
Measuring Indifference:
Unit Interval Vertex Deletion

René van Bevern?, Christian Komusiewicz??, Hannes Moser?, and
Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{rene.bevern,c.komus,hannes.moser,rolf.niedermeier}@uni-jena.de

Abstract. Making a graph unit interval by a minimum number of vertex
deletions is NP-hard. The problem is motivated by applications in seriation
and measuring indifference between data items. We present a fixed-
parameter algorithm based on the iterative compression technique that
finds in O((14k + 14)k+1kn6) time a set of k vertices whose deletion from
an n-vertex graph makes it unit interval. Additionally, we show that
making a graph chordal by at most k vertex deletions is NP-complete
even on {claw,net,tent}-free graphs.

1 Introduction

Being indifferent between two objects means to prefer neither of them. The
indifference relation defines an undirected graph with an edge between two vertices
if and only if they are judged indifferent. In this paper, we study measuring
indifference in the context of seriation. The specific task is to put objects in a
serial order, respecting the given indifference relation as much as possible.

Indifference corresponds to “closeness” between data items [14, 1]. Accordingly,
an undirected graph G = (V,E) whose vertices represent data items is called an
indifference graph if there exists a function r : V → R such that for all u, v ∈ V

{u, v} ∈ E ⇔ |r(u)− r(v)| ≤ δ,

where δ is a positive number (the “threshold”) measuring closeness. The func-
tion r induces a serial order. Informally, the above equivalence expresses that
we distinguish between u and v only if, according to r, there is sufficiently high
difference between them. Empirical indifference judgments (with correspondingly
defined undirected graphs) usually do not permit such an assignment r satisfying
the above equivalence. One possibility, however, is that “almost all” data items
induce an indifference graph. In other words, given a graph based on empirical
indifference judgments (which contain some “errors”), the task then is to spot as

? Supported by the DFG, project AREG, NI 369/9.
?? Supported by a PhD fellowship of the Carl-Zeiss-Stiftung and the DFG, project

PABI, NI 369/7.

Published in the Proceedings of the 36th International Workshop on Graph The-
oretic Concepts in Computer Science (WG’10), Zarós, Crete, Greece, June 2010.
Volume 6410 in Lecture Notes in Computer Science, pp. 232–243 c© Springer

(a) Claw (b) Net (c) Tent (d) Hole

Fig. 1: The (infinitely many) forbidden induced subgraphs for unit interval graphs. Holes
are induced cycles of length at least four.

few “outlier vertices” as possible such that after the removal of these vertices
the graph becomes an indifference graph. Thus, the minimum number of vertex
deletions measures how close “empirical indifference data” is to mathematically
defined indifference. Since indifference graphs are precisely the unit interval
graphs [18, 19]1, we arrive at the central problem in this work:

Unit Interval Vertex Deletion
Input: An undirected graph G = (V,E).
Question: Is there a set S ⊆ V with |S| ≤ k and G[V \ S] being unit interval?

A graph is unit interval if and only if it contains no induced claw, net, tent, or
hole (an induced cycle of length at least four) [4]. These infinitely many forbidden
induced subgraphs are illustrated in Figure 1. A general result on vertex deletion
problems implies that Unit Interval Vertex Deletion is NP-complete [13].

Related Work. Roberts [18, 19] discusses indifference and seriation and explains
applications in fields such as archaeology and developmental psychology. Seriation
by transforming graphs into indifference graphs belongs to the field of “seriation
in the presence of errors” and can be understood as a variant of fitting Robinson
structures to distances [6, 5, 2]. More specifically, our setting is related to the
special case where distances are specified by symmetric 0/1-matrices; here, the
Robinson property becomes the consecutive-ones property [19, 5]. Thus, the Unit
Interval Vertex Deletion problem is equivalent to making a symmetric
0/1-matrix fulfill the consecutive-ones property by simultaneous2 column and
row deletions. We remark that making a 0/1-matrix fulfill the consecutive-ones
property by means of non-simultaneous column or row deletions has recently
been studied in terms of approximability and fixed-parameter tractability [7].

