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Abstract. The NP-hard 2-Club problem is, given an undirected graph
G = (V,E) and a positive integer `, to decide whether there is a vertex
set of size at least ` that induces a subgraph of diameter at most two.
We make progress towards a systematic classification of the complex-
ity of 2-Club with respect to structural parameterizations of the input
graph. Specifically, we show NP-hardness of 2-Club on graphs that be-
come bipartite by deleting one vertex, on graphs that can be covered by
three cliques, and on graphs with domination number two and diameter
three. Moreover, we present an algorithm that solves 2-Club in |V |f(k)
time, where k is the so-called h-index of the input graph. By showing
W [1]-hardness for this parameter, we provide evidence that the above
algorithm cannot be improved to a fixed-parameter algorithm. This also
implies W [1]-hardness with respect to the degeneracy of the input graph.
Finally, we show that 2-Club is fixed-parameter tractable with respect
to “distance to co-cluster graphs” and “distance to cluster graphs”.

1 Introduction

In the analysis of social and biological networks, one important task is
to find cohesive subnetworks since these could represent communities or
functional subnetworks within the large network. There are several graph-
theoretic formulations for modeling these cohesiveness demands such as
s-cliques [1], s-plexes [21], and s-clubs [15]. In this work, we study the prob-
lem of finding large s-clubs within the input network. An s-club is a vertex
set that induces a subgraph of diameter at most s. Thus it is a distance-
based relaxation of complete graphs, cliques, which are exactly the graphs
of diameter one. For constant s ≥ 1, the problem is defined as follows.

s-Club
Input: An undirected graph G = (V,E) and an integer ` ≥ 1.
Question: Is there a vertex set S ⊆ V of size at least ` such
that G[S] has diameter at most s?

In this work, we focus on studying the computational complexity of
2-Club. This is motivated by the following two considerations. First,



2-Club is an important special case concerning the applications: For bio-
logical networks, 2-clubs and 3-clubs have been identified as the most rea-
sonable diameter-relaxations of cliques [18]. 2-Club also has applications
in the analysis of social networks [14]. Consequently, experimental evalu-
ations concentrate on finding 2-clubs and 3-clubs [13]. Second, 2-Club is
the most basic variant of s-Club that is different from Clique. For exam-
ple, being a clique is a hereditary graph property, that is, it is closed under
vertex deletion. In contrast, being a 2-club is not hereditary, since deleting
vertices can increase the diameter of a graph. Hence, it is interesting to
spot differences in the computational complexity of the two problems.

In the spirit of multivariate algorithmics [11, 17], we aim to describe
how structural properties of the input graph determine the computational
complexity of 2-Club. We want to determine sharp boundaries between
tractable and intractable special cases of 2-Club, and whether some
graph properties, especially those motivated by the structure of social
and biological networks, can be exploited algorithmically. The structural
properties, called structural graph parameters, are usually described by
integers; well-known examples of such parameters are the maximum degree
or the treewidth of a graph. Our results use the classical framework of
NP-hardness as well as the framework of parameterized complexity to show
(parameterized) tractability and intractability of 2-Club with respect to
the structural graph parameters under consideration.

Related Work. For all s ≥ 1, s-Club is NP-complete on graphs of diam-
eter s+1 [3]; 2-Club is NP-complete even on split graphs and, thus, also on
chordal graphs [3]. For all s ≥ 1, s-Club is NP-hard to approximate within
a factor of n1/2−ε [2]; a simple approximation algorithm obtains a factor
of n1/2 for even s ≥ 2 and a factor n2/3 for odd s ≥ 3 [2]. Several heuris-
tics [6] and integer linear programming formulations [3, 6] for s-Club have
been proposed and experimentally evaluated [13]. 1-Club is equivalent
to Clique and thus W[1]-hard with respect to `. In contrast, for s ≥ 2,
s-Club is fixed-parameter tractable with respect to ` [7, 19], with respect
to n− ` [19]1, and also with respect to the parameter treewidth of G [20].
Moreover, s-Club does not admit a polynomial-size kernel with respect to `
(unless NP ⊆ coNP/poly), but admits a so-called Turing-kernel with at
most k2-vertices for even s and at most k3-vertices for odd s [19]. 2-Club is
solvable in polynomial time on bipartite graphs, on trees, and on interval

1 Schäfer et al. [19] actually considered finding an s-club of size exactly `. The claimed
fixed-parameter tractability with respect to n− ` however only holds for the problem
of finding an s-club of size at least `. The other fixed-parameter tractability results
hold for both variants.
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Fig. 1. Overview of the relation between structural graph parameters and of our results
for 2-Club. An edge from a parameter α to a parameter β below of α means that β can
be upper-bounded in a polynomial (usually linear) function in α. The boxes indicate
the complexity of 2-Club with respect to the enclosed parameters. 2-Club is FPT
with respect to “distance to clique”, but it is open whether it admits a polynomial size
kernel. The complexity with respect to “distance to interval” and “distance to cograph”
is still open. Results obtained in this work are marked with 8. (For the parameters
bandwidth and maximum degree, taking the disjoint union of the input graphs is a
composition algorithm that proves the non-existence of polynomial-size kernels [5].)

graphs [20]. In companion work [12], we considered different structural
parameters: For instance, we presented fixed-parameter algorithms for the
parameters “treewidth” and “size of a vertex cover” and polynomial-size
kernels for the parameters “feedback edge set” and “cluster editing num-
ber”. Furthermore, we presented an efficient implementation for 2-Club
based on the fixed-parameter algorithm for the dual parameter n− `.

Our Contribution. We make progress towards a systematic classification
of the complexity of 2-Club with respect to structural graph parameters.
Figure 1 gives an overview of our results and their implications. Therein,
for a set of graphs Π (for instance the set of bipartite graphs) the parame-
ter distance to Π measures the number of vertices that have to be deleted
in order to obtain a graph that is isomorphic to one in Π.

