
(Prefix) Reversal Distance for (Signed) Strings with
Few Blocks or Small AlphabetsI

Laurent Bulteaua,1, Guillaume Fertinb,2, Christian Komusiewiczc,2,3

aLaboratoire d’Informatique Gaspard Monge, CNRS UMR 8049, Université Paris-Est,
5 Bd Descartes 77454 Marne-la-Vallée, France

bLaboratoire d’Informatique de Nantes-Atlantique, UMR CNRS 6241, Université de Nantes,
2 rue de la Houssinière, 44322 Nantes Cedex 3, France

cInstitut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Abstract

We study the String Reversal Distance problem, an extension of the well-
known Sorting by Reversals problem. String Reversal Distance takes
two strings S and T built on an alphabet Σ as input, and asks for a minimum
number of reversals to obtain T from S. We consider four variants: String
Reversal Distance, String Prefix Reversal Distance (a constrained
version of the previous problem, in which any reversal must include the first
letter of the string), and the signed variants of these problems, namely Signed
String Reversal Distance and Signed String Prefix Reversal Dis-
tance. We study algorithmic properties of these four problems, in connection
with two parameters of the input strings: the number of blocks they contain (a
block being a maximal substring such that all letters in the substring are equal),
and the alphabet size |Σ|. Concerning the number of blocks, we show that the
four problems are fixed-parameter tractable (FPT) when the considered param-
eter is the maximum number of blocks among the two input strings. Concerning
the alphabet size, we first show that String Reversal Distance and String
Prefix Reversal Distance are NP-hard even if the input strings are built
on a binary alphabet Σ = {0, 1}, each 0-block has length at most two and each
1-block has length one. We also show that Signed String Reversal Dis-
tance and Signed String Prefix Reversal Distance are NP-hard even
if the input strings have only one letter. Finally, when |Σ| = O(1), we provide
a singly-exponential algorithm that computes the exact distance between any
pair of strings, for a large family of distances that we call well-formed, which

IA preliminary version of this article appeared in Proceedings of the 25th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM 2014) [3]

Email addresses: laurent.bulteau@u-pem.fr (Laurent Bulteau),
guillaume.fertin@univ-nantes.fr (Guillaume Fertin),
christian.komusiewicz@uni-jena.de (Christian Komusiewicz)

1Supported by the Alexander von Humboldt Foundation
2Supported by Procope grant number 28436VG
3Supported by a post-doctorial grant funded by the Région Pays de la Loire

To appear in Journal of Discrete Algorithms, Elsevier May 17, 2016

http://dx.doi.org/10.1016/j.jda.2016.05.002

includes the four distances we study here.

1. Introduction

Many problems studied in the realm of comparative genomics concern genome
rearrangements, where the general goal is to better understand the evolutionary
history of species, by realizing pairwise comparisons of their genomes. A genome
is modeled as a linearly ordered sequence of elements, called genes, where each
gene is represented by a unique symbol that identifies it; hence, genomes can
also be seen as permutations. Given two genomes G1 and G2, and a set S of
possible operations (rearrangements) that can be applied to these genomes, one
classical problem consists in computing the smallest number of rearrangements
that allows to obtain G2, starting from G1, and using only operations from S.
We refer the reader to [13] for an extensive survey on the subject.

One of the most studied, and historically one of the firstly described such
rearrangement is the reversal [18], which consists in taking a contiguous sub-
sequenceof a genome, reverse its order, and reincorporate it at the same loca-
tion. This gave rise to the Sorting by Reversals (SBR) and Sorting by
Signed Reversals (SBSR) problems. In the signed version of the problem,
each element of the permutation is additionally labeled with a sign + or − and a
reversal not only reverses the order, but also inverts the signs of all the elements
involved in it. In terms of complexity, SBR has been proved to be NP-hard [5]
and the best current approximation ratio is 1.375 [2]. In contrast, SBSR is
polynomial [1]. Another variant consists in imposing the use of prefix reversals
only, that is, each reversal must contain the first letter of the permutation it is
applied to. The corresponding unsigned and signed problems are called SBPR
and SBSPR, respectively. The SBPR problem has been recently shown to be
NP-hard [4], and the best current approximation ratio is 2 [14]. The complexity
of SBSPR, however, is still open, and a 2-approximation algorithm also ex-
ists [12]. The genome rearrangement problem has, for a long time, been studied
in the case where each gene is considered to be unique, and thus, as mentioned
above, where genomes are modeled by permutations. In biological applications,
however, genomes of related species often contain many homologous genes. In
this case, genomes cannot be modeled by permutations, but rather by (signed)
strings [6]. Hence, a natural and biologically more relevant extension of SBR
is the String Reversal Distance problem, formally defined, in its decision
version, as follows:

String Reversal Distance
Input: Two unsigned strings S and T over alphabet Σ and an
integer k.
Question: Can S be transformed into T by applying at most k
reversals?

We are also interested in the signed version of the above problem, which will
be denoted Signed String Reversal Distance.

2

Signed String Reversal Distance
Input: Two signed strings S and T over alphabet Σ and an inte-
ger k.
Question: Can S be transformed into T by applying at most k
reversals?

Now, if we allow prefix reversals only, the extension of SBPR to strings is
defined as follows:

String Prefix Reversal Distance
Input: Two unsigned strings S and T over alphabet Σ and an
integer k.
Question: Can S be transformed into T by applying at most k
prefix reversals?

As above, Signed String Prefix Reversal Distance will denote the
signed version of the problem.

Signed String Prefix Reversal Distance
Input: Two signed strings S and T over alphabet Σ and an inte-
ger k.
Question: Can S be transformed into T by applying at most k
prefix reversals?

Any of these four problems is nontrivially posed only if S and T have the
same content, that is, for each letter a in Σ, the number of occurrences of a in S is
equal to the number of its occurrences in T . We call such pairs of strings balanced
and throughout this work, we will always assume that S and T are balanced and
of length n. Given two balanced strings S and T , rd(S, T) (srd(S, T)) will denote
the smallest k for which the answer to String Reversal Distance (Signed
String Reversal Distance) is positive, which is exactly the (signed) reversal
distance between S and T . Notations prd(S, T) and sprd(S, T) are similarly de-
fined concerning problems String Prefix Reversal Distance and Signed
String Prefix Reversal Distance, respectively. A block in a string S de-
notes a maximal substring s of S such that all letters in s are the same (and
have the same sign, if strings are signed). For any instance (S, T) of any of
the four problems presented above, we use bmax to denote the maximum of the
number of blocks in S and T and bmin to denote its minimum. Unless stated
otherwise, we assume that S has bmax blocks. Note that n ≥ bmax ≥ bmin ≥ |Σ|.
We are interested in FPT (for Fixed-Parameter Tractable) algorithms. These
are algorithms running in time f(k) poly(n), where k is a suitable parameter
and f is any computable function depending only on k.

In this paper, our goal is to study algorithmic and complexity issues for
these four problems, in connection with two parameters of the input strings:
the maximum number of blocks bmax they contain and the size of the alphabet
Σ they are built on. We are particularly interested in the cases where bmax

and/or |Σ| is small.

