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Abstract. Given an undirected graph G = (V,E) and an integer ` ≥ 1,
the NP-hard 2-Club problem asks for a vertex set S ⊆ V of size at least `
such that the subgraph induced by S has diameter at most two. In this
work, we extend previous parameterized complexity studies for 2-Club.
On the positive side, we give polynomial kernels for the parameters
“feedback edge set size of G” and “size of a cluster editing set of G” and
present a direct combinatorial algorithm for the parameter “treewidth
of G”. On the negative side, we first show that unless NP ⊆ coNP/poly,
2-Club does not admit a polynomial kernel with respect to the “size of a
vertex cover of G”. Next, we show that, under the strong exponential time
hypothesis, a previous O∗(2|V |−`) search tree algorithm [Schäfer et al.,
Optim. Lett. 2012] cannot be improved and that, unless NP ⊆ coNP/poly,
there is no polynomial kernel for the dual parameter |V | − `. Finally, we
show that, in spite of this lower bound, the search tree algorithm for the
dual parameter |V | − ` can be tuned into an efficient exact algorithm for
2-Club that substantially outperforms previous implementations.

1 Introduction

Finding cohesive subnetworks in a network is an important task in graph-
based data mining and social network analysis. The natural cohesiveness
requirement is to demand that the subnetwork is a complete graph, that
is, a clique. However, this requirement is often too restrictive and thus
relaxed versions such as s-cliques [1], s-plexes [24], and s-clubs [19] have
been proposed. An s-club is a graph with diameter at most s, and s-clubs
are thus a distance-based relaxation of cliques (which are exactly the
graphs of diameter 1). For a constant integer s ≥ 1, the problem of finding
large s-clubs is defined as follows.

s-Club
Input: An undirected graph G = (V,E) and an integer ` ≥ 1.
Question: Is there a vertex set S ⊆ V of size at least ` such that
G[S] has diameter at most s?



Clearly, 1-Club is equivalent to the well-known Clique problem. In
this work, we consider 2-Club, the most basic variant of s-Club that is
different from Clique. Furthermore, 2-Club is also an important special
case concerning the applications: For biological networks, 2-clubs and
3-clubs have been identified as the most reasonable diameter-relaxations
of Clique [21], further applications of 2-Club arise in the analysis of
social networks [18]. Consequently, experimental evaluations concentrate
on finding 2-clubs and 3-clubs [7, 8, 17].

Related Work. For all s ≥ 1, s-Club is NP-complete on graphs of diameter
s + 1 [3]; 2-Club is NP-complete even on split graphs and, thus, also
on chordal graphs [3]. For all s ≥ 1, s-Club is NP-hard to approximate
within a factor of n1/2−ε [2]; a simple approximation algorithm obtains
a factor of n1/2 for even s ≥ 2 and a factor of n2/3 for odd s ≥ 3 [2].
Several heuristics [7] and integer linear programming formulations [3, 7]
for s-Club have been proposed and experimentally evaluated [17]. 1-Club
is equivalent to Clique and thus W[1]-hard with respect to `. In contrast,
for s ≥ 2, s-Club is fixed-parameter tractable with respect to ` [8, 22, 23].
s-Club can be solved in O∗(2n−`) time by a search tree algorithm [8, 22,
23]1. s-Club can be formulated in monadic second order logic and thus is
fixed-parameter tractable with respect to the treewidth of G [23]. Moreover,
s-Club does not admit a polynomial kernel with respect to ` (unless
NP ⊆ coNP/poly), but a so-called Turing-kernel with at most k2 vertices
for even s and at most k3 vertices for odd s [22]. 2-Club is solvable in
polynomial time on bipartite graphs, on trees, and on interval graphs [23].

Our Contribution. We make progress towards a systematic classification
of the complexity of 2-Club with respect to structural parameters of
the input graph. In Section 2, we give an O(k2)-vertex kernel for the
parameter “size of a cluster editing set” and an O(k)-size kernel for the
parameter “feedback edge set size”. The kernelization results for these
rather large parameters are motivated by our negative results: We show
that 2-Club does not admit a polynomial kernel with respect to the size
of a vertex cover of the underlying graph, unless NP ⊆ coNP/poly. This
excludes polynomial kernels for many prominent structural parameters
such as “feedback vertex set size”, pathwidth, and treewidth. In Section 3,
we give a direct combinatorial algorithm solving 2-Club in 2O(2ω)n2 time

1 Schäfer et al. [22] actually considered finding an s-club of size exactly `. The claimed
fixed-parameter tractability with respect to n− ` however only holds for the problem
of finding an s-club of size at least `. The other fixed-parameter tractability results
hold for both variants.



on graphs of treewidth ω. Notably, up to a constant in the exponent, this
is also the current best running time for the parameter vertex cover size
(which we present in Theorem 4). In Section 4, we study s-Club, s ≥ 2,
parameterized by the dual parameter k′ := n− `. We prove that unless
the Strong Exponential Time Hypothesis (SETH)2 fails, s-Club cannot be
solved in O∗((2−ε)k′) time for all ε > 0. This is evidence that the previous
search tree algorithm [22] is optimal with respect to the parameter k′.
Moreover, the presented reduction also implies that s-Club does not
admit a polynomial kernel with respect to k′ unless NP ⊆ coNP/poly.

Having explored the limits of parameterized algorithmics for the dual
parameter k′ on the theoretical side, in Section 5 we examine its usefulness
for solving 2-Club in practice. To this end, we implemented the search
tree strategy for the dual parameter together with data reduction rules
that are partially deduced from our findings in Section 2. We show that our
implementation outperforms all previously implemented exact algorithms
for 2-Club on random and on large-scale real world graphs. Especially
on large graphs the concept of Turing kernelization turns out to be the
most efficient technique in our “parameterized toolbox”.

Preliminaries. We only consider undirected and simple graphs G = (V,E)
where n := |V | and m := |E|. For a vertex set S ⊆ V , let G[S] denote
the subgraph induced by S and G− S := G[V \ S]. We use distG(u, v) to
denote the distance between u and v in G, that is, the length of a shortest
path between u and v. For a vertex v ∈ V and an integer t ≥ 1, denote
by Nt(v) := {u ∈ V \{v} | dist(u, v) ≤ t} the set of vertices within distance
at most t to v. Moreover, set Nt[v] := Nt(v) ∪ {v}, N [v] := N1[v], and
N(v) := N1(v). Two vertices v and w are twins if N(v)\{w} = N(w)\{v}.
The following simple observation will be used throughout this work.

Observation 1. Let S be an s-club in a graph G = (V,E) and let u, v ∈
V be twins. If u ∈ S and |S| > 1, then S ∪ {v} is also an s-club in G.

For the relevant notions of parameterized complexity refer to [11, 12, 20].
A more recent concept not presented in these monographs is Turing
kernelization. Roughly speaking, in Turing kernelization one creates poly-
nomially many problem kernels instead of one problem kernel. Then, the
solution to the parameterized problem can be computed by solving the
problem separately on each of these problem kernels. Throughout this

2 The SETH fails if the satisfiability problem for boolean formulas in conjunctive
normal form, the so-called Cnf-Sat problem, is solvable in O∗((2 − ε)n) time for
some ε > 0 where n denotes the number of variables; a recent survey on the (S)ETH
is given by Lokshtanov et al. [16].



work, we assume that, unless stated otherwise, the structural parameter
under consideration is provided as an additional input of the 2-Club
instance. Due to the space restrictions, most of the proofs are deferred to
a long version of this article.