Our work is closely related to a result by Marx [15], who shows that Chordal
Vertex Deletion (asking whether a graph can be made chordal by k vertex
deletions) is fixed-parameter tractable parameterized by k. One can observe
that the result implies fixed-parameter tractability for Unit Interval Vertex
Deletion. However, the running time of the Chordal Vertex Deletion algo-
rithm [15] is not specified and it relies on solving Chordal Vertex Deletion

1 Unit interval graphs are also equivalent to proper interval graphs [18].
2 For an i ∈ N, column i is deleted from the matrix if and only if row i is deleted.

2

on tree decompositions of worst-case-width Ω(k4). This renders the algorithm
unimplementable. Subsequently to our work, Villanger [21] presented a search-
tree based algorithm for Unit Interval Vertex Deletion, improving the
running time to O(6kkn6).

Our Results. We present a fixed-parameter algorithm for Unit Interval
Vertex Deletion running in O((14k + 14)k+1 · kn6) time, where k denotes the
number of allowed vertex deletions and n is the number of graph vertices. Like
Marx [15], we employ the iterative compression technique by Reed et al. [17, 12].
However, we do not employ bounded-treewidth techniques and circumvent huge
hidden constants. Before that, we show that Unit Interval Vertex Deletion
remains NP-hard when restricted to {claw, net, tent}-free graphs, where it is
equivalent to Chordal Vertex Deletion. Due to lack of space, some proofs
are omitted [2].

Preliminaries. We only consider simple undirected graphs G = (V,E), where
V (G) := V is the set of vertices and E(G) := E is the set of edges. Throughout
this work, let n := |V | and m := |E|. The neighborhood N(v) of a vertex v ∈ V
is the set of vertices adjacent to v. A clique is a graph in which every two
distinct vertices are adjacent. For a set V ′ ⊆ V , the induced subgraph G[V ′] is
the graph with vertex set V ′ and edge set {{v, w} ∈ E | v, w ∈ V ′}. We use
G− V ′ as an abbreviation for G[V \ V ′]. A path P from vi to v` is a sequence
(v1, v2, . . . , v`) ∈ V ` with {vi, vi+1} ∈ E for i ∈ {1, . . . , `−1}; it visits the vertices
v1, . . . , v`. If i 6= j implies vi 6= vj , then P is simple. If {vi, vj} /∈ E for |i− j| > 1,
then P is induced. An (induced) cycle is an (induced) path with {v1, v`} ∈ E,
called (induced) C`. Two vertices v, w ∈ V are connected in G if there is a path
from v to w in G. A vertex-cut between v and w in G is a set C ⊆ V such that v
and w are not connected in G− C. The graph G is F -free if G does not contain
an induced subgraph isomorphic to the graph F . A segment of a total order �
on V is a set [u,w] := {v ∈ V | u � v � w}.

2 NP-Hardness on a Restricted Graph Class

We show that Unit Interval Vertex Deletion is NP-complete even on {claw,
net, tent}-free graphs, where it is equivalent to Chordal Vertex Deletion.

Theorem 1. Chordal Vertex Deletion on {claw, net, tent}-free graphs is
NP-complete.

Proof. We only show NP-hardness and employ a reduction from the NP-complete
Vertex Cover on triangle-free graphs [10]. First, we describe the reduction,
then we prove its correctness. Let (G, k) be a Vertex Cover instance, where G
is triangle-free and we ask whether there is a set of k vertices whose deletion
makes G edgeless. We construct an instance (G′, k) for Chordal Vertex
Deletion as follows: let G′ := G, where the complement graph G of G has the
same vertices as G and G has an edge {v, w} if and only if G has not. Add to G′

two disjoint cliques A and B, each containing k + 1 vertices, and make every

3

vertex in A and every vertex in B adjacent to every vertex in V (G). Because
claw, net, and tent each contain a size-three independent set, the constructed
graph G′ is {claw, net, tent}-free: since G is triangle-free, G does not contain a
size-three independent set. Moreover, there is no size-three independent set in G′,
since the vertices in the cliques A and B are adjacent to every vertex in V (G).
It remains to show that (G, k) is a yes-instance for Vertex Cover if and only
if (G′, k) is a yes-instance for Chordal Vertex Deletion.