In Section 2, we consider the graph parameters minimum clique cover
number, minimum dominating set ofG, and some related graph parameters.
We show that 2-Club is NP-hard even if the minimum clique cover number
of G is three, that is, the vertices of G can be covered by three cliques.
In contrast, we show that if the minimum clique cover number is two,
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then 2-Club is polynomial-time solvable. Then, we show that 2-Club
is NP-hard even if G has a dominating set of size two, that is, there are
two vertices u, v in G such that every vertex in V \ {u, v} is a neighbor of
one of the two. This result is tight in the sense that 2-Club is trivially
solvable in case G has a dominating set of size one.

In Section 3, we study the parameter distance to bipartite graphs. We
show that 2-Club is NP-hard even if the input graph can be transformed
into a bipartite graph by deleting only one vertex. This is somewhat sur-
prising since 2-Club is polynomial-time solvable on bipartite graphs [20].
Then, in Section 4, we consider the graph parameter h-index : a graph G
has h-index k if k is the largest number such that G has at least k vertices
of degree at least k. The study of this parameter is motivated by the fact
that the h-index is usually small in social networks (see Section 4 for a
more detailed discussion). On the positive side, we show that 2-Club is
polynomial-time solvable for constant k. On the negative side, we show
that 2-Club parameterized by the h-index k of the input graph is W[1]-
hard. Hence, a running time of f(k) ·nO(1) is probably not achievable. This
also implies W[1]-hardness with respect to the parameter degeneracy of G.

Finally, we describe fixed-parameter algorithms for the parameters
distance to cluster and co-cluster graphs. Herein, a cluster graph is a vertex-
disjoint union of cliques, and a co-cluster graph is the complement graph
of a cluster graph, that is, it is either an independent set or a complete p-
partite graph for some p ≤ n. Interestingly, distance to cluster/co-cluster
graph are rare examples for structural graph parameters, that are unrelated
to treewidth and still admit a fixed-parameter algorithm (see Figure 1).

Preliminaries. We only consider undirected and simple graphs G =
(V,E) where n := |V | and m := |E|. For a vertex set S ⊆ V , let G[S]
denote the subgraph induced by S and G−S := G[V \S]. We use distG(u, v)
to denote the distance between u and v in G, that is, the length of a shortest
path between u and v. For a vertex v ∈ V and an integer t ≥ 1, denote
by NG

t (v) := {u ∈ V \ {v} | distG(u, v) ≤ t} the set of vertices within
distance at most t to v. If the graph is clear from the context, we omit the
superscript G. Moreover, we set Nt[v] := Nt(v) ∪ {v}, N [v] := N1[v] and
N(v) := N1(v). Two vertices v and w are twins if N(v)\{w} = N(w)\{v}
and they are twins with respect to a vertex set X if N(v)∩X = N(w)∩X.
The twin relation is an equivalence relation; the corresponding equivalence
classes are called twin classes. The following observation is easy to see.

Observation 1. Let S be a s-club in a graph G = (V,E) and let u, v ∈ V
be twins. If u ∈ S and |S| > 1, then S ∪ {v} is also an s-club in G.
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For the relevant notions of parameterized complexity we refer to [9, 16].
For the parameters distance to cluster/co-cluster graph we assume that
a deletion set is provided as an additional input. Note that for both of
these parameters there is a polynomial-time constant factor approximation
algorithm since cluster graphs and co-cluster graphs are characterized
by forbidden induced subgraphs on three vertices. Due to the space
restrictions, some proofs are deferred to the appendix.

2 Clique Cover Number and Domination Number

In this section, we prove that on graphs of diameter at most three, 2-Club
is NP-hard even if either the clique cover number is three or the domination
number is two. We first show that these bounds are tight. The size of a
maximum independent set is at most the size of a minimum clique cover.
Moreover, since each maximal independent set is a dominating set, a
minimum dominating set is also at most the size of a minimum clique cover.

Proposition 1. 2-Club is polynomial-time solvable on graphs where the
size of a maximum independent set is at most two.

Proof. Let G = (V,E) be a graph. If a maximum independent set in G
has size one or it has diameter two, then V is a 2-club. Otherwise, if
the maximum independent set in G is of size two, then iterate over all
possibilities to choose two vertices v, u ∈ V . Denoting by G′ the graph
that results from deleting N(v) ∩N(u) in G, output a maximum size set
NG′

[v] ∪ (NG′
(u) ∩NG′

2 (v)) among all iterations.

We next prove the correctness of the above algorithm. For a maxi-
mum size 2-club S ⊂ V in G, there are two vertices v, u ∈ V such that
v ∈ S and dG[S∪{u}](v, u) > 2, implying that N(v) ∩N(u) ∩ S = ∅. More-

over, NG′
[v] and NG′

[u] are cliques: Two non-adjacent vertices in NG′
(v)

(in NG′
(u)) would form together with u (with v) an independent set.

Since NG′
[v] is a clique and v ∈ S, G[S ∪ NG′

(v)] is a 2-club and
thus NG′

[v] ⊆ S by the maximality of S. Moreover, since {v, u} is a
maximum independent set and thus also a dominating set it remains
to specify N(u) ∩ S. However, since NG′

[u] is a clique and each vertex
in S has to be adjacent to at least one vertex in NG′

(v), it follows that
S = NG′

[v] ∪ (NG′
(u) ∩NG′

2 (v)). ut

The following theorem shows that the bound on the maximum independent
set size in Proposition 1 is tight.
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Theorem 1. 2-Club is NP-hard on graphs with clique cover number
three and diameter three.

