
Towards Syntactical Model Quality Assurance in Industrial
Software Development: Process Definition and Tool

Support ∗

Thorsten Arendt, Sieglinde Kranz, Florian Mantz, Nikolaus Regnat, Gabriele Taentzer

Philipps-Universität Marburg, Germany
Siemens Corporate Technology, Germany

Høgskolen i Bergen, Norway

{arendt,taentzer}@mathematik.uni-marburg.de
{sieglinde.kranz,nikolaus.regnat}@siemens.com

fma@hib.no

Abstract: The paradigm of model-based software development has become more and
more popular, since it promises an increase in the efficiency and quality of software
development. Following this paradigm, models become primary artifacts in the soft-
ware development process where quality assurance of the overall software product
considerably relies on the quality assurance of involved software models. In this pa-
per, we concentrate on the syntactical dimension of model quality which is analyzed
and improved by model metrics, model smells, and model refactorings. We propose an
integration of these model quality assurance techniques in a predefined quality assur-
ance process being motivated by specific industrial needs. By means of a small case
study, we illustrate the model quality assurance techniques and discuss Eclipse-based
tools which support the main tasks of the proposed model quality assurance process.

1 Introduction

In modern software development, models play an increasingly important role, since they
promise more efficient software development of higher quality. It is sensible to address
quality issues of artifacts in early software development phases already, for example the
quality of the involved software models. Especially in model-driven software development
where models are used directly for code generation, high code quality can be reached only
if the quality of input models is already high.

In this paper, we consider a model quality assurance process which concentrates on the
syntactical dimension of model quality. Syntactical quality aspects are all those which can
be checked on the model syntax only. They include of course consistency with the lan-
guage syntax definition, but also other aspects such as conceptual integrity using the same

∗This work has been partially funded by Siemens Corporate Technology, Germany.



patterns and principles in similar situations and conformity with modeling conventions
often specifically defined for software projects. In [FHR08], the authors present a taxon-
omy for software model quality distinguishing between inner and outer quality aspects of
models. Inner quality aspects are concerned with a single model only. The consistency of
a model, its conceptual integrity, and its conformity to standards are typical examples for
inner quality aspects of models. Outer quality aspects are concerned with relations of a
model to other artifacts of a software engineering process. The completeness of a design
model wrt. to its analysis model on the one hand and to code on the other hand falls in this
category of quality aspects. These and further quality aspects are discussed in [FHR08].

In the literature, typical syntactical quality assurance techniques for models are model
metrics and refactorings, see e.g. [GPC05, SPLTJ01, MB08, Por03]. They origin from
corresponding techniques for software code by lifting them to models. Especially class
models are closely related to programmed class structures in object-oriented programming
languages such as C++ and Java. For behavior models, the relation between models and
code is less obvious. Furthermore, the concept of code smells can be lifted to models
leading to model smells. Again code smells for class structures can be easily adapted to
models, but smells of behavior models cannot directly deduced from code smells.

In this paper, we present a quality assurance process for syntactical model quality
which can be adapted to specific project needs. It consists of two phases: First, project-
and domain-specific quality checks and refactorings have to be specified which should
be done before a software project starts. Model quality checks are formulated by model
smells which can be specified by model metrics or anti-patterns. Thereafter, the specified
quality assurance process can be applied to concrete software models by reporting all their
model smells and applying model refactorings to erase at least some of the model smells
found. However, we have to take into account that also new model smells can come in
by refactorings. This check-improve cycle should be performed as long as needed to get
a reasonable model quality. The process is supported by tools, i.e. model metrics reports,
smell detection and the application of refactorings are supported by Eclipse plug-ins being
based on the Eclipse Modeling Framework.

This paper is organized as follows: In the next section, the need for syntactical model
quality assurance in industrial software development is motivated. In Section 3, we present
a two-phase quality assurance process for syntactical model quality which can be adapted
to specific project needs. In Section 4, we present Eclipse plug-ins EMF Metrics, EMF
Smell, and EMF Refactor at a small example. Finally, related work is discussed and a
conclusion is given.

2 The need for syntactic model quality assurance in industrial soft-
ware development

A typical model-based software development project at Siemens covers between 10 - 100
developers. These developers use models in different ways, e.g. specifying the software
architecture and design, using input for code implementation or getting information for



tests and test case generation. Often these developers are not on one site, e.g. architects
are located in Germany and the implementers are located at a site in east Europe. In
this case, models are an essential part of development communication and their quality
influences the quality of the final product to a great extent. In addition, model-based
software projects are often part of mechatronic systems with safety relevant parts. In these
cases safety aspects must also be observed. Standards like the IEC 61508 requires that for
a mechatronic system all intermediate results during the development process including
software models must be of an appropriate quality.