Let S be a vertex cover of size at most k for G. Since S is a vertex cover, G−S
is an edgeless graph. As a consequence, the complement of G− S is a clique C
and thus G′ − S contains three cliques A, B, and C, where every vertex of A
and B is adjacent to every vertex in C by construction of G′. The graph G′−S is
obviously chordal and S is a chordal vertex deletion set of size at most k for G′.

Let S be a chordal vertex deletion set for G′ with |S| ≤ k. Assume that S ∩
V (G) is not a vertex cover for G. Then, there is an edge {u, v} in G− S, and,
therefore, there is no edge {u, v} in G′ by construction of G′. Because A and B
each contain k+ 1 vertices and |S| ≤ k, there are vertices a ∈ A\S and b ∈ B \S.
The vertex set {a, u, v, b} induces a hole in G′ − S, a contradiction to S being a
chordal vertex deletion set for G′. Hence, S ∩ V (G) is a vertex cover for G. ut

3 An Outline of the Algorithm

Our algorithm employs the iterative compression technique by Reed et al. [17, 12].
The rough idea of this technique is to iteratively build up the input graph by
adding vertices one by one and to compute in each iteration an optimal solution
for the current subgraph, using the solution computed for the previous subgraph.
More precisely, given an arbitrary order of the vertices from 1 to n, we start
with the empty graph and an empty solution S0 := ∅. The task of iteration i is
to compute a solution for the graph G[{v1, . . . , vi}]. Assume that the previously
computed set Si−1 is a solution of size at most k for G[{v1, . . . , vi−1}]. Then
Si−1 ∪ {vi} is a solution of size at most k + 1 for the graph G[{v1, . . . , vi}]. We
apply a compression routine that either computes a size-k solution Si using
Si−1 ∪ {vi} or proves that no such solution exists. The pseudo-code of this main
loop is given in Algorithm 1.

Algorithm 1: Iterative Compression

Input: A graph G and its vertices v1, . . . , vn in an arbitrary order, k ∈ N.
Output: A unit interval vertex deletion set S for G with |S| ≤ k or “no”.

1 S0 ← ∅;
2 for i := 1 to n do
3 Si ← compress(G[{v1, . . . , vi}], Si−1 ∪ {vi}, k);
4 if Si = “no” then return “no”

5 return Sn

4

The central part of the algorithm is the routine compress described below. Given
an input graph G, a natural number k, and a unit interval vertex deletion set S′

with |S′| ≤ k + 1, the routine can return S′ unchanged if |S′| ≤ k. Thus, we
assume that |S′| = k + 1. We now try all possible 2k+1 partitions of S′ into two
sets X and Y , where Y is a subset of the new solution S and X ∩S = ∅. For each
partition, we delete the vertex set Y from G (since the vertices of Y are assumed
to belong to the new solution). Then, the remaining task is to find a unit interval
vertex deletion set disjoint from X and smaller than X. The crucial observation
is that deleting X from G− Y results in a unit interval graph. We say that X is
a unit interval vertex deletion set for G− Y . Summarizing, we arrive at:

Disjoint Unit Interval Vertex Deletion
Input: A graph G and a unit interval vertex deletion set X for G.
Output: A unit interval vertex deletion set S with |S| < |X| and S ∩X = ∅,

or “no” if no such set exists.

Disjoint Unit Interval Vertex Deletion is NP-hard [8]. The advantage
of working with Disjoint Unit Interval Vertex Deletion is that we can
exploit G−X being a unit interval graph. In the next section, we prove:

Theorem 2. Disjoint Unit Interval Vertex Deletion can be solved in
O((14|X| − 1)|X|−1 · |X|n5) time.

