
Proc. 5th AAIM, 2009

A More Relaxed Model for Graph-Based Data

Clustering: s-Plex Editing

Jiong Guo⋆, Christian Komusiewicz⋆⋆, Rolf Niedermeier, and
Johannes Uhlmann⋆ ⋆ ⋆

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany.

{jiong.guo,c.komus,rolf.niedermeier,johannes.uhlmann}@uni-jena.de

Abstract. We introduce the s-Plex Editing problem generalizing the
well-studied Cluster Editing problem, both being NP-hard and both
being motivated by graph-based data clustering. Instead of transforming
a given graph by a minimum number of edge modifications into a dis-
joint union of cliques (Cluster Editing), the task in the case of s-Plex

Editing is now to transform a graph into a disjoint union of so-called
s-plexes. Herein, an s-plex denotes a vertex set inducing a (sub)graph
where every vertex has edges to all but at most s vertices in the s-
plex. Cliques are 1-plexes. The advantage of s-plexes for s ≥ 2 is that
they allow to model a more relaxed cluster notion (s-plexes instead of
cliques), which better reflects inaccuracies of the input data. We develop
a provably efficient and effective preprocessing based on data reduction
(yielding a so-called problem kernel), a forbidden subgraph characteri-
zation of s-plex cluster graphs, and a depth-bounded search tree which
is used to find optimal edge modification sets. Altogether, this yields
efficient algorithms in case of moderate numbers of edge modifications.

1 Introduction

The purpose of a clustering algorithm is to group together a set of (many) objects
into a relatively small number of clusters such that the elements inside a cluster
are highly similar to each other whereas elements from different clusters have
low or no similarity. There are numerous approaches to clustering and “there is
no clustering algorithm that can be universally used to solve all problems” [16].
To solve data clustering, one prominent line of attack is to use graph theory
based methods [14]. In this line, extending and complementing previous work
on cluster graph modification problems, we introduce the new edge modification
problem s-Plex Editing.

In the context of graph-based clustering, data items are represented as ver-
tices and there is an edge between two vertices iff the interrelation between the

⋆ Partially supported by the DFG, Emmy Noether research group PIAF, NI 369/4,
and research project DARE, GU 1023/1.

⋆⋆ Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.
⋆ ⋆ ⋆ Supported by the DFG, research project PABI, NI 369/7.

Proc. 5th AAIM, 2009

two corresponding items exceeds some threshold value. Clustering with respect to
such a graph then means to partition the vertices into sets where each set induces
a dense subgraph (that is, a cluster) of the input graph whereas there are no
edges between the vertices of different clusters. In this scenario, the algorithmic
task then typically is to transform the given graph into a so-called cluster graph
by a minimum number of graph modification operations [14]. Herein, a cluster
graph is a graph where all connected components form clusters and a graph mod-
ification is to insert or delete an edge. One of the most prominent problems in
this context is the NP-hard Cluster Editing problem (also known as Corre-

lation Clustering) [14, 2], where, given a graph G and an integer k ≥ 0, one
wants to transform G into a graph whose connected components all are cliques,
using at most k edge insertions and deletions. In this work, with the NP-hard
s-Plex Editing problem, we study a more relaxed and often presumably more
realistic variant of Cluster Editing: Whereas in the case of Cluster Edit-

ing the clusters shall be cliques, in the case of s-Plex Editing we only demand
them to be s-plexes. A vertex subset S ⊆ V of a graph G = (V, E) is called s-plex
if the minimum vertex degree in the induced subgraph G[S] is at least |S| − s.
Note that a clique is nothing but a 1-plex. Replacing cliques by s-plexes for
some integer s ≥ 2 allows one to reflect the fact that most real-world data are
somewhat “spurious” and so the demand for cliques may be overly restrictive in
defining what a cluster shall be (also see [5] concerning criticism of the overly
restrictive nature of the clique concept).

Problem formulation. In the following, we call a graph an s-plex cluster graph
if all its connected components are s-plexes.

s-Plex Editing

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Can G be modified by up to k edge deletions and insertions
into an s-plex cluster graph?

Indeed, seen as an optimization problem, the goal is to minimize the number of
edge editing operations. Note that 1-Plex Editing is the same as Cluster

Editing. Compared to Cluster Editing, s-Plex Editing with s ≥ 2 is a
more flexible tool for graph-based data clustering: For increasing s, the num-
ber of edge modifications should decrease. This important advantage of s-Plex

Editing reflects the observation that fewer edge modifications mean that we
introduce fewer “errors” into our final cluster solution, because the computed
s-plex cluster graph is closer to the original data. This is in accordance with the
natural hypothesis that the less one perturbs the input graph the more robust
and plausible the achieved clustering is (maximum parsimony principle, also see
Böcker et al. [3] for making this point in terms of Cluster Editing). Figure 1
presents a simple example comparing Cluster Editing (that is, 1-Plex Edit-

ing) with 2-Plex Editing and 3-Plex Editing in terms of the (number of)
necessary editing operations.