2 Kernelization Algorithms and Lower Bounds

In this section, we provide polynomial-size problem kernels for 2-Club
parameterized by “cluster editing set size” and “feedback edge set size”,
respectively. While these parameters can often be rather large, we show
that for the (also relatively large) parameter “vertex cover size of G”,
there exists no polynomial-size problem kernel (unless NP ⊆ coNP/poly).

A Quadratic-Vertex Kernel for the Parameter Cluster Editing Set Size.
A cluster editing set of G is a set of edge additions and deletions that
transforms G into a vertex-disjoint union of cliques. Let G = (V,E),
an integer `, and a cluster editing set D be an instance of 2-Club; the
parameter is k := |D|. Denote by V (D) the set of all endpoints of the edges
in D and observe that G−V (D) is a cluster graph. The following rules yield
an O(k2)-vertex kernel for 2-Club. The first reduction rule is obvious.

Rule 1. If there is a cluster C in G− V (D) with |C| ≥ `, then reduce to
a trivial yes-instance.

It follows that any 2-club of size at least ` has a nonempty intersection
with V (D), implying the correctness of the following data reduction rule.

Rule 2. If there is a cluster C in G− V (D) such that N(v) ∩ V (D) = ∅
for all v ∈ C, then delete C.

After exhaustive application of Rule 2, at most |V (D)| ≤ 2k clusters remain
in G−V (D). Since Rule 1 has been applied, each cluster in G−V (D) has
size at most `− 1. Hence, if ` ≤ 2k + 1, then there are at most 4k2 + 2k
vertices left and we are done. Now, consider the case where ` > 2k+ 1. To
bound the size of the clusters in G−V (D) we use the following observation.
Its correctness follows from the fact that two vertices in different clusters
of G− V (D) are not adjacent and have no common neighbor.

Observation 2. For every 2-club S in G there is at most one cluster C
in G− V (D) such that S has a nonempty intersection with C.

Observation 2 implies that every 2-club of size at least ` contains at least
`− 2k vertices from exactly one cluster C of G− V (D). Since all vertices



in C are twins, Observation 1 now implies that in an inclusion-maximal 2-
club either all or no vertices from C or are contained. Hence, for ` > 2k+1
decreasing ` and the size of each cluster C by ` − 2k − 1 produces an
equivalent instance. This leads to the following data reduction rule.

Rule 3. Delete `−2k−1 arbitrary vertices in each cluster C of G−V (D)
and set ` := 2k + 1.

Note that in case |C| ≤ l− 2k− 1 we simply delete all vertices of C. After
exhaustive application of Rule 3 for each cluster C it holds that 1 ≤ |C| <
2k + 1. Thus, we arrive at the following.

Theorem 1. 2-Club parameterized by the cluster editing set size k ad-
mits an O(k2)-vertex kernel that can be computed in O(n+m) time.

A Linear Kernel for the Parameter Feedback Edge Set Size. A feedback edge
set of a graph is an edge set whose deletion leads to a forest. Let F ⊂ E
be a feedback edge set for G = (V,E). Furthermore, let T := (V,E \F ) be
the forest obtained by deleting F from G. The correctness of the first data
reduction rule follows from the fact that for each vertex v the set N [v] is
a 2-club.

Rule 4. If there is a vertex v ∈ V with |N [v]| ≥ `, then reduce to a trivial
yes-instance.

In the following, we exploit that after application of Rule 4 all 2-clubs of
size at least ` have to “use” feedback edges. The next rule removes all
vertices that are not on paths between the endpoints between feedback
edges. These vertices are defined as follows.

Definition 1. For a feedback edge {u, v} ∈ F the path P{u,v} between u
and v in T is called feedback edge path. If a vertex w lies on the path P{u,v},
then the edge {u, v} is a spanning feedback edge of w.

Rule 5. Let (G, `) be reduced with respect to Rule 4. Then, delete all
vertices that do not lie on any feedback edge path.

The final rule removes vertices that are too far away from feedback edges.

Rule 6. If there is a vertex v that has in G distance at least three to at
least one endpoint of every spanning feedback edge, then remove v.

Applying these data reduction rules exhaustively results in a linear kernel:

Theorem 2. The 2-Club problem parameterized by the size k of a feed-
back edge set admits a kernel of size 6k that can be computed in O(n4) time.



A Kernelization Lower Bound for the Parameter Vertex Cover. We next
show that 2-Club does not admit a polynomial kernel with respect to
the parameter vertex cover size. This result implies that 2-Club does not
admit a polynomial kernel for many structural graph parameters such as
feedback vertex set number or treewidth.

Theorem 3. 2-Club parameterized by vertex cover has no polynomial
kernel unless NP ⊆ coNP/poly.

3 Fixed-Parameter Tractability with respect to
Treewidth

In this section, we show that 2-Club is fixed-parameter tractable when
parameterized by treewidth. To demonstrate the principle idea behind the
algorithm, we first describe a fixed-parameter algorithm for the parameter
vertex cover.

Theorem 4. s-Club is solvable in O(2k · 22k ·nm) time where k denotes
the size of a vertex cover.

Extending the ideas behind Theorem 4, we now give a direct combinatorial
algorithm for the parameter treewidth which uses the following lemma.

Lemma 1. Let G be a graph and let S be a 2-club in G. Then, for any
tree-decomposition of G there is at least one vertex v ∈ S such that there
is a bag that contains N [v] ∩ S.

Proof. Let T = (X1 ∪ . . . ∪Xr, E) be a tree-decomposition of G. Fix an
arbitrary vertex u ∈ S and denote by Xu any bag in T that contains u.
Now, choose a vertex w ∈ S such that the length of the path from Xu to
the first bag that contains w is maximum. Denote this bag by Xw. We
show that N(w) ∩ S ⊆ Xw. Suppose there is a neighbor v ∈ N(w) ∩ S
that is not contained in Xw. Since v and w are adjacent and thus are
together contained in at least one bag, v is not contained in any bag on
the path between Xu and Xw. This implies that the path from Xu to the
first bag that contains v is longer than the path between Xu and Xw; a
contradiction to the choice of w. ut

Theorem 5. 2-Club is solvable in 2O(2ω) · n2 time where ω denotes the
treewidth.



4 Optimality of Dual Parameter Algorithm

In this section, we prove algorithmic lower bounds for s-Club when
parameterized by the dual parameter k′ := n − `. We first show that
there is a reduction from Cnf-Sat to s-Club with certain properties that
allows to infer these lower bounds.

Lemma 2. There is a parameterized reduction from Cnf-Sat to s-Club
where the dual parameter in the constructed s-Club instance is equal to
the number of variables in the boolean formula of the Cnf-Sat instance.

Denoting the number of variables in a boolean formula by n, the Strong
Exponential Time Hypothesis (SETH) fails if Cnf-Sat can be solved in
O∗((2− ε)n) time for some ε > 0 [15]. Thus, by Lemma 2 an algorithm for
s-Club running in O∗((2− ε)k′) time for some ε > 0 would disprove the
SETH. This bound is tight since s-Club can be solved in O∗(2k

′
) time [22].

Corollary 1. Unless the SETH fails, s-Club parameterized by the dual
parameter k′ := n− ` cannot be solved in O∗((2− ε)k′) time for all s ≥ 2.

Chen et al. [9] showed that Cnf-Sat does not admit a polynomial kernel
unless coNP ⊆ NP/poly. Since Lemma 2 provides a polynomial time and
parameter transformation [6] this lower bound result transfers to 2-Club.

Corollary 2. s-Club parameterized by the dual parameter k′ does not
admit a polynomial problem kernel unless coNP ⊆ NP/poly.