Exploiting this in the routine compress of Algorithm 1 leads to the main theorem
of this work. The running time follows from the fact that compress is invoked
O(n) times and that each invocation solves Disjoint Unit Interval Vertex
Deletion for all partitions of the solution from the previous iteration.

Theorem 3. Unit Interval Vertex Deletion can be solved in O((14k +
14)k+1 · kn6) time.

4 Finding Disjoint Unit Interval Vertex Deletion Sets

For Disjoint Unit Interval Vertex Deletion, given a unit interval vertex
deletion set X for G, we search for a unit interval vertex deletion set S for G with
|S| < |X| and S∩X = ∅. Roughly, the algorithm works as follows: first, enumerate
all minimal vertex sets of size at most |X| − 1 whose deletion transforms G into a
{claw,net,tent,C4,C5,C6}-free graph, henceforth called almost unit interval graph.
For each of these graphs, it remains to find a minimum-cardinality vertex set S′

whose removal destroys all holes of length greater than six to make the graph unit
interval. We call such a set optimal. If |S′| and the number of vertex deletions
needed to transform a graph into an almost unit interval graph add up to at
most |X|−1, then we have found a solution. Since we try all minimal vertex sets of
size at most |X|−1 whose deletion transforms a graph into an almost unit interval
graph, we always find a size-(|X| − 1) unit interval vertex deletion set if it exists.

To destroy all holes in an almost unit interval graph G, we show that each
hole can be destroyed by deleting any of at most 14|X| − 1 vertex sets, of which

5

tube inner verticesjunction

G−X

X

Fig. 2: A hole visiting the maximal cliques of G−X (indicated by circles). Hatched circles
show junctions. The vertices of G−X are shown from left to right in a bicompatible
elimination order. A maximal set of consecutive white cliques forms a tube. Tubes may
contain vertices of junctions. For the right tube, we indicate the inner vertices.

at least one vertex set can be assumed to be in an optimal unit interval vertex
deletion set. This allows us to use a bounded search tree algorithm that, for
each hole H in G, branches into 14|X| − 1 possibilities to destroy H. Because at
most |X| − 1 vertices may be deleted from G to transform it into a unit interval
graph, the height of the corresponding search tree is bounded by |X| − 1. To
find these 14|X| − 1 vertex sets for each hole in G, we exploit that G−X is a
unit interval graph and thus allows for a linear-time computable bicompatible
elimination order of its vertices [16]:

Definition 1. Let G = (V,E) be a graph. A total order � on V is a bicompatible
elimination order for G if for each vertex v ∈ V , the sets {w ∈ N(v) | w � v}
and {w ∈ N(v) | v � w} induce cliques in G.

Without loss of generality, we assume that the vertices of a connected component
of G form a segment of �. We will see in Proposition 2 that, with respect to a
bicompatible elimination order �, G−X forms a sequence of maximal cliques
such that the vertices of each maximal clique are a segment of �. Figure 2
illustrates this together with the following classification of the maximal cliques
of G−X: a junction is a maximal clique in G−X containing neighbors of vertices
in X; a tube is a maximal set of maximal cliques of G−X that are not junctions
and whose vertices form a segment of �. We say that a vertex is contained in a
tube T if it is contained in a maximal clique of T . A hole visits a junction (or
tube) if it contains a vertex of a junction (or tube). Vertices of a tube that are
not in junctions are inner vertices.

Now, assume that there is a hole H in an almost unit interval graph G as
illustrated in Figure 2. We show 14|X| − 1 possibilities to destroy H of which one
is optimal. Each vertex of H in G−X is contained in a junction or tube (or both).
First, we show that H contains at most 12|X| vertices in junctions and that H
contains inner vertices of at most 2|X| − 1 tubes. Additionally, we show that
there is an optimal unit interval vertex deletion set that contains a vertex of H
in junctions or a polynomial-time computable vertex subset of one of the 2|X|− 1
tubes whose inner vertices are visited by H. Then, we solve Unit Interval
Vertex Deletion by repeatedly searching for a hole H in G in polynomial

6

time and branching into the following 14|X| − 1 possibilities to destroy H: delete
one of the 12|X| vertices of H in junctions, or delete an optimal, polynomial-time
determinable vertex subset of one of the 2|X| − 1 tubes whose inner vertices are
visited by H. Using this branching, the overall search tree size is O((14|X| −
1)|X|−1), which results in the running time of Theorem 2. In the following, we
show in detail the 14|X| − 1 possibilities to destroy H of which one is optimal.