Previous work and motivation. The s-plex concept was introduced in 1978
by Seidman and Foster [13] in the context of social network analysis. Recently, a

Proc. 5th AAIM, 2009

(b)

(c) (d)

(a)

Fig. 1. An example for different optimal modifications that are applied to (a) an
input graph using (b) Cluster Editing (equivalently, 1-Plex Editing), (c)
2-Plex Editing, and (d) 3-Plex Editing. Deleted edges are dashed, inserted
edges are bold.

number of theoretical and experimental studies explored (and confirmed) the use-
fulness of s-plexes in various contexts [1, 6, 10, 11]. Finding maximum-cardinality
s-plexes is NP-hard [1] and further hardness results in analogy to clique finding
hold as well [10]. Hence, there is no hope for polynomial-time algorithms.

Cluster Editing has recently been intensively studied from the viewpoints
of polynomial-time approximability as well as parameterized algorithmics. As to
approximability, the currently best known approximation factor is 2.5 [17]. Con-
sidering the parameter k defined as the number of allowed edge modifications, a
search tree of size O(1.83k) [3] has been developed and several studies concerning
provably efficient and effective preprocessing by data reduction (which is called
problem kernelization in the context of parameterized algorithmics [12]) have
been performed [7, 8]. Parameterized algorithms have led to several successful
experimental studies mainly in the context of biological network analysis [3, 4].
The parameterized algorithms only run fast in case of moderate values of the pa-
rameter k, the number of allowed edge editing operations. Hence, it is desirable
to have the parameter k small not only for the sake of not too much perturbing
the input graph but also for the sake of obtaining efficient solving algorithms.
We mention in passing that slightly modifying a proof of Shamir et al. [14] for
Cluster Editing one can show that s-Plex Editing is NP-complete for each
specific choice of s as well.

Our contributions. We develop a polynomial-time preprocessing algorithm
that allows to provably simplify input instances of s-Plex Editing to smaller
ones. More specifically, the corresponding data reduction rules, given an instance
(G = (V, E), k) of s-Plex Editing with s ≥ 2, in polynomial time construct
an equivalent reduced instance (G′ = (V ′, E′), k′) with V ′ ⊆ V , k′ ≤ k, and
|V ′| ≤ (4s2−2)·k+4(s−1)2. In other words, the number of vertices of the reduced
graph only depends on s and k (in fact, in case of s being a constant, it is linear
in k), implying that if k is small then the data reduction will greatly simplify
the instance basically without loosing information. In terms of parameterized
algorithmics, the reduced instance gives a problem kernel. Moreover, we provide
a graph-theoretic characterization of s-plex cluster graphs by means of forbidden

Proc. 5th AAIM, 2009

induced subgraphs. In particular, we obtain a linear-time recognition algorithm
for s-plex cluster graphs for every constant s. This is a result of independent
graph-theoretic interest and is also of decisive algorithmic use for clustering:
Based on the forbidden subgraph characterization of s-plex cluster graphs, we
show that s-Plex Editing can be solved in O((2s + ⌊√s⌋)k · s · (|V | + |E|))
time (which is linear for constant values of s and k). Moreover, interleaving the
problem kernelization and the search tree leads to a running time of O((2s +
⌊√s⌋)k + |V |4).

Due to the lack of space, many technical details are deferred to a full version
of this paper.

2 Preliminaries

We only consider undirected graphs G = (V, E), where n := |V | and m := |E|.
The (open) neighborhood NG(v) of a vertex v ∈ V is the set of vertices that
are adjacent to v in G. The degree of a vertex v, denoted by degG(v), is the
cardinality of NG(v). For a set U of vertices, NG(U) :=

⋃

v∈U NG(v) \ U . We
use NG[v] to denote the closed neighborhood of v, that is, NG[v] := NG(v)∪{v}.
For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the
vertex set V ′ with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G− V ′

as an abbreviation for G[V \V ′] and for a vertex v ∈ V let G−v denote G−{v}.
A vertex v ∈ V (G) is called a cut-vertex if G−v has more connected components
than G.

Parameterized algorithmics [12] aims at a multivariate complexity analysis
of problems without giving up the demand for finding optimal solutions. This
is undertaken by studying relevant problem parameters and their influence on
the computational hardness of problems. The hope lies in accepting the seem-
ingly inevitable combinatorial explosion for NP-hard problems, but confining it
to the parameter. Hence, the decisive question is whether a given parameter-
ized problem is fixed-parameter tractable (FPT) with respect to a parameter k.
In other words, one asks for the existence of a solving algorithm with running
time f(k) · poly(n) for some computable function f . A core tool in the devel-
opment of parameterized algorithms is polynomial-time preprocessing by data
reduction rules, often yielding a problem kernel [9, 12]. Herein, the goal is, given
any problem instance G with parameter k, to transform it in polynomial time
into a new instance G′ with parameter k′ such that the size of G′ is bounded from
above by some function only depending on k, k′ ≤ k, and (G, k) is a yes-instance
iff (G′, k′) is a yes-instance.

3 Data Reduction and Kernelization

In this section, we indicate that s-Plex Editing for s ≥ 2 admits a problem
kernel with (4s2 − 2) ·k +4(s− 1)2 vertices. Since s-Plex Editing is a general-
ization of Cluster Editing, the first idea coming to mind in order to achieve

Proc. 5th AAIM, 2009

a linear kernelization is to adapt an approach developed by Guo [8]. However,
since the “critical clique” concept used there does not work for s-Plex Edit-

ing, we need a more sophisticated strategy; correspondingly, the accompanying
mathematical analysis requires new tools.

