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Abstract. We address the problem of whether the brute-force pro-
cedure for the local improvement step in a local search algorithm
can be substantially improved when applied to classical NP-hard
string problems. We examine four problems in this domain: Closest
String, Longest Common Subsequence, Shortest Common Su-
persequence, and Shortest Common Superstring. Herein, we con-
sider arguably the most fundamental string distance measure, namely
the Hamming distance, which has been applied in practical local search
implementations for string problems. Our results indicate that for all
four problems, the brute-force algorithm is essentially optimal.

1 Introduction

Local search is a universal algorithmic approach for coping with computationally
hard optimization problems. It is typically applied on problems which can be
formulated as finding a solution maximizing or minimizing a criterion among a
number of feasible solutions. The main idea is to start with some solution, then
search inside the local neighborhood of this solution for a better solution until
a locally optimal solution has been found. The hope is then that the locally
optimal solution is almost as good as a globally optimal one. See the book by
Aarts and Lenstra [1] for further background and results concerning local search.

There are two main theoretical approaches to study local search: PLS-
completeness [11] and parameterized local search [13, 6]. PLS-completeness can
be used to show that finding a locally optimal solution is computationally hard
since a lot of improvement steps might be needed until it has been found. In
contrast, parameterized local search is concerned with the parameterized com-
plexity of the problem of searching the local neighborhood of a solution in order
to find a better solution. Usually the size of the neighborhood is nO(k), where n is
the total input length, and k is a parameter measuring the “radius” of the neigh-
borhood; that is, the maximum distance to the current solution. It is therefore



natural to ask whether nO(k) time is required for searching this neighborhood, or
whether f(k) · poly(n) time can be achieved. This is precisely the main question
underlying the theory of parameterized complexity [5].

There is substantial work in parameterized local search. For example, con-
cerning the Traveling Salesman problem, Balas [2] showed that one can
find, if it exists, a better tour with “shift” distance at most k to the old one
in 4k ·poly(n) time. Marx [13] proved the non-existence of such an algorithm for
the edge-exchange neighborhood. Subsequently, the complexity of local search
for further neighborhood measures of Euclidean Traveling Salesman was
examined [10]. Notably, the fixed-parameter tractability of Euclidean Trav-
elling Salesman and the edge-exchange neighborhood remains open [13, 10].
Fellows et al. [6] provided fixed-parameter algorithms for local search variants of
diverse graph problems such as Vertex Cover, Odd Cycle Transversal,
Max Cut, and Min-Bisection on planar graphs and proved W[1]-hardness for
the general case. Fomin et al. [8] considered the Feedback Arc set in Tour-
naments problems and presented a subexponential-time algorithm for its edge-
exchange local search version. Further results concerning parameterized local
search have been achieved for clustering problems [4], Boolean Constraint
Satisfaction [12], Stable Marriage variants [14], and Satisfiability [16].

In this paper, we add a new realm to the study of parameterized local search
by considering string problems. Stringology is one of the most widely studied
areas in computer science, particularly motivated by direct applications in text
mining and computational biology. Here, we consider four of the most promi-
nent NP-hard string problems: Closest String, Longest Common Sub-
sequence, Shortest Common Supersequence, and Shortest Common
Superstring. Local search seems to be a natural approach for dealing with
string problems. For instance, a local search heuristic using the Hamming dis-
tance neighborhood has been implemented and evaluated with real-world data
for problems closely related to Closest String [7, 15].