5 Implementation and Experiments

Search tree. We implemented the following search tree strategy to find
a maximum 2-club S in a given graph G = (V,E): If G is not a 2-club,
then find a vertex v ∈ V such that |N2(v)| is minimum among all vertices.
Then, branch into the cases to either delete v from G or to mark v to be
contained in S and subsequently delete all vertices in V \N2[v]. During
branching we maintain a lower bound, that is, the size `′ of a largest 2-club
found so far; this lower bound is initialized by the maximum degree plus
one. Branching is aborted if the current graph has less than `′ vertices.
After exploring all branches, we output the current lower bound (along
with a 2-club of this size).

The above search tree strategy was introduced by Bourjolly et al. [7]
and has been already experimentally evaluated [8]. By simple recursion
analysis the running time can be bounded by O∗(αn) where α is the



golden ratio with α ≈ 1.62 [8]. Schäfer et al. [22] showed that for the
dual size parameter k′ this search tree strategy runs in O∗(2k

′
) time (if

branching is aborted if more than k′ vertices have been removed). Note
that by Corollary 1, the search tree size measured by k′ cannot be improved
unless the SETH fails.

Turing kernelization. Before starting the search tree algorithm, we use the
Turing kernelization introduced by Schäfer et al. [22]. That is, we compute
the Turing kernels consisting of N2[v] for all vertices v of the input graph.3

We say N2[v] is the Turing kernel for vertex v. Then, as long as at least one
Turing kernel is left, we apply the search tree algorithm to the smallest one,
say the one for vertex v, to find the largest 2-club in the Turing kernel of v
that contains v. Afterwards, we delete v in all other Turing kernels. The
maximum 2-club found during this iteration is the output. Note that this
is indeed equivalent to what the search tree algorithm does: In one case v
is contained in the maximum 2-club S and thus S ⊆ N2[v], in the other
case v is not contained and can thus be deleted. This observation explains
the effectiveness of the search tree algorithms on the considered real-world
data from social network analysis: There, the smallest two-neighborhood
in the graph is typically much smaller than the entire vertex set, ensuring
that all except n nodes in the search tree have limited size.

Heuristic Speed-up. Our main tool for accelerating the search tree algo-
rithm is an extensive application of the following data reduction rules in
each branching step. We describe the rules in descending order of observed
effectiveness. Herein, let G = (V,E) be the graph of the current branching
step.

I1 Vertex Cover Rule: Let G′ = (V,E′) be the graph where two vertices
are adjacent iff they have distance at least three in G. Clearly, if a
minimum vertex cover of G′ has size at least x, then at least x vertex
deletions have to be performed in G to obtain a 2-club. We compute
a 2-approximate vertex cover C for G′ that is disjoint to the marked
vertices (as they may not be deleted). If |V | − d|C|/2e is less than the
current lower bound, then abort this branch.

I2 Cleaning conflicts with marked vertices: If there is a vertex v ∈ V that
has distance at least three to a vertex that is marked to be contained
in the 2-club, then delete v. If v is marked, then abort this branch.

I3 Common neighbors of marked vertices: If there are two marked vertices
with only one common neighbor v, then mark v.

3 After applying Rule 4 in advance, |N2[v]| ≤ `2.



Table 1. Experimental results on random instances. For each combination of density,
n, a, b the other values are the average over 50 instances.

density [a ; b] n m max deg avg deg 2-club size time(s)

0.05 [0.00 ; 0.10] 160 633.60 18.30 7.40 19.30 0.18

0.10 [0.05 ; 0.15] 160 1279.54 28.54 15.46 29.54 2.43
[0.00 ; 0.20] 160 1276.40 31.68 15.44 33.08 2.79

0.15 [0.10 ; 0.20] 150 1674.28 35.72 21.84 56.98 98.44
[0.10 ; 0.20] 160 1899.78 38.15 23.26 63.44 372.52
[0.05 ; 0.25] 160 1906.68 41.04 23.26 77.12 21.54
[0.00 ; 0.15] 160 1894.08 44.52 23.20 88.60 1.80

0.20 [0.10 ; 0.30] 160 2544.66 50.28 31.36 143.16 0.04

I4 Degree-one vertices: Remove each vertex v that has degree one. If v
is marked, then abort this branch.

The correctness of Rules I1–I3 is obvious. Rule I4 is correct since we
initialized our lower bound by a 2-club formed by a maximum degree
vertex and thus a larger 2-club cannot contain degree-one vertices (note
that Rule I4 is a special case of Rule 5).

We ran all our experiments on an Intel(R) Core(TM) i3-2130 CPU
3.40GHz machine with 8GB memory under the Debian GNU/Linux 6.0
operating system. The program is implemented in Java and runs under
Java 1.6.0.18. The source code is freely available from http://fpt.akt.

tu-berlin.de/two_club/. We tested our program on random instances
as well as on real world data from the 10th DIMACS challenge [10] and
compare our running times with recent implementations [8, 17].

Random Instances. As in previous experimental evaluations [8, 17], we
use the random graph generator proposed by Gendreau et al. [13] where
the density of the resulting graphs is controlled by two parameters, 0 ≤
a ≤ b ≤ 1, and the expected density is (a + b)/2. Table 5 summarizes
our findings (see Table 3, appendix, for a full list). As first observed
by Bourjolly et al. [7], density 0.15 produces the hardest instances. We
solve instances of these types for n = 150 typically within 2min; previous
implementations needed about 6min [8], or up to an hour [17] for these
instances. We observed that the key point for the good behavior of our
algorithm on these instances is the Vertex Cover Rule that allows quite
frequently to prune the search tree.

Real-world Networks. We considered real-world data taken from the
2012 DIMACS challenge [10]. To investigate the usefulness of 2-Club as

http://fpt.akt.tu-berlin.de/two_club/
http://fpt.akt.tu-berlin.de/two_club/


natural clique relaxation concept, we ran our algorithm on instances from
the clustering category; to test our algorithm on large scale social network
graphs we ran it on graphs from the co-author and citation category. These
graphs were obtained by the co-author relationship or the citation relation
among authors listed in the DBLP and Citeseer database. In addition
to the DIMACS instances, we created a further DBLP coauthor graph,
which is the largest instance in our experiments (dblp thres 1). Table 5
shows the results (see Table 4, appendix, for a full list).

We observe that, since the average degree in real world graphs is small,
the Turing kernelization typically produces small graphs for our search
tree algorithm. We thus can solve all instances from the clustering category
within 10s. This is a significant performance increase in comparison to
[17] who needed up to 70min for these instances. Moreover, although the
co-author/citation graphs are quite large (up to 715,000 vertices), Turing
kernelization enabled us to handle them within roughly 30min.

We observed, however, the unexpected behavior that the largest 2-club
is on a majority of the real-world instances “just” a maximum degree
vertex together with its neighbors. Thus, the question arises whether the
resulting community structures are meaningful. In a first step to examine
this, we created from a DBLP coauthor graph subgraphs of the pattern
dblp thres i where two authors are related by an edge if they coauthored
at least i papers. We expected that for moderate values of i, say 2 or
3, the resulting (2-club) communities would have a stronger meaning
because there are no edges between authors that are only loosely related.
Unfortunately, even for values up to i = 6 this seems not to be the case.
We think the main reason for this is the large gap between the maximum
degree vertex (around 1000) and the average degree (less than 10). Thus,
there seem to be some authors that dominate the overall structure because
of their large number of coauthors. Notably, there are only few of these
“dominating” authors: less than 200 authors have more than 200 coauthors.4

6 Conclusion

On the theoretical side, we extended existing fixed-parameter tractability
results for the 2-Club problem by providing polynomial-size kernels
for the parameters cluster editing set size and feedback edge set size.

