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A MORE RELAXED MODEL FOR GRAPH-BASED DATA

CLUSTERING: S-PLEX CLUSTER EDITING∗
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JOHANNES UHLMANN‡‖

Abstract. We introduce the s-Plex Cluster Editing problem as a generalization of the well-
studied Cluster Editing problem, both being NP-hard and both being motivated by graph-based
data clustering. Instead of transforming a given graph by a minimum number of edge modifications
into a disjoint union of cliques (this is Cluster Editing), the task in the case of s-Plex Cluster

Editing is to transform a graph into a cluster graph consisting of a disjoint union of so-called s-
plexes. Herein, an s-plex is a vertex set S inducing a subgraph in which every vertex has degree
at least |S| − s. Cliques are 1-plexes. The advantage of s-plexes for s ≥ 2 is that they allow to
model a more relaxed cluster notion (s-plexes instead of cliques), better reflecting inaccuracies of
the input data. We develop a provably effective preprocessing based on data reduction (yielding
a so-called problem kernel), a forbidden subgraph characterization of s-plex cluster graphs, and a
depth-bounded search tree which is used to find optimal edge modifications sets. Altogether, this
yields efficient algorithms in case of moderate numbers of edge modifications, this often being a
reasonable assumption under a maximum parsimony model for data clustering.

Key words. NP-hard problems, exact algorithms, fixed-parameter tractability, data reduction,
graph modification, k-plex, dense subgraphs, forbidden subgraph characterization.
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1. Introduction. The purpose of a clustering algorithm is to group together a
set of (many) objects into a relatively small number of clusters such that the elements
inside a cluster are highly similar to each other whereas elements from different clusters
have low or no similarity. There are numerous approaches to clustering and “there is
no clustering algorithm that can be universally used to solve all problems” [36]. One
prominent line of attack is to use methods based on graph theory [30, 32]. In this line,
extending and complementing previous work on cluster graph modification problems,
we introduce the new edge modification problem s-Plex Cluster Editing.

In the context of graph-based clustering, data items are represented as vertices
and there is an undirected edge between two vertices if and only if the interrelation
between the two corresponding items exceeds some threshold value. Clustering with
respect to such a graph then means to partition the vertices into sets where each set
induces a dense subgraph (that is, a cluster) of the input graph whereas there are only
few edges between the vertices of different clusters. In this scenario, the algorithmic
task then typically is to transform the given graph into a so-called cluster graph by
a minimum number of graph modification operations [32]. Herein, a cluster graph is
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a graph where all connected components form clusters and a graph modification is to
insert or delete an edge. One of the most prominent problems in this context is the NP-
hard Cluster Editing problem (also known as Correlation Clustering) [32, 2],
where, given a graph G and an integer k ≥ 0, one wants to transform G into a
graph whose connected components all are cliques, using at most k edge insertions
and deletions. In this work, with the NP-hard s-Plex Cluster Editing problem,
we study a more relaxed and often presumably more realistic variant of Cluster

Editing: Whereas in the case of Cluster Editing the clusters shall be cliques, in
the case of s-Plex Cluster Editing we only demand them to be s-plexes. A vertex
subset S ⊆ V of a graph G = (V, E) is called s-plex if the minimum vertex degree
in the induced subgraph G[S] is at least |S| − s. Note that a clique is nothing but
a 1-plex. Replacing cliques by s-plexes for some integer s ≥ 2 allows one to reflect
the fact that most real-world data are somewhat “spurious” and so the demand for
cliques may be overly restrictive in defining what a cluster shall be (also see [8, 31]
concerning criticism of the overly restrictive nature of the clique concept).

Problem formulation. In the following, we call a graph an s-plex cluster graph if
all its connected components are s-plexes.

s-Plex Cluster Editing

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Can G be modified by up to k edge deletions and inser-
tions into an s-plex cluster graph?

Indeed, seen as an optimization problem, the goal is to minimize the number of edge
modifications.1 Note that 1-Plex Cluster Editing is the same as Cluster Edit-

ing. Compared to Cluster Editing, s-Plex Cluster Editing with s ≥ 2 is a
more flexible tool for graph-based data clustering: For increasing s, the number of
edge modifications should decrease.2 This important advantage of s-Plex Clus-

ter Editing reflects the observation that fewer edge modifications mean that we
introduce fewer “errors” into our final cluster solution, because the computed s-plex
cluster graph is closer to the original data. This is in accordance with the natural
hypothesis that the less one perturbs the input graph the more robust and plausible
the achieved clustering is (maximum parsimony principle, also see Böcker et al. [5]
for making this point in terms of Cluster Editing). Figure 1.1 presents a simple
example comparing Cluster Editing (that is, 1-Plex Cluster Editing) with
2-Plex Cluster Editing and 3-Plex Cluster Editing in terms of the (number
of) necessary edge modifications.

Previous work and motivation. Our work combines two lines of research, one
dealing with the s-plex concept and the other one dealing with the NP-hard Clus-

ter Editing problem. The s-plex concept was introduced in 1978 by Seidman and
Foster [31] in the context of social network analysis. Recently, a number of theoret-
ical and experimental studies explored (and confirmed) the usefulness of s-plexes in
various contexts [1, 10, 22, 24, 25]. These studies exploit that s-plexes are a more
relaxed notion of the concept of dense (sub)graph than cliques are. Concerning com-
putational complexity, in analogy to finding maximum-cardinality cliques also finding
maximum-cardinality s-plexes is NP-hard [1] and further hardness results in analogy
to clique finding hold as well [22]. Wu and Pei [35] considered the problem of enumer-

1All algorithms in this work can easily solve the optimization version of s-Plex Cluster Editing,
where k is minimized.

2The number of edge modifications is non-increasing for increasing s, since an s-plex is also
an (s + 1)-plex.
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Fig. 1.1. An example for different optimal (numbers of) modifications that are applied to (a)
an input graph using (b) Cluster Editing (equivalently, 1-Plex Cluster Editing), (c) 2-Plex

Cluster Editing, and (d) 3-Plex Cluster Editing. Deleted edges are dashed, inserted edges are
bold.

ating all maximal s-plexes. See also Cohen et al. [9] for related work on enumerating
all maximal induced subgraphs for (connected-)hereditary graph properties.

Cluster Editing, which uses cliques for defining clusters, is one of the most
intensively studied problems in graph-based data clustering. Due to its NP-hardness,
it has been considered from the viewpoints of polynomial-time approximability as
well as parameterized algorithmics. As to approximability, the currently best known
approximation factor is 2.5 [37]. Considering the parameter k defined as the number
of allowed edge modifications, a search tree of size O(1.83k) [5] has been developed
and several studies concerning provably effective preprocessing by polynomial-time
data reduction (which is called problem kernelization in the context of parameterized
algorithmics [12, 15, 26]) have been performed [7, 13, 16, 17, 28]. The advantage of
fixed-parameter algorithms is that, other than approximation algorithms, they find
minimum-cardinality sets of editing operations. Fixed-parameter algorithms have led
to several successful experimental studies mainly in the context of biological net-
work analysis [5, 6, 11, 29, 34]. Thus, fixed-parameter algorithms combined with
clever heuristics seem to be a locomotive for practically solving instances of Clus-

ter Editing. However, Cluster Editing is NP-hard and, as a consequence, the
parameterized algorithms only run fast in case of moderate values of the parameter k,
the number of allowed edge editing operations. Hence, it is desirable to have the
parameter k small not only for the sake of not too much perturbing the input graph
but also for the sake of obtaining efficient solving algorithms.3

In summary, s-Plex Cluster Editing, so far unexplored, might become a
valuable alternative to Cluster Editing. To this end, this work provides a first
theoretical study of s-Plex Cluster Editing. Despite its NP-hardness, we can
deliver several algorithmic results, supporting the hope for a practically useful clique
relaxation in the context of cluster graph modification problems.

Our contributions. In Section 3, we develop a polynomial-time preprocessing algo-
rithm that allows to provably simplify input instances of s-Plex Cluster Editing

to smaller ones. More specifically, the corresponding data reduction rules, given an
instance (G = (V, E), k) of s-Plex Cluster Editing with s ≥ 2, in polynomial
time construct an equivalent reduced instance4 (G′ = (V ′, E′), k′), k′ ≤ k, and, most

3The essential fact is that fixed-parameter algorithms have time complexity exponential in the
parameter but polynomial in the overall input size, see Section 2 for more on that.