3

Table 1: Overview of results for unsigned reversals. The results marked with (∗) hold even
when 0-blocks are of length at most 2 and 1-blocks are of length 1.

reversals prefix reversals
|Σ| = 2 general |Σ| = 2 general

NP-h [10, 11] NP-h [5, 10, 11] NP-h [16] NP-h [16, 4]
and Thm 7(∗) and Thm 7(∗)

FPT in bmax (Thm 5)

Table 2: Overview of results for signed reversals

signed reversals signed prefix reversals
|Σ| = 1 |Σ| = 2 general |Σ| = 1 |Σ| = 2 general

NP-h (Thm. 8) NP-h [17] NP-h (Thm. 8) NP-h [7]
FPT in bmax (Thm. 6)

Our results, together with some known results, are summarized in Tables 1
and 2. Our main algorithmic result is a fixed-parameter algorithm for the four
problem variants and the parameter maximum number of blocks bmax. This
result relies mainly on diameter bounds that depend only on bmax and |Σ| and
which we provide in Section 2. We believe that these diameter bounds are also
of independent interest. Then, in Section 3 we show the aforementioned algo-
rithm for the parameter bmax. This algorithm is based on a reduction to the
problem of computing a maximum network flow. In Section 4 we describe a re-
duction from SBR (resp. SBPR) that yields several hardness results. First, it
shows that for String Reversal Distance and String Prefix Reversal
Distance we cannot make use of a bounded block length even if input strings
are binary as both problems become NP-hard for the first nontrivial case, that
is, if each 0-block has length at most two and each 1-block has length one. Sec-
ond, it shows that Signed String Reversal Distance and Signed String
Prefix Reversal Distance remain NP-hard even over unary alphabet. This
strengthens the previous hardness results by Radcliffe et al. [17] and Chitturi [7]
who showed hardness for binary alphabets. Finally, we show a simple algorithm
that achieves a running time of |Σ|n ·poly(n) for many string distances including
the ones under consideration in this work.

Some Notations and a Structural Property. We start with some notations. We
denote the i-th letter of a string S by S[i]. A reversal ρ(i, j) in a string S of
length n transforms

S[1] · · ·S[i− 1] S[i]S[i+ 1] · · ·S[j − 1]S[j] S[j + 1] · · ·S[n]

into
S[1] · · ·S[i− 1] S[j]S[j − 1] · · ·S[i+ 1]S[i] S[j + 1] · · ·S[n].

Applied on a signed string, a reversal additionally inverts the signs of the letters
S[i], . . . , S[j]. We denote the (signed) string that results from applying rever-

4

sal ρ to S by S◦ρ. We use b(S) to denote the number of blocks of a string S. For
any (signed) string S we denote by S the string that is obtained by the rever-
sal ρ(1, |S|). The following simple observation concerns the String Reversal
Distance problem, and will be useful in a later part of this work.

Proposition 1. For any two balanced unsigned strings S and T , there is a
shortest sequence ρ1, ρ2, . . . , ρk of reversals from S to T such that for any 1 ≤
` ≤ k, the start and endpoint of ρ` have different letters.

Proof. Assume towards a contradiction that this is not the case. Then, there
are two strings S and T , S 6= T , such that for any shortest sequence of reversals
from S to T the first reversal ρ(i, j) fulfills S[i] = S[j]. Pick among all such
first reversals one in which j− i is minimum. Clearly, j− i > 2 since otherwise,
S ◦ ρ(i, j) = S. Then, however, ρ(i+ 1, j − 1) is a reversal and since S[i] = S[j]
we have S ◦ρ(i, j) = S ◦ρ(i+1, j−1). This contradicts the choice of i and j.

2. Upper Bounds on the Reversal Diameter

In this section, we present a series of results that will be essential for proving
that our four problems are FPT in bmax (Theorems 5 and 6, Section 3). The
following results are diameter upper bounds for our problems that depend only
on bmax and |Σ|. On the one hand, these bounds are necessary for proving
Theorems 5 and 6. On the other hand, we believe that they are of independent
interest. We also point out that some of them may easily be improved: our
main goal was not to find the best upper bounds, but sufficiently small ones so
that our algorithm proves to be FPT. Our upper bounds complement previous
diameter bounds which were presented for different types of reversal distances
between strings [11, 8].

2.1. Considering Unsigned Reversals

We first show an upper bound on the number of reversals needed to reach
an arbitrary “grouped” string, that is, any string with |Σ| blocks. We note
that related bounds were obtained by Christie and Irving [11] and Chitturi and
Sudborough [8]. These bounds are incomparable to our bounds, because they
are either restricted to binary alphabets or because the upper bounds may reach
Ω(n) even for a constant number of blocks.

Lemma 1. Let S be a string with b blocks over alphabet Σ. There exists a
string Sg with |Σ| blocks such that rd(S, Sg) ≤ b−|Σ| and prd(S, Sg) ≤ min{b−
1, 2(b− |Σ|)}.

Proof. Let us first show the result for reversals. We apply the following greedy
algorithm: while b > |Σ|, identify two distinct blocks that contain the same
letter, say a (such blocks must exist because b > |Σ|). Apply the reversal that
starts at the leftmost letter of the first block containing a and ends at the letter
before the second block containing a. This reversal strictly decreases the number
of blocks by 1, thus when Sg is reached, b− |Σ| reversals have been applied.

5

For prefix reversals, we use a similar greedy strategy to show both upper
bounds. First, we describe an algorithm that does not use more than b − 1
prefix reversals: if the first letter a appears only in this block, then reverse the
complete string (which is a prefix reversal) and remove the last block of the
resulting string from the instance (or similarly, apply the following only on the
substring that excludes this block). The removal of the last block reduces |Σ| by
one since a appears only in this block. Since a string with unary alphabet has
one block, we perform this type of prefix reversal at most |Σ| − 1 times. Note
that this does not increase b−|Σ| since b also decreases by one. If a appears in at
least two blocks, then apply the prefix reversal whose endpoint is the rightmost
letter before the second block that contains a. This prefix reversal reduces the
number b of blocks by one and we will thus call such a reversal efficient. The
overall number of prefix reversals that are applied until a grouped string is
reached is thus at most b− |Σ|+ |Σ| − 1.

Second, the 2(b − |Σ|) upper bound is obtained by iterating the following
process until Sg is reached: if the first letter a appears in another block, apply
an efficient prefix reversal as described in the previous algorithm. If not, let c be
a letter that appears in at least two blocks in S (such a letter exists, otherwise
we are done), and operate a prefix reversal that brings c in first position and
does not break any other block. Altogether, b− |Σ| efficient prefix reversals are
used, and at most b− |Σ| non-efficient ones.

We now use Lemma 1 to obtain an upper bound for the reversal distance
between any strings. The approach is to transform each input string into some
grouped string and then transform one grouped string into the other.

Theorem 1. Let S and T be two balanced strings. Then

• rd(S, T) ≤ bmax + bmin − |Σ| − 1 and

• prd(S, T) ≤ min{bmax + bmin + 18|Σ|
11 +O(1), 2bmax + 2bmin− 26|Σ|

11 +O(1)}.

