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Abstract. We present the first thorough theoretical analysis of the
Transitivity Editing problem on digraphs. Herein, the task is to per-
form a minimum number of arc insertions or deletions in order to make
a given digraph transitive. This problem has recently been identified as
important for the detection of hierarchical structure in molecular char-
acteristics of disease. Mixing up Transitivity Editing with the com-
panion problems on undirected graphs, it has been erroneously claimed
to be NP-hard. We correct this error by presenting a first proof of NP-
hardness, which also extends to the restricted cases where the input
digraph is acyclic or has maximum degree four. Moreover, we improve
previous fixed-parameter algorithms, now achieving a running time of
O(2.57k +n3) for an n-vertex digraph if k arc modifications are sufficient
to make it transitive. In particular, providing an O(k2)-vertex problem
kernel, we positively answer an open question from the literature. In case
of digraphs with maximum degree d, an O(k · d)-vertex problem kernel
can be shown. We also demonstrate that if the input digraph contains no
“diamond structure”, then one can always find an optimal solution that
exclusively performs arc deletions. Most of our results (including NP-
hardness) can be transferred to the Transitivity Deletion problem,
where only arc deletions are allowed.

1 Introduction

To make a directed graph (digraph for short) transitive by a minimum number
of arc modifications has recently been identified to have important applications
in detecting hierarchical structure in molecular characteristics of disease [11,3].
A digraph D = (V, A) is called transitive if (u, v) ∈ A and (v, w) ∈ A implies
(u, w) ∈ A (also cf. [1, Section 4.3]). Thus, the central problem Transitiv-

ity Editing studied here asks, given a digraph and an integer k ≥ 0, to find
a set of at most k arcs to insert or delete in order to make the resulting di-
graph transitive. We provide a first thorough theoretical study of Transitivity

Editing, complementing previous work that focused on heuristics, integer lin-
ear programming, and simple fixed-parameter algorithms [11,3]. We also study
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the special case when only arc deletions (Transitivity Deletion) are allowed
and restricted classes of digraphs (acyclic and bounded-degree). Note that the
corresponding problem Transitivity Completion (where only arc insertions
are allowed) is nothing but the well-studied problem of computing the transitive
closure of a digraph; this is clearly solvable in polynomial time [13].

Previous work. Transitivity Editing can be seen as the “directed coun-
terpart” of the so far much better studied problem Cluster Editing on undi-
rected graphs (see [2,5,7,8,15]). Indeed, both problems are also referred to as
Transitive Approximation problem on directed and undirected graphs, re-
spectively. Unfortunately, this is perhaps a reason why Transitivity Editing

has erroneously been claimed to be NP-hard [11,3] by referring to work that only
considers problems on undirected graphs, including Cluster Editing. On the
positive side, however, the close correspondence between Cluster Editing and
Transitivity Editing helped Böcker et al. [3] to transfer their previous results
for Cluster Editing [2] to Transitivity Editing, delivering the currently
fastest implementations that exactly solve Transitivity Editing (by means
of integer linear programming and fixed-parameter algorithms). In particular,
their computational experiments demonstrate that their exact algorithms are by
far more efficient in practice than the previously used purely heuristic approach
by Jacob et al. [11].

