
Train Marshalling is Fixed Parameter Tractable

Leo Brueggeman1, Michael Fellows2, Rudolf Fleischer3⋆, Martin
Lackner4⋆⋆, Christian Komusiewicz5, Yiannis Koutis6, Andreas

Pfandler4⋆⋆, and Frances Rosamond2

1 University of California, Santa Cruz, USA, Email: l.a.brueggeman@gmail.com
2 Charles Darwin University, Darwin, Australia,

Email: michael.fellows@cdu.edu.au, frances.rosamond@cdu.edu.au
3 SCS and IIPL, Fudan University, Shanghai, China, and GUtech, Muscat, Oman

Email: rudolf.fleischer@gutech.edu.om
4 Vienna University of Technology, Austria,

Email: lackner@dbai.tuwien.ac.at, pfandler@dbai.tuwien.ac.at
5 TU Berlin, Germany, Email: christian.komusiewicz@tu-berlin.de

6 University of Puerto Rico, Email: i.koutis@gmail.com

Abstract. The train marshalling problem is about reordering the cars
of a train using as few auxiliary rails as possible. The problem is known
to be NP-complete. We show that it is fixed parameter tractable (FPT)
with the number of auxiliary rails as parameter.

1 Introduction

Consider the following railway problem. If a train splits into several trains
going to different destinations, the cars must be ordered such that the first
few cars have destination 1, the next few cars have destination 2, etc. If
an incoming train has the cars unordered, we must rearrange the cars.
The only way to rearrange cars is to bring the train to a shunting yard
where the rail splits into several auxiliary rails. Then the cars of the train
are decoupled and moved, one by one, to the auxiliary rails where they
form smaller trains. Finally, the small trains from the auxiliary rails are
again connected to form a new train that is properly ordered, i.e., the
first few cars have destination 1, the next few cars have destination 2,
etc. The goal is to reorder the cars using as few auxiliary rails as possible
(because a train station has only limited number of such rails, and they
might be needed to sort several trains simultaneously).

⋆ This work was supported by a grant from the NSFC (No. 60973026), the Shanghai
Leading Academic Discipline Project (no. B114), and the Shanghai Committee of
Science and Technology (no. 08DZ2271800).

⋆⋆ Supported by the Austrian Science Fund (FWF), project P20704-N18.



We can reformulate this problem as a problem of rearranging se-
quences. Assume we have a partition of the set {0, 1, . . . , n − 1}. The
numbers are the car numbers of the incoming train, and each set of the
partition corresponds to a destination. We now want to map the parti-
tion sets into (0, 1, . . . , n− 1, 0, 1, . . . , n− 1, . . . , 0, 1, . . . , n− 1), where we
have k repetitions of (0, 1, . . . , n − 1). The goal is to minimize k while
mapping the sets such that all elements of the first set are mapped before
all elements of the second set, etc. We call this the Train Marshalling
Problem (TM).

Example 1. Assume the train consists of 11 cars. There are 6 destinations:
A, B, C, D, E and F. Therefore A to F can be considered as a partition of
the set {1, . . . , 11}. Let A = {2, 4}, B = {6, 8}, C = {3, 7, 10}, D = {9},
E = {1, 11} and F = {5}. This train can be reordered with 3 auxiliary
rails: The first rail contains (starting with the first car) 2, 4, 6, 8, 10 (desti-
nations A,B,C), the second rail 3, 7, 9, 11 (destinations C,D,E) and the
third rail 1, 5 (destinations E and F ). Coupling the trains starting with
the first rail and followed by the second and third rail yields the following
order:

2, 4
︸︷︷︸

A

, 6, 8
︸︷︷︸

B

, 10, 3, 7
︸ ︷︷ ︸

C

, 9
︸︷︷︸

D

, 11, 1
︸ ︷︷ ︸

E

, 5
︸︷︷︸

F

.