4By “equivalent” we mean that yes-instances are mapped to yes-instances and no-instances are
mapped to no-instances, and, moreover, a solution set for the original instance can be easily con-
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importantly, |V ′| ≤ (8s2 − 6) · k + 8(s− 1)2. In other words, the number of vertices of
the reduced graph only depends on s and k (in fact, in case of s being a constant, it is
linear in k), implying that if k is small then the data reduction will greatly simplify the
instance basically without losing information. In terms of parameterized algorithmics,
the reduced instance gives a so-called problem kernel (see Section 2 for more on that).
Moreover, in Section 4, we provide a graph-theoretic characterization of s-plex cluster
graphs by means of forbidden subgraphs. In particular, we obtain a linear-time recog-
nition algorithm for s-plex cluster graphs for every constant s. This is of independent
graph-theoretic interest and is also of decisive algorithmic use: Based on the forbidden
subgraph characterization of s-plex cluster graphs, in Section 5, we show that s-Plex

Cluster Editing can be solved in O((2s + ⌊√s⌋)k · s · (|V | + |E|)) time (which is
linear for constant values of s and k) and, alternatively, in O((2s + ⌊√s⌋)k + |V |4)
time.

2. Preliminaries. We only consider undirected graphs G = (V, E), where V is
the set of vertices and E is the set of edges. Throughout this paper, we set n := |V |
and m := |E|. For a graph G, we also use V (G) and E(G) to denote its vertex and
edge sets, respectively. The (open) neighborhood NG(v) of a vertex v ∈ V is the set
of vertices that are adjacent to v in G. The degree of a vertex v, denoted by degG(v),
is the cardinality of NG(v). For a set U of vertices, NG(U) :=

⋃

v∈U NG(v) \ U . We
use NG[v] to denote the closed neighborhood of v, that is, NG[v] := NG(v)∪{v}. For
a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the vertex set V ′

with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G−V ′ as an abbreviation
for G[V \ V ′] and for a vertex v ∈ V let G− v denote G− {v}. A vertex v ∈ V (G) is
called a cut-vertex if G − v has more connected components than G.

The main purpose of our work is to study the algorithmic tractability of s-Plex

Cluster Editing. Unfortunately (but not surprisingly), it turns out to be NP-
complete, excluding any hope for polynomial-time algorithms. The NP-completeness
of s-Plex Cluster Editing with s = 1 (that is, Cluster Editing) was shown
by Křivánek and Morávek [23]. A slightly modified version of a different NP-hardness
proof by Shamir et al. [32] works for all s ≥ 2. We omit the basically straightforward
details.

Parameterized algorithmics [12, 15, 26] aims at a multivariate complexity anal-
ysis of problems without giving up the demand for finding optimal solutions. This
is undertaken by studying relevant problem parameters and their influence on the
computational hardness of problems. The hope lies in accepting the seemingly in-
evitable combinatorial explosion for NP-hard problems, but confining it to the pa-
rameter. Hence, the decisive question is whether a given parameterized problem is
fixed-parameter tractable (FPT) with respect to a parameter k. In other words, one
asks for the existence of a solving algorithm with running time f(k) ·poly(n) for some
computable function f . A core tool in the development of parameterized algorithms
is polynomial-time preprocessing by data reduction rules, often yielding a problem
kernel [4, 18]. Herein, the goal is, given any problem instance G with parameter k, to
transform it in polynomial time into a new instance G′ with parameter k′ such that
the size of G′ is bounded from above by some function only depending on k, k′ ≤ k,
and (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance. We call a data
reduction rule correct if the new instance after an application of this rule is a yes-
instance if and only if the original instance is a yes-instance. We also employ search

structed from the solution set for the reduced instance.
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trees for our parameterized algorithms. Search tree algorithms work in a recursive
manner. The number of nodes in the corresponding tree is the number of recursion
calls.

3. Data Reduction and Kernelization. In this section, we show that s-Plex

Cluster Editing for s ≥ 2 admits a problem kernel with at most (8s2−6) ·k+8(s−
1)2 vertices. In particular, for the most relevant case of constantly bounded s-values,
the problem kernel has a linear number of vertices. Since s-Plex Cluster Editing

is a generalization of Cluster Editing, it is a natural idea to follow a kernelization
strategy that leads to O(k)-vertex kernels for Cluster Editing [17, 7]. This strategy
makes use of the central observation that for Cluster Editing the vertices of each
resulting clique that are not incident to any modified edge form a so-called “critical
clique” in the input graph, that is, they all have the same closed neighborhood. In
order to obtain a kernel with O(k) vertices, the crucial point is to bound the size of
critical cliques in the input graph. To this end, one needs two observations: First,
optimal edge modification sets never “split” a critical clique. This means that for
every critical clique there is a clique in the resulting cluster graph entirely containing
it. Second, if a critical clique is large enough compared to its neighborhood, then
there must be a clique in the resulting cluster graph containing this critical clique and
its neighbors but nothing else. Then, as long as the critical clique is large enough, the
reduction rule can safely remove vertices of this critical clique from the input graph.

In contrast, an s-plex can have an unbounded number of vertices that have dif-
ferent neighborhoods. Therefore, we need a new concept other than critical cliques to
represent a set of vertices that form an s-plex and that have weak connection to the
remaining part of the graph. Moreover, if there is such an “almost-s-plex” P of large
size, then we need to reduce the size of P . However, we cannot simply remove some
vertices from P as in the Cluster Editing case, since the vertices in P have different
neighborhoods in V \ P . Consequently, we need a more sophisticated data reduction
rule (Reduction Rule 2) and the accompanying mathematical analysis requires new
tools.

The first data reduction rule is obvious and its running time is O(n + m):

Reduction Rule 1: Remove from G connected components that are s-plexes.

Our problem kernelization consists of only one further, technically complicated
data reduction rule. Roughly speaking, the idea behind this rule is that a data
reduction can be performed if there is a vertex with a “dense local environment” that
is only loosely connected to the rest of the graph.

We start with explaining in more detail the purpose of introducing the second data
reduction rule. Let Gplex denote the s-plex cluster graph resulting from applying a
solution S with |S| ≤ k to the graph G = (V, E) which is reduced with respect to
the first rule, and let K1, . . . , Kl be the s-plexes in Gplex. The vertex set V can
be partitioned into two subsets, namely, X , the set of vertices that are endpoints of
the edges modified by S, and Y := V \ X . For each s-plex Ki, let Xi := X ∩ Ki

and Yi := Y ∩Ki. Clearly, |X | ≤ 2k. It remains to analyze |Y |. If |Yi| ≤ (s− 1) · |Xi|
or |Yi| ≤ 2(s − 1) for all i, we can conclude that there is a problem kernel with O(k)
vertices, since there can be at most 2k s-plexes in Gplex. However, for an arbitrary yes–
instance, each Yi can contain an unbounded number of vertices. Hence, a second data
reduction rule is required. This rules is based on the following structural observations.
Consider an s-plex Ki with |Yi| > max{(s−1)·|Xi|, 2(s−1)}. Because the vertices in Yi

are not affected by the edge modifications in S, the fact that Ki is an s-plex implies
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u

N1
2 (u)

N1(u)

N2
2 (u)

N2(u)

Fig. 3.1. An illustration of the partitions of N2(u) and N(u) for ŝ = 2. Vertex u satisfies the
first two preconditions of Reduction Rule 2.

that every vertex in Xi is adjacent to at least |Yi| − s + 1 vertices in Yi in the input
graph G. With |Yi| > (s − 1) · |Xi|, there has to be a vertex u ∈ Yi with Xi ⊆ NG(u)
by the pigeonhole principle. Moreover, if |Yi| > 2(s − 1), then the fact that Ki is an
s-plex implies that |Yi \NG[u]| ≤ s−1, which means |NG[u]∩Yi| > s−1. Thus, every
vertex in Yi has at least one neighbor in NG[u] and, hence, distance at most two to u
in G.

Let us summarize our findings: If we do not apply a second data reduction rule
to G, then there can be arbitrarily large s-plexes Ki in Gplex, in particular, |Yi| >
max{(s− 1) · |Xi|, 2(s− 1)}. However, then, there must be a vertex u ∈ Yi satisfying
the following conditions:

C1. Xi ⊆ NG(u),
C2. NG[u] ⊆ Ki,
C3. |Yi \ NG[u]| ≤ s − 1, and
C4. all vertices in Yi \ NG[u] have distance two to u in G.

Thus, if |Yi| is very large, then |NG[u]| is very large and we need a data reduction
rule to reduce NG[u]. This is exactly what the second rule does.

To simplify notation, let ŝ := s−1 and write N(u) and N [u] for NG(u) and NG[u],
respectively. Let N2(u) denote the set of vertices that have, in G, distance two to u.
Further, we partition N2(u) into two sets, where the first set N1

2 (u) consists of vertices
tightly coupled with u:

N1
2 (u) := {v ∈ N2(u) : |N [u] \ N(v)| ≤ ŝ},

N2
2 (u) := N2(u) \ N1

2 (u).

Analogously, N(u) is also partitioned into two sets:

N1(u) := {v ∈ N(u) :
(

N(v) ⊆ N [u] ∪ N1
2 (u)

)

∧
(

|N [v]| ≥ |N [u] ∪ N1
2 (u)| − ŝ

)

},
N2(u) := N(u) \ N1(u).

Figure 3.1 illustrates the above definitions. It is easy to see that the sets N1(u),
N2(u), N1

2 (u), and N2
2 (u) can be computed in O(n2) time for any vertex u.