Our contributions. We eventually prove the so far only claimed NP-hardness1

of Transitivity Editing, also extending this result to Transitivity Dele-

tion. Moreover, we show that both problems remain NP-hard when restricted to
acyclic digraphs or digraphs with maximum vertex degree four (more precisely,
indegree two and outdegree two). To this end, we also make the helpful com-
binatorial observation that if a digraph does not contain a so-called “diamond
structure”, then there is an optimal solution for Transitivity Editing that
only deletes arcs. This observation is also useful for developing more efficient
fixed-parameter algorithms than the ones presented in previous work. First, we
provide a polynomial-time data reduction that yields an O(k2)-vertex problem
kernel for Transitivity Editing and Transitivity Deletion. This answers
an open question of Böcker et al. [3]. In the special case of digraphs with max-
imum vertex degree d, we can actually prove an O(k · d)-vertex kernel. Finally,
exploiting the aforementioned observation on diamond-freeness, we develop an
improved search tree for Transitivity Editing. That is, whereas the fixed-
parameter algorithm of Böcker et al. [3] runs in O(3k · n3) time on n-vertex
digraphs, our new algorithm runs in O(2.57k + n3) time (note that in our algo-
rithm the cubic term n3 has become additive instead of multiplicative due to our
kernelization result). Finally, we mention that Transitivity Deletion can be
solved in O(2k + n3) time. To conclude, note that Gutin and Yeo [9] asked in
their recent survey about parameterized problems on digraphs for extending the
so far small list of fixed-parameter tractability results for NP-hard problems on
digraphs—we hope that our work makes a useful addition to this list. Due to the
lack of space, several details are deferred to a full version of this article.

1 Indeed, all corresponding decision problems are NP-complete
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2 Preliminaries and a Structural Result

Our algorithmic results are in the context of fixed-parameter algorithms. Pa-
rameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems [4,6,14]. One dimension is the input size n (as
in classical complexity theory), and the other one is the parameter k (usually
a positive integer). A problem is called fixed-parameter tractable (fpt) if it can
be solved in f(k) · nO(1) time, where f is a computable function only depending
on k. This means that when solving a combinatorial problem that is fpt, the
combinatorial explosion can be confined to the parameter. A core tool in the
development of fixed-parameter algorithms is polynomial-time preprocessing by
data reduction. Here, the goal is for a given problem instance x with parame-
ter k to transform it into a new instance x′ with parameter k′ ≤ k such that the
size of x′ is upper-bounded by some function only depending on k and the in-
stance (x, k) is a yes-instance iff (x′, k′) is a yes-instance. The reduced instance,
which must be computable in polynomial time, is called a problem kernel, and
the whole process is called reduction to a problem kernel or simply kernelization.

A directed graph or digraph is a pair D = (V, A) with A ⊆ V ×V . The set V

contains the vertices of the digraph, while A contains the arcs. Throughout
this work, let n := |V |. If V ′ ⊆ V , then D[V ′] := (V ′, A ∩ (V ′ × V ′) denotes the
subgraph of D that is induced by V ′. Furthermore, we write D−u for D[V \{u}].
The symmetric difference of two sets of arcs A and A′ is A∆A′ := (A∪A′)\(A∩
A′). In this work, we only consider simple digraphs, that is digraphs without
self-loops and double arcs. For any u ∈ V , predA (u) := {v ∈ V | (v, u) ∈ A}
denotes the set of predecessors of u with respect to A, while succA (u) := {v ∈
V | (u, v) ∈ A} denotes its successors. The vertices in predA (u) ∪ succA (u) are
said to be adjacent to u.

A digraph D = (V, A) is called transitive if

∀u,v,w∈V ((u, v) ∈ A ∧ (v, w) ∈ A) ⇒ (u, w) ∈ A.

In other words, D is transitive if A is a transitive relation on (V ×V ). The central
problem of this work (formulated as decision problem, but our algorithms can
also solve the corresponding minimization problem) is defined as follows.

Transitivity Editing:
Input: A digraph D = (V, A) and an integer k ≥ 0.
Question: Does there exist a digraph D′ = (V, A′) that is transitive
and |A∆A′| ≤ k?

Analogously, Transitivity Deletion is defined via only allowing arc deletions.
To derive our results, we make use of the fact that transitive digraphs can

be characterized by “forbidden P3s”. Slightly abusing notation, in our setting,
the P3s of a digraph are all vertex triples (u, v, w), such that (u, v) ∈ A, (v, w) ∈
A, and (u, w) 6∈ A. We say that the P3 (u, v, w) contains the arcs (u, v) and (v, w)
and the vertices u, v, and w. As also noted by Böcker et al. [3], transitive digraphs
can be characterized as the digraphs without P3s, that is, a digraph is transitive
iff it does not contain a P3.
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u - 0 1 1
v * - * *
x * 1 - *
y * 1 * -

Fig. 1. The diamond structure and its adjacency matrix. In order to meet the
definition, the solid arcs must be present and the dashed arc must be absent. All
other arcs may or may not be present. In the adjacency matrix, for each vertex,
the endpoints of its outgoing arcs are determined by its row. Stars represent
wildcards, that is, these entries do not matter for the definition.