At the moment the most commonly used modeling language is the UML. It is a very com-
prehensive and powerful language, but does not cover any particular method and comes
without built-in semantics. On the one hand, this allows a flexible use but includes a high
risk of misuse on the other hand. Without tailoring a project specific usage of UML before
starting development, the practical experience showed that the created models can be dif-
ficult to understand or even misinterpreted. Detailed project-specific guidelines are very
important therefore and their compliance must be enforced and controlled.

An essential aspect of modeling is the capability to consider a problem and its solution
from different perspectives. The existence of different perspectives increases, however, the
risk of inconsistencies within a model. To avoid large models and to deal with different or-
ganizational responsibilities, the model information is frequently split into a set of smaller
models with relationships in between. Information contained in one model is reused (and
probably more detailed) in other models. Consistency is therefore not only needed within
a model, but also between a project-specific set of models. Unfortunately, the support of
available UML modeling tools to prevent the user from modeling inconsistencies and to
easily find contradictions is very limited. Often, parallel changes in one model cannot
be avoided in development projects. A frequent reason for that is an established feature
oriented software development process. Required subsequent merges can easily result in
inconsistencies, especially since the merge functionality of most UML modeling tools is
not satisfactory.

Since model-driven software development is not yet a well established method in industry,
software development is often faced with the problem that at least a part of its project mem-
bers have no or limited experience with modeling in general as well as with the modeling
language used and its tools. This often leads to misuse such as modeling of unnecessary
details on a higher abstraction level and removing of no longer needed model elements
only from diagrams instead from the model. Especially at the beginning of a model-based
project such problems should be identified as soon as possible to avoid that the misuse is
copied by other modelers and to ensure that the effort to correct these problems is still low.

Unfortunately, the existing and established quality assurance methods document review
and code inspection cannot be used one-to-one within model-based development. The
manual review of models is very time consuming and error prone. Models cannot be
reviewed in a sequential way because of the existence of links between its elements and
to other models. To reduce the quality risks of models mentioned above and unburden
the review effort, it is essential that each project defines a specific list of guidelines at the
beginning of its model-based software development, derives syntactic checks from these
guidelines and automates these checks by a tool.



3 The syntactical model quality assurance process

In this section we propose the definition and application of a structured model quality
assurance process that can be used to address project-specific needs as described in the
previous section. The approach uses already known model quality assurance techniques
like model metrics, model smells, and model refactorings which are combined in an overall
process for structured model quality assurance concerning syntactical model issues.

3.1 A two-phase model quality assurance process

Figure 1: Project-Specific Quality Assurance Process - Specification and Application

As already mentioned, it is essential to define quality-related issues at the beginning of
model-based software development. On the left side of Figure 1, we show how to define a
model quality assurance process for a specific project. Firstly, it is required to determine
those quality aspects which are important for project-specific software models. In the next
step, static syntax checks for these quality aspects are defined. This is done by formulat-
ing questions that should lead to so-called model smells which hint to model parts that
might violate a specific model quality aspect. Here, we adopt the Goal-Question-Metrics
approach (GQM) that is widely used for defining measurable goals for quality and has
been well established in practice [BCR94]. The formulated questions need answers which
can be given by considering the model syntax only. Some of these answers can be based
on metrics. Other questions may be better answered by considering patterns. Here, the
project-specific process can reuse general metrics and smells as well as special metrics
and smells specific for the intended modeling purpose.

Finally, a specified model smell serves as pre-condition of at least one model refactoring
that can be used to restructure models in order to improve model quality aspects but ap-
preciably not influence the semantics of the model. Since every model refactoring comes
along with initial and final pre-conditions which have to be checked before respectively
after user input, a mapping of a certain model smell to some initial pre-conditions might
be a hint for using the corresponding refactoring in order to eliminate the smell.

During model-based software development, the defined quality assurance process can be
applied as shown on the right side of Figure 1. For a first overview, a report on model



metrics might be helpful. Furthermore, a model has to be checked against the existence
(respectively absence) of specified model smells. Each model smell found has to be inter-
preted in order to evaluate whether it should be eliminated by a suitable model refactoring
or not. It is recommended that the process is supported by appropriate tools as presented
in the next section.

3.2 Example case

Here, we describe a small example case for the proposed project-specific model quality
assurance process. Please note that due to space limitations we concentrate on one quality
aspect only. We also do not specify each process implementation issue in detail.

The quality aspect we consider in our example is consistency. This quality aspect has
several facets. We concentrate on inner consistency wrt. the modeling language used and
wrt. modeling guidelines to be used. The modeling language comprises at least class
models and state machines. Example questions can be:

• Are there any elements not shown in any diagram of the model?

• Are there any cycles in the element dependency graph?

• Are there any equally named classes in different packages?

• Are there any abstract classes that are not specialized by at least one concrete class?

• Are there any attributes redefining other ones within the same inheritance hierarchy?

• Are there any state diagrams without initial or final state?