Proof. We describe a reduction from Clique. Let (G = (V,E), k) be
a Clique instance. We construct a graph G′ = (V ′, E′) consisting of
three disjoint vertex sets, that is, V ′ = V1 ∪ V2 ∪ VE . Set Vi, i ∈ {1, 2},
to Vi = V V

i ∪V
big
i , where V V

i is a copy of V and V big
i is a set of n5 vertices.

Let u, v ∈ V be two adjacent vertices in G and let u1, v1 ∈ V1, u2, v2 ∈ V2
be the copies of u and v in G′. Then add the vertices euv and evu to VE and
add the edges {v1, evu}, {u2, evu}, {u1, euv}, {v2, euv} to G′. Furthermore,
add for each vertex v ∈ V the vertices V v

E = e1v, e
2
v, . . . , e

n3

v to VE and
make v1 and v2 adjacent to all these new vertices. Finally, make the
following vertex sets to cliques: V1, V2, VE , and V big

1 ∪ V big
2 . Observe

that G′ has diameter three and that it has a clique cover number of three.
We now prove that G has a clique of size k ⇔ G′ has a 2-club of

size k′ = 2n5 + kn3 + 2k + 2
(
k
2

)
.

“⇒:” Let S be a clique of size k in G. Let Sc contain all the copies of the
vertices of S. Furthermore, let SE := {euv | u1 ∈ Sc ∧ v2 ∈ Sc} and Sb :=

{eiv | v1 ∈ Sc∧1 ≤ i ≤ n3}. We now show that S′ := Sc∪SE∪Sb∪V big
1 ∪V

big
2

is a 2-club of size k′. First, observe that |V big
1 ∪ V big

2 | = 2n5 and |Sc| = 2k.
Hence, |Sb| = kn3 and |SE | = 2

(
k
2

)
. Thus, S′ has the desired size. With a

straightforward case distinction one can check that S′ is indeed a 2-club.
“⇐:” Let S′ be a 2-club of size k′. Observe that G′ consists of |V ′| =

2n5 + 2n + 2m + n4 vertices. Since k′ > 2n5 at least one vertex of V big
1

and of V big
2 is in S. Since all vertices in V big

1 and in V big
2 are twins, we can

assume that all vertices of V big
1 ∪ V big

2 are contained in S′. Analogously, it

follows that at least k sets V v1

E , V v2

E , V v3

E , . . . , V vk

E are completely contained

in S′. Since S′ is a 2-club, the distance from vertices in V big
i to vertices

in V vj

E is at most two. Hence, for each set V vj

E in S′ the two neighbors vj1
and vj2 of vertices in V vj

E are also contained in S′. Since the distance of vi1
and vj2 for vi1, v

j
2 ∈ S′ is also at most two, the vertices evivj and evjvi are

part of S′ as well. Consequently, vi and vj are adjacent in G. Therefore,
the vertices v1, . . . , vk form a size-k clique in G. ut

Since a maximum independent set is also a dominating set, Theorem 1
implies that 2-Club is NP-hard on graphs with domination number three
and diameter three. In contrast, for domination number one 2-Club is
trivial. The following theorem shows that this cannot be extended.

Theorem 2. 2-Club is NP-hard even on graphs with domination number
two and diameter three.
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Proof. We present a reduction from Clique. Let (G = (V,E), k) be
a Clique instance and assume that G does not contain isolated vertices.
We construct the graph G′ as follows. First copy all vertices of V into G′.
In G′ the vertex set V will form an independent set. Now, for each edge
{u, v} ∈ E add an edge-vertex e{u,v} to G′ and make e{u,v} adjacent to u
and v. Let VE denote the set of edge-vertices. Next, add a vertex set C of
size n+ 2 to G′ and make C ∪ VE a clique. Finally, add a new vertex v∗

to G′ and make v∗ adjacent to all vertices in V . Observe that v∗ plus an
arbitrary vertex from VE ∪ C are a dominating set of G′ and that G′ has
diameter three. We complete the proof by showing that G has a clique
of size k ⇔ G′ has a 2-club of size at least |C|+ |VE |+ k.

“⇒:” Let K be a size-k clique in G. Then, S := K ∪ C ∪ VE is a size-
|C|+ |VE |+ k 2-club in G: First, each vertex in C ∪ VE has distance two
to all other vertices S. Second, each pair of vertices u, v ∈ K is adjacent
in G and thus they have the common neighbor e{u,v} in VE .

“⇐:” Let S be a 2-club of size |C|+|VE |+k in G′. Since |C| > |V ∪{v∗}|,
it follows that there is at least one vertex c ∈ S ∩ C. Since c and v∗ have
distance three, it follows that v∗ 6∈ S. Now since S is a 2-club, each pair of
vertices u, v ∈ S∩V has at least one common neighbor in S. Hence, VE con-
tains the edge-vertex e{u,v}. Consequently, S∩V is a size-k clique in G. ut

3 Distance to Bipartite Graphs

A 2-club in a bipartite graph is a biclique and, thus, 2-Club is polynomial-
time solvable on bipartite graphs [20]. However, 2-Club is already NP-hard
on graphs that become bipartite by deleting only one vertex.

Theorem 3. 2-Club is NP-hard even on graphs with distance one to
bipartite graphs.

Proof. We reduce from the NP-hard Maximum 2-SAT problem: Given
a positive integer k and a set C := {C1, . . . , Cm} of clauses over a variable
set X = {x1, . . . , xn} where each clause Ci contains two literals, the
question is whether there is an assignment β that satisfies at least k clauses.

Given an instance of Maximum 2-SAT where we assume that each
clause occurs only once, we construct an undirected graph G = (V,E). The
vertex set V consists of the four disjoint vertex sets VC , VF , V 1

X , V 2
X , and one

additional vertex v∗. The construction of the four subsets of V is as follows.
The vertex set VC contains one vertex ci for each clause Ci ∈ C. The ver-

tex set VF contains for each variable x ∈ X exactly n5 vertices x1 . . . xn
5
.