Bounding the Number of Vertices in Junctions. We now prove the following:

Lemma 1. Let X be a unit interval vertex deletion set for an almost unit interval
graph G. A hole in G contains at most 12|X| vertices from junctions in G−X.

First, observe that a hole contains at most two vertices of a clique. We now
exploit that G is an almost unit interval graph. In the following, we say that a
vertex set can be covered by two cliques if it is the union of two vertex sets that
induce cliques.

Proposition 1. If a connected almost unit interval graph G contains a hole,
then the neighborhood of each vertex in G can be covered by two cliques.

Proof. If G contains a hole, then it must contain a hole with more than six
vertices, since G is {claw, net, tent, C4, C5, C6}-free. Thus, G contains an
independent set of size three. We now exploit a result due to Fouquet [9]:

In a connected claw-free graph containing an independent set of size
three, every vertex v satisfies exactly one of the following properties:

(i) N(v) can be covered by two cliques or
(ii) N(v) contains an induced C5.

Because G contains no induced C5, the proposition follows immediately. ut

From Proposition 1, one can conclude that if an almost unit interval graph G
contains a hole, then the neighborhood in V \X of a unit interval vertex deletion
set X can be covered by 2|X| cliques.

We now prove that the maximal cliques of a unit interval graph form segments
of a bicompatible elimination order and that vertices on induced paths occur in
the same (or reverse) order as in a bicompatible elimination order.

Proposition 2. Let v1 � v2 � . . . � vn be a bicompatible elimination order for
a connected unit interval graph G.
(1) If there is an induced path P = (vi, . . . , vk) with vi � vk, then each vertex vj

on P satisfies vi � vj � vk.
(2) If vi � vk and there is an edge between vi and vk, then the segment [vi, vk]

induces a clique in G. In particular, maximal cliques of G form segments.

Proof. We prove the two statements independently. To show (1), for the purpose
of contradiction, assume that there is an induced path P = (vi, . . . , vj , . . . , vk)
with vj � vi � vk (the case vi � vk � vj can be proven analogously) such that vj
is the minimum vertex with respect to � that appears between vi and vk on P ;

7

vj vj′ vi vj′′ vk

(a) The vertices vj � vj′ �
vj′′ form the induced path
(vj′ , vj , vj′′), in wrong order.

v1 v2 v3 v4 v5
(b) A maximal clique induced
by the non-consecutive vertices
v1, v2, v4, and v5.

Fig. 3: The vertex orderings from left to right are not bicompatible elimination orders,
as they violate Proposition 2.

this arrangement is illustrated in Figure 3a. Because there are induced subpaths
of P from vj to both vi and vk, the vertex vj has two distinct neighbors vj′

and vj′′ on P . Because vj is the minimum vertex with respect to � that appears
between vi and vk on P , it holds that vj � vj′ and vj � vj′′ . The vertices vj′

and vj′′ are adjacent by Definition 1, because both are succeeding neighbors of vj .
This contradicts P being an induced path.

Before showing (2), we show that there is an edge between a vertex vi and
its direct successor vi+1 for i ∈ {1, . . . , n − 1}. Recall that G is connected by
assumption. This implies that there is a shortest (and hence, induced) path from vi
to vi+1. It follows from (1) that this path can neither contain a predecessor of vi
nor a successor of vi+1. Because vi+1 directly succeeds vi in �, vi and vi+1 are the
only vertices on the shortest path from vi to vi+1, implying that they are adjacent.