According to Dahlhaus et al. [3], the problem was first mentioned in
an old paper published in China [1]. Later, Zhu and Zhu [4] gave polyno-
mial time solutions for some special cases of the problem. Dalhaus et al.
then showed that the problem is NP-hard by reduction from Numerical
Matching with Target Sums (NMTS) [3] and gave algorithms for re-
lated problems [2]. Their NP-completeness reduction uses a construction
with k = Θ(n), so we may ask whether TM is fixed parameter tractable
when parameterized by k. In this paper we give an affirmative answer to
this question. We show that we can indeed compute a solution in time
O(2O(k) · poly(n)). Our algorithm is based on a clever dynamic program
to compute the minimum density of a mapping, a concept that is closely
related to the original k-TM problem.

This paper is organized as follows. After defining the problem and
discussing some basic properties in Section 2, we propose a dynamic pro-
gram for k-TM in Section 3. We end the paper with concluding remarks
in Section 4.



2 Preliminaries

Let [n] = {0, . . . , n− 1} denote the set of integers from 0 to n− 1. A par-
tition S = {S0, . . . , St−1} of [n] is a collection of non-empty and pairwise
disjoint subsets Si of [n] such that

⋃

i Si = [n]. Let K(S) be the smallest
number k such that there exists a permutation π = (π1, . . . , πt) of [t] such
that we can map the sets of the partition into [n]k = (0, 1, . . . , n − 1,
0, . . . , n− 1, 0, . . . , n− 1), where 0, . . . , n− 1 is repeated k times (we call
each repetition a phase), in such a way that all elements of Sπi

appear
before all elements of Sπj

, for all i < j. We call such a mapping a TM-
mapping. The Train Marshalling Problem (TM) is then defined as
follows.

Problem Train Marshalling Parameterized by k (k-TM)

Input: A partition S of [n] and k ≥ 1;

Parameter: k;

Question: Is K(S) ≤ k?

We may assume w.l.o.g. that all sets Si have size at least two. This can
easily be achieved by replacing each set {x} by a size-two set {x, x+ 1

2}.
This is because such sets would always be scheduled in the order {x, x+
1
2} in an optimal solution, i.e., without a wrap-around (see below). For
example, the train in Example 1 would become Let A = {2, 4}, B = {6, 8},
C = {3, 7, 10}, D = {9, 9.5}, E = {1, 11} and F = {5, 5.5}.

A set Si = {a1, . . . , am} of the partition with a1 < · · · < am induces
m half-open intervals [a1, a2), [a2, a3), . . . , [am−1, am), [am, a1), called seg-

ments, on the circle (0, 1, . . . , n−1, n = 0), where we identify n with 0. We
call [am, a1) the wrap-around segment (it is the only segment containing
the interval [n − 1, 0)), the other segments are called proper. The union
of all proper segments of Si forms the half-open interval Ii = [a1, am)
which we call the proper interval. Note that no two proper intervals share
a common endpoint because each proper interval corresponds to a set of
the partition of S.

Let b ∈ [0, n). Then b is contained in exactly one segment of each
set of the partition. We denote by cw(b) the number of proper segments
containing b. The cut-width of S is then defined as cw(S) = maxb cw(b).
Intuitively, cw(S) is the cut-width (or clique number) of the interval graph
induced by the proper intervals Ii, for i = 0, . . . , t− 1.

We may w.l.o.g. assume that an optimal TM-mapping maps the num-
bers in Si in consecutive order into [n]k, with a possible wrap-around from



n− 1 to 0, i.e., they appear in the order aj , . . . , am, a1, . . . , aj−1, for some
j = 1, . . . ,m. For example, the set {2, 5, 7} may be mapped as (2, 5, 7),
(5, 7, 2), or (7, 2, 5). We call the segment [aj−1, aj) passive, the other seg-
ments active. In the example above, the mapping (5, 7, 2) would render
the segments [5, 7) and [7, 2) active while the segment [2, 5) would be
passive.