Following the above analysis, we need a data reduction rule that shrinks the set
of the vertices tightly coupled with a vertex u having a very special neighborhood
(specified by conditions C1-C4). Using the newly introduced notation the situation
can be described as follows: There can be many vertices in N1(u) but only few (at
most ŝ) tightly coupled vertices in N2(u), that is, the N1

2 (u)-vertices. Moreover, these
N1

2 (u)-vertices are only adjacent to vertices in N(u) or to N1
2 (u)-vertices. Reduction

Rule 2, which is shown in Figure 3.2, applies in this situation and replaces N1(u) ∪
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Reduction Rule 2:
If there is a vertex u for which
(1) |N1

2 (u)| ≤ ŝ,
(2) ∀v ∈ N1

2 (u) : (N(v) ⊆ N(u) ∪ N1
2 (u)) ∧ (|N [v]| ≥ |N [u] ∪ N1

2 (u)| − ŝ), and
(3) |A| > α+1, where A := {u}∪N1(u)∪N1

2 (u) and α := 4 ŝ ·(|N2(u)|+ |N2
2 (u)|+ ŝ),

then remove A from G and add a clique C to G with α vertices for even |A| or α + 1
vertices for odd |A|. To connect C to G − A, perform the following case distinction
for every vertex v ∈ N2(u). Herein, for a vertex set U and a vertex w /∈ U , let Uw :=
U ∩ N(w) and Uw := U \ Uw.
Case 1. If |Av|−|Av| ≥ |N2(u)|+ |N2

2 (u)|, then connect v to |C|−min{ŝ, |Av|} many
vertices of C and decrease the parameter k by max{|Av| − ŝ , 0}.

Case 2. If |Av| − |Av| ≥ |N2(u)| + ŝ , then decrease the parameter k by |Av|.
Case 3. If |N2(u)|+|N2

2 (u)| > |Av|−|Av| > −|N2(u)|−ŝ, then insert edges between v
and the vertices in C such that |Cv| − |Cv| = |Av| − |Av| and decrease the
parameter k by max{|Av| − |Cv|, 0}.

Fig. 3.2. Reduction Rule 2 of the kernelization algorithm.

N1
2 (u)∪{u} by a smaller “simulating” clique. The basic idea behind Reduction Rule 2

is to consider a vertex u for which A := {u} ∪N1(u)∪ N1
2 (u) is an s-plex which only

has edges to N2(u). The first two conditions of the rule ensure the s-plex property of
A. If the third condition of Reduction Rule 2 is fulfilled, then A is too large, and thus
it must be reduced. However, since the vertices in A may have distinct neighborhoods
in N2(u), we cannot remove vertices from A arbitrarily (as it is possible for Cluster

Editing). The edges between a vertex w ∈ N2(u) and A determine whether w should
be contained in the same s-plex as A. The idea is then to replace the whole set A by
a smaller clique C and to connect C and N2(u) such that for every vertex w in N2(u)
the edges between w and C “simulate” the connection between w and A, that is, w is
together with C in an s-plex of the final cluster graph of the reduced instance if and
only if w is with A in an s-plex of the final cluster graph of the original instance.

Before proving the correctness of Reduction Rule 2, we explain three points con-
cerning its implementation which are important for proving the subsequent Lemma 3.2
and the correctness of this rule. As in Case 2 of Reduction Rule 2 no edges are in-
serted, the following discussion only addresses Cases 1 and 3. First, we fix an arbitrary
vertex x in the clique C and make x adjacent to all vertices in N2(u) satisfying Cases 1
or 3. This is needed for guaranteeing that in the reduced graph G′ there is a ver-
tex x ∈ C adjacent to all vertices in NG′(C) (note that NG′(C) is the set of vertices
in N2(u) satisfying Cases 1 or 3). Second, when connecting a vertex v satisfying
Cases 1 or 3 to C, we begin with a vertex in C which has the minimum degree in
the current graph and proceed according to the non-descending ordering of the vertex
degrees in C until |Cv| = |C| − min{ŝ , |Av|} (Case 1) or |Cv| − |Cv| = |Av| − |Av|
(Case 3). Finally, note that, since |N2(u)| + |N2

2 (u)| > |Av| − |Av| > −|N2(u)| − ŝ
for every vertex v in N2(u) satisfying Case 3 and |C| ≥ α, it is always possible to
connect v to some vertices in C such that |Cv|− |Cv| = |Av|− |Av| with the described
implementation.

To show the correctness of Reduction Rule 2, we need to prove that the input
graph G has a solution S of size at most k if and only if the graph G′ resulting
from one application of this rule has a solution S′ of size at most k′, where k′ is the
new parameter after the application of the rule. To this end, we need two claims
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(Lemma 3.1 and Lemma 3.2).

Lemma 3.1. Let u be a vertex satisfying the first two preconditions of Reduction
Rule 2 and |A| ≥ α with A and α defined as in Reduction Rule 2. Then, there exists
an optimal solution generating an s-plex cluster graph which contains an s-plex K
such that

(a) A ⊆ K and
(b) K ⊆ A ∪ N2(u).

Proof. We first prove part (a). Let Splex be an optimal solution for an input
graph G that generates an s-plex cluster graph Gplex. If in Gplex the set A = {u} ∪
N1(u) ∪ N1

2 (u) is completely contained in one s-plex, then we are done; otherwise,
we show that we can transform Splex into a new optimal solution S satisfying (a).
Let K1, . . . , Kt be the s-plexes in Gplex with Ki ∩ A 6= ∅. We define for 1 ≤ i ≤ t

1. Ai := Ki ∩ A,
2. Bi := Ki ∩ N2(u) and
3. Ci := Ki \ (Ai ∪ Bi).

We distinguish the following two cases.

First, if |Ai| + 2|Bi| ≤ |A| − ŝ for all 1 ≤ i ≤ t, then we construct a set S of edge
modifications that will generate a graph G′ that, compared to Gplex, differs only in
the Ki’s, 1 ≤ i ≤ t, and contains one more connected component G[A], the subgraph
of G induced by the vertex set A. More precisely, we remove all Ai’s from the Ki’s and
merge them into one new connected component G[A]. All other s-plexes in G′ remain
the same as in Gplex. Let K ′

i denote the corresponding modified Ki for 1 ≤ i ≤ t.
Thus, in G′, each K ′

i consists only of Bi and Ci. Since every induced subgraph of an
s-plex is clearly an s-plex, each K ′

i is an s-plex. Consider the new component G[A].
By the precondition (1) of Reduction Rule 2, u has at most ŝ non-adjacent vertices
in G[A]. By the definition of N1(u), each vertex in N1(u) has at least |A|− ŝ neighbors
in G[A]. The same holds also for the vertices in N1

2 (u) due to the precondition (2) of
Reduction Rule 2. Thus, A is an s-plex and G′ is an s-plex cluster graph. Therefore, S
is also a solution set for G. Next, we prove that S is optimal. Compared with Splex,
the solution set S contains in addition to the edge modifications in Splex the deletions
of edges between Ai and Bi for 1 ≤ i ≤ t, but saves the edge deletions between Ai’s
that are needed by Splex. Note that graph G has no edge between Ai and Ci, which
follows from Ci ∩ N [u] = ∅, Ai ∩ (N2(u) ∪ N2

2 (u)) = ∅, and precondition (2) of
Reduction Rule 2. On the one hand, the additional edge deletions in S amount to at
most

∑

1≤i≤t |Ai| · |Bi|. On the other hand, the saved edge deletions amount to at
least (

∑

1≤i≤t |Ai| · (|A| − |Ai| − ŝ))/2. By the precondition |Ai|+ 2|Bi| ≤ |A| − ŝ for
all 1 ≤ i ≤ t, we have then |S| ≤ |Splex| and S is optimal.

Second, if there is an s-plex Kj with |Aj | + 2|Bj| > |A| − ŝ , then we construct
a set S of edge modifications that will generate a graph G′ that, compared to Gplex,
differs only in the Ki’s. More precisely, we remove all Ai’s from Ki’s with i 6= j and
add these Ai’s to Kj. Therefore, for 1 ≤ i ≤ t and i 6= j, the modified Ki’s consist only
of Bi and Ci in G′. Moreover, the modified Kj consists of Bj, Cj , and A. Obviously,
the modified Ki’s with i 6= j remain s-plexes. However, by adding Ai’s to Aj , the
modified Kj might not be an s-plex any more. On the one hand, in order to make
the modified Kj an s-plex, we conduct the following additional edge modifications.

• Delete the edges between Ai and Bi for all i 6= j. These are at most
∑

i6=j |Ai|·
|Bi|.