4 This implies that the so-called h-index of the real-world instances is low and thus
a promising parameter. In companion work, however, we showed that 2-Club is
W[1]-hard with respect to the h-index of the input graph [14].



Table 2. Experimental results on instance from the DIMACS implementation [10]
taken from the clustering and the coauthor/citation category.

category name n m max deg avg deg 2-club size time(s)

clustering email 1133 5451 71 9 72 3.27
hep-th 8361 15751 50 3 51 4.18

PGPgiantcompo 10680 24316 205 4 206 3.22
polblogs 1490 16715 351 22 352 9.93

power 4941 6594 19 2 20 2.53

coauthor citationCiteseer 268495 1156647 1318 8 1319 429.83
coAuthorsCiteseer 227320 814134 1372 7 1373 23.04

coAuthorsDBLP 299067 977676 336 6 337 216.64
dblp thres 01 715633 2511988 804 7 805 1742.57
dblp thres 02 282831 640697 201 4 202 119.03

We further gave a direct algorithm for the parameter treewidth of G.
Complementing these positive results, we showed lower bounds on the
kernel size for parameter vertex cover and on the running time as well
as on the kernel size for the dual parameter k′. On the practical side,
we provide the currently best implementation for 2-Club which solves
2-Club in reasonable time even on large real-world graphs with more
than 700,000 vertices.

Still, there are many open questions that deserve further investigations:
Is there a substantially better algorithm for the parameter vertex cover
than the one for treewidth? Concerning the parameter solution size `, can
the, so far impractical, running time or the size of the Turing kernel be
improved [22]? Are there stronger parameters than the ones considered
here for which 2-Club admits polynomial-size problem kernels? Finally,
it would be interesting to transfer our results to 3-Club which is also of
interest in practice [17, 21].
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A Appendix

A.1 Full experimental results

density [a ; b] n m FES max deg avg deg h-index size time(s)

0.05 [0.00 ; 0.10] 140 478.52 339.52 16.74 6.42 11.58 17.74 0.11
[0.00 ; 0.10] 150 580.24 431.24 17.78 7.28 12.72 18.78 0.15
[0.00 ; 0.10] 160 633.60 474.60 18.30 7.40 13.14 19.30 0.18

0.10 [0.05 ; 0.15] 140 965.78 826.78 24.98 13.32 18.28 25.98 0.73
[0.05 ; 0.15] 150 1116.96 967.96 27.18 14.38 19.68 28.22 1.23
[0.05 ; 0.15] 160 1279.54 1120.54 28.54 15.46 21.02 29.54 2.43
[0.00 ; 0.20] 140 978.24 839.24 28.06 13.46 20.00 29.36 0.78
[0.00 ; 0.20] 150 1117.20 968.20 29.52 14.36 21.34 30.64 1.41
[0.00 ; 0.20] 160 1276.40 1117.40 31.68 15.44 22.76 33.08 2.79

0.15 [0.10 ; 0.20] 140 1460.28 1321.28 33.18 20.34 25.10 50.60 37.10
[0.10 ; 0.20] 150 1674.28 1525.28 35.72 21.84 26.74 56.98 98.44
[0.10 ; 0.20] 160 1899.78 1740.78 38.15 23.26 28.26 63.44 372.52
[0.05 ; 0.25] 150 1661.28 1512.28 38.28 21.68 27.48 66.08 18.22
[0.05 ; 0.25] 160 1906.68 1747.68 41.04 23.26 29.64 77.12 21.54
[0.00 ; 0.15] 150 1686.52 1537.52 41.80 21.96 29.68 82.68 0.95
[0.00 ; 0.15] 160 1894.08 1735.08 44.52 23.20 31.20 88.60 1.80

0.20 [0.15 ; 0.25] 140 1949.50 1810.50 41.84 27.34 31.66 120.98 0.04
[0.15 ; 0.25] 150 2235.12 2086.12 44.58 29.34 33.84 133.50 0.04
[0.15 ; 0.25] 160 2547.14 2388.14 46.78 31.30 35.96 147.26 0.03
[0.10 ; 0.30] 140 1944.38 1805.38 43.70 27.28 32.30 118.32 0.05
[0.10 ; 0.30] 150 2235.98 2086.98 46.54 29.26 34.66 130.40 0.05
[0.10 ; 0.30] 160 2544.66 2385.66 50.28 31.36 37.00 143.16 0.04
[0.05 ; 0.35] 140 1937.54 1798.54 46.98 27.12 33.48 116.40 0.02
[0.05 ; 0.35] 150 2236.68 2087.68 50.52 29.38 35.94 127.94 0.02
[0.05 ; 0.35] 160 2529.82 2370.82 53.40 31.12 38.04 139.18 0.03

Table 3. Experimental results on random instances. For each combination of density, a, b,
and n (number of vertices) the other columns indicate the average values over 50
instances. Thereby, m denotes the number of edges, FES the feedback edge size, max
deg the maximum degree, avg deg the average degree, and size the maximum size 2-club
found by our algorithm.



category name n m FES max deg avg deg h-index 2-club size time(s)

clustering adjnoun 112 425 314 49 7 13 50 0.10
celegans metabolic 453 2025 1573 237 8 23 238 0.40

celegansneural 297 3520 3224 284 23 34 285 0.06
dolphins 62 159 98 12 5 9 13 0.01

email 1133 5451 4319 71 9 33 72 3.27
football 115 613 499 12 10 12 16 0.12
hep-th 8361 15751 7391 50 3 27 51 4.18

jazz 198 2742 2545 100 27 41 103 0.13
karate 34 78 45 17 4 6 18 0.00

netscience 1589 2742 1154 34 3 19 35 1.52
PGPgiantcompo 10680 24316 13637 205 4 52 206 3.22

polblogs 1490 16715 15226 351 22 87 352 9.93
polbooks 105 441 337 25 8 15 28 0.01

power 4941 6594 1654 19 2 12 20 2.53

coauthor citationCiteseer 268495 1156647 888153 1318 8 209 1319 429.83
coAuthorsCiteseer 227320 814134 586815 1372 7 114 1373 23.04

coAuthorsDBLP 299067 977676 678610 336 6 132 337 216.64
dblp thres 01 715633 2511988 1796356 804 7 208 805 1742.57
dblp thres 02 282831 640697 357867 201 4 96 202 119.03
dblp thres 03 167006 293796 126791 123 3 62 124 18.89
dblp thres 04 112949 168524 55576 88 2 46 89 7.70
dblp thres 05 81519 107831 26313 71 2 38 72 4.07
dblp thres 06 60989 73407 12419 57 2 31 58 2.25

Table 4. Experimental results on instances from the DIMACS implementation [10]
taken from the clustering and the coauthor/citation category.

A.2 Proof 1 (Theorem 1)

Proof. Let I = (G, `,D) be an instance that is reduced with respect
to Rules 1, 2 & 3. Since I is reduced with respect to Rule 2, there are at
most 2k cluster in G− V (G). Each of them has size at most `− 1 since I
is reduced with respect to Rule 1. Finally, ` ≤ 2k + 1 since I is reduced
with respect to Rule 3. Altogether this implies that G contains at most
4k2 + 2k vertices.