For a fixed TM-mapping and any number b ∈ [0, n), let the density

at b, denoted by d(b), be the number of active segments containing b. We
note that d(b) depends on the TM-mapping, but it should always be clear
from the context which TM-mapping is meant. We say the partition S

has k-bounded density if there is a TM-mapping such that d(b) ≤ k for
all b ∈ [0, n− 1) and d(b) ≤ k− 1 for all b ∈ [n− 1, 0). The proper density

is defined similarly except that we only count active proper segments. It
turns out that solving k-TM is equivalent to finding a TM-mapping of
k-bounded density.

Theorem 2. A partition S of [n] is a Yes-instance of k-TM if and only

if S has k-bounded density.

Proof. If we have a TM-mapping of S into [n]k, then clearly d(b) ≤ k

for b ∈ [0, n − 1) (sets are mapped overlap-free into each of the k phases
of [n]k), and d(b) ≤ k − 1 for b ∈ [n − 1, 0) (there can be at most k − 1
wrap-arounds).

On the other hand, if the density is k-bounded, then we can greedily
compute a TM-mapping of S into [n]k. We think of the k phases of [n]k

as the k layers of an interval graph of clique number k. We first split at 0
all wrap-around sets into two intervals, then we sort all intervals (the two
split intervals for wrap-around sets, and the intervals Ii for non-wrap-
around sets) by left endpoint and assign them greedily from left to right
to a free layer. The wrap-around segments then tell us in which order to
map the layers to the k phases. ⊓⊔

3 An FPT Algorithm for k-TM

Our FPT algorithm for k-TM tries to choose one segment in each parti-
tion set of S as the passive segment such that the density is k-bounded
everywhere. By Theorem 2, this solves k-TM on S. The algorithm takes
advantage of the close relationship between the parameter k and the cut-
width cw(S) of S.

Lemma 3. If a partition S of [n] is a Yes-instance of k-TM, then

cw(S) ≤ 2k − 1. ⊓⊔



Proof. If cw(S) ≥ 2k, then there exists b ∈ [0, n−1) such that cw(b) ≥ 2k.
But then either d(b) ≥ k + 1 or d(c) ≥ k for all c ∈ [n − 1, 0) (i.e., we
have at least k wrap-arounds), which is impossible by Theorem 2 for Yes-
instances of k-TM. ⊓⊔

This means, we only need to solve k-TM on instances of cut-width at
most 2k−1 (we immediately say No in all other cases). We now describe a
dynamic program that runs efficiently on partitions of bounded cut-width.
The density of an interval [i, j) depends on which segments overlap with
the interval and which of them are passive. To compute the density with
a dynamic program, we must keep track of the segments that are cut at
the boundaries i and j. There can be at most cw(S) proper segments
in each cut and at most cw(S) wrap-around segments of partition sets
where the other cut intersects a proper segment, but there might be many
wrap-around segments that intersect both cuts. However, we only need
to count their number, and this is the key to build a small dynamic
programming table. Also, it turns out to be more convenient to compute
proper densities instead of densities.

To be more precise, we construct a four-dimensional table T to com-
pute proper densities. The first two dimensions, with indices i and j,
respectively, specify a range [i, j), where 0 ≤ i < j ≤ n − 1. The third
dimension ℓ = 0, . . . , k denotes the maximum density in [i, j) we want to
achieve. The fourth dimension represents the two cuts at i and j. Any
such cut will hit at most cw(S) proper segments of S. A proper segment
may be either active or passive. We must also distinguish whether the cor-
responding partition set has its passive interval overlapping with [i, j) or
not. We collect all this information in a boundary configuration, denoted
by Ci,j. To be more precise, Ci,j contains for each partition set with proper
segments intersecting [i, j) the following information: Whether the seg-
ment containing i is active or passive, whether the segment containing j is
active or passive (it could be the same segment as the segment containing
i), and whether one of the segments of the partition intersecting [i, j) is
passive. We say two boundary configurations Ci,t and Ct,j are consistent if
they could both occur simultaneously for some TM-mapping (e.g.., they
do not define two passive segments, and they classify the segment contain-
ing t the same way). Note that the number of boundary configurations is
at most 24cw(S).