We now show (2). Let vi � vk and assume that there is an edge between vi
and vk. We have shown that vi is also adjacent to its direct successor vi+1.
Because vi+1 and vk are succeeding neighbors of vi, the vertices vi, vi+1, and vk
form a clique by Definition 1. Inductively, it follows that all vertices vj with
vi � vj � vk are adjacent to vk. Because all vertices vj with vi � vj � vk are
preceding neighbors of vk in the bicompatible elimination order �, these vertices
must form a clique together with vk. A maximal clique in G forms a segment
because, with respect to �, it contains an edge from its minimum vertex to its
maximum vertex. ut

To prove Lemma 1, we finally need the following definition (illustrated in Figure 4).

Definition 2. Let G be a unit interval graph with a bicompatible elimination
order � and let C be a clique of G. We define S(C) to be the set of vertices of
all maximal cliques in G that contain vertices of C.

Let cmin (and cmax) denote the minimum (or maximum, respectively) elements
of S(C) with respect to �. We define Smin(C) (and Smax(C)) to be the vertex set
of the (uniquely determined) maximal clique in G that contains cmin (or cmax,
respectively) and some vertex from C.

8

cmin cmax

S(C)

Smin(C) Smax(C)

C

Fig. 4: Illustration for Definition 2. The vertices are shown from left to right in a
bicompatible elimination order. The hatched clique is C.

Using Proposition 2, one can show that S(C) is the union of Smin(C), Smax(C),
and the vertex set of any maximal clique containing C. Therefore, S(C) =
[cmin, cmax]. We have now collected the necessary observations to prove Lemma 1.

Proof (Proof of Lemma 1). Let X be a unit interval vertex deletion set for an
almost unit interval graph G. Assume that G contains a hole. By Proposition 1,
the neighborhood of X in V \ X can be covered by a set C of at most 2|X|
cliques. By Definition 2, the vertices of all junctions containing vertices of a
clique C ∈ C are in S(C). We show that a hole contains at most six vertices
from S(C) and, thus, in all junctions containing vertices of C. A hole contains at
most two vertices in the vertex set C ′ of any maximal clique containing C, at
most two vertices of the clique induced by Smin(C), and at most two vertices in
the clique induced by Smax(C). Because S(C) = Smin(C) ∪ Smax(C) ∪C ′, a hole
contains at most six vertices from S(C). Finally, since |C| ≤ 2|X| and for each
C ∈ C, a hole contains at most six vertices in junctions containing vertices of C,
it follows that a hole contains at most 12|X| vertices in junctions of G−X. ut

Finding Optimal Solutions in Tubes. We now show how to find optimal solutions
in tubes. To this end, one can prove that a hole H visits inner vertices of at most
2|X| − 1 tubes in G−X. Moreover, one can show that there is an optimal unit
interval vertex deletion set containing at least one vertex of H in junctions or a
polynomial-time computable vertex subset of one of the 2|X| − 1 tubes.

Lemma 2. Let X be a unit interval vertex deletion set for an almost unit interval
graph G. A hole in G contains inner vertices of at most 2|X| − 1 tubes with
respect to a bicompatible elimination order � for G−X.

To state the second result (Lemma 3), we need the following concepts.

Definition 3. Let X be a unit interval vertex deletion set for a graph G and let
T be a tube in G −X with respect to a bicompatible elimination order � such
that T contains inner vertices visited by a hole H.

9

(1) For two vertices vi and vk of H, we call (vi, vk) the T -boundary of H if,
with respect to �, vi is in H the preceding neighbor of H’s minimum inner
vertex in T and if vk is in H the succeeding neighbor of H’s maximum inner
vertex of T .

(2) For the T -boundary (vi, vk) of a hole H, we call a (minimum-cardinality)
vertex-cut between vi and vk in G−X a (minimum) H-T -cut.

Lemma 3. Let X be a unit interval vertex deletion set for a graph G. Let T be
the set of tubes in G−X with respect to a bicompatible elimination order � that
contain inner vertices visited by a hole H.