We examine all four string problems above in the framework of parameter-
ized local search. Herein, we consider the Hamming distance neighborhood of a
temporary solution and prove that the local search version of all these problems
are W[1]-hard even on alphabets of constant size, with the Hamming distance k
between the old and new solutions as parameter. Since the Hamming distance
seems to be the most simple distance between strings, our results could serve as
the basis for proving the hardness for other distance neighborhoods. Moreover,
for all problems except Shortest Common Supersequence, we can exclude
the existence of algorithms with running-times no(k). Thus, for these three prob-
lems, the nO(k)-time brute-force cannot be substantially improved. We remark
that these results do not exclude the existence of all parameterized local search
algorithms for these problems, but rather motivate the study of further param-
eterizations, for instance by considering the combined parameter “number m of
strings and neighborhood radius k”.
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2 Preliminaries

For a string S we write |S| to denote the length of S. We use S[i], 1 ≤ i ≤ |S|, to
denote the letter at position i in S and use S[i, j], 1 ≤ i < j ≤ |S|, to denote the
substring S[i] · · ·S[j] of S from position i to position j. A substring of the form
S[i, n] is called a suffix of S, and a substring S[1, j] is called a prefix. For a given
suffix T of S, we write S−T to denote the string S[1, |S|− |T |]. We use S− as a
shorthand for S − S[|S|]. A string T is a subsequence of S if T can be obtained
from S by deleting some letters; that is, if there exists a sequence of positions
i1 < · · · < i|T | with S[ij ] = T [j] for all j ∈ {1, . . . , |T |}. If T is a subsequence
of S, then S is called a supersequence of T . The Hamming distance dH(S, T ) :=
|{i : S[i] 6= T [i]}| between two string S and T of equal length is defined as the
number of positions in which the two strings differ. We define the Hamming
distance of a string S to a set T of strings as dH(S, T ) := maxT∈T dH(S, T ).

We analyze our local search string problems in the framework of parame-
terized complexity [5]. A parameterized reduction from a parameterized prob-
lem L to another parameterized problem L′ is an algorithm with running
time f(k) · poly(|x|) for some computable f(), that maps an instance (x, k) ∈
{0, 1}∗ × N to an instance (x′, k′) ∈ {0, 1}∗ × N such that:

(i) k′ ≤ g(k) for some computable g(), and
(ii) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′.

If g() is linearly bounded, i.e. g(k) ≤ ck for some constant c, then we say that the
reduction is a linear parameterized reduction. Two basic classes of parameterized
intractability are W[1] and W[2]; if there is a parameterized reduction from a
W[1]-hard (W[2]-hard) problem to a parameterized problem L, then L is W[1]-
hard (W[2]-hard).

The hardness results in this paper are obtained by parameterized reductions
from the following three problems which all have the solution size k as param-
eter: In the W[2]-hard Multicolored Hitting Set(k) (MHS(k)), the input
is a hypergraph (V, E) and a coloring function c : V → {c1, . . . , ck}. The goal is
to determine whether there exists a size-k subset H ⊆ V with H ∩E 6= ∅ for all
E ∈ E , such that H is multicolored, that is, |{v ∈ H : c(v) = ci}| = 1 for all ci ∈
{c1, . . . , ck}. In the W[1]-hard Multicolored Independent Set(k) (MIS(k)),
the input is a graph (V,E) and a coloring function c : V → {c1, . . . , ck}, and
the goal is to determine if (V,E) has a multicolored independent set I ⊆ V .
The W[1]-hard Multicolored Clique(k) (MC(k)) is defined similarly, ex-
cept the goal is to determine the existence of a multicolored clique instead of a
multicolored independent set. We make use of the following result [3].1

Lemma 1. Let L be a parameterized problem with parameter k, and assume
that there is a linear parameterized reduction from either MHS(k), MIS(k), or
MC(k) to L. Then unless all problems in SNP can be solved in subexponential
time, size-n instances of L cannot be solved in no(k) time.

1 For Hitting Set, Chen et al. [3] do not explicitly make this statement, but it can
be inferred via a simple reduction from Dominating Set.
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3 Closest String

The first local search string problem we consider is a local search variant of the
Closest String problem. Let Σ denote some arbitrary alphabet, and n be a
positive integer. In Closest String, the input is a set T ⊆ Σn of strings and
an integer d, and the goal is to determine whether there is a string S ∈ Σn such
that dH(S, T ) ≤ d. The local search variant of this problem that we consider is
defined as follows:

Local Search Closest String (LSCS):
Input: A set T := {T1, . . . , Tm} ⊆ Σn of input strings, a temporary
solution string S ∈ Σn with d := dH(S, T ), and a nonnegative integer k.