The first data reduction rule is obvious and its running time is O(n + m):

Reduction Rule 1: Remove connected components that are s-plexes from G.

Our problem kernelization consists of only one further, technically compli-
cated data reduction rule. Roughly speaking, the idea behind this rule is that a
data reduction can be performed if there is a vertex with a “dense local envi-
ronment” that is only weakly connected to the rest of the graph. Unfortunately,
the proof details are technical and require quite some mathematical machinery.

We start with explaining in more detail the purpose of introducing the second
data reduction rule. Let Gopt denote the s-plex cluster graph resulting from

applying a solution S with |S| ≤ k to the graph G = (V, E), and let K1, . . . , Kl

be the s-plexes in Gopt. The vertex set V can be partitioned into two subsets,
namely, X , the set of vertices that are endpoints of the edges modified by S,
and Y := V \ X . For each s-plex Ki, let Xi := X ∩ Ki and Yi := Y ∩ Ki.
Clearly, |X | ≤ 2k. To achieve a problem kernel with O(k) vertices for constant s,
it remains to bound |Y |. To this end, we use a function linear in |Xi| to bound |Yi|
for each 1 ≤ i ≤ l. If |Yi| ≤ (s − 1) · |Xi| or |Yi| ≤ 2(s − 1) for all i, then we are
done; otherwise, we have at least one s-plex Ki with |Yi| > max{(s−1)·|Xi|, 2(s−
1)}. Because the vertices in Yi are not affected by the edge modifications in S,
the fact that Ki is an s-plex implies that every vertex in Xi is adjacent to at
least |Yi| − s + 1 vertices in Yi in the input graph G. With |Yi| > (s − 1) · |Xi|,
there has to be a vertex u ∈ Yi with Xi ⊆ NG(u) by the pigeonhole principle.
Moreover, if |Yi| > 2(s − 1), then every vertex in Yi has, in G, distance at most
two to u: Suppose that this is not true. Let x be a vertex in Yi with distance at
least three to u. Then, since Ki is an s-plex, we must have |Yi \ NG[u]| ≤ s − 1
(since otherwise u would be non-adjacent to more than s − 1 vertices) as well
as |NG[u]∩Yi| ≤ s−1 (since otherwise x would be non-adjacent to more than s−1
vertices—the vertices NG[u] ∩ Yi are non-adjacent to x since x has distance at
least three to u), contradicting |Yi| > 2(s − 1).

Let us summarize our findings: If we do not apply a second data reduction rule
to G, then there can be arbitrarily large s-plexes Ki in Gopt, in particular, |Yi| >

max{(s − 1) · |Xi|, 2(s − 1)}. However, then, there must be a vertex u ∈ Yi

satisfying the following conditions:

C1. Xi ⊆ NG(u),
C2. NG(u) ⊆ Ki,
C3. |Yi \ NG[u]| ≤ s − 1, and
C4. all vertices in Yi \ NG[u] have distance two to u in G.

Thus, if |Yi| is very large, then |NG[u]| is very large and we need a data reduction
rule to reduce NG[u]. This is exactly what the second rule does.

To simplify notation, let ŝ = s − 1 and write N(u) and N [u] for NG(u)
and NG[u], respectively. Let N2(u) denote the set of vertices that have, in G,

Proc. 5th AAIM, 2009

u

N1
2 (u)

N1(u)

N2
2 (u)

N2(u)

Fig. 2. An illustration of the partitions of N2(u) and N(u) for ŝ = 2. Vertex u
satisfies the first two preconditions of Reduction Rule 2.

distance two to u. Further, we partition N2(u) into two sets, where the first
set N1

2 (u) consists of vertices tightly coupled with u:

N1
2 (u) := {v ∈ N2(u) : |N(v) ∩ N(u)| ≥ |N [u]| − ŝ},

N2
2 (u) := N2(u) \ N1

2 (u).

Analogously, N(u) is also partitioned into two sets,

N1(u) := {v ∈ N(u) :
(

N(v) ⊆ N [u] ∪ N1
2 (u)

)

∧
(

|N [v]| ≥ |N [u] ∪ N1
2 (u)| − ŝ

)

},
N2(u) := N(u) \ N1(u).

Figure 2 illustrates the above definitions. It is easy to see that the sets N1(u),
N2(u), N1

2 (u), and N2
2 (u) can be computed in O(n2) time for any vertex u.

Following the above analysis, we need a data reduction rule which shrinks
the set of the vertices tightly coupled with a vertex u that has a very special
neighborhood: There can be many vertices in N1(u), but only few (at most ŝ)
tightly coupled vertices from N2(u), that is, the N1

2 (u)-vertices. Further, these
N1

2 (u)-vertices are only adjacent to vertices in N(u) or to N1
2 (u)-vertices. Re-

duction Rule 2 applies in this situation and replaces N1(u) ∪ N1
2 (u) by smaller

“simulating” cliques.