Proof. We first show the bound for reversals. By Lemma 1, there exists a
grouped string Sg (resp. Tg) such that S (resp. T) can be transformed into Sg

(resp. Tg) using at most b(S) − |Σ| (resp. b(T) − |Σ|) reversals. Moreover, Sg

and Tg can be transformed into each other by at most |Σ| − 1 reversals: Since
each letter occurs only in one block, the problem reduces to finding the reversal
distance of two permutations of length |Σ|, which is at most |Σ| − 1 [1]. The
overall reversal distance between S and T thus is upper bounded by b(S)−|Σ|+
b(T)− |Σ|+ |Σ| − 1 = bmax + bmin − |Σ| − 1.

For prefix reversals, the proof is essentially the same: (i) reach a grouped
string Sg from S and (ii) a grouped string Tg from T , and finish by (iii) obtaining
Tg from Sg. Depending on what algorithm is used for achieving (i) and (ii) (see
proof of Lemma 1), these two operations cost altogether either bmax + bmin − 2
or 2(bmax + bmin − 2|Σ|). Now, the number of prefix reversals in (iii) is upper-

bounded by 18|Σ|
11 +O(1) [9], which finishes the proof.

6

For the reversal case, we can also obtain a bound of the type bmax +O(|Σ|2).
Hence, if bmin is much larger than |Σ|, for example if |Σ| is a small constant,
this improves the above bound.

Theorem 2. Let S and T be two balanced strings. Then rd(S, T) ≤ bmax +
|Σ|2 − 2|Σ|.

Proof. If bmax < |Σ|2 − |Σ|+ 2, then bmin < |Σ|2 − |Σ|+ 2 and thus

rd(S, T) ≤ bmax + bmin − |Σ| − 1 ≤ bmax + |Σ|2 − 2|Σ|

by Theorem 1. Now, assume that bmax ≥ |Σ|2−|Σ|+2 and that the claim holds
for all pairs of strings with b′max < bmax. We show how to apply a constant
number of reversals on S or on S and T that reduce the number of blocks
sufficiently to obtain the bound.

Case 1: bmax > bmin. Assume that S has bmax blocks. Apply any reversal
on S that reduces the number of blocks by one (note that this is always possible
since bmax > bmin ≥ |Σ|). Let S′ be the resulting string. By the inductive
hypothesis, rd(S′, T) ≤ bmax − 1 + |Σ|2 − 2|Σ|. Since rd(S, S′) = 1, the claim
holds in this case.

Case 2: bmax = bmin. Any string U with at least |Σ|2−|Σ|+2 blocks has the
following property: there are two distinct letters, say a and b, such that U con-
tains substring ab twice. This can be seen by considering a directed multigraph
with vertex set Σ, in which we add an arc (u, v) for each substring uv, u 6= v
of U . Any pair of neighboring blocks corresponds to an arc in this graph. Now
there are at least |Σ|2 − |Σ| + 1 pairs of neighboring blocks in U . Hence, the
multigraph has at least |Σ|2 − |Σ| + 1 arcs. Since a simple directed graph can
have at most |Σ|2 − |Σ| arcs, there is at least one pair of vertices u and v, for
which the arc (u, v) is contained twice in this multigraph.

By the above, S has two distinct letters, say a and b, such that there are i
and j > i + 1 with S[i] = a, S[i + 1] = b, S[j] = a and S[j + 1] = b. The
reversal ρ(i + 1, j) produces a string S′ with bmax − 2 blocks. Similarly, there
is some reversal that transforms T into a string T ′ with bmax − 2 blocks. By
the inductive hypothesis, rd(S′, T ′) ≤ bmax− 2 + |Σ|2− 2|Σ|. Together with the
two additional reversals on S and T , we obtain the bound on the number of
reversals also in this case.

2.2. Considering Signed Reversals

In view of presenting an FPT algorithm for signed versions of String Re-
versal Distance (Theorem 6), we now give diameter bounds for these ver-
sions. These bounds are based on similar observations as the ones above. Herein,
we make use of the following folklore fact; we give a short proof for sake of com-
pleteness.

Proposition 2. Let S and T be two signed strings with reversal distance srd(S, T) =
1. Then S can be transformed into T by at most three prefix reversals.

7

Proof. Let S := S1S2S3 and T := S1S2S3. Apply the following three prefix
reversals. First, transform S into S′ := S2 S1 S3. Then, transform S′ into S′′ :=
S2S1S3. Then, transform S′′ into T by one further signed prefix reversal.

The first step for obtaining the diameter bounds is again to show an upper
bound on a string grouping problem. If we try to directly obtain a grouped
string with |Σ| blocks, then 2(bmax − |Σ|) reversals would suffice since we can
always reduce the block number by one with at most two reversals. In the
following, we describe a somewhat more efficient approach, where we quickly
reach a string with 2|Σ| blocks before completing the grouping into only |Σ|
blocks.

Theorem 3. Let S be a signed string with b blocks over alphabet Σ. There
exists a signed string Sg with |Σ| blocks such that srd(S, Sg) ≤ 3

2b− |Σ|+ 1 and
sprd(S, Sg) ≤ 9

2b− 3|Σ|+ 3.

Proof. The first step consists in transforming S into a string S′ with at most
2|Σ| blocks. Note that if b ≤ 2|Σ|, then we directly take S′ = S. Otherwise,
there is some letter a that occurs in at least three blocks. We show how to either
apply one reversal that reduces the block number by one or three reversals that
reduce the block number by two.

Case 1: a occurs with different signs. Consider two blocks that con-
tain a where one consists of −a’s and the other one of a’s. Performing a reversal
that starts at the leftmost letter of the first block and ends at the rightmost
letter before the second block reduces the number of blocks by one, since the
reversal changes the sign of the first block.

Case 2: a occurs with one sign only. Assume without loss of generality
that a occurs only with positive sign. Apply one reversal that only reverses
the second block containing a. Then, apply the reversal that starts at the
leftmost letter of the first block and ends at the rightmost letter before the
second block. As described above, this reversal reduces the number of blocks
by one. Afterwards, there are still two blocks containing a with different signs.
Hence, Case 1 applies and we can perform one further reversal that reduces the
number of blocks by one. Hence, by three reversals the number of blocks can
be reduced by two.

Altogether, this shows that if b > 2|Σ| is even, then 3
2 (b − 2|Σ|) reversals

suffice to get to S′. If b is odd, 3
2 (b−1−2|Σ|) reversals are sufficient to obtain a

string with 2|Σ|+ 1 blocks, from which another 2 reversals lead to S′. In either
case we can obtain S′ with at most 3

2b− 3|Σ|+ 1 reversals.
The second step consists in transforming S′, which has b′ ≤ 2|Σ| blocks,

into Sg with |Σ| blocks. This can be done in 2(b′ − |Σ|) reversals: as long as
a letter occurs in two different blocks, apply 2 reversals to join the two blocks
into one, and thus decrease (b′ − |Σ|) by one. Note that 2(b′ − |Σ|) ≤ 2|Σ| and
that 2(b′ − |Σ|) = 3

2b
′ + 1

2b
′ − 2|Σ| ≤ 3

2b
′ − |Σ|.

Summing the two steps for the case b ≥ 2|Σ|, we get a bound of (3
2b−3|Σ|+

1) + 2|Σ| ≤ 3
2b − |Σ| + 1. Using only the second step when b = b′ ≤ 2|Σ|, we

directly get an upper bound of 2(b′ − |Σ|) ≤ 3
2b− |Σ|.

8

The bound for signed prefix reversals follows directly from Proposition 2.