The vertex set V 1
X contains for each variable x ∈ X two vertices: xt
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which corresponds to assigning true to x and xf which corresponds to
assigning false to x. The vertex set V 2

X is constructed similarly, but for

every variable x ∈ X it contains 2 · n3 vertices: the vertices x1t , . . . x
n3

t

which correspond to assigning true to x, and the vertices x1f , . . . x
n3

f which
correspond to assigning false to x.

Next, we describe the construction of the edge set E. The vertex v∗ is
made adjacent to all vertices in VC ∪VF ∪V 1

X . Each vertex ci ∈ VC is made
adjacent to the two vertices in V 1

X that correspond to the two literals
in Ci. Each vertex xi ∈ VF is made adjacent to xt and xf , that is, the
two vertices of V 1

X that correspond to the two truth assignments for the
variable x. Finally, each vertex xit ∈ V 2

X is made adjacent to all vertices
of V 1

X except to the vertex xf . Similarly, each xif ∈ V 2
X is made adjacent to

all vertices of V 1
X except to xt. This completes the construction of G which

can clearly be performed in polynomial time. Observe that the removal
of v∗ makes G bipartite: each of the four vertex sets is an independent set
and the vertices of VC , VF , and V 2

X are only adjacent to vertices of V 1
X .

The main idea behind the construction is as follows. The size of the
2-club forces the solution to contain the majority of the vertices in VF
and V 2

X . As a consequence, for each x ∈ X exactly one of xt or xf is in
the 2-club. Hence, the vertices from V 2

X in the 2-club represent a truth
assignment. In order to fulfill the bound on the 2-club size, at least k
vertices from VC are in the 2-club; these vertices can only be added if the
corresponding clauses are satisfied by the represented truth assignment.
It remains to show the following claim (see appendix).

Claim. (C, k) is a yes-instance of Maximum 2-Sat ⇔ G has a 2-club of
size n6 + n4 + n+ k + 1. ut

4 Average Degree and h-Index

2-Club is fixed-parameter tractable for the parameter maximum de-
gree [19]. In social networks, the degree distribution often follows a power
law, implying that there are some high-degree vertices but most vertices
have low degree [4]. This suggests considering stronger parameters such
as h-index, degeneracy, and average degree. Unfortunately, 2-Club is
NP-hard even with constant average degree.

Proposition 2. For any constant α > 2, 2-Club is NP-hard on con-
nected graphs with average degree at most α.

Proof. Let (G, `) be an instance of 2-Club where ∆ is the maximum
degree of G. We can assume that ` > ∆+ 2 since, as shown for instance
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in the proof of Theorem 1, 2-Club remains NP-hard in this case. We
add a path P to G and an edge from an endpoint p of P to an arbitrary
vertex v ∈ V . Since ` > ∆ + 2, any 2-club of size at least ` contains at
least one vertex that is not in P . Furthermore, it cannot contain p and v
since in this case it is a subset of either N [v] or N [p] which both have
size at most ∆+ 2 (v has degree at most ∆ in G). Hence, the instances
are equivalent. Putting at least d 2m

α−2 − ne vertices in P ensures that the
resulting graph has average degree at most α. ut

Proposition 2 suggests considering “weaker” parameters such as degeneracy
or h-index [10] of G. Recall that having h-index k means that there are
at most k vertices with degree greater than k. Since social networks have
small h-index [12], fixed-parameter tractability with respect to the h-index
would be desirable. Unfortunately, we show that 2-Club is W[1]-hard
when parameterized by the h-index. Following this result, we show that
there is “at least” an algorithm that is polynomial for constant h-index.

Theorem 4. 2-Club parameterized by h-index is W[1]-hard.

Since the reduction in the proof of Theorem 4 is from Multicolored
Clique and in the reduction the new parameter is linearly bounded in
the old one, the results of Chen et al. [8] imply the following.

Corollary 1. 2-Club cannot be solved in no(k)-time on graphs with h-
index k unless the exponential time hypothesis fails.

We next prove that there is an XP-algorithm for the parameter h-index.

Theorem 5. 2-Club can be solved in f(k) · n2k · nm time where k is
the h-index of the input graph and f solely depends on k.

Proof. We give an algorithm that finds a maximum 2-club in G = (V,E)
in the claimed running time. Let X ⊆ V be the set of all vertices with
degree greater than k. By definition, |X| ≤ k. In a first step, branch
into the at most 2k cases to guess a subset X ′ ⊆ X that is contained
in a maximum 2-club S for G. In case X ′ = ∅, one can apply the fixed-
parameter algorithm for the parameter maximum degree. In each other
branch, proceed as follows. First, delete all vertices from X \ X ′ and
while there are vertices that have distance greater than two to any vertex
in X ′, delete them. Denote the resulting graph by G′ = (V ′, E′). We next
describe how to find a maximum 2-club in G′ = (V ′, E′) that contains X ′.

Partition all vertices in V ′ \ X ′ into the at most 2k twin classes
T1, . . . , Tp with respect to X ′. Two twin classes T and T ′ are in conflict if
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N(T ) ∩N(T ′) ∩X ′ = ∅. Now, the crucial observation is that, if T and T ′

are in conflict, then all vertices in (T ∪ T ′) ∩ S are contained in the same
connected component of G′[S \X ′]. Then, since all vertices in T ∩ S have
in G′[S \X] distance at most two to all vertices in T ′ ∩ S, it follows that
all vertices in T ∩ S have pairwise distance at most four in G′[S \X ′].

