvable in O(8k · 42k · n4) time where k denotes the distance to
cographs.

Proof. Let (G, `,X) be a guessed and cleaned 2-Club instance with G − X being a
cograph and |X| = k. For our correctness proof we fix a maximum 2-club S in G
with X ⊆ S.

Before describing the algorithm we first introduce the following characterization of
cographs [10]: A graph is a cograph if it can be constructed from single vertex graphs by a
sequence of parallel and series compositions. Given t vertex disjoint graphs Gi = (Vi, Ei),
the series composition is the graph (

⋃t
i=1 Vi,

⋃t
i=1Ei∪{{u, v} | (u ∈ Gi)∧(v ∈ Gj)∧(1 ≤

i < j ≤ t)} and the parallel composition is (
⋃t
i=1 Vi,

⋃t
i=1Ei). The corresponding cotree

of a cograph G is the tree whose leaves correspond to the vertices in G and each inner node
represents a series or parallel composition of its children up to a root which represents G.
Furthermore, the cotree can be computed in linear time.

We next describe a dynamic programming algorithm that proceeds in a bottom-up
manner on the cotree of G−X and finds a maximum 2-club in G that contains X. We
may assume that t = 2 for all series and parallel compositions, as otherwise we can
simply split up the corresponding nodes in the cotree. For each node Υ in the cotree
let V (Υ ) ⊆ V \X be the vertices corresponding to the leaves of the subtree rooted in Υ .
Furthermore, consider the (at most 2k many) twin classes of V \X with respect to X
and for a subset of twin classes T let V (T ) =

⋃
T∈T T denote the union of all vertices in

the twin classes of T . We compute a table Γ where for any subset of twin classes T and
any node Υ of the cotree the entry Γ(Υ, T ) is the size of a largest set L ⊆ V (Υ ) ∩ V (T )
that fulfills the following properties:

1. for all T ∈ T : T ∩ L 6= ∅ and

2. for all v ∈ L ∪X and u ∈ L: distG[L∪X](u, v) ≤ 2

The intention of the definition above is that the graph G[L∪X] is a “2-club-like” structure
that contains a vertex from each twin class in T (Property 1) and for any pair of vertices,
except those where both vertices are from X, have distance at most two (Property 2).
Denoting the root of the cotree by r and by Ts the set of all twin classes that have a
non-empty intersection with S, Γ(r, Ts) ≥ |S \X| as S \X trivially fulfills all properties.
Reversely, for any subset of twin class T that contains for each pair of vertices {u, v} ∈ X
with distG[X](u, v) > 2 a twin class T ∈ T with {u, v} ⊆ N(T ), any set corresponding
to Γ(r, T ) forms together with X a 2-club.

We now describe the dynamic programming algorithm. Let Υ be a leaf node of
the cotree with V (Υ ) = {x} and let T be any subset of twin classes. The two sets
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{x} and ∅ are the only candidates for L. Hence we set Γ(Υ, T ) := 1 if x fulfills both
properties, Γ(Υ, ∅) := 0 (∅ fulfills both properties), and Γ(Υ, T ) = −∞ otherwise.

Next we describe the dynamic programming algorithm for inner nodes of the cotree.
Let Υ be any node of the cotree with children Υ1, Υ2 and let T be any subset of twin
classes. We construct a graph GΥ,T by exhaustively deleting in G[(V (Υ )∩ V (T ))∪X] all
vertices from V (Υ )∩V (T ) that have distance more than two to any vertex in X. (Clearly,
such a vertex has to be deleted because of Property 2.) If the resulting graph GΥ,T violates
Property 1, then there is no set corresponding to Γ(Υ, T ) and thus we set the entry to
be −∞. Additionally, if GΥ,T fulfills all properties, then set Γ(Υ, T ) = |V (GΥ,T )| − |X|.
To handle the remaining case where GΥ,T violates only Property 2 we make a case
distinction on the node type of Υ .