We can now use the same strategy as for the unsigned version: First trans-
form each string into a grouped string and then transform the two grouped
strings into each other.

Theorem 4. Let S and T be two signed balanced strings. Then srd(S, T) ≤
3
2 (bmax + bmin)− |Σ|+ 3 and sprd(S, T) ≤ 9

2 (bmax + bmin)− 3|Σ|+ 9.

Proof. We first prove the upper bound in the case of signed reversals. The
bound for prefix reversals then follows from Proposition 2. Suppose without
loss of generality that b(S) = bmax and b(T) = bmin. By Theorem 3, using
at most 3

2bmax − |Σ| + 1 reversals we can transform S into a string Sg having
at most |Σ| blocks. Similarly, at most 3

2bmin − |Σ| + 1 reversals are necessary
to transform T into a string Tg with at most |Σ| blocks. Now, with an addi-
tional |Σ| + 1 reversals [15], we can transform Sg into Tg, which concludes the
proof.

3. Sorting Strings with Few Blocks

In this section, we show that the four problems String Reversal Dis-
tance, String Prefix Reversal Distance, Signed String Reversal
Distance and Signed String Prefix Reversal Distance are fixed-parameter
tractable with respect to parameter bmax. We begin by showing the following
theorem, which is only concerned with String Reversal Distance. Then,
Theorem 6 extends this tractability result to the three other problems.

Theorem 5. String Reversal Distance is fixed-parameter tractable, pa-
rameterized by bmax. More precisely, it can be solved in time:

• (6bmax)4bmax poly(n) time on arbitrary strings ;

• (6bmax)2bmax poly(n) time whenever |Σ| = O(1).

The FPT algorithm we present for solving String Reversal Distance
consists of two main steps: First, “guess” between which blocks each of the
reversals takes place, then compute the precise endpoints of the reversals within
each block. The guesses of the first step fix the structure of the reversals and, for
any positive integer k, we will thus call a sequence of at most k of those guesses
a scaffold (see Definition 2 and Figure 1). The guessing step is performed by
a simple enumeration algorithm (the main difficulty consists in bounding the
number of scaffolds that are considered), while the second step is achieved by
computing a maximum flow on an auxiliary graph.

Step 1: Enumerating Scaffolds. The purpose of a scaffold is to describe the
behavior of the blocks through a sequence of reversals. However, it does not
describe precisely the position of each reversal endpoint within the blocks (since
otherwise there would be too many cases to enumerate). We do, however,

9

S = aa bbbb cc aaaa ccc aaaaa

T = aaaaa cc bb aa ccc a bb aaa

1st reversal-triple: (2, 4, {R})

2nd reversal-triple: (3, 6, {L,R})

→

→

→

→

Figure 1: Illustration of a scaffold. Strings S and T (left) are interpreted as a series of blocks
(right, the colors depict the repeated letter of each block). The circles depict the possible
reversal endpoints (either breaking a block, or between two consecutive blocks). The scaffold
is defined by the reversal-triples, each of them being represented as two crosses. The arcs
represent how blocks (or parts of block) move from one step to the other.

guess whether the startpoint of each reversal is the first position of a block and
whether the endpoint of each reversal is the last position of a block. This notion
is defined as follows.

Definition 1. A reversal ρ(i, j) is called left-breaking if S[i − 1] = S[i] and
right-breaking if S[j] = S[j + 1].

We can now give a formal definition of a scaffold.

Definition 2. A scaffold S(S, T) = ((i1, j1, B1), (i2, j2, B2), . . . , (ik, jk, Bk)) is
a tuple of triples, called reversal-triples, where i`, j` ∈ N and B` ⊆ {L,R}, 1 ≤
` ≤ k. A sequence of k reversals ρ1, ρ2, . . . , ρk from string S1 to Sk+1 with Si ◦
ρi = Si+1 respects a scaffold if for each `, 1 ≤ ` ≤ k, we have that

• the startpoint of ρ` is in the i`th block of S`,

• the endpoint of ρ` is in the j`th block of S`,

• ρ` is left-breaking if and only if L ∈ B`, and

• ρ` is right-breaking if and only if R ∈ B`.

The aim of Step 1 is simply to enumerate all possible scaffolds, so that in
Step 2, the algorithm computes for each scaffold whether one can assign two
positions to each reversal to obtain a sequence of reversals that respects the
scaffold and transforms S into T .

In order to bound the running time of the algorithm, we need to bound the
number of different scaffolds that are considered during this step. Intuitively, the
number of scaffolds is a function of the number of blocks in each string (bounded
by O(bmax)), and the size of each scaffold, i.e. the number of reversal-triples k.

By Theorems 1 and 2, we can assume that k < bmax + bmin−|Σ| ≤ 2bmax−2
and k ≤ bmax + |Σ|2 − 2|Σ| < bmax + |Σ|2 since otherwise the instance is a
yes-instance. Hence, every scaffold that is respected by an optimal solution has
at most max{2bmax − 2, bmax + |Σ|2} reversal-triples. The algorithm branches
for each such reversal-triple into the possible choices for i` and j` and whether
the reversal shall be left- or right-breaking. By the above argument, it needs
to perform at most max{2bmax − 2, bmax + |Σ|2} branchings. Furthermore, the
number of blocks in any “intermediate” string is bounded as shown below.

10

Lemma 2. Let S′ be a string such that there is an optimal sequence of rever-
sals from S to T in which S′ is one of the strings produced by this sequence.
Then, b(S′) ≤ min{2bmax + bmin − |Σ| − 1, 2bmax + |Σ|2 − 2|Σ|} blocks.

Proof. Assume towards a contradiction that b(S′) > 2bmax+bmin−|Σ|−1. More
than (bmax + bmin− |Σ| − 1)/2 reversals are needed to transform S into S′ since
each reversal increases the number of blocks by at most two and the difference
in the number of blocks between S and S′ is more than bmax + bmin − |Σ| − 1.
Similarly, more than (bmax+bmin−|Σ|−1)/2 reversals are needed to transform S′

into T . Hence, the number of reversals to transform S into T via S′ is more
than bmax + bmin − |Σ| − 1. However, by Theorem 1, this contradicts the choice
of S′. The same argument applies to show the second bound of the lemma if we
make use of Theorem 2.

Now, the algorithm creates for increasing k′ ≤ k all possible reversal scaf-
folds. By the above lemma, there are less than 3bmax choices for each i` and j`.
Hence, the overall number of reversal scaffolds that need to be considered is at
most

(3bmax)2·(2bmax−2) · 42bmax−2 = O((6bmax)4bmax)

in the case of arbitrary alphabets. For constant-size alphabets, we can use the
bound on k given by Theorem 2 and thus the overall number of reversal scaffolds
that need to be considered in this case is less than

(3bmax)2·(bmax+|Σ|2) · 4bmax+|Σ|2 = (6bmax)2bmax · poly(bmax).