A central tool for our combinatorial studies is based on the consideration of
“diamonds”. The absence of diamonds in a given digraph simplifies the Tran-

sitivity Editing problem. This helps us in proving NP-hardness and in our
algorithmic results. A diamond in a digraph D = (V, A) is a triple (u, {x, y}, v),
where u, x, y, v ∈ V , (u, v) 6∈ A, and (u, z), (z, v) ∈ A for z ∈ {x, y} (see Fig. 1).2

If D does not contain a diamond, then it is said to be diamond-free.
A set S ⊆ V × V is called a solution set of Transitivity Editing for the

digraph (V, A) if (V, A∆S) is transitive. A solution set S is optimal if there is
no solution set S′ with |S′| < |S|. For each solution set S we consider its two-
partition S = SDEL⊎SINS, where SDEL denotes the set of arc deletions and SINS

denotes the set of arc insertions. The following lemma shows that the property
of being diamond-free is preserved by deleting the arcs of a solution set.

Lemma 1. Let D = (V, A) be a diamond-free digraph and let S be a solution
set for D. Then DDEL := (V, A∆SDEL) is diamond-free.

The following important result shows that in order to solve Transitivity

Editing on diamond-free digraphs, it is optimal to only perform arc deletions.

Lemma 2. Let (D, k) with D = (V, A) be a diamond-free input instance of
Transitivity Editing. Then, there is an optimal solution set S for D that
inserts no arc, that is, S = SDEL.

Proof. Let S′ be any optimal solution set for D. By Lemma 1, we can apply
all arc deletions of a given solution set without destroying diamond-freeness.
Hence, we assume the solution set S′ to only consist of arc insertions. We now
construct S from S′:

S := {(a, b) | ∃c∈V (a, c) ∈ S′ ∧ (a, b) ∈ A ∧ (b, c) ∈ A} .

Since D is diamond-free, for each vertex pair (a, c), there is at most one b meeting
the criteria (a, b) ∈ A and (b, c) ∈ A. Hence, for each inserted arc (a, c) in S′,
there is at most one arc (a, b) in S and hence |S| ≤ |S′|.

2 Note that this is not a common definition and should not be mixed-up for instance
with diamonds in undirected graphs.
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Let D′ := (V, A′) with A′ := A\S. We now show that S is a solution set for D

by proving that D′ is transitive: Assume that there is a P3 p = (x, y, z) in D′.
Since S ⊆ A (that is, S contains only arc deletions), we know that (x, y) ∈ A

and (y, z) ∈ A and, since S′ is a solution set for D, we know that p is not a P3

in (V, A∆S′), implying either (x, z) ∈ S′ or (x, z) ∈ S. However, (x, z) 6∈ S′,
because otherwise (x, y) ∈ S, contradicting p being a P3 in D′. Hence, (x, z) ∈ A

and (x, z) ∈ S. By definition of S, this implies that there is a vertex v ∈ V

with (z, v) ∈ A and (x, v) ∈ S′. Also, (y, v) 6∈ A, since, otherwise, (x, z, v)
and (x, y, v) would form a diamond in D. Hence, q = (y, z, v) is a P3 in D.
As p, also q cannot be a P3 in (V, A∆S′). However, S′ does only contain insert
operations, which implies (y, v) ∈ S′. Since (y, z) ∈ A and (z, v) ∈ A, this
implies (y, z) ∈ S, contradicting p being a P3 in D′. ⊓⊔

3 NP-Hardness Results

In this section, we prove the NP-hardness of Transitivity Editing and Tran-

sitivity Deletion in degree-four digraphs and in acyclic digraphs. Both results
are derived by a reduction from Positive-Not-all-equal-3SAT, which is an
NP-complete variant of 3SAT [12].