As to the running time, the clusters in G and G − V (D) can be
computed in O(n + m) time. Having computed the clusters the data
reduction rules can be applied exhaustively in linear time: First, checking
the size of a cluster Ci or deleting arbitrary vertices in Ci is clearly doable
in O(|Ci|) time. Second, the reduction rules can be applied in one pass by
applying Rule 1, then Rule 2, and then Rule 3 (note that Rule 3 does not
trigger Rule 1 since it reduces l and |Ci| to an equal extent). Hence, the
problem kernel can be computed in O(n+m) time. ut



A.3 Proof 2 (Proof of correctness for Rule 5)

Proof. Let v be a vertex that does not lie on any feedback edge path.
Then, v is not contained in a cycle in G. Suppose otherwise, and let C be
a cycle that contains v. Clearly, C contains at least one feedback edge. In
case C contains ` > 1 feedback edges, then a cycle C ′ with `− 1 feedback
edges also containing v is obtained by replacing an arbitrary feedback
edge with a path consisting only of edges from E \ F (by the minimality
of F such a path must exist). In case C contains exactly one feedback
edge, v lies on the feedback edge path of this edge, contradicting the initial
assumption for v.

Let S be a 2-club containing v. Since v is not contained in any cycle
in G, v has degree one in G[S] or v is a cut vertex in G[S]. In the
first case, S is completely contained in the neighborhood of v’s neighbor
in G[S]. In the second case, S ⊆ N [v]. Since G is reduced with respect
to Rule 4, S thus has size less than `. Consequently, there is no 2-club of
size at least ` that contains v. Therefore, removing v from G yields an
equivalent instance. ut

A.4 Proof 3 (Proof of correctness for Rule 6)

Proof. We show that v is not contained in a 2-club of size at least `. Let S
be a 2-club containing v. Since v has in G distance at least three to at
least one endpoint of every spanning feedback edge, S contains at most
one endpoint of every spanning feedback edge. Consequently, either v has
degree one in G[S] or v is a cut vertex in G[S]. In the first case, S is
completely contained in the neighborhood of v’s neighbor in G[S]. In the
second case, S ⊆ N [v]. Since G is reduced with respect to Rule 4, S has
size less than `. Consequently, there is no 2-club of size ` that contains v.
Therefore, removing v from G yields an equivalent instance. ut

A.5 Proof 4 (Theorem 2)

Proof. Let G be a graph that is reduced with respect to Rules 4, 5, and 6.
The size of G can be bounded as follows. There are at most 2k vertices
incident with feedback edges; let X denote this vertex set. To show the
kernel size, we show that the set Y := V \X of vertices not incident with
any edge in F has size at most 3k. The main idea underlying our proof is
that after the reduction rules have been exhaustively applied each vertex
of Y is in T either adjacent to an endpoint of some feedback edge or



u x y z v w

Fig. 1. Illustration of the definitions in the proof of Theorem 2. Herein, bold edges are
feedback edges, regular edges are edges of T . The path P{u,v} connects the endpoints of
the feedback edge {u, v} in T . The feedback edge {u,w} covers the feedback edge {u, v};
the feedback edge {u, v} is u-minimal; the u-neighbor of {u, v} is x, the v-neighbor is z;
the vertices x, y and z are all satisfied.

has distance exactly two to both endpoints of a spanning feedback edge.
Using this characterization, a size bound of 5k for Y is relatively easy to
achieve. In the following, we use a more sophisticated approach to show
that |Y | ≤ 3k.

The main idea of the proof is to iteratively add feedback edges to T ,
and count the number of vertices for which there is a spanning feedback
edge whose endpoints have distance at most two to this vertex. More
precisely, let T0 := T and let Tk := G. Furthermore, let Ti be obtained
from Ti−1 by adding a feedback edge e with the following property: all
feedback edges e′ such that Pe is a subpath of Pe′ are already contained
in Ti−1; in the following, we say that Pe′ covers Pe (see Figure 1 for an
illustration). Note that finding such an edge e is always possible: If e is
covered by an edge e′ that is not contained in Ti−1, then we consider e′.
Clearly the path Pe′ is longer than the path Pe. Therefore, there has to
be some edge whose covering edges are already contained in Ti−1.

For each Ti we bound the number of vertices that have distance at
most two to both endpoints of a spanning feedback edge; we call these
vertices satisfied. To this end, we create a set Yi ⊆ {(v, e) | v ∈ V, e ∈ F}.
This set contains pairs of satisfied vertices and spanning feedback edges
to which they are attributed. The central property for Yi is that for each
satisfied vertex in Ti the set Yi contains at least one pair that contains
this vertex. Then, the aim is to show that Yk ≤ 3k.

Before proving the claim we introduce some further terminology con-
cerning the feedback edges that will be used in the proof. A feedback
edge {u, v} is called u-minimal in Ti if there is in Ti no feedback edge {u,w}
such that the path P{u,w} is a subpath of P{u,v}. A vertex w is an u-neighbor
of a feedback edge {u, v} if {u, v} spans w and w is in T a neighbor of u.

Now, by induction on i we show that for each i there is a set Yi with
the following properties:



– |Yi| ≤ 3i,
– each vertex satisfied in Ti is in at least one pair contained in Yi, and
– if a feedback edge {u, v} is u-minimal in Ti, then Yi contains the

pair (w, {u, v}) where w is the u-neighbor of {u, v}.

For T1, the claim can be proven as follows. By definition, T1 contains
one feedback edge {u, v}. For each satisfied vertex w we add the pair
containing (w, {u, v}) to Y1. Then Y1 fulfills the invariant since at most
three vertices are satisfied in T1: the u-neighbor of {u, v}, the v-neighbor
of {u, v} and at most one further inner vertex (this is the case when P{u,v}
contains exactly five vertices).

For the inductive step, assume that the claim holds for i − 1, and
let {u, v} be the feedback edge that is added from Ti−1 to Ti. We con-
struct Yi fulfilling the claim as follows. Initially, we set Yi := Yi−1. Then,
for the u-neighbor and the v-neighbor of {u, v}, we add the pair contain-
ing {u, v} and the respective vertex to Yi, and, if it exists, a pair containing
the vertex that is in T adjacent to both inner neighbors of {u, v}. After
these additions, |Yi| ≤ |Yi−1| + 3. We now show that for each further
satisfied vertex that is not satisfied in Ti−1 we can add a pair containing
this vertex while also removing another pair from Yi without violating the
invariant.

All further vertices that are satisfied in Ti but not in Ti−1 are neighbors
of u or v since they must “use” {u, v} in order to have distance two to
some endpoint of a spanning edge. Since the neighbors of u and v that are
in P{u,v} have already been added to Yi, only satisfied vertices that are
not in P{u,v} have to be considered. Let Z denote this set and partition Z
into Zu := Z ∩ NT [u] and Zv := Z ∩ NT [v]. Clearly, such a partition is
possible since every vertex of Z is in T a neighbor of either u or v but not
of both. Now consider the set Zv, and let z1, . . . , zq denote the vertices
in Zv.

By definition, each zj is adjacent to v and there must be a spanning
feedback edge e such that in Ti but not in Ti−1 the vertex zj has distance
at most two to both endpoints of e. Consequently, u is one of the endpoints
of e, that is, e = {u,wj} for some wj . Moreover, {u,wj} covers {u, v}
and furthermore, for all zj ’s the wj ’s are pairwise distinct. Thus, the
situation is as depicted in Figure 2. We now show that for each zj there
is a pair (x, {u, pj}) where x is the u-neighbor of {u, v} in Yi that can be
removed from Yi without violating the invariant. By the invariant, there
is for each spanning edge {u,wj} a u-minimal edge ej that is covered
by {u,wj} and such that Yi−1 contains the pair (x, ej). Since so far, Yi is
a superset of Yi−1 this pair is also contained in Yi. Note that since the last
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Fig. 2. Illustration of the vertices in Zv and of the corresponding spanning edges.

edge that was added is {u, v} and by the fact that Ti contains no edges
that are covered by {u, v} these pairs are pairwise distinct: they must
cover {u, v} and thus their endpoints pj are on the paths from v to wj ;
these paths are, with the exception of v, vertex-disjoint. Now each such
pair can be removed, since after adding {u, v} each edge {u, pj} is not u-
minimal, and we have already added the pair (x, {u, v}). Consequently,
when adding the |Zv| pairs for the satisfied vertices in Zv to Yi we can at
the same time safely remove |Zv| pairs without violating the invariant.