Question: Is there a string S̃ of length n such that dH(S̃, T ) < d

and dH(S̃, S) ≤ k?

Thus, we are given a temporary solution string S, and we want to find a better
solution S̃ in the k-neighborhood of S, where this neighborhood is defined w.r.t.
Hamming distance.

We denote the different parameterizations of this problem by appending the
parameters to the problem name in parenthesis. Thus, LSCS(k) for instance, is
the LSCS problem parameterized by k. Observe that LSCS can be solved by
a brute-force algorithm in O(nk+1 ·m) time. It is also not difficult to devise a
dk · poly(n,m) algorithm for this problem based on the following observation: as
long as S differs from some input string at least d positions, then one of these
positions in S has to be changed. Achieving an f(m) · poly(n)-time algorithm
by modifying the Integer Linear Programming-based algorithm of Gramm et
al. [9] is also possible. Below, we show that for the parameter k, one cannot
substantially improve on the brute-force algorithm in general, even when the
strings are binary. We begin with the easier case of parameterized-size alphabets.

Proposition 1. There is a linear parameterized reduction from MHS(k) to
LSCS(k + |Σ|).

We next consider the binary case. Let (V := {1, . . . , |V |}, E , c) be an instance
of MHS(k), and assume, w.l.o.g., that |E| ≤ |V | − k for each E ∈ E . Set the
individual input string length to n := |V | + |V | · |E| + 2k · |V |, and set the
temporary solution S to 0n. For each E ∈ E create a string TE of length n. For
each v ∈ {1, . . . , |V |}, set TE [v] := 1 if v ∈ E and TE [v] := 0 otherwise. Note that
the Hamming distance between TE [1, |V |] and S[1, |V |] is exactly |E| ≤ |V | − k.
The remaining positions are used to “pad” the distance between TE and S
to |V | − k. To this end, assign a unique number i ∈ {1, . . . , |E|}, and use the
substring TE [i · |V |+ 1, (i+ 1) · |V |] to pad the distance between TE and S; that
is, set the first |V |−k−|E| positions in this substring to 1 and all other positions
in TE [|V |+ 1, n] to 0.

Next, add an additional set of strings which enforce that for each proper
subset of colors C ⊂ {c1, . . . , ck}, the set of colors used by a solution string

C(S̃) := {c(v) : S̃[v] = 1} is not C. Since we enforce this for each proper subset, it
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will follow that C(S̃) = {c1, . . . , ck}. For each proper C ⊂ {c1, . . . , ck}, construct
a string TC such that, for each v ∈ {1, . . . , |V |}, we have TC [v] = 0 if c(v) ∈ C
and TC [v] = 1 otherwise. Note that the distance between S[1, |V |] and TC [1, |V |]
equals the number of vertices in V not colored by a color in C. Pad the distance
between TC and S to |V |−|C| by assigning TC a unique number i ∈ {1, . . . , 2k−
1}, and let x denote the number of positions v in TC [1, |V |] with TC [v] = 0. Note
that x ≥ |C| since for each color c ∈ C there is at least one vertex colored c.
Consequently, set the first x−|C| positions in TC [|V |·(|E|+i)+1, |V |·(|E|+i+1)]
to 1, and all remaining unspecified positions to 0. Observe that in this way
T∅ = 1|V |0n−|V |.

This concludes the construction of the set T of input strings, and the
instance (T , S, k) of LSCS(k). Clearly this construction can be performed
in 2k · poly(n,m) time, and therefore it is a parameterized reduction. Further-
more, observe that dH(S, T ) = |V |, and that this distance is obtained by the
distance between S and T∅.

Theorem 1. There is a linear parameterized reduction from MHS(k) to
LSCS(k) for binary strings.