Positive-Not-all-equal-3SAT (PNAE-3SAT):
Input: A Boolean formula ϕ in n variables x0, . . . , xn−1 which is a con-
junction of m clauses Ci, 0 ≤ i < m, each consisting of three positive
literals.
Question: Is there a truth assignment to all n variables such that for
each clause Ci exactly one or two of its variables are assigned true, that
is, for no clause the truth values of its variables are all equal?

First, we show that PNAE-3SAT can be reduced to Transitivity Editing

in degree-four digraphs. To this end, we construct an input instance of Tran-

sitivity Editing from a given input instance of PNAE-3SAT in polynomial
time as follows. For each of the n Boolean variables, we construct a variable
cycle, that is, a directed cycle of length 8m, with m being the number of clauses
in the given formula ϕ. More specifically, for each variable xi, the corresponding
variable cycle consists of the vertices Vi := {i0, . . . , i8m−1}. The vertices in Vi

are connected into a cycle by adding the arcs Ai := {{ip, ip+1} | 0 ≤ p ≤ 8m−1}
(for the ease of presentation, let i8m = i0). The collection of all variable cycles

is then referred to by (V, A) with V :=
⋃n−1

i=0 Vi and A :=
⋃n−1

i=0 Ai. In the fol-
lowing, we refer to the arcs (i0, i1), (i2, i3), . . . , (i8m−2, i8m−1) as even arcs and
to all other arcs in the variable cycle as odd arcs.

Moreover, for each clause Cj = {xp, xq, xr} in ϕ with 0 ≤ j < m, we construct
a clause cycle, that is, a directed length-three cycle between the variable cycles of
its three variables consisting of the arcs A′

j := {(p8j , q8j) , (q8j , r8j) , (r8j , p8j)}.
See Fig. 2(a) for an illustration. This completes the construction.

The set of all arcs in the clause cycles is denoted by A′ :=
⋃m−1

j=0 A′

j . Note that
two vertices of a variable cycle contained in different clause cycles have distance
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Fig. 2. (a): The clause cycle of clause Ci = {xp, xq, xr} connecting the corre-
sponding variable cycles. Bold arcs are in A′. (b): All P3s containing an arc of
the clause cycle can be destroyed by deleting two arcs if in the variable cycle
of xp all odd arcs are deleted and in the variable cycle of xq all even arcs are
deleted. Dashed lines indicate deleted arcs and exactly one of the two dotted
arcs incident to r8j is deleted.

at least 8, which makes it easy to see that the constructed digraph is diamond-
free. Finally, let D := (V, A∪A′) denote the resulting digraph and k := 2m+4mn.
Observe that D is diamond-free and has maximum degree four.

Theorem 1. Transitivity Editing is NP-complete, even if the maximum
degree is bounded by four (indegree two and outdegree two).

Proof. Obviously, one can verify in polynomial time whether a digraph is transi-
tive. This implies that Transitivity Editing is in NP. We now show that it is
NP-hard by reducing from PNAE-3SAT. Let D = (V, A∪A′) be a digraph con-
structed as described above from a given instance ϕ of PNAE-3SAT. We show
that (D, k) with k := 2m+4mn is a yes-instance for Transitivity Editing iff
there is a satisfying assignment to the variables of ϕ.

“⇐”: Suppose that there is a satisfying assignment β to the variables of a
PNAE-3SAT input instance ϕ. Then, we can construct a transitive digraph by
modifying D in the following way: First, for each variable xi, we remove all odd
arcs of its variable cycle if β(xi) = true, and all even arcs if β(xi) = false. All in
all, we remove 4m arcs for each of the n variable cycles, which is a total of 4mn

arc deletions. Note that all remaining P3s contain at least one arc of a clause
cycle.