Reduction Rule 2:
If there is a vertex u for which
(1) |N1

2 (u)| ≤ ŝ
(2) ∀v ∈ N1

2 (u) : (N(v) ⊆ N(u) ∪ N1
2 (u)) ∧ (|N [v]| ≥ |N [u] ∪ N1

2 (u)| − ŝ), and
(3) |A| > α, where A := {u}∪N1(u)∪N1

2 (u) and α := 2 ŝ ·(|N2(u)|+|N2
2 (u)|+ŝ),

then replace A by a clique C with α vertices for even |A| or α + 1 vertices for
odd |A|. Further, perform the following case distinction for every vertex v ∈
N2(u). Herein, for a vertex set U and a vertex w /∈ U , let Uw := U ∩ N(w)
and Uw := U \ Uw.

Case 1. If |Av|− |Av| ≥ |N2(u)|+ |N2
2 (u)|, then connect v to |C|−min{ŝ , |Av|}

many vertices of C and decrease the parameter k by max{|Av| − ŝ , 0}.
Case 2. If |Av| − |Av| ≥ |N2(u)| + ŝ , then decrease the parameter k by |Av|.

Proc. 5th AAIM, 2009

Case 3. If |N2(u)| + |N2
2 (u)| > |Av| − |Av| > −|N2(u)| − ŝ, then insert edges

between v and the vertices in C such that |Cv| − |Cv| = |Av| − |Av| and
decrease the parameter k by max{|Av| − |Cv|, 0}.

To show the correctness of Reduction Rule 2, we need to prove that the
input graph G has a solution S of size at most k iff the graph G′ resulting by
one application of this rule has a solution S′ of size at most k′, where k′ is the
new parameter after the application of the rule. To this end, we need two claims.
The first one (Lemma 1) says that if a vertex u satisfies the three preconditions
of Reduction Rule 2 then all vertices in A as defined in the rule should be
completely contained in one s-plex K in the s-plex cluster graph generated by
some optimal solution and K ⊆ A ∪ N2(u). The second claim (Lemma 2) says
that, after replacing A by a clique C, all vertices in C are tightly coupled with
the vertices in N2(u). Using the second claim, we can show that there must be a
vertex in C satisfying the preconditions of the first claim. Thus, according to the
first claim, there exists an optimal solution of G′ which generates an s-plex K ′

with C ⊆ K ′ and K ′ ⊆ C ∪N2(u). Then, by focussing on the edge modifications
in S and S′ that generate K and K ′, respectively, we can directly compare the
sizes of S and S′ and, thereby, establish the “iff”-relation between G and G′.

Lemma 1. Let u be a vertex satisfying the first two preconditions of Reduction
Rule 2 and |A| ≥ α with A and α defined as in Reduction Rule 2. Then, there
exists always an optimal solution generating an s-plex cluster graph where
(1) the set A is completely contained in one s-plex K and
(2) K ⊆ A ∪ N2(u).

Now, before coming to the second claim (Lemma 2), we discuss in more detail
the strategy behind. Based on Lemma 1, we can conclude that, with respect to
a vertex u which satisfies the preconditions of Reduction Rule 2, it remains
to decide which vertices of N2(u) should build, together with A, an s-plex in
the resulting s-plex cluster graph. Herein, Reduction Rule 2 distinguishes three
cases. In the first two cases, a vertex v ∈ N2(u) has either much more or much
less neighbors in A than outside of A (Cases 1 and 2). We can then easily decide
whether v should be in the same s-plex with A (Case 1) or not (Case 2) and
make the corresponding edge modifications. However, in the third case, where the
“neighborhood size difference” is not so huge for a vertex v ∈ N2(u), the decision
whether or not to put v in the same s-plex with A could be influenced by the
global structure outside of N(u)∪N2(u). To overcome this difficulty, Reduction
Rule 2 makes use of the simulating clique C which should play the same role as A
but has a bounded size. Moreover, for every vertex v ∈ N2(u) the construction
of C in Reduction Rule 2 guarantees that after its application v again adheres
to the same case (Cases 1–3, distinguishing according to the neighborhood size
difference of v) as it has before. The second claim shows then that C plays the
same role as A.

Proc. 5th AAIM, 2009

Lemma 2. Let u be a vertex satisfying the three preconditions of Reduction
Rule 2 and let G′ denote the graph resulting from applying Reduction Rule 2
once to u. Then, in G′, with the described implementation of Reduction Rule 2,
each vertex in clique C has at most ŝ non-adjacent vertices in NG′(C).

With these two claims, we can prove the correctness and the running time
of Reduction Rule 2.

Lemma 3. Reduction Rule 2 is correct and can be carried out in O(n3) time.

Finally, we prove the main theorem in this section. Note that the running
time upper bound is a pure worst-case estimation; improvements are conceivable.

Theorem 1. s-Plex Editing admits a problem kernel with (4s2−2) ·k+4(s−
1)2 vertices for s ≥ 2. It can be computed in O(n4) time.