• Insert all missing edges between Ai and Cj for all i 6= j. These are at
most

∑

i6=j |Ai| · |Cj |.
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• Insert all missing edges between Ai and Aj ∪Bj for all i 6= j. Note that Bj ⊂
N2(u) and, thus, Aj ∪ Bj ⊆ N [u]∪N1

2 (u). By precondition (1) of Reduction
Rule 2, definition of N1(u), and precondition (2) of Reduction Rule 2, respec-
tively, vertex u, each vertex in N1(u), each vertex in N1

2 (u) have at most ŝ
non-adjacent vertices in Aj ∪ Bj. Thus, we need at most

∑

i6=j |Ai| · ŝ edge
insertions here.

In total we need at most

∑

i6=j

|Ai| · (|Bi| + |Cj | + ŝ) (I)

additional edge modifications. On the other hand, however, we can undo the edge
deletions between Ai and Aj ∪ Bj for all i 6= j, which amount to at least

∑

i6=j

|Ai| · (|Aj | + |Bj | − ŝ) (II).

This is true because Aj ∪Bj ⊆ N [u]∪N1
2 (u) and Ai ⊆ {u}∪N1(u)∪N1

2 (u). Next, we
argue that the modified Kj is an s-plex. Then, we show that (II) > (I) and, hence,
the number of saved edge deletions is greater than the number of additional edge
modifications, which implies that |S| < |Splex|, contradicting the optimality of Splex.

The fact that the modified Kj is an s-plex can be seen as follows. As analyzed in
the first case, A and, thus,

⋃

i6=j Ai is an s-plex. Moreover, Aj ∪ Bj ∪ Cj (the original
Kj) is also an s-plex. Hence, since we add all edges between

⋃

i6=j Ai and Aj ∪Bj ∪Cj ,
every vertex remains non-adjacent to the same number of vertices, and hence the
modified Kj is an s-plex.

For the proof that (II) > (I), we first need the further observation that Cj ⊆
N2

2 (u). To this end, we show that Dj := Cj \ N2
2 (u) = ∅. Since Kj is an s-plex

and Dj∩(N(u)∪N2(u)) = ∅, the optimal solution Splex has to add at least |Aj |+|Bj|−ŝ
many edges to include a vertex in Dj into Kj. However, excluding all vertices in Dj

from Kj needs at most |C′
j | · |Dj | edge deletions for C′

j := Cj ∩ N2
2 (u). Since |A| > α

with α = 4 ŝ(|N2(u)| + |N2
2 (u)| + ŝ), Bj ⊆ N2(u), and C′

j ⊆ N2
2 (u), it follows that

|A| > |Bj | + |C′
j | + 2 ŝ. By |Aj | + 2|Bj| > |A| − ŝ (the precondition of this case),

we have |Aj | + |Bj | > |C′
j | + ŝ . This means that only in the case Dj = ∅, the edge

modification set S is optimal and, thus, Cj ⊆ N2
2 (u).

To show that (II) > (I), it remains to prove that

|Aj | + |Bj | − ŝ > |Bi| + |Cj | + ŝ (III).

By the case assumption we know that |Aj | + |Bj | > |A| − |Bj | − ŝ and, hence, we
have |Aj | + |Bj | − ŝ > |A| − |Bj | − 2 ŝ. We show in the following that |A| − |Bj | −
2 ŝ > |Bi| + |Cj| + ŝ , implying (III). Note that the last inequality is equivalent
to |A| > |Bi|+ |Bj|+ |Cj |+ 3 ŝ . This inequality holds for the following reasons. First,
by the precondition of this lemma, we have that |A| ≥ α = 4 ŝ ·(|N2(u)|+ |N2

2 (u)|+ ŝ).
Second, we have that 4 ŝ ·(|N2(u)|+|N2

2 (u)|+ ŝ) > |Bi|+|Bj|+|Cj|+2 ŝ since Bi∪Bj ⊆
N2(u) (by definition) and Cj ⊆ N2

2 (u) (by the above observation).
Part (b) of the lemma is easy to see. By part (a) of the lemma, there is an s-plex K

with A ⊆ K. If K \(A∪N2(u)) 6= ∅, then we construct a solution leading to an s-plex
cluster graph where K is split into two s-plexes K ∩ (A∪N2(u)) and K \ (A∪N2(u)).
For every vertex w ∈ K \ (A ∪ N2(u)), removing w from K needs at most |N2(u)|
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edge deletions: w has no neighbor in A; however, adding w to K needs at least |A|− ŝ
edge insertions. Since |A| ≥ α, it is never better to include w into K.

Now, before coming to the second claim (Lemma 3.2), we discuss in more detail
the strategy behind the “simulating” clique C introduced in Reduction Rule 2. Based
on Lemma 3.1, we can conclude that, with respect to a vertex u satisfying the precon-
ditions of Reduction Rule 2, it remains to decide which vertices of N2(u) should form,
together with A, an s-plex in the resulting s-plex cluster graph. Herein, Reduction
Rule 2 distinguishes three cases. In the first two cases, a vertex v ∈ N2(u) has either
much more or much less neighbors in A than outside of A (Cases 1 and 2). We can
then easily decide whether v should be in the same s-plex with A (Case 1) or not
(Case 2) and make the corresponding edge modifications. However, in the third case,
where the “neighborhood size difference” is not so huge for a vertex v ∈ N2(u), the
decision whether or not to put v into the same s-plex with A could be influenced by
the global structure outside of N(u) ∪ N2(u). To overcome this difficulty, Reduction
Rule 2 makes use of the simulating clique C which is meant to play the same role as A
but has a bounded size. Moreover, for every vertex v ∈ N2(u) the construction of C
in Reduction Rule 2 guarantees that after its application v again adheres to the same
case (Cases 1–3, distinguishing according to the neighborhood size difference of v) as
it has before. Lemma 3.2 shows then that C plays the same role as A.

Lemma 3.2. Let u be a vertex satisfying the three preconditions of Reduction
Rule 2 and let G′ denote the graph resulting from applying Reduction Rule 2 once
to u. Then, in G′, with the described implementation of Reduction Rule 2, each
vertex in clique C is adjacent to all but at most ŝ vertices in NG′(C).

Proof. Observe that applying Reduction Rule 2 to G, Case 2 of the rule inserts no
edge and, the vertices in N2(u), which have edges to C, have to satisfy either Case 1
or Case 3 of Reduction Rule 2. Let R1 be the set of vertices in NG′(C) satisfying
Case 1 in G and let R2 be the set of vertices in NG′(C) satisfying Case 3 in G,
giving NG′(C) = R1 ∪ R2.

First, consider the case |R2| ≥ 2 ŝ. Consider a vertex v ∈ R1. In G, v has |Av|
many edges to A with Av = A∩NG(v). In contrast, v has in G′ only C−min{ŝ , |Av|}
many edges to C. This means that v loses at most |A| − |C| incident edges in G′. A
vertex v ∈ R2 loses exactly (|A| − |C|)/2 incident edges from G to G′. According to
the definition of A and the fact that NG′(C) ⊆ N2(u), G′ has at least

(|R1| + |R2| − ŝ) · |A| − |R1| · (|A| − |C|) − |R2| · (|A| − |C|)/2

edges between R1 ∪ R2 and C. This number equals

|A| · (|R2|/2 − ŝ) + |C| · (|R2|/2 + |R1|),

and since |R2| ≥ 2 ŝ and |A| ≥ |C|, the number of edges between C and R1 ∪R2 is at
least |C| · (|R1|+ |R2| − ŝ). This implies that the above implementation of Reduction
Rule 2, where a vertex in C with the minimum degree is preferred while connecting
vertices in R1 ∪R2 to C, always results in a graph G′ where every vertex in C has at
least |R1| + |R2| − ŝ neighbors in NG′(C).

Second, consider the case |R2| < 2 ŝ. For every vertex v ∈ R2 by the precondi-
tion |Av|−|Av| < |N2(u)|+ ŝ of Case 3, |Cv|−|Cv| = |Av|−|Av|, and |C| = |Cv|+|Cv|,
we have

|Cv| >
|C| − |N2(u)| − ŝ

2
.
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Observe that if |Cv| ≥ |C|/2, after adding the edges between the vertices in R2 and C
according to the described implementation, then, with |R2| < 2 ŝ, at least |C|/2
vertices of C have at least |R2| − ŝ +1 neighbors in R2. Thus, with |Cv| > |C|/2 −
(N2(u) + ŝ)/2 and 2 ŝ ·(|N2(u)| + ŝ)/2 < |C|/2 (following from |C| ≥ α), we can
conclude that, after adding the edges between the vertices in R2 and C according to
the described implementation, there are at most |C|/2+ ŝ ·(|N2(u)|+ ŝ) vertices in C
adjacent to |R2|− ŝ vertices in R2. The other vertices in C are adjacent to |R2|− ŝ +1
vertices in R2. Now consider the vertices in R1. By Case 1 (|Cv| ≥ |C| − ŝ) and the
described implementation, there are at most |C|/2+ ŝ ·(|N2(u)|+ ŝ)+ |R1| · ŝ vertices
in C adjacent to |R1 ∪R2|− ŝ vertices in R1 ∪R2. The other vertices in C have |R1 ∪
R2|− ŝ +1 neighbors in R1∪R2. It is easy to see that ŝ ·(|N2(u)|+ ŝ)+ |R1| · ŝ < |C|/2
and, thus, every vertex in C has at most ŝ non-adjacent vertices in R1∪R2 = NG′(C).