To destroy these P3s, for each clause Cj = {xp, xq, xr}, 0 ≤ j < m, the clause
cycle is modified in the following way: Since β is a satisfying assignment for the
PNAE-3SAT instance, we can assume without loss of generality that β(xp) =
true and β(xq) = false. Hence, we have deleted all odd arcs in the variable cycle
of xp and all even arcs in the variable cycle of xq, that is, the arcs (p8j−1, p8j)
and (q8j , q8j+1) are deleted and the arcs (p8j , p8j+1) and (q8j−1, q8j) are not
deleted. Moreover, observe that deleting the arcs (q8j , r8j) and (r8j , p8j) of the
clause cycle makes p8j a source and q8j a sink. Hence, all P3s containing an
arc of the clause cycle of Cj are destroyed. See Fig. 2(b) for an illustration. For
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all clauses, this requires 2m arc deletions in total. In summary, it is possible to
make D transitive with 2m + 4mn arc deletions.

“⇒”: Suppose that (D, 2m+4mn) is a yes-instance of Transitivity Edit-

ing. Hence, a solution set S for D exists such that |S| ≤ 2m + 4mn. Since D is
diamond-free we can assume, by Lemma 2, that S ⊆ A∪A′. Let Â := (A∪A′)\S

and D̂ := (V, Â).
Next, we show that S contains exactly two arcs from each clause cycle

and 4m arcs from each variable cycle. First, note that one needs at least two
arc deletions to make a directed cycle of length three transitive. Hence, turn-
ing all m clause cycles transitive requires at least 2m arc deletions. Second,
note that making a variable cycle (which has length 8m) transitive requires at
least 4m arc deletions since it contains 4m arc-disjoint P3s. This implies that S

contains exactly two arcs from each clause cycle and 4m arcs from each vari-
able cycle (note that the variable and clause cycles are arc-disjoint). Moreover,
observe that, to make a variable cycle transitive by deleting 4m arcs, either
all 4m even or all 4m odd arcs must be deleted (since it is clearly optimal to
delete every second arc).

Consider a clause Cj = {xp, xq, xr}, 0 ≤ j < m. We show that for one of the
three corresponding variable cycles all even arcs and for another all odd arcs are
deleted, and, as a consequence, the assignment β with β(xi) := true if all odd
arcs of the corresponding variable cycle are deleted and β(xi) := false, otherwise,
is satisfying. Assume towards a contradiction that there exists a clause Cj =
{xp, xq, xr}, 0 ≤ j < m, such that for all three variables xp, xq, and xr all even
(odd) arcs of the variable cycles are deleted. Recall that for each clause cycle all
but one arc are deleted. Without loss of generality, let (p8j , q8j) be this arc, that

is, (p8j , q8j) ∈ Â. If all even arcs are deleted in the variable cycles, then the odd

arc (p8j−1, p8j
) ∈ Â and (p8j−1, p8j

, q8j) is a P3 in D̂. Otherwise, if all odd arcs

are deleted, then the even arc (q8j , q8j+1) ∈ Â and (p8j , q8j , q8j+1) is a P3 in D̂.
Both cases contradict the fact that S is a solution. ⊓⊔

In the above proof, we never employ arc insertions. This implies that Tran-

sitivity Deletion is also NP-complete.

Corollary 1. Transitivity Deletion is NP-complete, even if the maximum
degree is bounded by four (indegree two and outdegree two).

The undirected “sister” problem Cluster Editing becomes polynomial-time
solvable when the input is a tree, that is, acyclic. It is thus natural to study
the complexity of Transitivity Editing on acyclic digraphs. Somewhat sur-
prisingly, we find that Transitivity Editing remains NP-hard for acyclic di-
graphs, unlike for example Disjoint Paths [16] which is NP-hard in general
but polynomial-time solvable on acyclic digraphs. However, we have to give up
the bounded degree constraint.

To show the NP-hardness, we reduce again from PNAE-3SAT. The technical
effort, however, significantly increases. The trickiness of the proof lies in incorpo-
rating an “information feedback” between the variable gadgets while using only
acyclic variable and clause gadgets.
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Theorem 2. Transitivity Editing and Transitivity Deletion are NP-
complete, even when restricted to acyclic digraphs.