Case 1: Υ is a series node.
Let {u, v} ⊆ V (GΥ,T ) \ X be a vertex pair with distGΥ,T (u, v) > 2. Since a series
composition introduces an edge between each vertex in V (Υ1) and each vertex in V (Υ2)
and V (GΥ,T ) \X ⊆ V (Υ ) = V (Υ1) ∪ V (Υ2), it follows that either V (GΥ,T ) ∩ V (Υ1) = ∅
or V (GΥ,T ) ∩ V (Υ2) = ∅. This implies that Γ(Υ, T ) = max{Γ(Υ1, T ),Γ(Υ2, T )}.

Case 2: Υ is a parallel node.
Consider any set L that corresponds to Γ(Υ, T ). By the definition of a parallel node there
is no edge between a vertex from V (Υ1) and a vertex in V (Υ2). Consequently, any pair of
vertices in L with one vertex in V (Υ1) and the other in V (Υ2) have a common neighbor
in X. Correspondingly, we say that two twin classes are consistent if they have at least
one common neighbor in X and two sets of twin classes are consistent if any twin class
of the first set is consistent with any twin class of the second set. Denoting by T S1 (T S2 )
the set of twin classes with a non-empty intersection with L ∩ V (Υ1) (L ∩ V (Υ2)), by
the argumentation above it follows that T S1 is consistent with T S2 . Additionally, it is
straightforward to verify that L∩ V (Υ1) (L∩ V (Υ2)) fulfills all properties (except being a
largest set) for the entry Γ(T S1 , Υ1) (Γ(Υ2, T S2 )).

Reversely, for any two consistent sets of twin classes T1, T2 let L1 (L2) be any vertex
set that corresponds to Γ(Υ1, T1) (Γ(Υ2, T2)). It holds that L1 ∪ L2 fulfills all properties
for Γ(Υ, T1 ∪T2) and hence Γ(Υ, T1 ∪T2) ≥ |L1 ∪L2|. Hence it is correct to set Γ(T , Υ ) to
be the largest value of Γ(Υ1, T1) + Γ(Υ2, T2) where T1, T2 are consistent and T1 ∪ T2 = T .
This completes the description of the algorithm.

The table Γ contains O(n · 22k) entries as there are at most 2k twin classes. Each
entry can be computed in O(n3 + 3|T ||T |2k) time: Graph GΥ,T can be computed in O(n3)
time. The running time of Case 2 dominates those of Case 1 and in Case 2 there are
at most 3|T | possibilities to split T into two (not necessarily disjoint) sets T1, T2 and
the check of consistency can be done in O(|T |2k). In total the time spent in Case 2

is O(n ·
∑2k

i=0

(
2k

i

)
(3ii2k + n3)) = O(42k · 4kn4). Together with the factor of 2k needed

to guess X in the guess and cleaning step, the running time of the above algorithm is

O(8k · 42k · n4).

6. Conclusion

We have resolved the complexity status of 2-Club for most of the parameters in the
complexity landscape shown in Figure 1. Still, several open questions remain. First,
there are obviously parameters for which the parameterized complexity is still open. For
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example, is 2-Club parameterized by distance to interval graphs or by distance to 2-club
cluster graphs in XP or even fixed-parameter tractable? In this context, also parameter
combinations could be of interest. Since a complete investigation of the parameter space is
infeasible one should focus on practically relevant parameter combinations. One example
could be the following question that is left open by the hardness results for h-index and
degeneracy. Is 2-Club parameterized by the h-index still W[1]-hard if the input graph
has constant degeneracy? Second, it remains open whether there is a polynomial kernel for
the parameter distance to clique or to identify further non-trivial structural parameters
for which polynomial kernels exist. Third, for many of the presented fixed-parameter
tractability results it would be interesting to either improve the running times or to obtain
tight lower bounds. For example, is it possible to solve 2-Club parameterized by distance
to clique in δk · nO(1) time for some δ < 2? Similarly, is it possible to solve 2-Club

parameterized by vertex cover in 2o(2
k) · nO(1) time? An answer to the latter question

could be a first step towards improving the (also doubly exponential) running time of
the algorithms for the parameters treewidth or distance to cographs. Finally, it would be
interesting to see which results carry over to 3-Club [25, 30] or to the related 2-Clique
problem [4].
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