Proof. Let Gopt denote the s-plex cluster graph resulting from applying a so-

lution S with |S| ≤ k to the input graph G = (V, E), and let K1, . . . , Kl be
the s-plexes in Gopt. The vertices V of Gopt can be partitioned into two sub-
sets, namely, X , the set of vertices that are endpoints of the edges modified
by S, and Y := V \ X . For an s-plex Ki, let Xi := X ∩ Ki and Yi := Y ∩ Ki.
As stated in the beginning of this section, we know that |X | ≤ 2k. Moreover,
if |Yi| > max{ŝ ·|Xi|, 2 ŝ} for some i, then there must be a vertex u ∈ Yi that sat-
isfies conditions C1–C4. By N1

2 (u) ⊆ Yi and N [u] ⊆ Ki, vertex u fulfils the first
two preconditions of Reduction Rule 2. Since |Yi| ≤ |N1(u) ∪N1

2 (u) ∪ {u}|, this
implies either |Yi| ≤ α := 2 ŝ ·(|N2(u)|+ |N2

2 (u)|+ ŝ) or Reduction Rule 2 can be
applied to u. If we assume that the input graph is reduced with respect to both
data reduction rules, then the former case applies. Note that N2(u)∪N2

2 (u) ⊆ X
and, for every deleted edge, each of its two endpoints in X might be counted
twice, once in N2(v) for a vertex v ∈ Ki ∩ Y and once in N2

2 (w) for another
vertex w ∈ Kj ∩ Y with i 6= j. Hence, considering all s-plexes, we then have

∑

1≤i≤l

|Yi| ≤
∑

1≤i≤l

max{2 ŝ, ŝ ·|Xi|, 4 ŝ ·(|Xi| + ŝ))}
(∗∗∗)

≤ 8 ŝ k + 4 ŝ2 ·(k + 1).

The inequality (***) follows from |X | ≤ 2k and the fact that deleting at
most k edges from a connected graph results in at most k + 1 connected com-
ponents. Together with |X | ≤ 2k, we obtain a problem kernel with |X | + |Y | ≤
4 ŝ2(k + 1) + 8 ŝ k + 2k = (4s2 − 2)k + 4(s − 1)2 vertices.

The running time O(n4) follows directly from Lemma 3 and the fact that
Reduction Rule 2 can be applied at most n times. ⊓⊔

4 Forbidden Subgraph Characterization and Search Tree

This section presents a forbidden subgraph characterization of s-plex cluster
graphs for any s ≥ 1 as well as an exact search tree algorithm that makes use

Proc. 5th AAIM, 2009

Input: G = (V, E) from C(s, i) with i · (i + 1) > s

Output: An induced subgraph G′ ∈ C(s, i′) of G with i′ < i

1 Let v = argminw∈V {degG(w)}
2 if degG(v) < i then

3 return a connected graph induced by NG[v] and further s arbitrary vertices
4 Let Cutvertices be the set of cut-vertices of G

5 if (NG(v) \ Cutvertices) 6= ∅ then

6 return graph G − w for an arbitrary w ∈ (NG(v) \ Cutvertices)
7 Let NG(v) = {u1, u2, . . . , ui}
8 Let Uj ⊆ V be the vertices not reachable from v in G − uj , for 1 ≤ j ≤ i

9 Let r = argminj=1,...,i{|Uj |}
10 return G − (Ur \ {w}) for an arbitrary vertex w ∈ Ur

Fig. 3. Algorithm A to compute smaller forbidden subgraphs.

of this characterization. We provide a characterization of s-plex cluster graphs
by means of induced forbidden subgraphs. More specifically, we specify a set F
of graphs such that a graph G is an s-plex cluster graph iff G is F-free, that is,
G does not contain any induced subgraph from F . If s = 1, where all connected
components of the cluster graph are required to form cliques, the only forbidden
subgraph is a path induced by three vertices [14]. By way of contrast, if s ≥ 2,
we face up to exponentially in s many forbidden subgraphs. To cope with this,
we develop a characterization of these subgraphs that still allows us to derive
efficient algorithms. More specifically, we show that s-plex cluster graphs are
characterized by forbidden subgraphs with O(s) vertices and that if a graph is not
an s-plex cluster graph then a forbidden subgraph can be found in O(s · (n+m))
time.

The starting point for the forbidden subgraph characterization are the con-
nected graphs that contain a vertex that is non-adjacent to s vertices. These
graphs clearly are no s-plex cluster graphs. Let C denote the set of connected
graphs. Define C(s, i) := {G = (V, E) ∈ C |(|V | = s+1+i)∧(∃v ∈ V : degG(v) =

i)} and F(s, i) :=
⋃i

j=1 C(s, j). The following lemma shows that the graphs in
F(s, n − s − 1) are forbidden.

Lemma 4. A graph G is an s-plex cluster graph iff G is F(s, n − s − 1)-free.

Next, we show that instead of studying graphs with O(n) vertices, we can
focus on graphs with O(s) vertices by presenting an algorithm (Algorithm A,
see Fig. 3) shrinking the size of large forbidden subgraphs. More precisely, we
show that if the forbidden subgraph G ∈ C(s, i) with i · (i + 1) > s then we can
always remove at least one vertex from G and still obtain a forbidden induced
subgraph. For brevity, let Ts be the maximum integer satisfying Ts · (Ts +1) ≤ s,
that is, Ts = ⌊−0.5 +

√
0.25 + s⌋.

