
EMF Refactor: Specification and Application of Model Refactorings within the
Eclipse Modeling FrameworkI

Thorsten Arendta, Florian Mantzb, Gabriele Taentzera

aPhilipps-Universität Marburg, FB12 - Mathematics and Computer Science, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
bHøgskolen i Bergen, Department of Computer Engineering, Nygårdsgaten 112, N-5020 Bergen, Norway

Abstract

Models are the primary artifacts in software development processes following the model-based paradigm. Therefore,
software quality and quality assurance frequently leads back to the quality and quality assurance of the involved
models. In our approach, we propose a two-phase model quality assurance process considering syntactical model
quality based on quality assurance techniques like model metrics, model smells, and model refactorings. In this paper,
we present EMF Refactor, a new Eclipse incubation project providing specification and application of refactorings
wrt. models based on the Eclipse Modeling Framework.

Keywords: modeling, model-based software development, model quality, model refactoring

1. Introduction

The paradigm of model-based software development has become more and more popular, since it promises an
increase in the efficiency and quality of software development. It is sensible to address quality issues of artifacts
in early software development phases already, for example the quality of the involved models. Especially in model-
driven software development, models become primary artifacts where quality assurance of the overall software product
considerably relies on the quality assurance of involved software models.

The quality of software models comprises several dimensions. In our approach, we consider a quality assurance
process that concentrates on the syntactical dimension of model quality. Syntactical quality aspects are all those which
can be checked on the model syntax only. They include of course consistency with the language syntax definition, but
also other aspects such as conceptual integrity using the same patterns and principles in similar modeling situations
and conformity with modeling conventions often specifically defined for software projects. These and other quality
aspects are discussed in [1] for example, where the authors present a taxonomy for software model quality.

Typical quality assurance techniques for models are model metrics and refactorings, see e.g. [2–5]. They originate
from corresponding techniques for software code by lifting them to models. Especially class models are closely
related to programmed class structures in object-oriented programming languages such as C++ and Java. For behavior
models, the relation between models and code is less obvious. Furthermore, the concept of code smells can also be
lifted to models leading to model smells. Again code smells for class structures can be easily adapted to models, but
smells of behavior models cannot be directly deduced from code smells.

In [6], we present the integration of these techniques in a predefined quality assurance process that can be adapted
to specific project needs. Figure 1 shows the two-phase process: Before a software project starts, project- and domain-
specific quality checks and refactorings have to be defined. Quality checks are formulated by model smells which can
be specified e.g. by model metrics and anti-patterns. Here, the project-specific process can reuse general metrics,
smells, and refatorings, as well as special ones specific for the intended modeling purpose. Thereafter, the specified

IThis work has been partially funded by Siemens Corporate Technology, Germany.
Email addresses: arendt@mathematik.uni-marburg.de (Thorsten Arendt), fma@hib.no (Florian Mantz),

taentzer@mathematik.uni-marburg.de (Gabriele Taentzer)

Preprint submitted to Elsevier December 3, 2010



Figure 1: Project-Specific Quality Assurance Process - Specification (left side) and Application (right side)

quality assurance process can be applied to concrete software models by computing model metrics, reporting all model
smells and applying model refactorings to erase smells that indicate clear model defects. However, we have to take
into account that also new model smells can come in by refactorings. This check-improve cycle should be performed
as long as needed to get a reasonable model quality.

Since a manual model review is very time consuming and error prone, it is essential to automate the tasks as
effectively as possible. We implemented tools supporting the included techniques metrics, smells, and refactorings
for models based on the Eclipse Modeling Framework (EMF) [7], a common open source technology in model-based
software development. In this paper, we present the new Eclipse incubation project EMF Refactor [8] supporting
specification and application of refactorings wrt. specific EMF based models.

This paper is organized as follows: In the next section, the model refactoring specification process using EMF
Refactor is presented. In Section 3, we describe how model refactorings are executed in EMF Refactor. Finally,
related work is discussed and a conclusion is given.