If a unit interval vertex deletion set S for G with S ∩X = ∅ does not contain
vertices of H in junctions of G−X, then there is a unit interval vertex deletion
set S′ with |S′| ≤ |S| and a tube T ∈ T for which S′ contains a minimum
H-T -cut.

Lemma 3 can be shown exploiting Proposition 2(1), which implies that if a hole
enters a tube at one side, it must leave the tube at the opposite side. Using this
fact, one can show the following two claims, which together imply Lemma 3.

Claim. A unit interval vertex deletion set S for G with S ∩ X = ∅ contains
vertices of H in junctions or contains an H-T -cut for some tube T ∈ T .

Claim. For a vertex set S containing a H-T -cut for a tube T ∈ T , no hole in G−S
contains vertices of the segment [vi, vk], where (vi, vk) is the T -boundary of H.

The Algorithm

Combining Lemmas 1, 2 and 3, we finally present the algorithm for Disjoint
Unit Interval Vertex Deletion, thus proving Theorem 2. The algorithm
employs the following branching rule:

Branching Rule 1. If G− S contains a forbidden induced subgraph induced
by a vertex set F with |F | ≤ 6, then branch into all possibilities of adding a
vertex v ∈ F \X to S.

Proof (Proof of Theorem 2). Given a graph G and a unit interval vertex deletion
set X for G, we search for a unit interval vertex deletion set S for G with
|S| < |X| and S ∩ X = ∅. We start with S := ∅ and apply Branching Rule 1
as long as |S| < |X| to destroy forbidden induced subgraphs with at most six
vertices. Because each such forbidden induced subgraph contains one vertex in the
unit interval vertex deletion set X, we find such a forbidden induced subgraph in
O(|X|n5) time and branch into at most five cases to add one of its vertices to S.

If |S| ≥ |X| and Branching Rule 1 is still applicable, return “no” because S is
not extensible to a unit interval vertex deletion set for G that is smaller than X
and disjoint from X. Otherwise, proceed as follows: compute a bicompatible
elimination order � for G − (S ∪ X). This works in linear time [16] because
G− (S ∪X) is a unit interval graph. From this bicompatible elimination order �,

10

a set C of all maximal cliques of G−(S∪X) can easily be computed in O(n2) time
by finding for each vertex v in G− (S ∪X) its last neighbor with respect to �.

Now, we find junctions and tubes. For each clique C ∈ C, check whether C
has neighbors in X. If this is the case, which can be checked in O(kn2) time
for all C ∈ C, then C is a junction. To find tubes, sort the set C such that C1

occurs before C2 if, in �, the minimum vertex of C1 occurs before the minimum
vertex of C2. Because a unit interval graph has at most n maximal cliques, this is
possible in O(n log n) time. From the sorted set C, compute a set T of all tubes
in G− (S ∪X) in O(n) time: repeatedly find the first clique C in C that is not
a junction and not yet part of a tube and add C and all succeeding cliques in C
to a new tube T until a junction is encountered.

Next, as long as |S| < |X|, repeatedly find a hole H in G − S and add at
least one vertex of H to S as follows: because G− S is an almost unit interval
graph and G− (S ∪X) is a unit interval graph, recursively branch into at most
12|X| possibilities to choose a vertex of H from a junction for inclusion in S
(Lemma 1) and into at most 2|X|−1 possibilities to choose tube T ∈ T for which
a H-T -cut shall be included in S (Lemma 2, Lemma 3).

In each search tree node, we branch into at most 14|X| − 1 cases (at most
five cases for Branching Rule 1 and at most 14|X| − 1 for a hole in G− S). In
each case, at least one vertex is added to S. As a result, the corresponding search
tree has depth at most |X| − 1 and thus at most (14|X| − 1)|X|−1 nodes.