Corollary 1. LSCS(k) for binary strings is W[2]-hard, it cannot be solved no(k)

time unless all problems in SNP can be solved in subexponential time.

4 Longest Common Subsequence

The Longest common subsequence (LCS) problem asks to determine
whether an input set T of strings has a string S of some specified length `
such that S is a subsequence of each string T ∈ T . In this section we consider
the following local search variant of LCS:

Local Search Longest Common Subsequence (LSLCS):
Input: A set T := {T1, . . . , Tm} of input strings over an alphabet Σ, a
temporary solution string S such that S is a subsequence of each string
in T , and a nonnegative integer k.
Question: Is there a letter σ ∈ Σ and a string S̃ of length |S| such that

S̃σ is a subsequence of each string in T and dH(S̃, S) ≤ k?

Observe that LSLCS can be solved in
(|S|
k

)
· |Σ|k · poly(n) = nO(k) time by

brute-force (n denotes the overall instance size). We show that it is unlikely to
substantially improve on this algorithm, even in the case of constant-size alpha-
bets. As a warm-up, we begin with the very easy case of unbounded alphabets.

Lemma 2. There is a linear parameterized reduction from the W[2]-hard
LCS(`) problem to LSLCS(k) with unbounded alphabets.

We next proceed to the more involved case where |Σ| is part of the parameter.
We present a reduction from MIS(k) to LSLCS(k + |Σ|). Let (G = (V,E), c)
denote an instance of MIS(k), where G is a graph and c is a coloring function
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c : V → {c1 . . . , ck}. By padding (G, c), we can assume, w.l.o.g, that each color
class in G has precisely n vertices, that is, |{v : c(v) = ci}| = n for each
i ∈ {1, . . . , k}.

We begin by describing the solution string S. The string S consists of a suffix
S∗ := ($£k+1$)k+1, where $ and £ are two letters of the alphabet that do not
appear elsewhere in S. The prefix of S consists of k substrings, or blocks, one for
each color class. The substring S(ci) corresponding to ci is defined as the string
S(ci) := −→ci (0#)n←−ci where −→ci and ←−ci are letters corresponding to color class ci.
The whole string S is thus constructed as

S := S(c1) · · ·S(ck)S∗.

Next we construct the two enforcement strings T1, T2 ∈ T . The string T1
contains the string S as its suffix. Its prefix contains k blocks, one for each color
class of G, where the i’th block T1(ci) is defined as T1(ci) := −→ci (0#1#)n−1←−ci .
The prefix of T1 is separated from its suffix with the string S∗ to form the string

T1 := T1(c1) · · ·T1(ck)S∗S.

The string T2 also contains k blocks, each corresponding to a color of G, where
the block corresponding to ci is constructed as T2(ci) := −→ci (01#)n←−ci . We con-
catenate all these blocks with the suffix S∗$ to obtain the string

T2 := T2(c1) · · ·T2(ck)S∗$.

Finally, for each edge e ∈ E, we construct an input string Te as follows.
Assume that the vertices in each color class are ordered. Let e be an edge between
the x’th vertex of color ci and the y’th vertex of color cj , where i < j. The string
Te consists of two blocks for each color class of G, defined by

– T 1
e (ci) := −→ci (01#)x−10#(01#)n−x←−ci ,

– T 2
e (cj) := −→cj (01#)y−10#(01#)n−y←−cj ,

– T 2
e (ci) := −→ci (01#)n←−ci ,

– T 1
e (cj) := −→cj (01#)n←−cj ,

– T 1
e (c`) := T 2

e (c`) := −→c` (01#)n←−c` , for all ` 6= i, j.

We then construct Te by concatenating all these blocks, along with the suffix
S∗$ to form

Te := T 1
e (c1) · · ·T 1

e (ck)T 2
e (c1) · · ·T 2

e (ck)S∗$.