2. Specification of EMF Model Refactorings

As already mentioned, EMF Refactor supports specification and application of refactorings wrt. EMF based
models. In the following, we use an example UML2EMF model to demonstrate the capabilities of EMF Refactor.
Please note, that EMF Refactor can be used on arbitrary models whose meta models are instances of EMF Ecore, for
example domain-specific languages as defined in [9] or even Ecore instance models themselves.

Figure 2: Example UML class model VehicleRentalCompany

Figure 2 shows an example UML class di-
agram used for modeling a small part of a
vehicle rental company. The company owns
several vehicles of different types (cars and
trucks) that can be rented by a customer. Ve-
hicles and customers each own specific at-
tributes. They are identified within the com-
pany using distinct id numbers. All attributes
have simple types (String and Integer) ex-
cept for attribute Vehicle::renter whose type
is class Customer.

In our example, we consider project-
specific modeling conventions which recom-
mend to express a class attribute that is typed
by another class as an association end. If this
convention is violated, i.e. there is a corre-
sponding model smell that hints to the absence of quality aspect conformity, UML refactoring Change attribute to
association end can be used to remove this smell. The refactoring consists of a number of preconditions that have to
be checked before the refactoring can take place. For example, it has to be checked whether the attribute has another
class as type. Due to space limitations, we do not explain the entire specification of this refactoring in detail.

In EMF Refactor, model refactorings can be specified using the new EMF model transformation tool Henshin
[9]. Henshin uses pattern-based rules which can be structured into nested transformation units with well-defined

2



operational semantics. EMF Refactor uses Henshin’s model transformation engine for executing the refactoring as
well as Henshin’s pattern matching algorithm to detect violated preconditions.

Figure 3: Henshin rule for checking precondition At-
tribute has Class type

Figure 3 shows the rule defining the mentioned precondition
violation specified on the abstract syntax of UML. The pattern de-
fines a Property node named attribute that represents the contextual
element of the refactoring, i.e. the attribute that has to be changed
to an association end. Furthermore, the pattern specifies a UML
Class as attribute type. The class as well as the type reference
are tagged by 〈〈forbid〉〉, i.e. this pattern must not be found in the
model. So, the rule specifies the violated precondition from above.

The rule for executing refactoring Change attribute to associa-
tion end is shown in Figure 4. Again, Property node attribute represents the contextual element of the refactoring. It
becomes a member end of a newly created Association whose name is given by parameter associationname. Fur-
thermore, another Property is created representing the second end of the new association. The name of this association
end is given by parameter rolename and its type is set to the owning class of the contextual attribute.

Figure 4: Henshin rule for executing UML model refactoring Change At-
tribute to Association End

EMF Refactor provides a wizard-based refac-
toring specification process. The process is trig-
gered from within the context menu of an arbi-
trary model element whose type represents the
contextual element of the refactoring and pro-
vides all necessary information about the specific
meta model. Then, the refactoring designer has
to give a name to the refactoring specified. Fur-
thermore, a plug-in project has to be chosen for
code generation purposes. Afterwards, the de-
signer has to select the specification mode. Since
the application module of EMF Refactor uses the
Eclipse Language Toolkit (LTK) technology [10],
a refactoring requires up to three parts, either im-
plemented in Java or using model transformation
specifications as presented above. The parts of a
refactoring specification reflect a primary application check for a selected refactoring without input parameters, a
second one with parameters and the proper refactoring execution. Finally, EMF Refactor generates Java code specific
to the refactoring and extends the list of supported refactorings using the extension point technology of Eclipse.

3. EMF Model Refactoring Application

Figure 5: Existing refactorings can be configured into project-specific refactoring groups.

EMF Refactor supports project
specific refactoring configurations to
bundle those refactorings whose appli-
cation may be most appropriate for the
specific modeling purpose, for exam-
ple analysis models in early develop-
ment phases.