To analyze the running time for processing each node, it remains to analyze
the running time for finding holes and minimum H-T -cuts. A hole in G− S can
be found in O(|X|(n+m)) time by breadth-first search starting at each vertex
in X. A minimum H-T -cut is computable in O(

√
nm) time [20, Theorem 9.8]. ut

5 Conclusion

It remains open to study the existence of a polynomial-size problem kernel [3, 11]
for Unit Interval Vertex Deletion. Another task for future study is to
search for polynomial-time algorithms with low-degree polynomials in case of
constant k. Villanger’s algorithm [21] runs in O(6kkn6) time and thus also is
far from this goal. We remark that already Marx [15] asked for the study of the
parameterized complexity of the related Interval Vertex Deletion problem,
remaining a challenge for future research. In general, interval graphs do not allow
for bicompatible elimination orders; as our algorithm heavily relies on them, it is
not straightforward to extend it to Interval Vertex Deletion.

Acknowledgments. We thank anonymous referees for their constructive feedback.

References

[1] Aleskerov F, Bouyssou D, Monjardet B (2007) Utility Maximization, Choice
and Preference, Studies in Economic Theory, vol 16. Springer-Verlag

11

[2] van Bevern R (2010) The Computational Hardness and Tractability of
Restricted Seriation Problems on Inaccurate Data. Diplomarbeit, Institut
für Informatik, Friedrich-Schiller-Universität, Jena, Germany

[3] Bodlaender HL (2009) Kernelization: New upper and lower bound techniques.
In: Proc. 4th IWPEC, Springer, LNCS, vol 5917, pp 17–37

[4] Brandstädt A, Le VB, Spinrad JP (1999) Graph classes: a survey. SIAM,
Philadelphia, PA, USA

[5] Chepoi V, Seston M (2009) Seriation in the presence of errors: A factor
16 approximation algorithm for l∞-fitting Robinson structures to distances.
Algorithmica Available electronically.

[6] Chepoi V, Fichet B, Seston M (2010) Seriation in the presence of errors:
NP-hardness of l∞-fitting Robinson structures to dissimilarity matrices. J
Classification 26(3):279–296

[7] Dom M, Guo J, Niedermeier R (2010) Approximation and fixed-parameter
algorithms for consecutive ones submatrix problems. J Comput System Sci
76(3–4):204–221

[8] Fellows MR, Guo J, Moser H, Niedermeier R (2009) A complexity dichotomy
for finding disjoint solutions of vertex deletion problems. In: Proc. 34th
MFCS, Springer, LNCS, vol 5734, pp 319–330

[9] Fouquet JL (1993) A strengthening of Ben Rebea’s lemma. J Combin Theory
Ser B 59(1):35–40

[10] Garey MR, Johnson DS, Stockmeyer LJ (1976) Some simplified NP-complete
graph problems. Theor Comp Sci 1(3):237–267

[11] Guo J, Niedermeier R (2007) Invitation to data reduction and problem
kernelization. ACM SIGACT News 38(1):31–45

[12] Guo J, Moser H, Niedermeier R (2009) Iterative compression for exactly
solving NP-hard minimization problems. In: Algorithmics of Large and
Complex Networks, LNCS, vol 5515, Springer, pp 65–80

[13] Lewis JM, Yannakakis M (1980) The node-deletion problem for hereditary
properties is NP-complete. J Comput System Sci 20(2):219–230

[14] Luce RD (1956) Semiorders and a theory of utility discrimination. Econo-
metrica 24:178–191

[15] Marx D (2010) Chordal deletion is fixed-parameter tractable. Algorithmica
57(4):747–768

[16] Panda BS, Das SK (2003) A linear time recognition algorithm for proper
interval graphs. Inf Process Lett 87(3):153–161

[17] Reed B, Smith K, Vetta A (2004) Finding odd cycle transversals. Oper Res
Lett 32(4):299–301

[18] Roberts FS (1969) Indifference graphs. In: Proof Techniques in Graph Theory,
Academic Press, New York, pp 139–146

[19] Roberts FS (1979) Indifference and seriation. Annals of the New York
Academy of Sciences 328:173–182

[20] Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency,
vol A. Springer

[21] Villanger Y (2010) Proper interval vertex deletion. In: Proc. 5th IPEC,
Springer, LNCS

12

	Measuring Indifference:Unit Interval Vertex Deletion