Setting T := {T1, T2} ∪ {Te : e ∈ E} completes the construction of our
LSLCS(k + |Σ|) instance (T , S, k). Observe that S is indeed a subsequence of
all strings in T , and that Σ is an alphabet of size 2k+ 5 consisting of the letters
−→c1 , ←−c1 , . . ., −→ck , ←−ck , 0, 1, #, $, and £. We now make two observations that lead
to the soundness and completeness of our reduction.

Lemma 3. Suppose that S̃σ is a solution string for the constructed instance
(T , S, k). Then S̃σ = S̃(c1) · · · S̃(ck)S∗σ, where for each i ∈ {1, . . . , k}, the

substring S̃(ci) is obtained from S(ci) by replacing exactly one occurrence of the
letter 0 with the letter 1.
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According to Lemma 3 above, we can think of the positions in which
S̃(c1) · · · S̃(ck) differs from S(c1) · · ·S(ck) as an encoding the selection of k ver-
tices, one for each color class of G. We refer to these vertices as the set of vertices
selected by S̃.

Lemma 4. The set I ⊆ V (G) of vertices selected by S̃ is a multicolored inde-
pendent set in G.

Theorem 2. There is a linear parameterized reduction from MIS(k) to
LSLCS(k + |Σ|).

We next sketch how to reduce the alphabet in our construction to constant
size. For each i ∈ {1, . . . , k}, replace the letters −→ci and ←−ci with the substrings
pα(i) and qα(i) respectively, where α(k) := 1 and α(i) := α(k) + · · ·+α(i+ 1) + 1
for i < k. The new alphabet is of size 7. It is not difficult to verify that Lemma 3
still holds under this modification. The rest of the proof remains unchanged.

Corollary 2. LSLCS(k) restricted to strings over a constant-size alphabet is
W[1]-hard. Moreover, the problem has no no(k) algorithm unless all problems in
SNP can be solved in subexponential time.

5 Shortest Common Supersequence

In this section, we consider a local search version of Shortest Common Super-
sequence (SCSeq). In SCSeq, the input is a set of strings T and an integer
`, and the question is whether there exists a string S of length ` which is a
supersequence of all strings in T . The local search variant of this problem that
we consider is given by:

Local Search Shortest Common Supersequence (LSSCSeq):
Input: A set T = {T1, . . . , Tm} of strings over an alphabet Σ, a string S
which is a supersequence of all Ti’s, and a positive integer k.
Question: Is there a string S̃ of length |S| − 1 which is a supersequence

of all Ti’s such that dH(S−, S̃) ≤ k?

In other words, the new solution supersequence S̃ is created from S by removing
the last position of S and modifying at most k remaining positions. The main
result of this section is the theorem below.

Theorem 3. There is a linear parameterized reduction from MIS(k) to
LSSCSeq(k) restricted to strings over an alphabet of constant size.

Let (G = (V,E), c) denote an arbitrary input of MIS(k) with c : V →
{c1, . . . , ck}. We assume, w.l.o.g., that there are n vertices colored ci, for each
color ci ∈ {c1, . . . , ck}, and that any pair of vertices with equal color are adjacent
in G. Furthermore, to ease our presentation, we assume that the edges in G are
directed; that is, E contains the two ordered pairs (u, v) and (v, u) for every pair
of adjacent vertices u and v in G.
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We begin by constructing the temporary solution S. First we create three
substrings for each color ci ∈ {c1, . . . , ck}, which we refer to as selection blocks:

S1(ci) := −→ci (01#)n←−ci , S2(ci) := −→ci (00#)n←−ci , and S3(ci) := −→ci (01#)n←−ci .

We construct S by concatenating the selection blocks, using the letter & to
separate the three sets of selection blocks. We then add a suffix to S: The string
S∗ := ($£n$)k+1 concatenated to the input string T1 ∈ T which will be specified
later. The string S is then given by

S := S1(c1) · · ·S1(ck) &S2(c1) · · ·S2(ck) &S3(c1) · · ·S3(ck)S∗ T1.