4 Fixed-Parameter Tractability Results

In this section, we complement the NP-hardness results of the previous section
with encouraging algorithmic results. Note that Böcker et al. [3] observed that
“most graphs derived from real-world applications are almost transitive”. Con-
sequently, as Böcker et al., we study how the parameter k (denoting the number
of arc modifications) influences the computational complexity. We deliver im-
proved fixed-parameter tractability results; in particular, we positively answer
Böcker et al.’s [3] question for the existence of a polynomial-size problem ker-
nel. Thus, in what follows, we first develop kernelization results, and then we
present an improved search tree strategy, altogether yielding the so far fastest
fixed-parameter algorithms for Transitivity Editing.

First, observe that Transitivity Editing is fixed-parameter tractable with
respect to the parameter k: The task is simply to destroy all P3s in a given
digraph. Clearly, there are exactly three possibilities to destroy a P3, either by
deleting one of the two arcs or by inserting the “missing” one. This yields a search
tree of size O(3k) (cf. [3]), which indeed can be used to enumerate all solutions
of size at most k because it exhaustively tries all possibilities to destroy P3s.

Kernelization. In the following, we describe a kernelization for Transitivity

Editing. We show a kernel consisting of O(k2) vertices for the general problem
and a kernel of O(k) vertices for digraphs with bounded degree. In the latter
case, already the following data reduction rule suffices.

Rule 1 Let (D = (V, A), k) be an input instance of Transitivity Editing. If
there is a vertex u ∈ V that does not take part in any P3 in D, then remove u

and all arcs that are incident to it.

Lemma 3. Rule 1 is correct and can be exhaustively applied in O(n3) time.

Proof. To prove the correctness, we construct a sequence of arc modifications
that form an optimal solution set. Then, we will prove that, if at some point in
this sequence a vertex u does not take part in any P3, then u does not take part
in any P3 at any later point in the sequence. Thus, removing u never changes
the set of P3s to be destroyed.

Let (D, k) with D = (V, A) denote the given input instance and let S denote
an optimal solution set for D with s := |S| ≤ k and D′ := (V, A∆S). Let Q be
the straightforward search-tree algorithm that searches a P3 in the digraph and
destroys it by branching into all three possibilities of inserting or deleting an arc.
Clearly, Q returns a shortest sequence of digraphs (D = D0, D1, . . . , Ds = D′)
with Di := (V, Ai) and a sequence of arc modifications F1, . . . , Fs with Fi :=
Ai−1∆Ai for each 1 ≤ i ≤ s. We prove the following: For each i ≥ 1, if a
vertex u ∈ V does not take part in any P3 in Di−1, then it does not take part

8
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in any P3 in Di. Hence, by induction, if u does not take part in any P3 in D0,
then there is no j > 0 such that u takes part in a P3 in Dj . Thus, D and D −
u yield the same sequence of arc modifications F1, . . . , Fs and thus (D, k) ∈
Transitivity Editing ⇔ (D − u, k) ∈ Transitivity Editing.

In the following, we show the contraposition of the claim: For each i ≥ 1, if
a vertex u ∈ V takes part in a P3 p in Di, then it takes part in a P3 q in Di−1.
Let Fi = {(a, b)}. Since Q only inserts or deletes (a, b) to destroy a P3, we know
that there is a P3 r in Di−1 that contains both a and b. Hence, if u = a or u = b,
then q = r and thus u takes part in q. Otherwise, we consider the following cases.

Case 1: (a, b) is inserted.
Clearly, there is a vertex v ∈ V such that (a, v, b) is a P3 in Di−1; hence,
if u = v, then q = (a, u, b). Furthermore, if p 6= (a, b, u) and p 6= (u, a, b),
then q = p. Otherwise, without loss of generality, assume that p = (a, b, u).
Obviously, (a, u) 6∈ Ai. Since (a, u) 6∈ Fi, we know that (a, u) 6∈ Ai−1. If (v, u) ∈
Ai−1, then q = (a, v, u), otherwise q = (v, b, u).

Case 2: (a, b) is deleted.
Clearly, there is a vertex v ∈ V such that either (a, b, v) or (v, a, b) is a P3

in Di−1; hence, if u = v, then q = (a, b, u) or q = (u, a, b). If u 6= v, without loss
of generality assume that (a, b, v) is a P3 in Di−1. Furthermore, if p 6= (a, u, b),
then q = p. If p = (a, u, b), then if (u, v) ∈ Ai−1, then q = (a, u, v); otherwise,
q = (u, b, v).