With Lemma 3.1 and Lemma 3.2, we can prove the correctness and the running
time of Reduction Rule 2.

Lemma 3.3. Reduction Rule 2 is correct and can be carried out in O(n3) time.

Proof. Let u be a vertex satisfying the three preconditions of Reduction Rule 2.
We prove its correctness by showing that the input graph G has a solution S with |S| ≤
k if and only if the graph G′ after one application of Reduction Rule 2 to u has a
solution S′ with |S′| ≤ k′, where k′ is the new parameter value after the application.

“⇒”: Due to Lemma 3.1, there is an optimal solution S for G which generates
an s-plex cluster graph H with an s-plex K with A ⊆ K and K ⊆ A ∪ N2(u).
Let L := K \A. We will show in the following how to construct S′ from S. The graph
generated by S′ will be called H ′. The basic idea is to construct S′ such that H ′ differs
from H only in K. That is, with the exception of K, graph H ′ contains the same
connected components as H . In addition, H ′ contains a connected component K ′

with the vertex set L ∪ C. Hence, in the following we specify only how S′ modifies
the edges between vertices in K ′.

Since G and G′ differ only in A and C, it follows that S and S′ differ only in the
modifications of the edges incident to A or C. Observe that u, each vertex in N1(u),
and each vertex in N1

2 (u) have at most ŝ non-adjacent vertices in N [u]∪N1
2 (u) due to

precondition (1) of Reduction Rule 2, the definition of N1(u), and precondition (2) of
Reduction Rule 2, respectively. From part (2) of Lemma 3.1 it follows that S does not
modify edges between two vertices in A. Correspondingly, S′ modifies no edge in C.
Thus, we only have to compare the number of modifications of the edges incident to
exactly one vertex in A or C, that is, the edges between A and N2(u) or between C
and N2(u). We distinguish four cases for the vertices v ∈ N2(u) and show that, in
each of these cases, the difference between the number of edge modifications made
by S and the number of edge modifications made by S′ is equal to the decrement of
the parameter k caused by Reduction Rule 2.

First, assume that v satisfies Case 1 of Reduction Rule 2. We can conclude
that v ∈ K: To separate v from A, one would need to delete at least |Av| edges.
However, to include v in K requires at most |Av| edge insertions (connecting v to all
vertices in A), |N2

2 (u)| edge deletions (disconnecting v and N2
2 (u)), and |N2(u)| edge

deletions (disconnecting v and K\N2(u)) and insertions (connecting v and K∩N2(u)).
Due to the precondition of Case 1, we have v ∈ K and S inserts |Av| − |X | edges
between v and A with X being the set of vertices in A that are not adjacent to v in H ;
clearly, |X | ≤ ŝ . In H ′, S′ inserts |Cv|− |X | many edges between v and C. According
to Case 1 of Reduction Rule 2, |Cv| = min{ŝ, |Av|}. Thus, |S| − |S′| with respect to
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the edges between v and C is equal to |Av| − |X | − |Cv| + |X | = max{|Av| − ŝ , 0},
the same as the decrement of the parameter caused by Case 1 of Reduction Rule 2.
Finally, we can easily observe that there are at most ŝ vertices in K ′ not adjacent
to v.

Second, assume that v satisfies Case 2 of Reduction Rule 2. Observe that ex-
cluding v from K needs at most |Av| + |N2(u)| + |N2

2 (u)| edge modifications, while
including v in K requires at least |Av| − ŝ +|N2

2 (u)| edge modifications. Thus, v /∈ K
and S deletes |Av| edges between v and A. Clearly, v /∈ K ′ in G′. Since G′ has
no edge between v and C, S′ modifies no edge between v and C. So, the difference
between |S| and |S′| with respect to the edges between v and C is |Av|, the same as
the decrement of the parameter in Case 2 of Reduction Rule 2.

Third, assume that v satisfies Case 3 of Reduction Rule 2 and v /∈ K. Then,
v /∈ K ′. Thus, S deletes |Av| edges between v and A, while S′ deletes |Cv| edges
between v and C. The difference between the number of edge deletions applied to v
in S and S′ is thus |Av| − |Cv|, exactly the decrement of the parameter in Case 3 of
Reduction Rule 2.

Finally, assume that v satisfies Case 3 and v ∈ K. Suppose that S inserts |Av| −
|X | edges between v and A, where X denotes the set of vertices in A that are not
adjacent to v in H . In H ′, S′ inserts |Cv| − |X | edges between v and C. Thus, the
difference is then |Av| − |Cv| = |Av| − |Cv|, exactly the decrement of the parameter
in Case 3 of Reduction Rule 2. Clearly, v has at most ŝ non-adjacent vertices in K if
and only if v has at most ŝ non-adjacent vertices in K ′.

Summarizing these four cases, we can conclude |S′| ≤ k′. It remains to show
that H ′ is an s-plex cluster graph. Since H and H ′ differ only in the connected
components K and K ′, we only have to show that K ′ is an s-plex. As argued in the
first and last cases of the above four cases, all vertices in K ′ ∩ N2(u) have at most ŝ
non-adjacent vertices in K ′. By Lemma 3.2, the vertices in the clique C have degree at
least |C|+ |NG′(C)|− ŝ in G′. Since, according to the construction of H ′, K ′ = C ∪L
with L = K \ A and K ⊆ A ∪ N2(u), we can conclude that K ′ is an s-plex and H ′ is
an s-plex cluster graph. Together with |S′| ≤ k′, the “⇒”-direction follows.

“⇐”: The first step of the proof of this direction is to show that there is a solution S′

for G′ that generates an s-plex K ′ with C ⊆ K ′ ⊆ C ∪ NG′(C). To this end, it
suffices to show that there exists a vertex u′ ∈ C such that the preconditions of
Reduction Rule 2 are fulfilled by u′. Then, the claim follows from Lemma 3.1. From
the implementation of Reduction Rule 2, we know that there is a vertex x in C
adjacent to all vertices in NG′(C). We now show that x fulfills the preconditions of
Reduction Rule 2: Clearly, NG′ [x] = C ∪ NG′(C). Let NG′,2(x) denote the set of
vertices having in G′ distance two to x. Since all vertices in C have only neighbors
in NG′ [x] and |C| > ŝ , no vertex v ∈ NG′,2(x) satisfies |NG′(v)\NG′(x)| ≤ ŝ and, thus,
N1

G′,2(x) = ∅. By Lemma 3.2, every vertex in C has at least |NG′(C)| − ŝ neighbors

in NG′(C) and, thus, C ⊆ N1
G′(x). Therefore, x fulfills preconditions (1) and (2) of

Reduction Rule 2. Furthermore, NG′,2(x) ⊆ N2(u) ∪ N2
2 (u). It is easy to observe

that N2
G′(x)∪N2

G′,2(x) ⊆ N2(u)∪N2
2 (u). Since |C| ≥ α, x fulfills all preconditions of

Lemma 3.1. The remaining part of the proof follows almost the same principle as the
proof of the “⇒”-direction, that is, constructing a graph H from the s-plex cluster
graph H ′ resulting from applying a solution S′ to G′, and then proving that the set of
the edge modifications needed to transform G into H has size at most k and that H
is an s-plex cluster graph. The one-to-one correspondence between the two solutions
can be proven in the same way as the proof for the opposite direction.
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Concerning the running time of Reduction Rule 2, note that we iterate over all
vertices to check the applicability of the rule. For each vertex u, we compute N1(u),
N2(u), N1

1 (u), and N2
2 (u) in O(n2) time, and connecting the vertices in N2(u) to C

requires O(n2) time. Altogether, the application of Reduction Rule 2 needs O(n3)
time.