Next, we construct the input string T1 which is the first of two input strings
that will act as enforcement strings, enforcing the changes in S to occur in its
selection blocks in a controlled fashion. For ci ∈ {c1, . . . , ck}, define

T 1
1 (ci) := −→ci 0n+1←−ci , T 2

1 (ci) := −→ci 1←−ci , and T 3
1 (ci) := −→ci 0n+1←−ci .

We construct T1 using these substrings, the separation letter &, and the suffix S∗:

T1 := T 1
1 (c1) · · ·T 1

1 (ck) &T 2
1 (c1) · · ·T 2

1 (ck) &T 3
1 (c1) · · ·T 3

1 (ck)S∗.

The second enforcement string T2 is constructed using the following sub-
strings corresponding to a color ci ∈ {c1, . . . , ck}:

T 1
2 (ci) := −→ci (0#)n←−ci , T 2

2 (ci) := −→ci (0#)n←−ci , and T 3
2 (ci) := −→ci (0#)n←−ci .

The string T2 is then constructed as

T2 := T 1
2 (c1) · · ·T 1

2 (ck) &T 2
2 (c1) · · ·T 2

2 (ck) &T 3
2 (c1) · · ·T 3

2 (ck)S∗ T1 − .

To complete the construction of T , we construct a string Te for each e ∈ E.
These strings are composed of substrings that correspond to vertices of G. Let
v ∈ V with c(v) := ci, and assume v is the x’th vertex of color ci. The string
T (v) is defined by

T (v) := −→ci (0#)x−1 01 (0#)n−x←−ci .
The string Te is constructed as Te := T (u) &T (v) if e := (u, v) (recall that we
assume that the edges are directed, and that any pair of vertices with the same
color are adjacent).

To finalize our construction, we set the parameter k′ of the LSSCSeq in-
stance to 3k. Clearly the instance (T , S, k′) can be constructed in polynomial
time. We proceed to show that this instance is equivalent to the MIS(k) instance.
The first crucial step is given by the following lemma.

Lemma 5. Let (T , S, k′) be an LSSCSeq instance constructed as described

above. If (T , S, k′) ∈ LSSCSeq, then there exists a solution string S̃ for

(T , S, k′) where S̃ can be written as S̃ := S′ S∗ T1− with

S′ := S̃1(c1) · · · S̃1(ck) & S̃2(c1) · · · S̃2(ck) & S̃3(c1) · · · S̃3(ck),

such that for each i ∈ {1, . . . , k} we have:
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– S̃1(ci) is obtained from S1(ci) by replacing exactly one occurrence of 01 by 00,

– S̃2(ci) is obtained from S2(ci) by replacing exactly one occurrence of 00 by 01,

– S̃3(ci) is obtained from S3(ci) by replacing exactly one occurrence of 01 by 00.

Let S̃ be a solution string for (T , S, k′) as in Lemma 5. We inter-
pret the positions in S′ that differ from S− as a set of selected vertices
{v11 , v21 , v31 , . . . , v1k, v2k, v3k} of G, where for each i ∈ {1, . . . , k}, the vertex v1i (resp.
v2i , v3i ) is the x-th vertex in ci if the x-th substring 01 (resp. 00, 01) in S(ci)

is modified in S̃(ci). The next lemma shows that the set of selected vertices
includes in fact only k vertices.

Lemma 6. For each i ∈ {1, . . . , k} v1i = v2i = v3i .

According to Lemma 6, we let vi be the single vertex corresponding to v1i =
v2i = v3i , giving us a multicolored set {v1, . . . , vk} of vertices in G. The next
lemma shows that this set is independent in G.

Lemma 7. The set of vertices I := {v1, . . . , vk} forms an independent set in G.

Corollary 3. LSSCSeq(k) restricted to strings over a constant-size alphabet is
W[1]-hard, and has no no(k) algorithm unless all problems in SNP can be solved
in subexponential time.