Now, branch into the O(n2
k
) cases to choose for each twin class T a

center c, that is, a vertex from T ∩ S. Clearly, if T ∩ S = ∅, then there
is no center c and we delete all vertices in T . Consider a remaining twin
class T that is in conflict to any other twin class. By the observation
above, T ∩ S is contained in one connected component of G′[S \X ′] and
in this component all vertices in T ∩ S have pairwise distance at most
four. Moreover, the graph G[V ′ \ X ′] has maximum degree at most k.
Thus for the center c of T one can guess NS

4 (c) := N4(c)∩S by branching
into at most 2k

4
cases. Guess the set NS

4 (c) for all centers c where the
corresponding twin class is in conflict to at least one other twin class and
fix them to be contained in the desired 2-club S. Delete all vertices in T
guessed to be not contained in NS

4 (c).

Let S̃ be the set of vertices guessed to be contained in S. Next, while
there is a vertex v ∈ V ′ \ S̃ that has distance greater than two to any
vertex in S̃, delete v. Afterwards, check whether all vertices in S̃ have
pairwise distance at most two. (If this check fails, then this branch cannot
lead to any solution.) We next prove that the remaining graph is a 2-club.

In the remaining graph, each pair of vertices in V ′ \ S̃ has distance
at most two and thus the graph is a 2-club: Suppose that two remaining
vertices v, w ∈ V ′ \ S̃ have distance greater than two. Let T and T ′ be
the twin classes with the corresponding centers c, c′ such that v ∈ T and
w ∈ T ′. In case T = T ′, it follows that N(T ) ∩ X ′ = ∅ (since X ′ ⊆ S̃).
However, since T cannot be in conflict with any other twin class (other-
wise v, w ∈ NS

4 (c) ⊆ S̃), it follows that S only contains the twin class T .
This implies that v and w have distance greater than two to all ver-
tices in X ′ (note that X ′ 6= ∅), a contradiction. In case T 6= T ′, since
N(v) ∩ N(w) = ∅ it follows that T is in conflict to T ′, implying that
v ∈ NS

4 (c) and w ∈ NS
4 (c′), a contradiction to v, w ∈ V ′ \ S̃. ut

5 Distance to Cluster and Co-Cluster Graphs

We now present a simple fixed-parameter algorithm for 2-Club parame-
terized by distance to co-cluster graphs. The algorithm is based on the
fact that each co-cluster graph is either an independent set or a 2-club.
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Theorem 6. 2-Club is solvable in O(2k · 22k ·nm) time where k denotes
the distance to co-cluster graphs.

Proof. Let (G,X, `) be an 2-Club instance where X with |X| = k and G−
X is a co-cluster graph. Note that the co-cluster graph G−X is either
a connected graph or an independent set. In the case that G−X is an
independent set, the setX is a vertex cover and we thus apply the algorithm
we gave in companion work [12] to solve the instance in O(2k ·22k ·nm) time.

Hence, assume that G−X is connected. Since G−X is the complement
of a cluster graph, this implies that G−X is a 2-club. Thus, if ` ≤ n− k,
then we can trivially answer yes. Hence, assume that ` > n− k or, equiv-
alently, k > n − `. Schäfer et al. [19] showed that 2-club can be solved
in O(2n−`nm) (simply choose a vertex pair having distance at least three
and branch into the two cases of deleting one of them). Since k > n− `
it follows that 2-club can be solved in O(2knm) time in this case. ut

Next, we present a fixed-parameter algorithm for the parameter distance
to cluster graphs.

Theorem 7. 2-Club is solvable in O(2k · 32k ·nm) time where k denotes
distance to cluster graphs.

6 Conclusion

Although the complexity status of 2-Club is resolved for most of the
parameters in the complexity landscape shown in Figure 1, some open
questions remain. What is the complexity of 2-Club parameterized by
“distance to interval graphs” or “distance to cographs”? The latter pa-
rameter seems particularly interesting since every induced subgraph of
a cograph has diameter two. Hence, the distance to cographs measures
the distance from this trivial special case. In contrast to the parameter
h-index, it is open whether 2-Club parameterized by the degeneracy is
in XP or NP-hard on graphs with constant degeneracy. Finally, it would
be interesting to see which results carry over to 3-Club [13, 18].
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A Proofs

A.1 Proof 1 (Claim in the proof of Theorem 3)

Proof. “⇒”: Let β be an assignment forX that satisfies k clauses C1, . . . , Ck
of C. Consider the vertex set S that consists of VF , v∗, the vertex
set {c1, . . . , ck} ⊆ VC that corresponds to the k satisfied clauses, and for
each x ∈ X of the vertex set {xt, x1t , . . . , xn

3

t } ⊆ V 1
X ∪ V 2

X if β(x) = true

and {xf , x1f , . . . , xn
3

f } ∈ V 1
X ∪ V 2

X if β(x) = false. Clearly, |S| = n6 +

n4 + n + k + 1. In the following, we show that S is a 2-club. Herein,
let S1

X := V 1
X ∩ S, S2

X := V 2
X ∩ S, and SC := VC ∩ S.

First, v∗ is adjacent to all vertices in SC ∪ VF ∪ S1
X . Hence, all vertices

of S \ S2
X are within distance two in G[S]. By construction, the vertex

sets S1
X and S2

X form a complete bipartite graph in G: A vertex xit ∈ S2
X

is adjacent to all vertices in V 1
X except xf which is not contained in S1

X .
The same argument applies to some xif ∈ S2

X . Hence, the vertices of S2
X

are neighbors of all vertices in S1
X . This also implies that the vertices

of S2
X are in G[S] within distance two from v∗ and from every vertex

in VF since each vertex of VF ∪ {v∗} has at least one neighbor in S1
X .