Finally, we prove the main theorem in this section.
Theorem 3.4. s-Plex Cluster Editing admits a (8s2−6)·k+8(s−1)2-vertex

problem kernel for s ≥ 2. It can be computed in O(n4) time.
Proof. Let Gplex denote the s-plex cluster graph resulting from applying a solu-

tion S with |S| ≤ k to the input graph G = (V, E), and let K1, . . . , Kl be the s-plexes
in Gplex. The set V of vertices of Gplex can be partitioned into two subsets, namely, X ,
the set of vertices that are endpoints of the edges modified by S, and Y := V \ X .
For an s-plex Ki, let Xi := X ∩ Ki and Yi := Y ∩ Ki. As stated in the beginning
of this section, we know that |X | ≤ 2k. Moreover, if |Yi| > max{ŝ ·|Xi|, 2 ŝ} for
some i, then there must be a vertex u ∈ Yi that satisfies C1-C4 given there. Since,
for each vertex v ∈ N1

2 (u), |N [v]\N(u)| ≤ s−1 holds, v cannot be affected by S and,
thus, v ∈ Yi. This means |N1

2 (u)| ≤ s − 1 (precondition (1) of Reduction Rule 2).
Furthermore, since Ki is an s-plex and N [u] ⊆ Ki, all vertices v ∈ N1

2 (u) should
satisfy N(v) ⊆ N(u) ∪ N1

2 (u) and |N [v]| ≥ |N [u] ∪ N1
2 (u)| − s + 1 (precondition (2)

of Reduction Rule 2). Clearly, all vertices in Yi are from N [u] ∪ N2(u) and none
of them can be in N2(u) ∪ N2

2 (u); otherwise, there would be an edge modification
affecting them. Since Yi ⊆ N1(u) ∪ N1

2 (u) ∪ {u}, this implies either |Yi| ≤ α :=
4 ŝ ·(|N2(u)| + |N2

2 (u)| + ŝ) or Reduction Rule 2 can be applied to u. If we assume
that the input graph is reduced with respect to both data reduction rules, then the
former case applies. Clearly, Xi ⊆ N2(u). The vertices in N2

2 (u) are in X as well, but
they are not in Xi, which means that we cannot give an upper bound for |Yi| only
depending on |Xi|. However, if we consider all Yi’s together, then, for every modified
edge, each of its two endpoints in X might be counted twice, once in N2(v) for a
vertex v ∈ Ki ∩ Y and once in N2

2 (w) for another vertex w ∈ Kj ∩ Y with i 6= j.
Hence, considering all Ki’s we then have

∑

1≤i≤l

|Yi| ≤
∑

1≤i≤l

max{2 ŝ, ŝ ·|Xi|, 8 ŝ ·(|Xi| + ŝ))}

(∗∗∗)

≤ 16 ŝ k + 8 ŝ2 ·(k + 1).

Inequality (***) follows from |X | ≤ 2k and the fact that deleting at most k edges
from a connected graph results in at most k + 1 connected components. Together
with |X | ≤ 2k, we obtain a problem kernel with |X |+ |Y | ≤ 8 ŝ2(k+1)+16 ŝ k+2k =
(8s2 − 6)k + 8(s − 1)2 vertices.

The running time O(n4) follows directly from Lemma 3.3 and the fact that Re-
duction Rule 2 can be applied at most n times.

The kernelization algorithm of Theorem 3.4 can be adapted to yield a 6k-vertex
problem kernel for s = 1, that is, Cluster Editing. We omit the details since
this does not improve on the currently best 2k-vertex problem kernel for Cluster

Editing due to Chen and Meng [7].

4. Forbidden Subgraph Characterization. In this section, we present a char-
acterization of s-plex cluster graphs by means of forbidden induced subgraphs for
any s ≥ 1. More specifically, we provide a set F of graphs such that a graph G is
an s-plex cluster graph if and only if G is F-free, that is, G does not contain any
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induced subgraph from F . If s = 1, where all connected components of the cluster
graph are required to form cliques, the only forbidden induced subgraph is a path
on three vertices [32]. In contrast, if s ≥ 2, we face up to exponentially in s many
forbidden induced subgraphs. To cope with this, we develop a characterization of
these subgraphs that still allows us to derive efficient algorithms. More specifically, in
Section 4.1, we show that s-plex cluster graphs are characterized by forbidden induced
subgraphs with O(s) vertices. Moreover, in Section 4.2, we show that, given a graph
that is not an s-plex cluster graph, a forbidden induced subgraph can be found in
O(s · (n + m)) time. Based on this, in Section 5 we will present a branching strategy
for s-Plex Cluster Editing that leads to a search tree of size O((2s + ⌊√s⌋)k).

4.1. Description of the Forbidden Induced Subgraphs. A graph H is a
minimal forbidden induced subgraph if it is not an s-plex cluster graph but every
induced proper subgraph of H is an s-plex cluster graph. In the following, our goal is
to identify and describe the set Fs,min of all minimal forbidden induced subgraphs for
s-plex cluster graphs. More precisely, we first give a graph-theoretic description of the
minimal forbidden induced subgraphs. Then, we show that the number of vertices in
every minimal forbidden induced subgraph is upper-bounded by s + ts + 1, where

ts := ⌊−0.5 +
√

0.25 + s⌋

(note that for a non-negative integer i it holds that i · (i+1) ≤ s if and only if i ≤ ts).
Finally, we show that the upper bound of s + ts + 1 on the number of vertices of a
minimal forbidden induced subgraph is tight. That is, we show that for every s ≥ 2
there exist minimal forbidden induced subgraphs with exactly this number of vertices.

We begin with a graph-theoretic description of the minimal forbidden induced
subgraphs. The starting point are the connected graphs that contain a vertex that is
not adjacent to exactly s other vertices. These graphs clearly are not s-plex cluster
graphs. Let C denote the set of connected graphs. Define

C(s, i) := {H = (W, F ) ∈ C | (|W | = s + i + 1) ∧ (∃w ∈ W : degH(w) = i)}

and

F(s, j) :=

j
⋃

i=1

C(s, i).

Next, motivating the definitions of C(s, i) and F(s, j), we show that all minimal
forbidden induced subgraphs are contained in F(s, n − s − 1). Then, we refine this
characterization by showing that a graph from C(s, i) is minimal if and only if its
minimum vertex degree is i and all neighbors of a degree-i vertex are cut-vertices.

Lemma 4.1. G is an s-plex cluster graph if and only if G is F(s, n − s − 1)-free.
Proof. “⇒”: Since the property of being an s-plex cluster graph is hereditary,

all induced subgraphs of G are s-plex cluster graphs. Hence, G is F(s, n − s − 1)-free
since the graphs in F(s, n − s − 1) are not s-plex cluster graphs.

“⇐”: We show the contraposition. If G is not an s-plex cluster graph, then G
contains a connected component C = (W, F ) that is not an s-plex and |W | ≥ s + 2
(note that every connected component with at most s + 1 vertices is an s-plex).
Consider a vertex v ∈ W of minimum degree. Since W does not form an s-plex, it
contains at least s vertices not adjacent to v. Hence, we can find an induced subgraph
of G from C(s, degG(v)) ⊆ F(s, n − s − 1) using breadth-first search starting at v.
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Next, we precisely describe the minimal forbidden induced subgraphs.

Lemma 4.2. A graph H ∈ C(s, i) is a minimal forbidden induced subgraph if and
only if the minimum vertex degree of H is i and for every v ∈ V (H) with degH(v) = i
the neighbors of v are cut-vertices.

Proof. “⇒”: We show the contraposition. First, assume that H contains a
vertex v with degH(v) < i. Then, by breadth-first search starting at v, we can find
a set S ⊂ V (H) such that H [S] ∈ C(s, deg(v)). Hence, H is not minimal. Second,
assume that there exists a degree-i vertex v with a neighbor u that is not a cut-vertex.
Then, by deleting u we obtain a graph from C(s, i−1), that is, H is also not minimal.

“⇐”: Consider an arbitrary vertex v ∈ V (H). We show that H ′ := H − v is an
s-plex cluster graph. Note that H ′ contains s + i vertices and the minimum vertex
degree in H ′ is i − 1. First, all vertices w ∈ V (H ′) with degH′(w) ≥ i are not
adjacent to at most s− 1 other vertices. Second, consider an arbitrary degree-(i− 1)
vertex u ∈ V (H ′). Note that u is a neighbor of v in H (since the minimum degree
in H is i). Therefore, v is a cut-vertex in H and the deletion of v separates from u at
least one of the s vertices non-adjacent to u in H . As a consequence, u is not adjacent
to at most s − 1 other vertices in the connected component of H ′ containing u. In
summary, every vertex w ∈ V (H ′) is not adjacent to at most s − 1 other vertices
in the connected component in H ′ in which it is contained. Hence, H ′ is an s-plex
cluster graph.

Based on the description of the minimal forbidden induced subgraphs given in
Lemma 4.2, we show that the number of vertices in a minimal forbidden induced
subgraph is bounded by O(s). To this end, we show that the set Fs,min of all minimal
forbidden induced subgraphs is contained in F(s, ts), that is, the number of vertices
of every minimal forbidden induced subgraph is upper-bounded by s + ts + 1.

Theorem 4.3. A graph is an s-plex cluster graph if and only if it is F(s, ts)-free.