Finally, the running time can be seen as follows. We enumerate all P3s
in O(n3) time, thereby labeling all vertices that are part of a P3. Afterwards, we
remove all unlabeled vertices. ⊓⊔

Surprisingly, this data reduction rule is sufficient to show a linear-size prob-
lem kernel if the maximum degree of the given digraph is constant.

Theorem 3. Transitivity Editing restricted to digraphs with maximum de-
gree d admits a problem kernel containing at most 2k · (d + 1) vertices.

Proof. Let D = (V, A) be a digraph that is reduced with respect to Rule 1 and
let S be a solution set for D with |S| ≤ k. We show that |V | ≤ 2k(d+1). Consider
the two-partition of V into Y := {v ∈ V | ∃u∈V (u, v) ∈ S ∨ (v, u) ∈ S} and
X := V \Y . Since |S| ≤ k, we have |Y | ≤ 2k. Note that, since D is reduced with
respect to Rule 1, every x ∈ X is contained in a P3 q. It is clear that the other
two vertices of q are in Y and thus every x ∈ X is adjacent to at least one vertex
in Y . However, each vertex in Y has at most d neighbors and thus |X | ≤ d|Y |,
implying |V | = |X | + |Y | ≤ 2k + d2k = 2k(d + 1). ⊓⊔

The above data reduction also works for Transitivity Deletion:

Corollary 2. Transitivity Deletion restricted to digraphs with maximum
degree d admits a problem kernel containing at most 2k · (d + 1) vertices.

Next, we prove an O(k2)-vertex kernel for general digraphs. The following
data reduction rule roughly follows an idea for Cluster Editing [7]: If there
is some vertex pair (a, b) such that not modifying (a, b) results in a solution size
of at least k + 1, then every solution of size at most k must contain (a, b).

9
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Rule 2 Let (D = (V, A), k) be an input instance of Transitivity Editing.

1. Let (u, v) ∈ (V × V )\A and Z := succA (u) ∩ predA (v). If |Z| > k, then
insert (u, v) into A and decrease k by one.

2. Let (u, v) ∈ A, Zu := predA (u) \ predA (v) and Zv := succA (v) \ succA (u).
If |Zu| + |Zv| > k, then delete (u, v) from A and decrease k by one.

Lemma 4. Let (D, k) be an input instance of Transitivity Editing. Then,
Rule 2 causes an arc modification iff it destroys more than k P3s in D.

Lemma 4 is decisive for proving the correctness of Rule 2.

Lemma 5. Rule 2 is correct and can be exhaustively applied in O(n3) time.

We now show that the exhaustive application of both rules leads to a problem
kernel of O(k2) vertices.

Theorem 4. Transitivity Editing admits a problem kernel containing at
most k(k + 2) vertices.

Proof. Assume that there is a digraph D = (V, A) with |V | > k(k + 2), D is
reduced with respect to Rules 1 and 2, and it is possible to make D transitive
by applying at most k arc modifications. Let D′ = (V, A′) denote a transitive
digraph obtained by the application of k arc modifications and let S := A∆A′

denote the corresponding solution set. Consider a two-partition (X, Y ) of V ,
where Y := {v ∈ V | ∃u∈V (u, v) ∈ S ∨ (v, u) ∈ S} and X := V \Y . Note that all
vertices in X are adjacent to at least one vertex in Y because D is reduced with
respect to Rule 1. Also note that in order to destroy a P3 p in D, the solution
set S must contain an arc incident to two of the vertices of p, hence for each P3 p

in D at most one of the vertices of p is in X .
Since we assume that D can be made transitive with at most k arc modifica-

tions, we know that |S| ≤ k and consequently |Y | ≤ 2k. Clearly, |V | = |X |+ |Y |,
hence the assumption that |V | > k(k + 2) implies |X | > k2. With the above
observation, it follows that there are more than k2 P3s in D.