Lemma 5. Given a graph G = (V, E) ∈ C(s, i) such that i > Ts, Algorithm A
(Fig. 3) computes in O(|V | + |E|) time an induced subgraph G′ ∈ C(s, i′) of G,
with i′ < i.

Proc. 5th AAIM, 2009

Proof. Consider lines 1 to 3 of the algorithm. If a vertex v in G has degree less
than i, then we can clearly find a graph from C(s, degG(v)) by choosing NG[v]
and a set S ⊆ V of s further (arbitrary) vertices such that G[NG[v] ∪ S] is
connected. This is doable in linear time by breadth-first search starting at v.

Consider lines 4 to 6. If one of the neighboring vertices of v, say w, is no
cut-vertex, then we can delete w from G obtaining a graph from C(s, i−1). Note
that cut-vertices can be computed in linear time [15].

Consider lines 7 to 9. All neighboring vertices NG(v) = {u1, u2, . . . , ui} of v
are cut-vertices and the minimum vertex degree is i with i·(i+1) > s. On the one
hand, note that |Uj| ≥ i for every 1 ≤ j ≤ i since the minimum vertex degree of G
is i and since for every vertex w ∈ Uj it holds that NG(w) ⊆ (Uj∪{uj})\{w}. On

the other hand, since
∑i

j=1 |Uj| ≤ s, there must exist at least one r, 1 ≤ r ≤ i,
with |Ur| ≤ s/i < i · (i + 1)/i = i + 1. Therefore, |Ur| = i. Moreover, since the
minimum vertex degree in G is i, Ur ∪ {ur} forms a clique of size i + 1 and thus
by deleting all but one vertex of Ur we obtain a graph from C(s, 1). Note that
Tarjan’s algorithm [15] also computes a so-called block-tree. With the help of
this data structure, the sets Uj can be easily computed in linear time. ⊓⊔

We can iteratively use Algorithm A to compute an induced subgraph of G′

from C(s, i′) with i′ ≤ Ts. This results in the following forbidden subgraph
characterization that is—in contrast to the one of Lemma 4—tight concerning
the number of vertices of the forbidden subgraphs.

Theorem 2. A graph G = (V, E) is an s-plex cluster graph if and only if G
is F(s, Ts)-free.

Proof. On the one hand, due to Lemma 4 we know that an s-plex cluster graph
is F(s, n−s−1)-free and, hence, F(s, Ts)-free. On the other hand, if G contains
a forbidden subgraph from C(s, i′) with i′ · (i′ + 1) > s, and, hence, according to
Lemma 4 is not an s-plex cluster graph, then we can iteratively use Algorithm A
(Figure 3) to find a forbidden subgraph from C(s, i) with i ≤ Ts. ⊓⊔

To show our main result, we develop an O(s · (n + m))-time algorithm (Al-
gorithm B, see Figure 4) to find a forbidden subgraph from F(s, s). Since the
number of vertices in such a subgraph is upper-bounded by O(s), we can then
apply Algorithm A iteratively (O(s) times) to obtain a forbidden subgraph
from F(s, Ts). Overall, this approach yields linear-time for any constant s.

Lemma 6. Algorithm B (Figure 4) is correct and has running time O(s · (|V |+
|E|)).

Proof. Consider lines 1 to 3. If degG(u) ≤ s, then we can clearly find a set S ⊆ V
of s vertices such that G[NG[u] ∪ S] is connected. This graph is in C(s, i′) for
an i′ ≤ s.

In the following, we need the observation that if one of the neighboring ver-
tices of v is a cut-vertex, then there exists at least one vertex in G′ with degree
at most s. This can be seen as follows. Assume that x ∈ NG(v) is a cut-vertex

Proc. 5th AAIM, 2009

Input: G = (V, E) from C(s, i) with i > s

Output: An induced subgraph G′ ∈ C(s, i′) of G with i′ ≤ s

1 Let u = argminw∈V ′{degG(w)}
2 if degG(u) ≤ s then

3 return a connected graph induced by NG[u] and further s arbitrary vertices
4 Let v ∈ V ′ be a vertex with degG(v) = i

5 Let NG(v) = {u1, u2, . . . , ui}
6 Let K = {K1, K2, . . . , Kl} with l ≤ s

denote the connected components of G − NG[v]
7 Construct an auxiliary bipartite graph H = (WN , WK , F) with
8 WN := {wuj

| 1 ≤ j ≤ i},
9 WK := {wKq | 1 ≤ q ≤ l}, and
10 F := { {wuj

, wKq} | ∃{uj , v
′} ∈ E with v′ ∈ Kq}

11 Let r := arg minq=1,...,l{degH(wKq)}
12 Let CC := {uj | wuj

∈ NH(wKr)}

13 Let Ĝ = G − (CC \ {w}) for an arbitrary vertex w ∈ CC

14 Let v′ = argminw∈V (Ĝ){degĜ(w)}

15 return a connected graph induced by NĜ[v′] and further s arbitrary vertices

Fig. 4. Algorithm B to compute in linear time a forbidden subgraph with O(s)
vertices.

and let U ⊆ V denote the vertices not reachable from v in G − x. Since a ver-
tex w ∈ U can only be adjacent to vertices in U ∪ {x} and |U | ≤ s, we have
that degG(w) ≤ s.