Analogously, when adding the pairs for Zu, we can also remove |Zv|
pairs without violating the invariant. Summarizing, we have

|Yi| ≤ |Yi−1|+ 3 + |Zv| − |Zv|+ |Zu| − |Zu| = 3 · (i− 1) + 3 = 3i.

The overall kernel bound now follows from |Y | ≤ |Zk| ≤ 3k.
We complete the proof by bounding the running time. Clearly, Rule 4

can be exhaustively applied in linear time. The applicability of Rule 5 can
be checked in O(m ·n) time by considering each edge in F and labeling the
vertices on its feedback edge path. After computing an all-pairs shortest
path matrix in O(n3) time, the applicability of Rule 6 can be checked
in O(m · n) time. The overall running time now follows from the fact
that Rule 5 and Rule 6 can be applied at most n times.

ut

A.6 Proof 5 (Theorem 3)

Proof. We give a polynomial time and parameter reduction [4] from
Clique parameterized by vertex cover to 2-Club parameterized by vertex
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Fig. 3. Example of the construction in the proof of Theorem 3. The graph G is an
input for Clique parameterized by vertex cover. The gray vertices are a vertex cover
in G. The graph G′ is constructed as described in the proof of Theorem 3.

cover. Unless NP ⊆ coNP/poly, Clique does admit a polynomial kernel
with respect to the size of a vertex cover [5]. Let (G = (V,E), X, k) be an
instance of Clique parameterized by the size of the vertex cover X. We
construct a graph G′ as follows (for an illustration see Figure 3, appendix).
First, add for each vertex vi ∈ X exactly n vertices {v1i , . . . , vni } to G′. The
construction will ensure that these n vertices are twins in G′. Next, add a
set VE set of “edge-vertices” as follows. For each edge {vi, vj} ∈ E between
two vertex cover vertices vi, vj ∈ X add an edge-vertex ei,j to G′ and make
ei,j adjacent to all vertices in {v1i , . . . , vni , v1j , . . . , vnj }. Then, add edges
such that VE is a clique. The idea of the construction is to ensure that if a
2-club contains two vertices vxi and vyj , then vi and vj are adjacent in G′.
Hence, a 2-club containing such vertices corresponds to a clique in G.

In order to handle the case where a size-k clique K in G contains
a vertex from V \ X, add the vertex set V \ X to G′. Then, for each
added vertex v ∈ V \ X and each edge-vertex ei,j ∈ VE add an edge
if v is adjacent to vj and vi in G. Observe that the construction runs in
polynomial time, that it ensures that VE is a vertex cover for G′, and that
|VE | ≤

(|X|
2

)
. Thus, it is a polynomial time and parameter reduction. We

complete the proof by showing that G has a clique of size k ⇔ G′ has a
2-club of size at least |VE |+ (k − 1)n+ 1.

“⇒”: Let K be a size-k clique in G. Then, every pair of vertices
vi, vj ∈ K ∩X has the common neighbor ei,j in G′. Hence, by Observa-
tion 1, the vertex set S containing the twins of all vertices in K∩X and VE
is a 2-club. In case K ⊆ X, this 2-club is of size |VE |+ kn. Otherwise, one
can add the vertex v ∈ K \X to S. Then, S has size |VE |+ (k − 1)n+ 1
and it is also a 2-club: each vertex vxi ∈ S \ VE has with v the common



neighbor ei,j where vj is some other vertex in K; similarly, each vertex
in VE has a common neighbor with v.

“⇐”: Let S be a 2-club of size at least |VE |+ (k − 1)n + 1 in G′. A
twin-free set in S is a subset of S \ (VE ∪ (V \X)) that does not contain
twins. First, since |V \X| < n+1, it follows that S contains a twin-free set
of size at least k − 1. Moreover, for each vertex pair {vi, vj} in a twin-free
set, the vertex ei,j has to be contained in S as well: otherwise vi and vj
have distance greater than two in G[S]. Thus, vi is adjacent to vj in G.
Therefore, a twin-free set in S corresponds to a clique in G. Hence, if there
is a twin-free set of size at least k, then there is a size-k clique in G. It thus
remains to consider the case where a largest twin-free set T is of size k− 1.
In this case, S contains at least one vertex v ∈ V \X. Since S is a 2-club,
there is for each vertex vi ∈ T at least one edge-vertex ei,j ∈ S that is
adjacent to vi and v. By construction, this implies that vi is adjacent to u
in G. Consequently, T ∪ {v} is a size-k clique in G. ut

A.7 Proof 6 (Theorem 4)

Proof. Let (G = (V,E), X, s, `) be an s-Club instance where X with
|X| = k is a vertex cover of G. First, branch into all possibilities to choose
the subset X ′ ⊆ X that is contained in the desired s-club. Then, remove
X \X ′ and all vertices that are not within distance s to all vertices in X ′.
Clearly, V \X forms an independent set. Moreover, by Observation 1, it
follows that two vertices u, v ∈ V \X that are twins with respect to X ′are
either both contained in a maximal s-club or none of them. Since there
are at most 2|X

′| ≤ 2k different twins, branching into all possibilities to
choose them into the s-club takes 22

k
time. In total, s-Club can be solved

in 2k · 22k · nm time. ut

A.8 Proof 7 (Theorem 5)

Proof. Let (G, k) be an input instance of 2-Club and let (〈{Xi | i ∈
I}〉, E) be a nice tree decomposition for G of width ω. By Lemma 1 there
is a vertex v ∈ S such that N [v] ∩ S ⊆ X for a bag X. Thus, branch
into the O(n · ω · 2ω) cases for choosing the bag X, the vertex v and its
neighbors in X. Let Nv := N [v] ∩ S ⊆ X. Then delete all vertices in
N [v] \Nv and, afterwards, all vertices that do not have a neighbor in Nv.
(This is correct, since Nv is a dominating set in the desired 2-club.) Set X
to be the root of the resulting nice tree decomposition. Next, we describe
a bottom-up dynamic programming algorithm on it.



Let Xi be an arbitrary bag and let vi1, v
i
2, . . . , v

i
ni

, |Xi| = ni, be the
vertices in Xi. Furthermore, let {T i1, T i2, . . . , T i2ni} be the set of all possible
subsets of Xi. We say a vertex u ∈ V is of type T ij if N(u) ∩Xi = T ij . We

store a table Tabi for Xi that has 2ni+2ni rows and the rows contain all 0-1
sequences of length ni + 2ni . Denoting by r[j] the jth entry of row r, we
define Vi(r) to be the subset of all vertices in Xi whose entry in r is one,
formally Vi(r) := {vij ∈ Xi | r[j] = 1}, and let Ti(r) := {T ij | r[ni + j] = 1}
be the set of types whose entry is one. Then, the integer value associated
to r is the size of a largest vertex set Ki(r) that fulfills the following
properties:

1. Ki(r) is a subset of vertices occurring in the subtree rooted by Xi with
Xi ∩Ki(r) = Vi(r),

2. each vertex u ∈ Ki(r) \ Vi(r) is of one of the types in Ti(r),

3. for each type in T ij ∈ Ti(r) there is at least one vertex u ∈ Ki(r)\Vi(r)
of type T ij , and

4. in G[Ki(r)] each vertex v ∈ Ki(r) has distance at most two to all
vertices in Ki(r) \ Vi(r).