6 Shortest Common Superstring

In this section we deal with a local search variant of Shortest Common Su-
perstring. In this problem, the input is a set of strings T and an integer `,
and the question is whether there is a string S of length at most ` which is a
superstring of all strings in T . The local search version of Shortest Common
Superstring is defined as follows:

Local Search Shortest Common Superstring (LSSCStr):
Input: A set T = {T1, . . . , Tm} of strings over an alphabet Σ, a string S
which is a superstring of all Ti’s, and a positive integer k.
Question: Is there a string S̃ of length |S| − 1 which is a superstring of

all Ti’s such that dH(S̃, S−) ≤ k?

Theorem 4. LSSCStr(k) is W[1]-hard, even with an alphabet of constant size.

For ease of presentation, we describe here only the case that the alphabet size |Σ|
is part of the parameter. The case with constant-size alphabets can be coped with
the method introduced in Section 4. The reduction is from the W[1]-complete
Multicolored Clique problem, where, given a graph G = (V,E) and a col-
oring function c : V → {c1, . . . , ck}, we ask for a multicolored clique of size k.
We assume, w.l.o.g., that c is a proper coloring, that is, there is no edge {u, v}
between vertices u and v with c(u) = c(v) (such edges can be removed in linear
time), and that each color class contains exactly |V |/k vertices.
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The alphabet Σ consists of k∗ ·k(k−1)+4k+4 letters with k∗ := 2k(k2 +k).
The letters $ and # are separating letters, where $ does not occur in the in-
put strings. The letters 0 and 1 are encoding letters. The other letters corre-
spond to colors and color pairs. For each color ci, we have 4 letters: ai, bi,
ci, and di. For each ordered color pair (ci, cj) with i 6= j, there are k∗ let-
ters, namely, c1i,j , . . . , c

k∗

i,j . Assume that each color class in G contains n ver-
tices. The LSSCStr(k)-instance consists of the superstring S and a set T
of 1 + (k − 1)k · n + (k − 1) · n input strings: one special input string T0, k
input strings for each vertex from color classes c1 to ck−1, and k − 1 input
strings for each vertex from the color class ck.

To construct these strings, we first introduce some strings, which are used as
“building blocks” in the construction. First, we describe the “separating blocks”.

For each color ci with 2 ≤ i ≤ k, we introduce two such blocks: Ai := a
g(i)
i and

Bi := b
g(i)
i , where g(i) := 2k−i · (k2 +k). For each ordered pair of colors ci and cj

with i 6= j, we construct one separating block: Ci,j := (c1i,j#)n · · · (ck∗i,j#)n.
Moreover, we construct two “color-pair matching” blocks for each color ci:

– M1
i := 0Ci,1 · · · 0Ci,i−1 Ci,i+1 · · ·Ci,k, and

– M2
i := Ci,1 · · ·Ci,i−1 Ci,i+10 · · ·Ci,k0.

Finally, for every vertex v we construct an “identifying block”. Let ci := c(v).
Here we distinguish i = 1 and i > 1. Assume v is the x’th vertex colored ci. The
identifying block for v is constructed as

– I(v) := d1 0x−1 1 0n−x d1 for i = 1, and
– I(v) := di (0Ai)

x−11Ai(0Ai)
n−x didi−1, for i > 1.

We are now ready to describe the set of input strings T in our LSSCStr
instance. First, for each vertex v colored ci with 1 ≤ i < k, we construct one
“triggering” input string. If v is the x’th vertex colored ci, its triggering input
string T (v) is constructed as:

T (v) := ci+1M
1
i+1 di+1 (0Ai+1)x−10Bi+1 (0Ai+1)n−x di+1di.

Then, for each vertex v colored ci with 1 ≤ i ≤ k, we add k − 1 “pairing” input
strings, each corresponding to a color class cj with j 6= i. Here, we distinguish i <
j and i > j:

– T (v, cj) := Ci,j+1 · · ·Ci,k I(v)Ci,1 · · ·Ci,i−1Ci,i+10 · · ·Ci,j0 (i < j),
– T (v, cj) := 0Ci,j · · · 0Ci,i−1Ci,i+1 · · ·Ci,k I(v)Ci,1 · · ·Ci,j−1 (i > j).