Consider one such scaffold, assume there is a sequence of reversals that
respects the scaffold, and for any 1 ≤ ` ≤ k′, let S`+1 := S` ◦ ρ` denote the
string obtained after the `th reversal. We show that the number and order of
blocks of each S` is completely fixed by the reversal scaffold. First, assume
that S has bmax blocks and consider S1 := S. For any 1 ≤ i ≤ bmax, let δi
denote the number of letters in the ith block of S1 and let σi denote the letter
of the ith block. Furthermore, assume that i1 is in the ith block of S1 and j1 is
in the jth block of S1. Then this reversal transforms the string

S1 = (σ1)δ1 · · · (σi)δi(σi+1)δi+1 · · · (σj−1)δj−1(σj)
δj · · · (σbmax

)δbmax

into the following string (where x and y represent the number of elements
to the left of the cut in the ith and jth blocks, see Figure 2):

S2 = (σ1)δ1 · · · (σi)x(σj)
y(σj−1)δj−1 · · · (σi+1)δi+1(σi)

δi−x(σj)
δj−y · · · (σbmax

)δbmax .

Recall that the scaffold fixes whether the reversal is left-breaking and whether
it is right-breaking. In other words, it is known whether x = 0 or x > 0 and
whether y < δj or y = δj . Consequently, it is fixed whether the letter pre-
ceding the endpoint of the reversal in S2 is σi or whether this letter is σi+1.

11

σδ11
· · · σ

δi−1

i−1
σxi σδi−xi σ

δi+1

i+1
· · · σ

δj−1

j−1
σyj σ

δj−y
j

· · · σ
δbmax

bmax

σδ11
· · · σ

δi−1

i−1
σxi σyj σ

δj−1

j−1
· · · σ

δi+1

i+1 σδi−xi σ
δj−y
j

· · · σ
δbmax

bmax

Figure 2: A reversal that starts at the (x+1)th position of block i and ends at the yth position
of block j. If x = 0, then the block with content σxi is empty (similarly for y = δj and the

block with σ
δj−y
j). Note that in this case the blocks with content σ

δi−1
i−1 and σ

δy
j are merged

into one block if σi−1 = σj .

Similarly, it is fixed whether the letter succeeding the startpoint of the reversal
in S2 is σj or whether it is σj−1. Therefore, we know whether the borders of
the reversal are startpoints or endpoints of new blocks in S2 or whether they
are “merged” with old blocks. Consequently, the number of blocks in S2 and
the letter for each block in S2 is known. This is similarly true for S3 = S2 ◦ ρ2

up until Sk′+1 = Sk′ ◦ ρk′ . Hence, the number of blocks, their order, and the
letter that each block contains is fixed in Sk′+1. Thus, if the number of blocks
in T is different from the number of blocks in Sk′+1 or if the letter of the ith
block in T is different from the letter from the ith block in Sk′+1, then we can
discard the reversal scaffold. Consequently, it now remains to check whether
the reversal scaffold can produce blocks of the correct size.

Step 2: Computing block sizes. One possible way of checking whether blocks of
the correct size can indeed be produced would be to introduce a variable for the
length of each block in each Si, 1 ≤ i ≤ k′, and then introduce equations that
model the dependencies between the blocks. For example if the reversal from Si
to Si+1 appears after the first block, then the lengths of the first blocks should
be equal. Since the number of blocks of each Si and k′ are bounded in functions
of bmax this would yield an integer linear program whose number of variables
depends only on bmax, which implies fixed-parameter tractability with respect
to bmax. In the following, we describe a more efficient approach that is based
on computing maximum value flows. For each considered reversal scaffold we
create one flow network G = (V,A, c, s, t), where c : A→ N denotes the capacity
function on the arcs of G, and s (resp. t) is the source (resp. target) vertex.
The flow network G contains O((bmax)2) vertices and arcs, and is constructed
as follows (see also Figure 3).

Create the source s and the sink t. For each block i in each intermediate
string S`, 1 ≤ ` ≤ k′ + 1, add one vertex vi`; we use V` := {vi` | 1 ≤ i ≤ b(S`)}
to denote the vertex set corresponding to S`. Now, add arcs and capacities as
follows. For each vi1 add the arc (s, vi1). Set the capacity of c(s, vi1) to be exactly
the length of the ith block in S. For each ` ≤ k′ introduce arcs between the
vertices corresponding to blocks of S` to those representing blocks of S`+1 as
follows.

Assume that the reversal ρ is fixed to start within the ith block of S` and

12

end in the jth block of S`. Furthermore, let β denote the difference between
the number of blocks in S`+1 and in S`. Then, add the following arcs, with
unbounded capacity, to G:

• for all i′ < i add the arc (vi
′

` , v
i′

`+1)

• for all i′ > j add the arc (vi
′

` , v
β+i′

`+1)

• if ρ is left-breaking:

– add the arc (vi`, v
i
`+1),

– for each i′ with i ≤ i′ ≤ j add the arcs (vi
′

` , v
i+1+j−i′
`+1);

• if ρ is not left-breaking:

– if the endpoint of ρ and the (i−1)th block in S` have the same letter,

then add for each i′ with i ≤ i′ ≤ j the arcs (vi
′

` , v
i−1+j−i′
`+1),

– if they have different letters, then add for each i′ with i ≤ i′ ≤ j the

arcs (vi
′

` , v
i+j−i′
`+1);

• if ρ is right-breaking, add the arc (vj` , v
j+β
`+1).

Note that for the case that ρ is left-breaking, we assume by Proposition 1
that the ith and jth block in S` have different letters and thus the endpoint
of the reversal creates a new block in S`+1. Moreover, for the right side of ρ
we do not check explicitly whether the startpoint of ρ and the successor of its
endpoint have the same letter, since this fact is completely determined when we
know β (which can be directly deduced from the scaffold) and whether a block
is “created” or “lost” at the left side of the reversal.

The construction is completed by adding for each vik′+1, the arc (vik′+1, t)
and setting the capacity c(vik′+1, t) to be exactly the length of the ith block in T .

Lemma 3. Let S and T be balanced strings of length n, and let G = (V,A, c, s, t)
be a flow network constructed from a reversal scaffold from S to T . Then there
is a sequence of reversals that transforms S into T and respects this scaffold if
and only if G admits a flow of value n.

Proof. Assume that there is such a sequence of reversals. Then the flow of
value n is as follows. For each arc from s to the vertices vi1 the flow value is
exactly the capacity of the arc. Note that this means that the incoming flow at
each vertex vi1 is exactly the length of the corresponding block in S1.

For each reversal ρ from S` to S`+1, 1 ≤ ` ≤ k, we attribute the flow as
follows. Assume that ρ starts at the xth letter of block i and ends at the yth
letter of block j. Clearly, for vertices vi` with outdegree one the value of the
outgoing flow will be exactly the value of the ingoing flow. There are at most
two vertices with outdegree two and these correspond exactly to the ith (vi`)

and jth block (vj`) of S`. If vi` has outdegree two, then one of its outneighbors

13

2 4 2 4 3 5

5 2 4 1 3 5

5 2 2 2 3 1 2 3

s

t

2 4 2 4 3 5

4 2 2 2 3 1 2 3

→ S1 = aa bbbb cc aaaa ccc aaaaa

→ S2 = aaaaa cc bbbb a ccc aaaaa

→ S3 = aaaaa cc bb aa ccc a bb aaa

Figure 3: The flow network G constructed from the input strings and the scaffold given in
Figure 1. The nodes (left) are the blocks in the scaffold (using the same drawing convention),
with additional source s and sink t. The arcs represent how letters can move from one block
to another. The capacities of the arcs are the lengths of the blocks in the original strings S
and T . An italic number in each node represents the flow through this node in a maximum
flow from s to t, which is interpreted (right) as the length of the corresponding block in string
Si. The sequence of reversals can be deduced from the strings (horizontal lines).

is vi`+1. Exactly x − 1 units of the incoming flow are sent via (vi`, v
i
`+1) and

the rest is sent via the other outgoing arc. If vj` has outdegree two, then the

flow is split in a similar manner: Writing δj for the length of vj` , δj − y units of

flow are sent via the arc between vj` and vp`+1 where p := b(S`+1)− b(S`) + j is
defined such that the number of successor blocks of block j in S` is the same
as the number of successor blocks of block p in S`+1. The remaining flow is
sent along the other outgoing arc of vj` . Finally, the flow sent from the vertices
corresponding to Sk′+1 is uniquely determined since each of these vertices has
outdegree one.