According to this observation, when entering line 5 of Algorithm B, we know
that none of the vertices in NG(v) = {u1, u2, . . . , ui} is a cut-vertex. To make
use of the observation, the remaining part of the algorithm is devoted to find-
ing a set of vertices from NG(v) whose removal leads to a connected graph
in which one neighbor of v is a cut-vertex. To this end, one builds an auxil-
iary bipartite graph H = (WN , WK , F) (lines 5-10). As to the running time
needed for the construction of H , note that the degree of a vertex in WN is at
most s since G − (NG(v) ∪ {v}) contains exactly s vertices and, hence, WK has
size at most s. Thus, to construct F , we can iterate over the edge set E and,
given an edge {uj, v

′} with v′ ∈ Kq, we can decide in O(s) time whether the
edge {wuj

, wKq
} is contained in F . Thus, the bipartite auxiliary graph H can

be constructed in O(s · (|V | + |E|)) time.
Consider lines 11 to 13. By choosing a “component vertex” wKr

of mini-
mum degree, we ensure that the set CC is a minimum-cardinality set of vertices
from NG(v) separating at least one connected component in K from v. In par-
ticular, CC separates the vertices in Kr from v. Let w be an arbitrary vertex
of CC. By the deletion of all but one vertex from CC (line 13), we ensure that
the graph Ĝ = G − (CC \ {w}) is still connected and contains at least one
cut-vertex, namely w. Hence, according to the observation above, Ĝ contains a
vertex of degree at most s. Let v′ be a minimum-degree vertex of Ĝ (line 14).

Proc. 5th AAIM, 2009

As a consequence, deg
Ĝ

(v′) ≤ s and we can clearly find a set S ⊆ V (Ĝ) of s

vertices such that G′ := Ĝ[N
Ĝ

[v′] ∪ S] is connected. Note that G′′ is contained
in C(s, deg

Ĝ
(v′)) ⊆ F(s, s).

Altogether, the running time is O(s · (|V | + |E|)). ⊓⊔

Summarizing, we obtain a linear-time algorithm for finding an induced for-
bidden subgraph if s is a constant.

Theorem 3. Let G = (V, E) be a graph that is not an s-plex cluster graph.
Then, a forbidden subgraph from F(s, Ts) can be found in O(s · (n + m)) time.

Proof. Let C = (W, F) be a connected component of G that is not an s-plex.
Let v be a vertex of minimum degree in C. Clearly, by breadth-first search
starting at v we can find a set S ⊆ W of s vertices such that G′ := G[NG[v] ∪
S] is connected. Note that G′ ∈ C(s, degG′(v)). If degG′(v) > s, then we can
apply Algorithm B (Figure 4) once to find an induced forbidden subgraph G′′

from F(s, s). In order to find a forbidden subgraph from F(s, Ts), we apply
Algorithm A (Figure 3) at most O(s) times. ⊓⊔

Next, we present a search tree algorithm that is based on this forbidden
subgraph characterization. To obtain an s-plex cluster graph, every forbidden
subgraph has to be destroyed via edge modifications. To this end, we apply a
branching strategy.

Theorem 4. s-Plex Editing can be solved in O((2s + ⌊√s⌋)k · s · (n + m))
time.

Proof. Given an instance (G, k) of s-Plex Editing, we search in G for a for-
bidden subgraph from F(s, Ts). By Theorem 3, this can be done in O(s ·(n+m))
time. If G does not contain a subgraph from F(s, i), then G already is an s-plex
cluster graph and we are done. Otherwise, let S be a set of vertices inducing a
forbidden subgraph G[S] ∈ C(s, i′) ⊆ F(s, i), where i′ ≤ Ts. In the following,
let v denote a vertex with degG[S](v) = i′. By the definition of C(s, i′), such
a vertex must exist. We now branch into the different possibilities to destroy
the forbidden subgraph G[S] and then recursively solve the instances that are
created in the respective search tree branches.

For branching, we either insert edges incident to v or delete edges in G[S].
It is sufficient to only consider these edge modifications since, if none of these is
performed, then G[S] remains connected and there are s vertices in G[S] that
are not adjacent to v, contradicting the s-plex (cluster graph) definition.

First, we consider edge insertions between v and vertices u ∈ S \ N [v].
Since G[S] ∈ C(s, i′) and degG[S](v) = i′, we have |S \ N [v]| = s. Therefore,
we branch into s cases, inserting a different edge in each search tree branch. The
parameter decreases by 1 in each branch.

Besides this, we consider edge deletions. Hence, in each remaining branch,
there is at least one vertex u ∈ S such that u and v are not connected, that is,
they are in different connected components of the final s-plex cluster graph. We

Proc. 5th AAIM, 2009

now show that for each u ∈ S we can create a search tree branch in which at
least one edge deletion is performed for the case that u and v are not connected
in the final cluster graph. Let Sl ⊂ S denote the vertices that have distance
exactly l to v in G[S]. We first consider the vertices in S1 (the neighbors of v
in G[S]), then the vertices in S2, and so on.