Proof. It is sufficient to show that all minimal forbidden induced subgraphs are
contained in F(s, ts). Assume towards a contradiction that there exists a minimal
forbidden induced subgraph H not contained in F(s, ts). By Lemma 4.1, H ∈ F(s, n−
s−1). This implies that H ∈ C(s, i) for some i with i ·(i+1) > s (or, equivalently, i >
ts). Since H is a minimal forbidden induced subgraph, according to Lemma 4.2, the
minimum vertex degree of H is i. Let v ∈ V (H) be a degree-i vertex. Note that,
according to Lemma 4.2, all neighboring vertices NH(v) = {u1, u2, . . . , ui} of v are
cut-vertices. For every neighboring vertex uj of v let Uj denote the set of vertices
in V (H) that are not reachable from v in H−uj . On the one hand, note that |Uj | ≥ i
for every 1 ≤ j ≤ i since the minimum vertex degree of H is i and since for every
vertex w ∈ Uj it holds that NH(w) ⊆ (Uj ∪ {uj}) \ {w}. On the other hand, since v

has degree i = |V (H)| − s − 1 in H , we have
∑i

j=1 |Uj| ≤ s. Hence, there must exist
at least one r, 1 ≤ r ≤ i, with |Ur| ≤ s/i < i · (i + 1)/i = i + 1. Therefore, |Ur| = i.
Moreover, since the minimum vertex degree in H is i, Ur ∪ {ur} forms a clique of
size i + 1 and thus by deleting all but one vertex of Ur we obtain a graph in C(s, 1)
which is by definition not an s-plex cluster graph. This contradicts the fact that H
is a minimal forbidden induced subgraph.

So far, we have shown that the number of vertices of every minimal forbidden
induced subgraph is bounded from above by s + ts + 1. Clearly, this implies that
the number of minimal forbidden induced subgraphs is bounded from above by a
function of s. The number of minimal forbidden induced subgraphs may, however, be
exponential in s. Note that the maximum number of vertices in a minimal forbidden
induced subgraph is of greater algorithmic importance than the exact number of
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s = 7

Fig. 4.1. A minimal forbidden induced subgraph on 10 vertices for 7-plex cluster graphs. The
gray vertex is a vertex with minimum degree and all its neighbors are cut-vertices.

the minimal forbidden induced subgraphs: providing a smaller upper bound would
directly improve the running time of the search tree algorithms presented in Section 5.
However, we show that the upper bound of s + ts + 1 on the number of vertices in a
minimal forbidden induced subgraph is tight. To this end, we show that for every s ≥ 2
a minimal forbidden induced subgraph is contained in C(s, ts).

Consider the graph shown in Figure 4.1. It contains 10 vertices and the gray vertex
has degree two. Hence, this graph is contained in C(7, 2) (note that t7 = 2). Moreover,
the gray vertex is the only vertex with degree two and all its neighbors are cut-vertices.
Hence, according to Lemma 4.2 the shown graph is a minimal forbidden induced
subgraph for s = 7. This example can be generalized to every s ≥ 2. That is, for
every s we can construct a minimal forbidden induced subgraph contained in C(s, ts)
as follows. We start with a star with center vertex v and ts leaves, say u1, . . . , uts

.
Then, for every uj we add a clique Cj in such a way that

∑ts

j=1 |Cj | = s and that all
cliques are of same size plus/minus one. Finally, we make all vertices in Cj adjacent

to uj, 1 ≤ j ≤ ts. Since
∑ts

j=1 |Cj | = s (and ts · (ts + 1) ≤ s by definition), we have
that |Cj | ≥ ts + 1, and, as a consequence, v is the only vertex of degree ts and the
degree of all other vertices is at least ts + 1. Since the deletion of uj separates the
vertices in Cj from v, all neighbors of v are cut-vertices. Hence, by Lemma 4.2, the
constructed graph is a minimal forbidden induced subgraph.

Summarizing, we arrive at the following.
Proposition 4.4. For every s ≥ 2 there exists a minimal forbidden induced

subgraph contained in C(s, ts).

4.2. Finding a Minimal Forbidden Induced Subgraph. In this subsection,
we focus on efficiently finding a minimal forbidden induced subgraph. We show that,
given a graph G that is not an s-plex cluster graph, a minimal forbidden induced
subgraph can be found in O(s · (n + m)) time.

Since the number of vertices in every minimal forbidden induced subgraph is
bounded by a function in s, the number of minimal forbidden induced subgraphs is
bounded by a function in s as well (which is exponential). A simple enumerative
approach to detect a forbidden induced subgraph fails due to the sheer combinatorial
explosion. Therefore, we first present an algorithm (Algorithm A, see Figure 4.2) that,
given a graph H = (W, F ) ∈ C(s, i) (for some i ≥ 1), checks in O(|W | + |F |) time
whether H is a minimal forbidden induced subgraph. If this is the case, then it outputs
“yes”, otherwise it returns an induced subgraph of H contained in C(s, i′) with i′ < i.
Clearly, we can use Algorithm A iteratively to find a minimal forbidden induced
subgraph. However, when starting with an arbitrary graph contained in F(s, n−s−1),
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Input: H = (W, F ) from C(s, i).
Output: “yes”, if H is a minimal forbidden subgraph;

an induced subgraph H ′ ∈ C(s, i′) of H with i′ < i, otherwise.
1 v := arg minw∈W {degH(w)}
2 if degH(v) < i then

3 return a connected graph induced by NH [v] ∪ S
where S contains s vertices from W \ NH [v]

4 Let Cutvertices be the set of cut-vertices of H
5 if ∃v ∈ W : (NH(v) \ Cutvertices) 6= ∅ then

6 return graph H − w for an arbitrary w ∈ (NH(v) \ Cutvertices)
7 return “yes”

Fig. 4.2. Algorithm A checks whether a forbidden induced subgraph is minimal. If not, it
computes a smaller forbidden induced subgraph.

Algorithm A has to be applied up to n times in the worst case, resulting in an overall
running time of O(n · m) for finding a minimal forbidden induced subgraph. To
achieve linear running time, we develop an algorithm (Algorithm B, see Figure 4.3)
that, given a forbidden induced subgraph H = (W, F ) from F(s, n − s + 1), finds
in O(s · (|W | + |F |)) time a forbidden induced subgraph from F(s, s). Since the
number of vertices in such a subgraph is upper-bounded by O(s), we can then apply
Algorithm A iteratively O(s) times to obtain a minimal forbidden induced subgraph.

Next, we present Algorithm A (see Figure 4.2) and prove its correctness.

Lemma 4.5. Let H = (W, F ) ∈ C(s, i). Algorithm A (Figure 4.2) computes
in O(|W | + |F |) time an induced subgraph H ′ ∈ C(s, i′) of H, with i′ < i, or outputs
“yes” if H is a minimal forbidden induced subgraph.

Proof. Consider lines 1 to 3 of the algorithm. If a vertex v in H has degree
less than i, then we can clearly find a graph from C(s, degH(v)) by choosing NH [v]
and a set S ⊆ W \ NH [v] of s further (arbitrary) vertices such that H [NH [v] ∪ S] is
connected. This is doable in linear time by breadth-first search starting at v.

Consider lines 4 to 6. If one of the neighboring vertices of v, say w, is no cut-
vertex, then we can delete w from H obtaining a graph from C(s, i − 1). Note that
cut-vertices can be computed in linear time [33].

Consider line 7. The minimum vertex degree of H is i and the neighbors of every
degree-i vertex are cut-vertices. Hence, according to Lemma 4.2, H is a minimal
forbidden induced subgraph.

Next, we present Algorithm B (see Figure 4.3) that, given a large forbidden
induced subgraph, finds a forbidden induced subgraph with O(s) vertices.

Lemma 4.6. Let H = (W, F ) ∈ C(s, i) with i > s. Algorithm B (Figure 4.3)
computes in O(s·(|W |+|F |)) time an induced subgraph H ′ ∈ C(s, i′) of H with i′ ≤ s.

Proof. Consider lines 1 to 3. If degH(u) ≤ s, then we can clearly find a set S ⊂
W \NH [u] of s vertices such that H [NH [u]∪S] is connected and |S| = s. This graph
is in C(s, i′) for some i′ ≤ s.

In the following, let v denote a vertex with degree i (line 4). We use the following
observation:

If one of the neighboring vertices of a degree-i vertex v is a cut-vertex,
then there exists at least one vertex in H with degree at most s.

This can be seen as follows. Assume that x ∈ NH(v) is a cut-vertex and let U ⊆
W denote the vertices not reachable from v in H − x. Since a vertex w ∈ U can
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Input: H = (W, F ) from C(s, i) with i > s
Output: An induced subgraph H ′ ∈ C(s, i′) of H with i′ ≤ s

1 u := arg minw∈V {degH(w)}
2 if degH(u) ≤ s then

3 return a connected graph induced by NH [u] ∪ S
where S contains s vertices from W \ NH [u]

4 Let v ∈ V be a vertex with degH(v) = i
5 NH(v) := {u1, u2, . . . , ui}
6 Let K := {K1, K2, . . . , Kl} with l ≤ s

denote the connected components of H − NH [v]
7 Construct an auxiliary bipartite graph B = (XN , XK , R) with
8 XN := {xuj

| 1 ≤ j ≤ i},
9 XK := {xKq

| 1 ≤ q ≤ l}, and
10 R := { {xuj

, xKq
} | ∃{uj, v

′} ∈ F with v′ ∈ Kq}
11 r := argminq∈{1,...,l}{degB(xKq

)}
12 CC := {uj | xuj

∈ NB(xKr
)}

13 Ĥ := H − (CC \ {w}) for an arbitrary vertex w ∈ CC
14 v′ := arg min

w∈V (Ĥ){deg
Ĥ

(w)}
15 return a connected graph induced by N

Ĥ
[v′] ∪ S

where S contains s vertices from V (Ĥ \ N
Ĥ

[v′]

Fig. 4.3. Algorithm B to compute a forbidden induced subgraph with O(s) vertices.

only be adjacent to vertices in U ∪ {x} and |U | ≤ s (by definition of C(s, i)), we
have degH(w) ≤ s.