We now show by induction that the above definition of flow is indeed valid.
Then this direction of the claim follows since the flow has overall value of n.
Assume by induction, that for S`, the value of flow incoming at each vi` is equal to
the length of the ith block of S`. We show that the same holds for S`+1 (observe
that the statement obviously holds for S1). First, note that by the inductive
assumption the amount of flow along the arcs from V` to V`+1 is nonnegative.
Second, for each vertex vi`+1 that has indegree one the claim holds: If the
in-neighbor of vi`+1 has outdegree one, then there is a direct correspondence
between the blocks. Thus, their size is the same which also holds for the value
of incoming flow. If the in-neighbor of vi`+1 has outdegree two, then the block
corresponding to the in-neighbor of vi`+1 has been split by the reversal from S`
to S`+1. Since vi`+1 has indegree one, it corresponds to a new block. The size
of this block and the value of the incoming flow are equal. Finally, vertices vi`+1

with indegree two in V`+1 correspond to blocks in S`+1 that are merges of two
blocks in S`. The size of these blocks is exactly the amount of flow sent along
the corresponding arcs and thus the flow incoming in vi`+1 is equal to the sum
of lengths of these two blocks and thus to the length of the ith block in S`+1.

14

Summarizing, the amount of incoming flow at each vertex equals exactly the
length of the corresponding block. This proves the forward direction of the
claim.

For the reverse direction the same arguments apply in reverse to show that
if the sum of the incoming flow at vertex set V` is exactly n, then there is a
series of `−1 reversals that transform S into a string that has exactly the blocks
corresponding to the vertex set V` and for which each block has exactly the same
length as the amount of flow incoming at the corresponding vertex. Now, the
final argument to show correctness is that the string corresponding to Vk′+1 and
whose block lengths are equal to the amount of flow incoming at each vertex is
precisely T . Clearly, the order and letter content of the blocks is correct, since
this was checked before building the flow network. Moreover, the amount of
flow entering Vk′+1 is exactly n and the vertex capacities of the outgoing arcs
sum up to n. Hence, the amount of flow incoming at each vertex is equal to the
capacity of the outgoing arc. This capacity is by construction the length of the
corresponding block in T .

We now can terminate the proof of Theorem 5. By the above discussion, the
algorithm constructs for unbounded alphabets O((6bmax)4bmax) many reversal
scaffolds and (6bmax)2bmax poly(n) reversal scaffolds in the case of constant size-
alphabets. For each such reversal scaffold, the algorithm constructs in polyno-
mial time the flow network G. By Lemma 3 it is sufficient to solve the maximum
value flow problem on this network to decide whether there exists a sequence of
reversals that respects the scaffold. This can be done in poly(n) time.

One possible approach to improve the above result would be to show that
there is always an optimal sequence such that the number of blocks of every
intermediate string never exceeds bmax. However, this is not true, as stated by
the following proposition.

Proposition 3. For any integer b ≥ 5, there exists a pair of balanced strings
S and T such that bmax ≥ b, and such that any optimal reversal scenario goes
through an intermediate string having strictly more than bmax blocks.

Proof. Let k ≥ 2 be any integer, and let S := 011(10)k and T := 110(01)k. We
thus have bmax = b(S) = b(T) = 2k+ 1. It can be easily seen that rd(S, T) = 2,
since one reversal is not enough to obtain T from S, and since we can reach T
from S using two reversals, for example as follows: S = 011(10)k → 011(10)k =

011(01)k → 011(01)k = 110(01)k = T . Moreover, no optimal solution goes
through an intermediate string with less than 2k + 2 blocks. Indeed, every
optimal reversal in S must either start at the first or end at the last position,
since both positions have a wrong letter, and since it is impossible to “fix”
both positions in one reversal because they are both ’0’. If the first reversal
starts at the first position and does not increase the number of blocks, then it
is either 01110(10)k−1 or 011(10)i10(10)k−i−1, where 1 ≤ i ≤ k − 1 (recall that
reversals with both endpoints being the same letter do not need to be considered,
by Proposition 1). Both reversals yield strings that cannot be transformed
into T with one reversal. Similarly, if the reversal ends in the last position and

15

does not increase the number of blocks, then it is either 011(10)i(10)k−i with

1 ≤ i ≤ k − 1 or 011(10)k. Again, both reversals yield strings that cannot be
transformed into T with one reversal.

Proposition 3 shows that asking for an optimal scenario where no string
exceeds bmax blocks is too restrictive. However, it remains open whether relaxing
the constraint to a maximum of bmax +O(1) blocks would be feasible.

The FPT algorithm we have presented above, and which led to Theorem 5,
can be adapted to work for Signed String Reversal Distance, String
Prefix Reversal Distance and Signed String Prefix Reversal Dis-
tance, as stated in the following theorem.

Theorem 6. String Prefix Reversal Distance can be solved in (6bmax)4bmax ·
poly(n) time; Signed String Reversal Distance and Signed String
Prefix Reversal Distance can be solved in (bmax)O(bmax) · poly(n) time.

We briefly sketch how the above FPT algorithm (leading to Theorem 5) can
be adapted to these three problems. For String Prefix Reversal Distance,
we have k < 4bmax, as a consequence of Theorem 1. Further, every prefix
reversal can increase or decrease the number of blocks by at most one. Hence,
we obtain the following bound.

Lemma 4. Let S′ be a string such that there is an optimal sequence of prefix
reversals from S to T in which S′ is one of the strings produced by this sequence.
Then b(S′) ≤ 3bmax.

Proof. Assume towards a contradiction that b(S′) > 3bmax. As each prefix
reversal increases or decreases the number of blocks by at most one, it takes
at least 2bmax prefix reversals to “reach” S′ from S and at least 2bmax prefix
reversals to “reach” T from S′. This contradicts the fact that in an optimal
sequence of prefix reversals less than 4bmax prefix reversals are necessary.

We can now bound the number of scaffolds that we have to consider. Clearly,
the starting point i` of each reversal ρ` is 1, so we have to guess only the endpoint
among at most 4bmax blocks. Similarly, we only need to guess whether the
prefix reversal is right-breaking. Hence, the number of scaffolds that needs to
be considered is at most (3bmax

4bmax) · 24bmax . For each scaffold we again create
a flow network in a way similar to the one described for String Reversal
Distance, except that now Proposition 1 does not hold anymore, which makes
the definitions of the arcs a bit more involved. However, the flow network
remains of order and size O((bmax)2), which is sufficient for the FPT property
to hold. Thus, altogether, we obtain the claimed running time.