Some partition sets may have their proper intervals contained in [i, j).
In this case, the corresponding wrap-around interval contains [j, i). If
that segment is active, it contributes to the density (but not the proper
density) of any interval in [j, i). We therefore store in T [i, j, ℓ, Ci,j ] the



minimum number of active wrap-around segments containing [j, i) under
the constraints specified by the boundary configuration Ci,j and such that
the proper density in [i, j) is at most ℓ. Note that the density in [i, j) can
then be computed as the proper density in [i, j) plus the T [.] values of
[0, i− 1) and [j+1, n− 1) (note that a wrap-around segment can only be
counted for one of the two disjoint ranges).

We can compute the table T recursively as follows. We first describe
the base case. Let i ∈ {0, . . . , n−2}, ℓ ∈ {0, . . . , k}, and Ci,i+1 a boundary
configuration. If the cut at i intersects more than ℓ active proper segments,
this boundary configuration cannot achieve proper density at most ℓ in
[i, i+1), so we set T [i, i+1, ℓ, Ci,i+1] = ∞. Otherwise, we set it either to
0 or 1, depending on whether the segment [i, i + 1) is active or passive,
respectively. Note that the partition set {i, i+1} is the only one that could
induce a wrap-around segment that needs to be counted in T [.]. Since an
optimal solution would always choose [i, i + 1) as the active segment, we
could also set T [i, i + 1, ℓ, Ci,i+1] = ∞ for configurations where [i, i + 1)
is a passive segment.

To compute the value for larger ranges, let i < t < j and let Ci,t,
and Ct,j be consistent boundary configurations. Any active wrap-around
segment counted in either T [i, t, .] or T [t, j, .] should be counted in T [i, j, .].
But there might also be additional segments to be counted if a wrap-
around segment contains [j, i) but none of the two smaller ranges and if
this segment is active. This information can be obtained from the two
boundary configurations. Let s denote the number of these segments. If
we have proper density ℓ1 in [i, t) and proper density ℓ2 in [t, j), then we
can achieve proper density

d(ℓ1, ℓ2) = max{ℓ1 + T [t, j, ℓ2, Ct,j ], ℓ2 + T [i, t, ℓ1, Ci,t]}

in [i, j) with

w(ℓ1, ℓ2) = T [i, t, ℓ1, Ci,t]}+ T [t, j, ℓ2, Ct,j ] + s

active wrap-around segments containing [j, i). Thus,

T [i, j, ℓ, Ci,j ] = min
d(ℓ1,ℓ2)≤ℓ

w(ℓ1, ℓ2)

This finishes the description of the algorithm.

Theorem 4. The dynamic program solves k-TM in time O(2O(k)·poly(n)),
i.e., k-TM is fixed parameter tractable with parameter k.



Proof. The size of the table is exponential in cw(S) and thus exponential
in k (by Lemma 3) but polynomial in n. Each table computation needs
polynomial time. ⊓⊔

4 Conclusions

We have shown that we can use dynamic programming to solve the Train
Marshalling Problem in time O(2O(k) · poly(n)), i.e., we have shown
that the problem is fixed parameter tractable. It would be interesting to
find a small kernel for the problem.

Acknowledgements

This paper is one of the results we obtained at the workshop Param-

eterized Complexity: Not About Graphs! in Darwin at CDU in August
2011 and the subsequent problem-solving bush workshop in the alligator-
infested jungle around Darwin. These two workshops were great fun and
very productive and we would like to thank CDU for the great support.

References

1. Acta Mathematicae Applicatae Sinica, 1(2):91–105, 1978.
2. E. Dalhaus, P. Horak, M. Miller, and J. F. Ryan. Algorithms for combina-

torial problems related to train marshalling. CiteSeerX, (10.1.1.37.4090), 2000.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4090.

3. E. Dalhaus, P. Horak, M. Miller, and J. F. Ryan. The train marshalling problem.
Discrete Applied Mathematics, 103(1–3):41–54, 2000.

4. Y. Zhu and R. Zhu. Sequence reconstruction under some order-type constraints.
Scientia Sinica, 26(7):702–713, 1983.