According to this observation, when entering line 5 of Algorithm B, we know that
none of the vertices in NH(v) = {u1, u2, . . . , ui} is a cut-vertex. To make use of the
observation, the remaining part of the algorithm is devoted to finding a set of vertices
from NH(v) whose removal leads to a connected graph in which one neighbor of v is a
cut-vertex. To this end, one constructs an auxiliary bipartite graph B = (XN , XK , R)
(lines 5-10). Concerning the running time needed for the construction of B, note that
the degree of a vertex in XN is at most s since H −NH [v] contains exactly s vertices
and, hence, XK has size at most s. Thus, to define R, one iterates over the edge
set F and, given an edge {uj, v

′} with v′ ∈ Kq, one can decide in O(s) time whether
the edge {xuj

, xKq
} is contained in R. Thus, the bipartite auxiliary graph B can be

constructed in O(s · (|W | + |F |)) time.
Consider lines 11 to 13. By choosing a “component vertex” xKr

of minimum
degree, we ensure that the set CC is a minimum-cardinality set of vertices from NH(v)
separating at least one connected component in K from v. That is, CC separates the
vertices in Kr from v. Let w be an arbitrary vertex of CC. By the deletion of all but
one vertex from CC (line 13), we ensure that the graph Ĥ = H − (CC \ {w}) is still
connected and contains at least one cut-vertex, namely w. Hence, according to the
observation above, Ĥ contains a vertex of degree at most s. Let v′ be a minimum-
degree vertex of Ĥ (line 14). As a consequence, deg

Ĥ
(v′) ≤ s and we can clearly

find a set S ⊆ V (Ĥ) of s vertices such that H ′ := Ĥ [N
Ĥ

[v′] ∪ S] is connected. Note
that H ′ is contained in C(s, deg

Ĥ
(v′)) ⊆ F(s, s). Altogether, the running time is

O(s · (|W | + |F |)).
Summarizing, we obtain a linear-time algorithm for finding a minimal forbidden
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induced subgraph if s is a constant. In particular, this means we can find a forbidden
induced subgraph comprising at most s + ⌊√s⌋ vertices in linear time.

Theorem 4.7. Let G = (V, E) be a graph that is not an s-plex cluster graph.
Then, a minimal forbidden induced subgraph can be found in O(s · (n + m)) time.

Proof. Let C = (W, F ) be a connected component of G that is not an s-plex. Let v
be a vertex of minimum degree in C. Clearly, by breadth-first search starting at v we
can find a set S ⊆ W of s vertices such that H := G[NG[v] ∪ S] is connected. Note
that H ∈ C(s, degH(v)). If degH(v) > s, then we can apply Algorithm B (Figure 4.3)
once to find a forbidden induced subgraph H ′ from F(s, s). In order to find a minimal
forbidden induced subgraph, we apply Algorithm A (Figure 4.2) at most O(s) times.
Hence, the overall running time is O(s · (n + m)).

5. An Exact Search Tree Algorithm. In this section, we present a simple
search tree algorithm that is based on the forbidden subgraph characterization from
Section 4. Following Theorem 4.3, all minimal forbidden induced subgraphs for s-plex
cluster graphs are contained in F(s, ⌊−0.5+

√
0.25 + s⌋). To obtain an s-plex cluster

graph, every forbidden induced subgraph has to be destroyed via edge modifications.
To this end, we apply a branching strategy.

Theorem 5.1. There is an O((2s + ⌊√s⌋)k · s · (n + m))–time algorithm solving
s-Plex Cluster Editing.

Proof. Given an instance (G, k) of s-Plex Cluster Editing, we search in G for
a minimal forbidden induced subgraph from F(s, i) with i = ⌊−0.5 +

√
0.25 + s⌋. By

Theorem 4.7, this can be done in O(s ·(n+m)) time. If G does not contain an induced
subgraph from F(s, i), then G already is an s-plex cluster graph and we are done.
Otherwise, let S be a set of vertices inducing a forbidden subgraph G[S] ∈ C(s, i′) ⊆
F(s, i), where i′ ≤ i. In the following, let v denote a vertex with degG[S](v) = i′.
By the definition of C(s, i′), such a vertex must exist. Branch into the different
possibilities to destroy the forbidden induced subgraph G[S] and then recursively
solve the instances that are created in the respective search tree branches. Clearly,
the branching stops when k ≤ 0.

For branching, either insert edges incident to v or delete edges in G[S]. It is
sufficient to only consider these edge modifications since, if none of these is performed,
then G[S] remains connected and there are s vertices in G[S] that are not adjacent
to v, contradicting the s-plex (cluster graph) definition.

First, consider edge insertions between v and vertices u ∈ S \N [v]. Since G[S] ∈
C(s, i′) and degG[S](v) = i′, we have |S \ N [v]| = s. Therefore, branch into s cases,
inserting a different edge in each search tree branch. The parameter decreases by 1
in each branch.

Next, consider edge deletions. In each remaining branch, there is at least one
vertex u ∈ S such that u and v become disconnected, that is, they are in different
connected components of the final s-plex cluster graph. We now show that for each u ∈
S it is sufficient to create one search tree branch in which at least one edge deletion
is performed for the case that u and v are not connected in the final cluster graph.
Let Sl ⊂ S denote the vertices that have distance exactly l to v in G[S]. We first
consider the vertices in S1 (the neighbors of v in G[S]), then the vertices in S2, and
so on.

For each u ∈ S1, create a search tree branch in which one disconnects u and v.
Clearly this means that one has to delete the edge {u, v}. To branch on the vertices
in S2, one can assume that the vertices from N [v] = {v} ∪ S1 end up in the same
cluster, since we have already considered all possibilities of removing edges between v
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and the vertices in S1. Therefore, when considering the case that a vertex u ∈ S2

and v are not connected in the final cluster graph, one must delete all edges between u
and its neighbors in S1. At least one such edge must exist because u ∈ S2. Therefore,
for each case, one creates a search tree branch in which the parameter is decreased
by at least 1.

The case distinction is performed for increasing values of l, always assuming that v
and the vertices in S1 ∪ S2 ∪ . . . ∪ Sl−1 end up in the same cluster of the final cluster
graph. Hence, when considering the case that v and a vertex u ∈ Sl end up in
different clusters, one creates a search tree branch in which the edges between u and
its neighbors in Sl−1 are deleted, and at least one of these edges must exist. Hence,
one creates |S|−1 = s+ i′ ≤ s+ i branches in which edges are deleted. Together with
the s cases in which edge insertions are performed, one branches into 2s + i cases,
and in each branch, the parameter is decreased by at least 1. Branching is performed
only as long as k > 0. Hence, the search tree has size O((2s+ i)k) = O((2s+ ⌊√s⌋)k),
since i = ⌊−0.5+

√
0.25 + s⌋. Using breadth-first search, the steps at each search tree

node can be performed in O(s · (n + m)) time which results in the claimed running
time bound.

Using Theorems 3.4 and 5.1, by interleaving the problem kernelization (running
in O(n4) time) and the search tree [27, 26], we get:

Theorem 5.2. There is an O((2s+ ⌊√s⌋)k +n4)–time algorithm solving s-Plex

Cluster Editing.

6. Conclusion. We initiated the study of the graph modification problem s-
Plex Cluster Editing. Whereas here we considered the edge modification sce-
nario, follow-up work studied the vertex deletion variant [3]. We believe that s-Plex

Cluster Editing may have practical relevance for graph-based data clustering in a
similar way as its well-studied special case Cluster Editing has. Recently, there
have been several further studies dealing with different relaxed models of graph-based
data clustering [14, 19, 20]. Our results lead to numerous opportunities for future re-
search. From the viewpoint of algorithm theory, we concentrated on fixed-parameter
algorithms, leaving open the study of approximation algorithms. Second, we left un-
studied the sometimes desirable case of having a specified number of clusters to be
generated. As to applications, important issues of interest for future study would
be to deal with weighted inputs or to obtain faster algorithms for special cases such
as s = 2. A thorough empirical study as recently undertaken for Cluster Edit-

ing [6, 5, 11, 29, 34] is a natural task for future work. Finally, studying further
parameterizations for s-Plex Cluster Editing as recently undertaken for Clus-

ter Editing [21] seems promising.
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