For each u ∈ S1, we create a search tree branch in which we disconnect u
and v. Clearly this means that we have to delete the edge {u, v}. To branch
on the vertices in S2, we can assume that the vertices from N [v] = {v} ∪ S1

end up in the same cluster, since we have already considered all possibilities of
removing edges between v and the vertices in S1. Therefore, when considering
the case that a vertex u ∈ S2 and v are not connected in the final cluster graph,
we must delete all edges between u and its neighbors in S1. At least one such
edge must exist because u ∈ S2. Therefore, for each case, we create a search tree
branch in which the parameter is decreased by at least 1.

The case distinction is performed for increasing values of l, always assuming
that v and the vertices in S1 ∪ S2 ∪ . . . ∪ Sl−1 end up in the same cluster of the
final cluster graph. Hence, when considering the case that v and a vertex u ∈ Sl

end up in different clusters, we create a search tree branch in which the edges
between u and its neighbors in Sl−1 are deleted, and at least one of these edges
must exist. Hence, we create |S| − 1 = s + i′ ≤ s + Ts branches in which edges
are deleted. Together with the s cases in which edge insertions are performed,
we branch into 2s+ Ts cases, and in each branch, the parameter is decreased by
at least 1. Branching is performed only as long as k > 0. The search tree thus
has size O((2s + Ts)

k) = O((2s + ⌊√s⌋)k). Using breadth-first search, the steps
at each search tree node can be performed in O(s · (n + m)) time which results
in the claimed running time bound. ⊓⊔

Using Theorems 1 and 4, by interleaving the problem kernelization and the
search tree [12], we get:

Theorem 5. s-Plex Editing can be solved in O((2s + ⌊√s⌋)k + n4) time.

5 Conclusion

We initiated the study of the graph modification problem s-Plex Editing. We
believe that s-Plex Editing may have practical relevance for graph-based data
clustering in a similar way as its well-studied special case Cluster Editing.
Our results lead to numerous opportunities for future research. First, from the
viewpoint of algorithm theory, we concentrated on parameterized algorithms,
leaving open the study of approximation algorithms. Second, we left unstudied
the sometimes desirable case of having a specified number of clusters to be
generated. As to applications, important issues of interest for future study would
be to deal with weighted inputs or to try to obtain faster algorithms for special
cases such as s = 2. A thorough empirical study as recently undertaken for
Cluster Editing [4] is a natural next step for future work.

Proc. 5th AAIM, 2009

Acknowledgement. We are grateful to Falk Hüffner for inspiring discussions in
the early phase of this research.

References

[1] B. Balasundaram, S. Butenko, I. V. Hicks, and S. Sachdeva. Clique relaxations in
social network analysis: The maximum k-plex problem, 2006. Manuscript.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,
56(1–3):89–113, 2004.

[3] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. Going weighted: Param-
eterized algorithms for cluster editing. In Proc. 2nd COCOA, volume 5165 of
LNCS, pages 1–12. Springer, 2008.

[4] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing:
Evaluation and experiments. In Proc. 7th WEA, volume 5038 of LNCS, pages
289–302. Springer, 2008.

[5] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D. Mountz, N. E.
Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly, and R. W. Williams.
Complex trait analysis of gene expression uncovers polygenic and pleiotropic net-
works that modulate nervous system function. Nature Genetics, 37(3):233–242,
February 2005.

[6] V. J. Cook, S. J. Sun, J. Tapia, S. Q. Muth, D. F. Argüello, B. L. Lewis, R. B.
Rothenberg, P. D. McElroy, and the Network Analysis Project Team. Transmis-
sion network analysis in tuberculosis contact investigations. Journal of Infectious

Diseases, 196:1517–1527, 2007.
[7] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient param-

eterized preprocessing for cluster editing. In Proc. 16th FCT, volume 4639 of
LNCS, pages 312–321. Springer, 2007.

[8] J. Guo. A more effective linear kernelization for Cluster Editing. Theoretical

Computer Science, 410(8):718–726, 2009.
[9] J. Guo and R. Niedermeier. Invitation to data reduction and problem kerneliza-

tion. ACM SIGACT News, 38(1):31–45, 2007.
[10] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation concepts for

enumerating dense subgraphs. In Proc. 13th COCOON, volume 4598 of LNCS,
pages 140–150. Springer, 2007.

[11] N. Memon, K. C. Kristoffersen, D. L. Hicks, and H. L. Larsen. Detecting crit-
ical regions in covert networks: A case study of 9/11 terrorists network. In
Proc. 2nd ARES, pages 861–870. IEEE Computer Society, 2007.

[12] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31 in Oxford
Lecture Series in Mathematics and Its Applications. Oxford University Press, 2006.

[13] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical Sociology, 6:139–154, 1978.

[14] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete

Applied Mathematics, 144(1–2):173–182, 2004.
[15] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.
[16] R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Transactions on

Neural Networks, 16(3):645–678, 2005.
[17] A. van Zuylen and D. P. Williamson. Deterministic algorithms for rank aggre-

gation and other ranking and clustering problems. In Proc. 5th WAOA, volume
4927 of LNCS, pages 260–273. Springer, 2008.

	A More Relaxed Model for Graph-Based Data Clustering: s-Plex Editing