For signed reversals and prefix reversals, we can assume k = O(bmax) by
Theorem 4. Since each signed reversal can decrease or increase the number of
blocks by at most two and each signed prefix reversal by at most one, this bounds
the number of blocks in any intermediate string between S and T to O(bmax).

Hence, the number of scaffolds to consider is bmax
O(bmax). For each scaffold we

again create a flow network in a way similar to the unsigned cases. The only

16

difference is that now we have to take signs into account when deciding whether
a reversal “merges” two blocks or not (we omit the details). Altogether, we
obtain the claimed running time.

4. Reversals on Strings with Small Alphabet

In this section, we study the complexity of our four problems in the case
where the alphabet size is fixed. We start by giving new NP-hardness results,
then we provide an exact singly-exponential algorithm for constant size alpha-
bets and a generic type of distance measures on strings, that includes the four
distances we are interested in.

Hardness Results for Restricted Cases. Here, we describe two reductions, one
for the signed case and one for the unsigned case, that show hardness of both
the reversal and prefix reversal problems in restricted cases. We start with the
unsigned case.

Theorem 7. String Reversal Distance and String Prefix Reversal
Distance are NP-hard, even when restricted to binary strings where all 0-blocks
have length at most 2 and all 1-blocks have length 1.

Proof. We first show the result for String Reversal Distance, which we
obtain by reducing from the NP-hard Sorting by Reversals (SBR) prob-
lem [5]. Given an instance of SBR, that is, a permutation π of elements in
[1;n], we construct the string S(π), built on the binary alphabet Σ = {0, 1}, as
follows. For each 1 ≤ i ≤ n, we let Si := 01001(01)i+10010, and define S(π) as
follows: S(π) := (Sπ(1))

2n(Sπ(2))
2n · · · (Sπ(n))

2n. Given an instance π (of length
n) of SBR, we reduce to String Reversal Distance by first creating the
two strings S(In) and S(π) as described above, where In denotes the identity
permutation of length n. Now, let us describe several crucial properties of our
reduction. First, for any 1 ≤ i ≤ n, Si is of length 2i + 11 and is reversal
invariant. Further, for any 1 ≤ i 6= j ≤ n, Si is not a substring of Sj , and
the longest suffix of Si which is also prefix of Sj has length 6 (it is 010010),
which is strictly smaller than half the length of Si and Sj . Hence, if, for any
integers i, j1, . . . , j`, Si is a substring of Sj1 ·Sj2 · . . . ·Sj` , then i ∈ {j1, j2 . . . j`}.
Consequently, if Sj1 ·Sj2 · . . . ·Sj` contains substrings Si1 , Si2 . . . Sih in this order,
then (i1, i2 . . . ih) is a subsequence of (j1, j2 . . . j`).

Now, let us show that our reduction preserves the distance. More precisely,
if we let kS = rd(S(π), S(In)) and kπ be the reversal distance from π to In,
then we claim that kπ = kS . First, we show kS ≤ kπ. Consider any sequence
of kπ reversals sorting π, we show that there exists a corresponding sequence
of kπ reversals sorting S(π). For any reversal ρ(i, j) of the sub-permutation of π
ranging from π[i] to π[j], we reverse the substring of S(π) ranging from the
first Sπ[i] to the last Sπ[j]: the resulting string is S(ρ◦π). In the end, we obtain
S(In) after kπ reversals.

We now show that kπ ≤ kS . Note that kS ≤ kπ implies that kS < n.
Consider a sequence ρ1, . . . , ρkS of reversals sorting S(π). For each 1 ≤ i ≤ n,

17

among the 2n copies of Sπ[i] in S(π), at least one does not contain an endpoint
of any reversal: we thus assign to each 1 ≤ i ≤ n an untouched copy of Sπ[i].
Keeping track of how untouched copies are sorted, we can create a sequence
of reversals sorting π as follows. For each reversal ρr, there exist ir and jr
such that ρr reverses a string containing the irth to the jrth untouched copies
(ordered from left to right). Define the corresponding reversal over {1, . . . , n}
as ρ′r = ρ(ir, jr). Let τ = π ◦ ρ′1 . . . ◦ ρ′kS . Then the final string S(In) contains
the untouched copies of S(τ [1]), S(τ [2]), . . . , S(τ [n]) as substrings in this order.
Recall that S(In) = (S1)2n(S2)2n · · · (Sn)2n, hence, using the property of strings
Si, sequence (1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n), where each number is repeated 2n
times, contains (τ [1], τ [2], . . . , τ [n]) as a subsequence. Since τ is a permutation,
τ is the identity In. Thus, the sequence of kS reversals ρ′1,. . . , ρ′kS transforms π
into the identity, and kπ ≤ kS . This concludes the proof that String Reversal
Distance is NP-hard even on binary alphabets.

Concerning the String Prefix Reversal Distance problem, the same
result can be obtained, using a reduction and arguments almost identical to
those above. The reduction is from the NP-hard Sorting by Prefix Rever-
sals (SBPR) problem [4], and the fact that distances are preserved is shown
similarly, except that the term “prefix reversal” should replace “reversal”, and
that ρr being a prefix reversal, then i = 1 and ρ′r is also a prefix reversal.

Concerning the two signed problems, namely Signed String Reversal
Distance and Signed String Prefix Reversal Distance, we have a sim-
ilar result as Theorem 7.

Theorem 8. Signed String Reversal Distance and Signed String Pre-
fix Reversal Distance are NP-hard even restricted to signed unary strings,
that is, |Σ| = 1.

Proof. As in the previous theorem, the reduction for Signed String Re-
versal Distance is from Sorting by Reversals (SBR), and the reduc-
tion for Signed String Prefix Reversal Distance is from Sorting by
Prefix Reversals (SBPR). Given a permutation π of elements in [1;n],
we construct the string S(π), built from a unique letter a, as follows. For
each integer 1 ≤ i ≤ n, we let Si := +a(−a)i+1(+a)i+1 − a, and we let
S(π) = (Sπ(1))

2n(Sπ(2))
2n · · · (Sπ(n))

2n. Given an instance π (of length n)
of SBR (resp. SBPR), we reduce to Signed String Reversal Distance
(resp. Signed String Prefix Reversal Distance) by creating the two
strings S(In) and S(π) as described above. Note that each Si is reversal in-
variant, and has length 2i + 4. Moreover, for any 1 ≤ i 6= j ≤ n, the longest
suffix of Si which is also prefix of Sj has length 2 (it is +a−a), which is strictly
smaller than half the length of Si and Sj . Hence, all the arguments developed
in proof of Theorem 7 to show that the distances are preserved in the reduction
still hold.

An Algorithm for Small Alphabets. So far, none of the known exact algorithms
for String Reversal Distance or Signed String Reversal Distance

18

achieves a singly-exponential running time of 2O(n). We show that such a run-
ning time can be achieved for constant size alphabets and a generic type of
distance measures on strings.

Definition 3. A string distance d is well-formed if it is a metric and:

• For each string S of length n, the set containing exactly the strings T
with d(S, T) = 1 can be computed in poly(n) time.

• All strings S and T with d(S, T) = 1 have the same length and the same
alphabet.