Figure 5 shows an example config-
uration of a refactoring group named
Conformance to modeling conven-
tions. The registered refactorings are
listed wrt. a corresponding meta
model and can be selected to join the
specific refactoring group. Already configured refactoring groups can be selected by an arbitrary Eclipse project to
customize project-specific refactoring needs.

3



EMF Refactor provides refactoring invocation within the standard tree-based EMF instance editor, graphical ed-
itors generated by GMF (Graphical Modeling Framework) [11], and textual model editors based on Xtext [12]. The
application of a model refactoring mirrors the three-fold specification of refactorings based on LTK as described in
the previous section.

Figure 6: Result preview of UML refactoring Change Attribute to Associa-
tion End

After specifying a trigger model element such
as attribute Vehicle::renter in Figure 2, refactor-
ing specific initial conditions are checked. Then,
the user has to set all parameters, for example the
names of the new association and association end
in our example refactoring Change attribute to as-
sociation end. Due to space limitations, we do not
show the parameter input dialog here. Then, EMF
Refactor checks whether the user input does not
violate further conditions. In case of erroneous pa-
rameters a detailed error message is shown. If the
final check has passed, EMF Refactor provides a
preview of the changes using EMF Compare.

Figure 6 shows the resulting EMF Compare di-
alog using a tree-based model view. The left hand
side shows the original model whereas the right
hand side presents the refactored model. Model
changes are highlighted by colored connections.
Here, the right hand side shows the newly created
association named rented by including the newly created association end named rented. Since a modeler is typically
not aware of the tree-based representation of the model, it is up to future work to have a preview in the visual notation
in the case that the refactoring has been triggered from within a graphical editor. Last but not least, these changes can
be committed and the refactoring can take place. Figure 7 shows the UML class model VehicleRentalCompany after
application of UML refactoring Change Attribute to Association End on attribute Vehicle::renter that is now presented
as an end of the new association rented by.

4. Related work

Figure 7: Example UML class model VehicleRentalCompany after application of UML
refactoring Change Attribute to Association End on attribute Vehicle::renter

There is a variety of literature on
quality assurance techniques for software
models available, often lifted from corre-
sponding techniques for code. Most of the
model quality assurance techniques have
been developed for UML models. Clas-
sical techniques such as software metrics,
code smells and code refactorings have
been lifted to models, especially to class
models. Model refactorings have been de-
veloped in e.g. [4], [13] and [14].

Considering UML model refactoring,
there is nearly no tool support available
yet. However, some research prototypes
for model refactoring are discussed in the
literature. Most of them are no longer
maintained.

In [5] for example, Porres describes the execution of UML model refactorings as sequence of transformation
rules and guarded actions. He presents an execution algorithm for these transformation rules and constructed an

4



experimental, meta model driven refactoring tool, that uses SMW, a scripting language based on Python, for specifying
the UML model refactorings.

Since EMF has evolved to a well-known and widely used modeling technology, it is worthwhile to provide model
quality assurance tools for this technology. There are further tools for the specification of EMF model refactorings
available as e.g. the Epsilon Wizard Language [15]. We compare our approach with other specification tools for
EMF model refactorings in [16]. In contrast to EWL, we provide a specification frame for refactorings which allows
different specification mechanisms. Especially, we propose Henshin, a model transformation approach based on graph
transformation concepts which supports more correctness checks than EWL. In contrast to EWL, we further use the
LTK technology for homogeneous refactoring execution in Eclipse including a result preview, for example. A new
approach for EMF model refactoring is presented in [17]. The authors propose the definition of EMF based refactoring
in a generic way, however do not consider the comprehensive specification of preconditions. Our experiences in
refactoring specification show that mostly preconditions cannot be defined generically (see [9] for a more complex
refactoring with elaborated precondition checks).