To finalize our construction of T , we set the special input string T0:

T0 := c1M
1
1 d1 0n d1.

Now, it remains to describe the temporary solution S. To this end, we in-
troduce some further building blocks. For each edge e = {u, v} ∈ E, where u is
colored ci, and v is colored cj with i < j, we construct one “edge block” S(e)
for S as:

S(e) := T (u, cj)− 1− T (v, ci),
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where T (u, cj)− as usual denotes the prefix of the pairing input string T (u, cj)
without the last 0, and −T (v, ci) denotes the suffix of T (v, ci) without the first 0.
Furthermore, for each vertex v ∈ V colored ci in G we construct the selection
block S(v) of v by:

– S(v) := T (v)M1
i I(v)M2

i for i < k, and
– S(v) := M1

k I(v)M2
k for i = k.

The solution S then consists of three parts, S := S(V )S(E)T0, where the first
part S(V ) is the concatenation of the selection blocks S(v) separated by $’s in
any arbitrary order, the second part S(E) is the concatenation of edge blocks
S(e) separated by $’s, and T0 is the special input string described above.

Finally, we set the parameter for the LSSCStr-instance to k′ := 2k+ k(k−
1)/2 + (2k−1 − 1)(k2 + k). It is easy to verify that S is a superstring of all
input strings: The string T0 occurs at the end of S. Furthermore, for each vertex
v ∈ V , the triggering input string T (v) is a prefix of S(v), while the pairing
strings T (v, cj) are clearly substrings of M1

i I(v)M2
i . We next turn to showing

the equivalence of the two instances.

Lemma 8. If G has a multicolored clique K then (S, T , k′) has a solution

string S̃.

We next consider the reversed direction. Suppose that a solution S̃ exists for
(T , S, k′). We use S̃(v) to denote substring of S̃ corresponding to the selection
block S(v) of S.

Lemma 9. If there is a solution S̃ for (T , S, k) constructed above, then the input

string T0 is a substring of some S̃(v1) for some v1 ∈ V with c(v1) = c1.

Let v1 be the vertex in Lemma 9. By construction, we have to match M1
1 of T0

to the M1
1 -substring of S̃(v1). This implies that the letter 1 in the corresponding

identifying block has to be changed to 0. Moreover, the last letter d1 of the
corresponding triggering block must be changed to c1. These two changes cause
that the pairing input strings and the triggering string for v1 are matched to
somewhere else in S̃ than in S. We consider first the triggering string T (v1).

Lemma 10. The triggering input string T (v1) can only be matched to a sub-

string of S̃(v2) for some vertex v2 with c(v2) = c2.

It can be shown that the matching of T (v1) to some S̃(v2) causes 2 + |A2|
modifications after which the triggering input string T (v2) and k−1 pairing input

strings are unmatched. Furthermore, T (v2) has to be matched to some S̃(v3)
with c(v3) = c3: after performing the 2 + |A2| = 2 + 2k−2(k2 + k) changes to
match T (v1), one cannot afford to perform 2|B3| = 2·2k−3(k2+k) = 2k−2(k2+k)
changes which are necessary for matching T (v2) to the selection block of another
vertex colored c2. The same argument applies inductively for all i > 2. In this
way, the string S̃ differs from S in exactly k selection blocks corresponding to a
multicolored set of vertices {v1, . . . , vk} in G, and the Hamming distance between

the remaining suffixes of S− and S̃ is at most k(k − 1)/2.
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Lemma 11. The set of vertices {v1, . . . , vk} specified above forms a clique in G.

Combining all lemmas above completes the proof of Theorem 4 when |Σ|
is part of the parameter. Using the method from Section 4 gives the proof for
constant-size alphabets.
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