• For any two strings S and T with d(S, T) = k there exists a string S′

with d(S, S′) = 1 and d(S′, T) = k − 1.

Theorem 9. Let d be a well-formed string distance, and let S and T be two
strings of length n over alphabet Σ. Then d(S, T) can be computed in |Σ|n ·
poly(n) time.

Proof. Let k := d(S, T). The definition of being well-formed guarantees that
there is a sequence of strings S = S1, S2 . . . Sk−1, Sk = T such that d(Si, Si+1) =
1, 1 ≤ i < k. Note that, also by the well-formed definition, each Si has length n
and has the same alphabet Σ as S. We now describe an algorithm that finds
this sequence or one of equal length.

Construct a graph G as follows. For each string A of length n over alpha-
bet Σ create a vertex vA. Then, for each vertex vA, construct the set NA :=
{B | d(A,B) = 1} of strings within distance one of A in polynomial time and,
for each B ∈ NA insert the edge {vA, vB} into G. Now compute a shortest path
between vS and vT in G. This path has length k: Clearly it has length at most k,
since the sequence of Si’s described above is a path from S to T in G. Fur-
thermore, any path (vA1

, vA2
, . . . vA`−1

, vA`
) of length ` in G between S and T ,

means that d(A1, A`) ≤ `. This can be shown by induction on the length of the
path: Obviously, the claim holds for paths of length one. Now assume that the
claim holds for paths of length ` − 1. Then it also holds for paths of length `,
since d(A2, A`) ≤ ` − 1, d(A1, A2) = 1, and d(A1, A`) ≤ d(A1, A2) + d(A2, A`)
since d is a metric by definition.

The running time follows from the fact that a shortest path in an unweighted
graph G can be computed in O(|V |+ |E|) time via breadth-first search and the
fact that G has |Σ|n vertices and |Σ|n poly(n) edges.

5. Conclusion

In this paper, we have studied the string reversal distance problem, under
its four variants depending on the nature of reversals (prefix or not), and the
way strings are modeled (signed or not). Our main goal was to provide new
algorithmic results when the maximum number of blocks bmax of the input
strings and/or the size of the alphabet Σ on which they are built is small.
We showed that the four problems are fixed-parameter tractable with respect

19

to bmax. In the process, we showed a series of upper bounds on the diameter
of the studied distances, which only depend on bmax and |Σ|. We also proved
NP-hardness results for the four problems, even in very restricted cases, thus
narrowing the gaps between polynomial classes of instances and NP-hard ones.
We finally showed an exact algorithm that achieves a running time of |Σ|n ·
poly(n) for many string distances, including the ones under consideration in
this article.

Our work leads to several open questions, which we deliver here in arbi-
trary order. First, is the reversal diameter for strings bmax − 1? If so, this
would generalize the upper bound of n − 1 on the diameter for the reversal
distance between permutations [1]. If not, is an upper bound of bmax + O(|Σ|)
achievable? Further, does String Reversal Distance admit a polynomial
kernel for bmax, that is, can it be reduced in polynomial time to an equivalent
instance of String Reversal Distance with n ≤ poly(bmax)? Also, can we
solve String Reversal Distance in time O((|Σ|−ε)n), for some strictly pos-
itive ε? In particular, can we solve String Reversal Distance on binary
strings in O(cn) time for c < 2? Finally, we repeat the open question posed
in [17], and whose answer was conjectured to be true: Can the reversal sorting
problem (that is, computing the distance to a given grouped string) be solved
in polynomial time for every fixed alphabet size?

References

[1] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by re-
versals. SIAM Journal on Computing, 25(2):272–289, 1996.

[2] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation al-
gorithm for sorting by reversals. In R. H. Möhring and R. Raman, edi-
tors, Proceedings of the 10th Annual European Symposium on Algorithms
(ESA ’12), volume 2461 of Lecture Notes in Computer Science, pages 200–
210. Springer, 2002.

[3] L. Bulteau, G. Fertin, and C. Komusiewicz. Reversal distances for strings
with few blocks or small alphabets. In A. S. Kulikov, S. O. Kuznetsov,
and P. A. Pevzner, editors, Proceedings of the 25th Annual Symposium on
Combinatorial Pattern Matching (CPM ’14), volume 8486 of Lecture Notes
in Computer Science, pages 50–59. Springer, 2014.

[4] L. Bulteau, G. Fertin, and I. Rusu. Pancake flipping is hard. Journal of
Computer and System Sciences, 81(8):1556–1574, 2015.

[5] A. Caprara. Sorting by reversals is difficult. In Proceedings of the 1st Annual
International Conference on Research in Computational Molecular Biology
(RECOMB ’97), pages 75–83, 1997.

[6] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM

20

Transactions on Computational Biology and Bioinformatics, 2(4):302–315,
2005.

[7] B. Chitturi. A note on complexity of genetic mutations. Discrete Mathe-
matics, Algorithms and Applications, 3(3):269–286, 2011.

[8] B. Chitturi and I. H. Sudborough. Prefix reversals on strings. In H. R. Arab-
nia, Q. Tran, R. Chang, M. He, A. Marsh, A. M. G. Solo, and J. Y. Yang,
editors, International Conference on Bioinformatics & Computational Bi-
ology, BIOCOMP 2010, July 12-15, 2010, Las Vegas Nevada, USA, 2 Vol-
umes, pages 591–598. CSREA Press, 2010.

[9] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. O. Shields, I. H. Sud-
borough, and W. Voit. An (18/11)n upper bound for sorting by prefix
reversals. Theoretical Computer Science, 410(36):3372–3390, 2009.

[10] D. A. Christie. Genome Rearrangement Problems. PhD thesis, University
of Glasgow, 1998.

[11] D. A. Christie and R. W. Irving. Sorting strings by reversals and by trans-
positions. SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

[12] D. S. Cohen and M. Blum. on the problem of sorting burnt pancakes.
Discrete Applied Mathematics, 61(2):105–120, 1995.

[13] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics
of Genome Rearrangements. Computational Molecular Biology. MIT Press,
2009.

[14] J. Fischer and S. W. Ginzinger. A 2-approximation algorithm for sorting
by prefix reversals. In G. S. Brodal and S. Leonardi, editors, Proceedings
of the 13th Annual European Symposium on Algorithms (ESA ’05), volume
3669 of Lecture Notes in Computer Science, pages 415–425. Springer, 2005.

[15] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Poly-
nomial algorithm for sorting signed permutations by reversals. Journal of
the ACM, 46(1):1–27, 1999.

[16] C. A. J. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, and
J. Tromp. Prefix reversals on binary and ternary strings. SIAM Journal
on Discrete Mathematics, 21(3):592–611, 2007.

[17] A. Radcliffe, A. Scott, and E. Wilmer. Reversals and transpositions over
finite alphabets. SIAM Journal on Discrete Mathematics, 19(1):224, 2006.

[18] G. Watterson, W. Ewens, T. Hall, and A. Morgan. The chromosome inver-
sion problem. Journal of Theoretical Biology, 99(1):1 – 7, 1982.

21

	Introduction
	Upper Bounds on the Reversal Diameter
	Considering Unsigned Reversals
	Considering Signed Reversals

	Sorting Strings with Few Blocks
	Reversals on Strings with Small Alphabet
	Conclusion