If there is no such vertex set Ki(r) then set Tabi(r) = −∞. Furthermore,
the row r has to be consistent, that is, for every T ij ∈ Ti(r) it holds

that T ij ⊆ Vi(r). If r is not consistent, then again set Tabi(r) = −∞.
Once we computed these values in each bag, we look into the root X of
the tree decomposition and then take the maximum values of the rows r
with Nv = V (r).

Computation of the table entries. We now specify how to compute the
table Tabi by distinguishing the following cases: Whether the bag Xi is a
leaf, an introduce node, a join node, or a forget node. First initialize all
table entries with −∞. We only look at consistent rows in the following.

Leaf node: LetXi be a leaf in the tree decomposition. Clearly, sinceKi(r)
has to be a subset of vertices in the subtree of Xi, we only have to consider
the case where Ti(r) = ∅. Then Ki(r) is equal to Vi(r) and, hence, we
set Tabi(r) = |Vi(r)|.

Introduce node: Let Xi be an introduce node with the child node X`

and let u ∈ Xi \ X` be the introduced vertex. First, consider rows r
of Tabi with u /∈ Vi(r). Then, clearly, we can take the value of the
corresponding row r′ in Tab` with Vi(r) = V`(r

′) and Ti(r) = T`(r
′).

Second, consider the rows r in Tabi with u ∈ Vi(r). Since u /∈ X`, we can
set Tabi(r) = −∞ for all rows r containing a set T ij ∈ Ti(r) with u ∈ T ij
or N(u) ∩ T ij ∩ Vi(r) = ∅ (property 4.). For the other rows r take one



plus the value of the corresponding row r′ in Tab` with Vi(r) = V`(r
′)

and Ti(r) = T`(r
′).

Next, consider the case that the bag Xi is a join node and X` and Xq

are the two child nodes with Xi = X` = Xq. For a row r we define R`,q(r)
as the set of pairs of rows that “fit” to r:

Rjoin
`,q (r) := {(r′, r′′) | r′ ∈ {0, 1}n`+2n` , r′′ ∈ {0, 1}nq+2nq∧

Vi(r) = V`(r
′) = Vq(r

′′)∧
∀T `j ∈ T`(r′)∀T

q
h ∈ Tq(r

′′) : T `j ∩ T
q
h ∩ Vi(r) 6= ∅∧

Ti(r) = T`(r
′) ∪ Tq(r′′)}

Then, Tabi(r) = max
(r′,r′′)∈Rjoin

`,q (r)
{Tab`(r

′)+Tab`(r
′′)}−Vi(r). Note that

the subtraction of Vi(r) avoids double counting the vertices Vi(r).

Forget node: Let Xi be a forget node with the child node X` and u ∈
X` \Xi. Then we have to consider the cases that u ∈ Ki(r) and u /∈ Ki(r)
for each row r in Tabi. Again we define the “fitting” rows:

Rdel
` (r) := {r′ | r′ ∈ {0, 1}n`+2n`∧

Vi(r) ∪ {u} = V`(r
′)∧

∀T `j ∈ T`(r′) : (T `j \ {u} ∈ Ti(r))∧
∀T ij ∈ Ti(r) : (T ij ∈ T`(r′)) ∨ (T ij ∪ {u} ∈ T`(r′)) ∨ (u is of type T ij )}

∪ {r′ | r′ ∈ {0, 1}n`+2n` ∧ Vi(r) = V`(r) ∧ Ti(r) = T`(r)}

Observe that the first set in the definition of Rdel
` (r) catches the cases

where u ∈ Ki(r) and the second set catches the case that u /∈ Ki(r).
Then, Tabi(r) = maxr′∈Rdel

` (r){Tab`(r
′)}.

Running time. Clearly, the table Tabi for a leaf Xi can be computed
in O(2O(2ω)) time.

The computation of the table for an introduce node Xi with child
node X` can be done in O(22·(ω+2ω) · 22ω) time: For each of the at
most O(2ω+2ω) rows in Tabi we can compute Tabi(r) in O(2ω+2ω · 22ω)
time: For a row r where the introduced vertex u is not chosen, that is,
u /∈ Vi(r) the lookup in the corresponding row in the child bag clearly
can be done in the stated time. For a row r where u is chosen the check
whether there is a set T ij ∈ Ti(r) with u ∈ T ij or N(u) ∩ T ij ∩ Vi(r) = ∅
and the lookup in the corresponding row in the child bag also can be done
in the stated time.



The computation for a join node Xi with the two child nodes X` and Xq

can be done in O(23·(ω+2ω) · 23ω): Simply check for each combination
of rows r ∈ Tabi, r

′ ∈ Tab`, r
′′ ∈ Tabq whether the pair (r′, r′′) fulfill

the conditions to be contained in Rjoin
`,q (r) in O(23ω) and then take the

maximum corresponding value of all fitting pairs.

The computation for a forget node Xi with the child node X` can be
done in O(22·(ω+2ω)·22ω) time: Checking for each pair of rows r ∈ Tabi, r

′ ∈
Tab` whether r′ fits to r and then take the maximum of all fitting rows.
The checking whether r′ fits to r can be done in at most O(22ω) time.

Together with the first step where we have guessed the bag X and Nv,
the total running time can be bound by 2O(2ω) · n2.

Correctness. Since our root X contains the vertex set Nv and Nv is the
neighborhood of the vertex v guessed to be contained the desired maximum
2-club S, one can easily verify that S contains maxr{Tab(r) | V (r) = Nv}
vertices. (Because of property 4. and since v dominates Nv, each set Ki(r)
for a row r with V (r) = Nv is a 2-club.)

It remains to show that the properties 1 to 4 are satisfied in the table
of each bag in the tree decomposition. Observe, that the properties are
fulfilled for the leafs of the tree decomposition: Since in this case Ki(r) =
Vi(r) there are no vertices in Ki(r) \ Vi(r).

Next, consider an introduce node Xi with child node X`, introduced
vertex {u} = Xi\X`, and the table of X` satisfy the properties 1 to 4. Let r
be some row in the table Tabi. If u /∈ Vi(r) the largest vertex set Ki(r)
fulfilling the properties 1 to 4 is clearly the set K`(r

′) with Vi(r) = V`(r
′)

and Ti(r) = T`(r
′). Thus, the corresponding table entry is Tabi(r) =

Tab`(r
′). Now consider the other case when u ∈ Vi(r). Let Ki(r) be the

largest vertex set fulfilling the properties. Since property 4 is satisfied u
has distance at most two to every vertex in Ki(r) \ Vi(r). Since u /∈ X`

this implies for every vertex w ∈ Ki(r) \ Vi(r) that N(u) ∩N(w) ⊆ Vi(r).
Thus, every set T ij ∈ Ti(r) has to fulfill u /∈ T ij and N(u) ∩ T ij ∩ Vi(r) 6= ∅,
otherwise Tabi(r) is set to −∞. Assuming that for all sets T ij ∈ Ti(r) it

holds that u /∈ Ti(r) and N(u) ∩ T ij ∩ Vi(r) 6= ∅, it is clear that Ki(r)
is K`(r

′) ∪ {u} where Vi(r) = V`(r
′) ∪ {u} and Ti(r) = T`(r

′). Thus, the
computed table Tabi fulfills the properties.