Finally, since the k vertices in SC correspond to clauses that are satisfied
by the truth assignment β, each of these vertices has at least one neighbor
in S1

X . Hence, every vertex in S2
X has in G[S] distance at most two to

every vertex in SC .
“⇐”: Let S be a 2-club of size n6 + n4 + n + k + 1, and let S1

X :=
V 1
X ∩ S, S2

X := V 2
X ∩ S, SF := VF ∩ S and SC := VC ∩ S. Clearly, neither

S2
X = ∅ nor SF = ∅.

Since |VC |+ |V 1
X |+ |V 2

x |+ 1 ≤ n2 + 2n+ 2n4 + 1 < n5 for sufficiently
large n, S contains more than n6− n5 vertices from VF . Consequently, for
each x ∈ X there is an index 1 ≤ i ≤ n5 such that xi ∈ SF .

We next show that for each x ∈ X it holds that either xt or xf is
contained in S1

X . Towards this, since S is a 2-club, every vertex pair xi ∈ SF
and u ∈ S2

X has at least one common neighbor in S. By construction, this
common neighbor is a vertex of S1

X and thus either xt or xf . Moreover, by
the observation above for each x ∈ X at least one xi is contained in SF .
Thus, for each x ∈ X at least one of xt and xf is contained in S1

X .
Now observe that, G[S1

X ∪S2
X ] is a complete bipartite graph, since S1

X

and S2
X are independent sets and S2

X has only neighbors in S1
X . This

implies that if for some x ∈ X there exists indices 1 ≤ i, j ≤ n3 with
xit and xjf are in S2

X , then xt and xf are not in S1
X . This contradicts

the above observation that at least one of xt and xf is in S1
X . Moreover,

since |VC |+ |V 1
X |+1 ≤ n2 +2n+1 < n3 and |S \VF | > n4, we have |S2

X | >
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n4 − n3. It follows that for each x ∈ X there is an index 1 ≤ i ≤ n3 such
that either xit ∈ S2

X or xif ∈ S2
X . Finally, this implies that either xt or xf

is not contained in S1
X .

Summarizing, S has at most n6 vertices from VF , at most n4 vertices
belonging to S2

X , exactly n vertices belonging to S1
X , and thus there

are k+ 1 vertices in SC ∪ {v∗}. Since S is a 2-club that has nonempty S2
X ,

every one of the at least k vertices from SC has at least one neighbor
in S1

X . Because for each x ∈ X either xf or xt is in S1
X , the n vertices

from S1
X correspond to an assignment β of X. By the above observation,

this assignment satisfies at least k clauses of C. ut

A.2 Proof 2 (Theorem 4)

Proof. We give a parameterized reduction from Multicolored Clique
parameterized by the solution size k to 2-Club parameterized by the
h-index of the input graph. Let (G = (V,E), c, k) be a Multicolored
Clique instance where c : V → {1, . . . , k} is the vertex coloring. We
construct an instance (G′ = (V ′, E′), `) of 2-Club with G′ having an h-
index of O(k) as follows.

For each vertex v ∈ V create a vertex gadget Gv consisting of the 3(n+
1) vertices αv1, . . . , α

v
n, β

v
1 , . . . , β

v
n+1, γ

v
1 , . . . , γ

v
n, ω

v
1 , ω

v
2 . These vertices form

the cycle αv1, β
v
1 , γ

v
1 , α

v
2, β

v
2 , γ

v
2 , . . . , α

v
n, β

v
n, γ

v
n, ω

v
1 , β

v
n+1, ω

v
2 , α

v
1. In the fol-

lowing, we call a vertex αvi (βvi , γvi ) an α-vertex (β-vertex, γ-vertex ). Let
v1, . . . , vn be an arbitrary fixed ordering of the vertices in V . Then, for
each edge {vi, vj} ∈ E add an edge-vertex evi,vj that is made adjacent

to αvij , βvij , β
vj
i , and γ

vj
i .

The main idea is to force the solution such that it contains exactly k
vertex gadgets, each of them completely, and

(
k
2

)
edge-vertices that all

correspond to edges between the k vertices. Note that so far the largest
2-club in G′ has size five (a star with an edge-vertex as center). We now
add a connection gadget Gc that is contained in the solution and has the
following three main purposes. First, it reduces the distance between the
vertices in the vertex gadgets. Second, it enforces that for each vertex
gadget either all or no vertices are in the solution. And finally, it enforces
that an edge-vertex can only belong to the solution in case the two vertex
gadgets in which it has neighbors are also in the solution.

The connection gadget contains three distinguished vertices uα, uβ,
uγ that form an independent set in G′. The vertex uα is made adjacent
to ωv1 , v ∈ V , and to each α-vertex, the vertex uβ is made adjacent to
each β-vertex, and the vertex uγ is made adjacent to ωv2 , v ∈ V , and to
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uα

uβ

uγ

s′

suc

Vα,β,γ

Vα

Vβ

Vγ

Fig. 2. The connection gadget.

each γ-vertex. We add three further vertices s, s′, uc and four large vertex
sets Vα, Vβ, Vγ , and Vα,β,γ , each containing n3 vertices to the gadget.
Then, we add edges to the gadget such that

– the vertex s is adjacent to all vertices in Vα, Vβ, and Vγ and to s′

and uc,

– each vertex in Vα (Vβ , Vγ) is adjacent to uα (uβ , uγ , respectively) and
to s′,

– the vertex s′ is adjacent to uα, uβ, uγ , and uc, and

– each vertex in Vα,β,γ is adjacent to uα, uβ, uγ , and uc.

An illustration of the connection gadget is given in Figure 2. Note that the
connection gadget is a 2-club. Next, we add edges between the connection
gadget and the vertex gadgets and edge-vertices such that

– ωv1 is adjacent to uc and uα for each v ∈ V ,

– ωv2 is adjacent to s and uγ for each v ∈ V ,

– each α-vertex is adjacent to uα, each β-vertex to uβ , and each γ-vertex
to uγ , and

– all edge-vertices and all α-, β-, and γ-vertices are adjacent to s and
to uc.