5. Conclusion

In this paper we presented EMF Refactor, a new Eclipse incubation project providing specification and application
of model refactorings based on the Eclipse Modeling Framework. Actually, model refactorings are defined by the
model transformation language Henshin or by Java code specifications. It is planned to support further specification
alternatives for refactoring designers being not familiar with Henshin but other techniques like EWL. Currently we
are implementing a comprehensive refactoring suite for UML2EMF and Ecore models. Future work also includes
conceptual work on the design of a graphical language definition for composite refactorings including editor support,
code generation, and refactoring application. Composite refactorings are meant to be build up from already specified
refactorings. Furthermore, we are currently implementing a framework for automated tests of model refactorings.

EMF Refactor covers the automation of only one step in a model quality assurance process consisting of further
quality assurance techniques like model metrics and model smells supported by tools EMF Metrics and EMF Smell.
It is up to future work to combine these tools with EMF Refactor, especially to support refactorings as quick-fixes
for model smells, in order to provide an integrated tool environment for syntactical model quality assurance of EMF
based models.

[1] F. Fieber, M. Huhn, B. Rumpe, Modellqualität als Indikator für Softwarequalität: eine Taxonomie, Informatik Spektrum 31 (5) (2008) 408–
424.

[2] M. Genero, M. Piattini, C. Calero, A Survey of Metrics for UML Class Diagrams, Journal of Object Technology 4 (9) (2005) 59 – 92.
[3] C. F. Lange, Assessing and Improving the Quality of Modeling: A series of Empirical Studies about the UML, Ph.D. thesis, Department of

Mathematics and Computing Science, Technical University Eindhoven (2007).
[4] G. Sunye, D. Pollet, Y. Le Traon, J. Jezequel, Refactoring UML models, in: Proc. UML 2001, Vol. 2185 of LNCS, Springer-Verlag, 2001,

pp. 134–148.
[5] I. Porres, Model Refactorings as Rule-Based Update Transformations, in: G. B. P. Stevens, J. Whittle (Ed.), Proc. UML 2003: 6th Intern.

Conference on the Unified Modeling Language, LNCS, Springer, 2003, pp. 159–174.
[6] T. Arendt, S. Kranz, F. Mantz, N. Regnat, G. Taentzer, Towards Syntactical Model Quality Assurance in Industrial Software Development:

Process Definition and Tool Support, in: Software Engineering 2011, SE 2011, Karlsruhe, Germany, LNI, GI Bonn, 2011, to appear.
[7] EMF, Eclipse Modeling Framework, http://www.eclipse.org/emf.
[8] EMF Refactor, http://www.eclipse.org/modeling/emft/refactor.
[9] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin: Advanced Concepts and tools for In-Place EMF Model Transformation,

in: Model Driven Engineering Languages and Systems, 13th International Conference, MoDELS 2010. Proceedings, LNCS, Springer, 2010,
pp. 121–135.

[10] The Language Toolkit, http://www.eclipse.org/articles/Article-LTK.
[11] GMF, Graphical Modeling Framework, http://www.eclipse.org/modeling/gmf.
[12] Xtext, http://www.eclipse.org/Xtext/.
[13] A. Pretschner, W. Prenninger, Computing refactorings of state machines, Software and Systems Modeling 6 (4) (2007) 381–399.
[14] S. Markovic, T. Baar, Refactoring OCL Annotated UML Class Diagrams, Software and Systems Modeling 7 (2008) 25–47.
[15] D. S. Kolovos, R. F. Paige, F. Polack, L. M. Rose, Update transformations in the small with the epsilon wizard language, Journal of Object

Technology 6 (9) (2007) 53–69.
[16] T. Arendt, F. Mantz, L. Schneider, G. Taentzer, Model Refactoring in Eclipse by LTK, EWL, and EMF Refactor: A Case Study,

http://www.modse.fr/modsemccm09/doku.php?id=Proceedings (2009).
[17] J. Reimann, M. Seifert, U. Amann, Role-Based Generic Model Refactoring, in: Model Driven Engineering Languages and Systems, LNCS,

Springer, 2010, pp. 78–92.

5