Next, consider a join node Xi with the two child nodes X` and Xq,
Xi = X` = Xq. First observe that for any two vertex sets K`(r

′) and Kq(r
′′)

fulfilling the properties 1 to 4 it holds that K`(r
′)∩Kq(r

′′) ⊆ Xi. Thus, if
for a row r the set Ki(r) contains a vertex u that appears somewhere in the
subtree rooted by X` and a vertex w that appears somewhere in the subtree



rooted by Xq and u,w /∈ Xi, then it is clear that u and w are connected
by a vertex in Xi, that is N(u) ∩ N(w) ⊆ Xi and N(u) ∩ N(w) 6= ∅.
Hence there are two rows r′ and r′′ such that Ki(r) = K`(r

′) ∪Kq(r
′′),

it holds that Vi(r) = V`(r
′) = Vq(r

′′), for each pair u ∈ K`(r
′) \ V`(r),

w ∈ Kq(r
′′) \ Vi(r′′) there is a vertex x ∈ Vi(r) with x ∈ N(u) ∩ N(w),

and Ti(r) = T`(r
′)∪Tq(r′′). Note that (r′, r′′) ∈ Rjoin

`,q (r) and, thus, Tabi(r)
is indeed the size of a maximum vertex set fulfilling properties 1 to 4.

Finally, consider a forget node Xi with the child node X` and {u} =
X` \Xi. There are two cases for the set Ki(r): u ∈ Ki(r) and u /∈ Ki(r).
First consider the case u ∈ Ki(r). Then there is a row r′ such that Ki(r) =
K`(r

′) and Vi(r)∪{u} = V`(r
′). Note that the sets T i(r) and T `(r′) have to

be somewhat “consistent”: The vertex u has to be of some type T ij ∈ Ti(r)
because u ∈ Ki(r) \Vi(r) and for all other sets T ij′ ∈ Ti(r), T ij 6= T ij′ , there

has to be a vertex in Ki(r) \ (Vi(r) ∪ {u}) being of type T ij′ . Since u /∈
Xi, this implies that T ij′ ∈ T`(r′) or T ij′ ∪ {u} ∈ T`(r′). Reversely, each

set T `j ∈ T`(r′) need some corresponding set in Ti(r), that is, if u ∈ T `j ,

then (T `j \ {u}) ∈ Ti(r), otherwise T `i ∈ Ti(r). Note that by definition

of Rdel
` (r) this implies r′ ∈ Rdel

` (r). Hence, the computed entry Tabi(r)
fulfill the properties 1 to 4. ut

A.9 Proof 8 (Lemma 2)

Proof. We give a parameterized reduction from Cnf-Sat parameterized
by the number n of variables to s-Club parameterized by the dual
parameter k′. Let F be a formula in conjunctive normal form with n
variables. Assume without loss of generality that F does not contain a
clause that contains the positive and the negative literal of the same
variable. In the following, we construct an n′-vertex graph G such that
for k′ := n the graph G has an s-club of size at least n′ − k′ if and only if
F has a satisfying assignment.

First, add the literal vertex set V to G, that is, a set that contains
for each variable x in F two vertices, one corresponding to the positive
literal x and the other corresponding to ¬x. Next, add for each clause
in F two vertices, one called the left clause vertex and the second called
the right clause vertex, and make them adjacent to all literal vertices that
correspond to the literals occurring in the clause. Denote the set of clause
vertices by K. We will ensure that G has the three following properties:



1. The distance between the positive literal vertex and the negative literal
vertex of a variable is at least s + 1. All other literal vertices have
pairwise distance at most s.

2. For each clause, every path from the left clause vertex v to the right
clause vertex w that does not contain any literal vertex from N(v) ∩
N(w) has length at least s+ 1. All other clause vertices have pairwise
distance at most s.

3. Each literal vertex has a path to each clause vertex that is of length
at most s and does not contain any other literal vertex.

From the properties above it is easy to prove the correctness of the reduc-
tion: Suppose that by deleting at most k′ vertices, G can be transformed
into an s-club. Since the positive and negative literal vertex of each vari-
able have distance at least s + 1 (property 1), at least one of them has
to be deleted. This forces n = k′ deletions, one for each variable. Conse-
quently, only literal vertices are deleted and the remaining literal vertices
correspond to an assignment. Because of property 2, for each left and right
vertex of a clause there has to be at least one remaining literal vertex that
is a common neighbor. Thus, the remaining literal vertices correspond to a
satisfying assignment for F . In the other direction, because of property 3,
it is straightforward to argue that deleting all literal vertices that do not
correspond to a satisfying assignment results in an s-club.

In the following, we will extend our graph G such that properties 1–3
are fulfilled. Moreover, we ensure that the vertices that we add for this
purpose have distance at most s to all other vertices, no matter which of
the literal vertices will be deleted. Let A be the set containing all vertex
pairs of V ∪K except the pairs {v1, v2} where either v1 and v2 refer to the
same clause (left and right clause vertex) or to the same variable (positive
and negative literal vertex). For each vertex pair {v, v′} of A add a new
vertex `{v,v′} to the graph. Denote this newly added vertex set by C. Next,
connect each vertex `({v,v′} ∈ C with v and v′ by a path of length bs/2c
each. In case 2 ≤ s ≤ 3, we simply connect the corresponding vertices by
an edge. Denote the vertices on the paths without the end points by P .
Thus, V (G) = C ∪ P ∪ V ∪K.

To complete the construction, we make a case distinction between odd
and even s. If s is odd, then we complete the construction by adding a
distinguished vertex x to C that is adjacent to all vertices in C. If s is
even, then we make C a clique.

We now prove for the two cases of odd and even s that G fulfills
properties 1-3: Clearly, for each vertex pair v, w ∈ A there is a vertex
in `{v,w} ∈ C such that v and w have distance bs/2c to `{v,w}, implying



property 3. Moreover, observe that for the positive and negative literal of
one variable there is no vertex in C that is reachable within distance bs/2c
from both vertices and hence their distance is s + 1 (property 1). The
same argument holds for the left and right vertex of a clause: All paths
that do not contain any literal vertex from the common neighborhood
contain at least two vertices from C and thus have length at least s+ 1
(property 2).

To complete the proof we show in the following case distinction that
the vertices in P ∪ C have distance at most s to all other vertices:

Case 1: s ≥ 3 is odd. Let vC ∈ C. First, observe that because of
vertex x, C is a 2-club. Moreover, each vertex in P ∪V ∪K has distance at
most bs/2c to at least one vertex in C and thus vC has distance at most
2 + bs/2c ≤ s to each vertex in V (G). Consider a vertex vP ∈ P . Clearly,
vp has distance at most bs/2c−1 to one vertex in C and thus can reach any
other vertex in P via x by a path of length at most 2+2(bs/2c−1) = s−1.
Note that from this, since each vertex in V ∪K has at least one neighbor
in P , it also follows that vP has distance at most s to each vertex in V ∪K.

Case 2: s ≥ 2 is even. Let vC ∈ C. Since C is a clique and any vertex
in P ∪ V ∪K has distance at most s/2 to at least one vertex in C, vC has
distance at most s/2 + 1 ≤ s to all vertices in V (G). Now, let vP ∈ P .
Clearly, vP has distance at most s/2 − 1 to one vertex in C and thus
distance at most s−1 to all other vertices in P . Since any vertex in V ∪K
has at least one neighbor in P , it thus follows that vP has distance at
most s to each vertex in V ∪K. ut
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