Next, we add the coloring gadget, whose purpose is to ensure that the
solution does not contain vertices from two different vertex gadgets Gu
and Gv when c(u) = c(v). The construction of the gadget is as follows. For
each color c ∈ {1, . . . , k} add four vertices uc1,1, u

c
1,2, u

c
2,1, and uc2,2, and
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uc11,1 uc11,2 uc12,1 uc12,2 . . .

ωv11 ωv12 ωv21 ωv22 . . . ω
vk
1 ω

vk
2

Fig. 3. A scheme of the second part of the connection gadget with c(vi) = i. todo..

let Vu denote the vertex set containing these vertices. Then, add edges
such that

– Vu is a clique,

– each vertex of Vu is adjacent to s, s′, and uc, and

– u11,1 is adjacent to all vertices in Vα ∪ Vβ ∪ Vγ .

Next, we add edges between the coloring gadget and the vertex gadgets
and edge-vertices in G′ such that for each vertex v ∈ V

– ωv1 is adjacent to u
c(v)
1,1 and to u

c(v)
1,2 ,

– ωv2 is adjacent to u
c(v)
2,1 and u

c(v)
2,2 ,

– ωv1 is adjacent to uc1,1 and uc2,1 for each c 6= c(v), and

– ωv2 is adjacent to uc1,2 and uc2,2 for each c 6= c(v).

See Figure 3 for an illustration.

This completes the construction of G′; the reduction is completed by
setting ` := 4n3 + 6 + 4k + k · 3(n+ 1) +

(
k
2

)
.

Note that G′ is a 3-club. The pairwise distance of all vertices in G′ is at
most two except for the vertices ωu1 and ωv2 for c(u) = c(v). Furthermore
there are exactly 4k + 6 vertices having degree more than 4k + 6: uα,
uβ, uγ , s, s′, uc, and the 4k vertices in Vu. Hence, the h-index of G′

is 4k + 6 = O(k).

We complete the proof by showing the following claim.

(G, c, k) is a yes-instance of Multicolored Clique ⇐⇒ (G′, `)
is a yes-instance of 2-Club.

“⇒:” Let K ⊆ V be a multicolored size-k clique in G. Then, consider
the vertex set S ⊆ V ′ that contains all vertices in the connection gadget and
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in the coloring gadget, all vertices in the vertex gadget Gv for each v ∈ K
and all edge-vertices eu,v for u, v ∈ K. Observe that |S| = ` since S
contains the 4n3 + 6 + 4k vertices in the connection gadget and in the
coloring gadget plus 3(n + 1) vertices in each of the k vertex gadgets
plus

(
k
2

)
edge-vertices.

We now show that G[S] is a 2-club. By construction, the connection
gadget is a 2-club. Furthermore, all vertices in Vα ∪Vβ ∪Vγ ∪Vα,β,γ ∪Vu ∪
{uc, s, s′} have distance two to all edge-vertices and all α-,β-,γ-vertices
since uc and s are adjacent to all of these vertices. This also implies that
every vertex pair from the set of edge-vertices and α-,β-,γ-vertices has
distance two. The vertices in the vertex gadgets also have distance at
most two to the vertices in uα,uβ, and uγ , since only complete vertex
gadgets are contained in S. It remains to show that all w-vertices have
distance at most two. This is clear if they are from the same vertex
gadget. If they are from different vertex gadgets, this holds because K is
multicolored (see Figure 3).

“⇐:” Let S ⊆ V ′ be a 2-club of size `. First, we show that we can
assume that Vα ∪ Vβ ∪ Vγ ∪ Vα,β,γ ⊆ S. Note that |V ′| = 4n3 + 6 + 4k +
n · 3(n + 1) + m. Thus, the number of vertices that are not in S is at
most |V ′| − `, which is:

|V ′| − ` = 4n3 + 6 + 4k + n · 3(n+ 1) +m

−
(

4n3 + 6 + 4k + k · 3(n+ 1) +

(
k

2

))
= 3(n+ 1)(n− k) +m−

(
k

2

)
< n3.

Thus, less than n3 = |Vα| = |Vβ| = |Vγ | = |Vα,β,γ | vertices of G′ are not
in S and, hence, S contains at least one vertex of each set Vα, Vβ , Vγ , and
Vα,β,γ . Since 2-Club asks to find a 2-club of size at least `, this implies
that we can assume that all vertices of Vα, Vβ, Vγ , and Vα,β,γ are in S.
Note that the neighborhood of Vα,β,γ overlaps with the neighborhood of Vα
(Vβ , Vγ) in exactly one vertex: uα (uβ , uγ). Since S contains one vertex of
each set Vα, Vβ, Vγ , and Vα,β,γ , this implies that S contains also uα, uβ,
and uγ .

We prove that if for any v ∈ V one vertex of the vertex gadget Gv
is in the 2-club S, then all vertices of Gv are in S. Suppose towards a
contradiction that S contains some but not all vertices of Gv. Then there
is a vertex x in Gv such that x ∈ S but a neighbor y in Gv is not in S.
By construction, x and y are each adjacent to exactly one of uα, uβ , and
uγ but not to the same vertex. Assume w.l.o.g that x is adjacent to uα
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and y is adjacent to uβ . Since y is the only common neighbor of x and uβ ,
x has distance three or more to uβ, a contradiction. Hence, either all or
no vertices of a vertex gadget Gv are in S. Accordingly, we can interpret
the vertex gadgets contained in S as a vertex set K in G.