For each (a, b) ∈ S, let Z(a,b) := {p | modifying (a, b) destroys the P3 p in D}.
Since there are more than k2 P3s in D, but |S| ≤ k, we know that there is
an (a, b) ∈ S with |Z(a,b)| > k, a contradiction to Lemma 4. ⊓⊔

The above data reduction works also for Transitivity Deletion:

Corollary 3. Transitivity Deletion admits a problem kernel containing at
most k(k + 2) vertices.

Search Tree Algorithm. As mentioned before, a straightforward algorithm that
finds an optimal solution set for a given digraph branches on each P3 (u, v, w) in
the digraph, trying to destroy it by either deletion of (u, v), deletion of (v, w), or
insertion of (u, w). This directly gives a search tree algorithm solving transi-

tivity Editing on an n-vertex digraph in O(3k ·n3) time (cf. [3]). Note that, to
solve Transitivity Deletion, the search only needs to branch into two cases,
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yielding an algorithm running in O(2k ·n3) time. Indeed, using more clever data
structures, these running times can be improved to O(3k · n log n + n3) and
O(2k · n log n + n3), respectively. Using the so-called interleaving technique [14]
together with the polynomial-size problem kernel results, however, one actually
can achieve running times O(3k + n3) and O(2k + n3), respectively.

In the following, we shrink the search tree size for Transitivity Editing

from 3k to 2.57k by applying our combinatorial result on diamond-freeness.

Theorem 5. Transitivity Editing and Transitivity Deletion can be
solved in O(2.57k + n3) and O(2k + n3) time, respectively.

Proof. Recall from Lemma 2 that in diamond-free digraphs we only need to
consider arc deletions. This helps us to improve the branching strategy. The
modified algorithm employs the following search structure. Upon finding a di-
amond (u, {x, y}, v) in the given digraph D = (V, A), the algorithm recursively
asks whether

1. (V, A\{(u, x), (u, y)}) can be made transitive with ≤ k − 2 operations,
2. (V, A\{(u, x), (y, v)}) can be made transitive with ≤ k − 2 operations,
3. (V, A\{(x, v), (u, y)}) can be made transitive with ≤ k − 2 operations,
4. (V, A\{(x, v), (y, v)}) can be made transitive with ≤ k − 2 operations, or
5. (V, A ∪ {(u, v)}) can be made transitive with ≤ k − 1 operations.

Thus, the search branches into five cases and the recurrence for the corresponding
search tree size reads as Tk = 1 + 4 · Tk−2 + Tk−1, where T0 = T1 = 1. Resolving
this recurrence yields O(2.57k) for the search tree size under the assumption
that the branching is always performed in this way. The correctness of this
branching is easy to check. If there are no diamonds in the input graph, then
the straightforward search tree for Transitivity Deletion is used to solve the
problem, which runs in O(2k ·n3) time. The correctness of the overall search tree
algorithm easily follows.

Applying the interleaving technique [14], and making use of the polynomial-
size problem kernels from Theorem 3 results in the running times O(2.57k + n3)
for Transitivity Editing and O(2k + n3) for Transitivity Deletion. ⊓⊔

5 Conclusion

Two immediate theoretical challenges (of significant practical relevance) arising
from our work are to find out whether there is an O(k)-vertex problem kernel
for Transitivity Editing in the case of general digraphs (see [5,8] for corre-
sponding results in the case of undirected graphs, that is, Cluster Editing)
or to investigate whether linear-time polynomial size kernelization (so far the
kernelization takes cubic time in the number of vertices) is possible (see [15]
for corresponding results in case of Cluster Editing). Finally, note that we
focused on arc modifications to make a given digraph transitive—it might be of
similar interest to start an investigation of the Transitivity Vertex Dele-

tion problem, where the graph shall be made transitive by as few vertex deletions
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as possible (see [10] for corresponding results in the case of undirected graphs,
that is, Cluster Vertex Deletion). Finally, from a more general point of
view, there seems to be a rich field of studying further modification problems on
digraphs. For instance, the concept of quasi-transitivity is of considerable inter-
est in the theory of directed graphs (cf. [1]), hence one might start investigations
on problems such as Quasi-Transitivity Editing.
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