Next, we prove that S contains at most k different vertex gadgets.
Suppose towards a contradiction that S contains more than k vertex
gadgets. Then, there are two vertex gadgets, Gu and Gv such that c(u) =
c(v). Then, the vertices ωu1 and ωv2 do not have a common neighbor in
the coloring gadget nor in the connection gadget and, hence, these two
vertices have distance three, a contradiction. Consequently, there are at
most k vertex gadgets in S, and thus |K| ≤ k.

Since S has size at least 4n3 + 6 + 4k + k · 3(n+ 1) +
(
k
2

)
this implies

that S contains at least
(
k
2

)
edge-vertices: The connection gadget Gc and

the coloring gadget contain altogether 4n3+6+4k vertices, and S contains
at most k vertex gadgets, each of them consisting of 3(n+ 1) vertices.

We now show that the
(
k
2

)
edge-vertices correspond to edges that have

both endpoints in K. Each edge-vertex has exactly six neighbors: uc, s, one
α-vertex, two β-vertices, and one γ-vertex. Hence, if an edge-vertex eu,v
is contained in S, then the adjacent α- and γ-vertex and at least one of
the two β-vertices are also in S, otherwise eu,v has distance three to uα,
uβ , or uγ . Consequently, if an edge-vertex eu,v is contained in S, then Gv
and Gu are also contained in S. Hence, u and v are in K.

This means that K contains all endpoints of the edges corresponding
to the at least

(
k
2

)
edge-vertices, and thus that K is a size-k clique in G.

As argued above, the k vertices also have pairwise distinct colors, which
implies that (G, k) is a yes-instance of Multicolored Clique. ut

A.3 Proof 3 (Theorem 7)

Proof. Let (G,X, `) be a 2-Club instance where G−X is a cluster graph
and |X| = k. First, branch into all possibilities to choose the subset
X ′ ⊆ X that is contained in the desired 2-club S. Then, remove X \X ′
and all vertices that are not within distance two to all vertices in X ′, and
let G′ = (V ′, E′) denote the resulting graph.

Let T = T1, . . . , Tp be the set of twin classes of V ′ \X ′ with respect
to X ′ and let C1, . . . , Cq denote the clusters of G′−X ′. Two twin classes T
and T ′ are in conflict ifN(T )∩N(T ′)∩X ′ = ∅. The three main observations
exploited in the algorithm are the following: First, if two conflict classes Ti
and Tj are in conflict, then all vertices of Ti that are in a 2-club and
all vertices from Tj that are in a 2-club must be in the same cluster
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of G′ −X ′. Second, every vertex from G′ −X ′ can reach all vertices in X ′

only via vertices of X ′ or via vertices in its own cluster. Third, if one
2-club-vertex v ∈ S is in a twin class v ∈ Ti and in a cluster v ∈ Cj , then
all vertices that are in Ti and in Cj can be added to S without violating
the 2-club property.

We exploit these observations in a dynamic programming algorithm. In
this algorithm, we create a two-dimensional table A where an entry A[i, T ′]
stores the maximum size of a set Y ⊆

⋃
1≤j≤iCj such that the twin classes

of Y are exactly T ′ ⊆ T and all vertices in Y have in G[Y ∪X ′] distance
at most two to each vertex from Y ∪X ′.

Before filling the table A, we calculate a value s(i, T ′) that stores the
maximum number of vertices we can add from Ci that are from the twin
classes in T ′ and fulfill the requirements in the previous paragraph. This
value is defined as follows. Let CT

′
i denote the maximal subset of vertices

from Ci whose twin classes are exactly T ′. Then, s(i, T ′) = |CT ′
i | if CT

′
i

exists and every pair of non-adjacent vertices from CT
′

i and from X ′ have
a common neighbor. Otherwise, set s(i, T ′) = −∞. Note that as a special
case we set s(i, ∅) = 0. Furthermore, for two subsets T ′′ and T̃ define the
predicate conf(T ′′, T̃ ) as true if there is a pair of twin classes Ti ∈ T ′′
and Tj ∈ T̃ such that Ti and Tj are in conflict, and as false, otherwise.

Using these values, we now fill A with the following recurrence:

A[i, T ′] =

max
T ′′⊆T ′,T̃ ⊆T ′

{
A[i− 1, T̃ ] + s(i, T ′′) if T̃ ∪ T ′′ = T ′ ∧ ¬ conf(T̃ , T ′′),
−∞ otherwise.

This recurrence considers all cases of combining a set Y for the clusters C1

to Ci−1 with a solution Y ′ for the cluster Ci. Herein, a positive table entry
is only obtained when the twin classes of Y ∪ Y ′ is exactly T ′ and the
pairwise distances between Y ∪ Y ′ and Y ∪ Y ′ ∪X ′ in G[Y ∪ Y ′ ∪X ′] are
at most two. The latter property is ensured by the definition of the s()
values and by the fact that we consider only combinations that do not put
conflicting twin classes in different clusters.

Now, the table entry A[q, T ′] contains the size of a maximum vertex
set Y such that in G′[Y ∪X ′] every vertex from Y has distance two to all
other vertices. It remains to ensure that the vertices from X ′ are within
distance two from each other. This can be done by only considering a
table entry A[q, T ′] if each non-adjacent vertex pair x, x′ ∈ X ′ has either a
common neighbor in X ′ or in one twin class contained in T ′. The maximum
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size of a 2-club in G′ is then the maximum value of all table entries that
fulfill this condition.

The running time can be bounded roughly as O(2k · 32k · nm): We try
all 2k partitions of X and for each of these partitions, we fill a dynamic
programming table with 22

k ·n entries. The number of overall table lookups
and updates is O(32

k ·n) since there are 32
k

possibilities to partition T into
the three sets T ′′, T̃ , and T \T ′. Since each Ci is a clique, the entry s(i, T ′)
is computable in O(nm) time and the overall running time follows. ut
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