These questions can lead to the definition of the following model smells, partially known
from literature: (1) element not shown in diagram, (2) dependency cycle [Mar02], (3)
multiple definitions of classes with equal names [Lan07], (4) no specification [Rie96], (5)
attribute name overridden, and (6) missing initial/final state [RQZ07].

As already mentioned, there are at least two different ways to check a quality aspect by
model smells. One alternative is to define a metric-based model smell which can be eval-
uated on the model. In our case study, we can use metrics NOCS (number of concrete
subclasses of a given class), NOIS (number of initial states of a given state diagram re-
gion), and NOFS (number of final states of a given state diagram region) to address model
smells (4) and (6), for example. If any of these metrics is evaluated to zero in given model
contexts, the corresponding smell is identified. The second alternative to define model
smells is to specify an anti-pattern representing a pattern which should not occur. It is
defined based on the abstract syntax of the modeling language. In our case study we use
anti-patterns Equally named classes, No concrete subclass, and Redefined attribute to ad-
dress model smells (3) - (5). Note that model smell (4) can be specified in both ways:
using model metric NOCS or anti-pattern No concrete subclass, respectively. Figure 4
shows anti-pattern No specification.



In order to eliminate specific model smells, corresponding model refactorings have to
be specified. To address smells Multiple definition of classes with equal names and No
specification of our example, we can use the well known model refactorings Rename Class
and Insert Subclass, respectively. Of course, it is very important to consider all possible
effects of a specific model refactoring ahead of its application.

4 Tool support

Since a manual model review is very time consuming and error prone, it is essential to
automate the tasks of the proposed model quality assurance process as effectively as pos-
sible. Therefore, we implemented three tools supporting the included techniques metrics,
smells, and refactorings (MSR) for models based on the Eclipse Modeling Framework
(EMF) [EMF], a common open source technology in model-based software development.

Each tool consists of two independent components. The generation module addresses
project managers respectively project staff who are responsible for the definition of the
project-specific model quality assurance process. Project-specific metrics, smells, and
refactorings are defined wrt. a specific modeling language specified by an EMF model.
The second component of each tool supports the application of the specified MSR tools
using the Java code produced by the generation module.

MSR tools can be specified by implementing metrics, smells and refactorings directly in
Java or by using a model transformation tool such as Henshin [Hen], a new approach for in-
place transformations of EMF models [ABJ+10]. Henshin uses pattern-based rules which
can be structured into nested transformation units with well-defined operational semantics.
We implemented a number of metrics, smells, and refactorings for EMF-UML models. In
the following we shortly present the Eclipse plug-ins EMF Metrics, EMF Smell, and EMF
Refactor.

4.1 EMF Metrics

Using the EMF Metrics prototype, metrics can be defined and calculated wrt. specific
EMF-based models. When defining a new metric, the context of the metric has to be
specified, i.e. the meta model given by its NamespaceUri as well as the model element
type (e.g. UML::Class) to which the metric shall be applied. The prototype supports
two distinct methods for defining new metrics. They are either defined directly by model
transformations or two existing metrics are combined using an arithmetic operation.

Figure 2 shows the Henshin rule defining UML model metric NOCS (see previous section)
specified on the abstract syntax of UML. EMF Metrics uses this rule to find matches in a
concrete UML model. Starting from node selectedEObject of type Class being the context
element, the Henshin interpreter returns the total number of matches that can be found in
the model. This number represents the value of the corresponding model metric.



Figure 2: Henshin rule defining UML model metric NOCS

Figure 3 shows an example model and the corresponding result view after calculating five
different metrics on abstract class Vehicle. This class owns four attributes horsepower,
seats, regNo, and owner. Only the latter attribute has public visibility, so the AHF value of
class Vehicle is evaluated to 0.75 . Each result contains a time stamp to trace metric values
over time. For reporting purposes, EMF Metrics provides an XML export of its results.

Figure 3: Model metrics result view after calculating five different metrics on abstract class Vehicle

4.2 EMF Smell

Similarly to EMF Metrics, EMF Smell consists of a generation and an application module.
In the generation module, model smells can be specified using Henshin rules in order to
define anti-patterns. There is no context that has to be specified because the anti-pattern
has to be identified along the entire model. Of course, the modeling language has to be
referred to. The definition of smells based on metrics is up to future work.

Figure 4 shows the Henshin rule for checking UML model smell No Specification. The
pattern to be found specifies an abstract UML class (on the left) that is not specialized by
a non-abstract UML class (on the right). Please note that parts of the pattern that are not
allowed to be found are tagged with forbid. Additionally, parameter modelElementName is



Figure 4: Henshin rule for checking UML model smell No specification

set by each pattern match to return model element instances participating in the identified
model smell.

Figure 5: Model smell result view after checking the sample UML model

Figure 5 shows the application of the EMF Smell checking component on our example
UML class model. The smell checking process can be triggered from within the context
menu of the corresponding model file. Four smells have been found in the example model:
There are two equally named classes Person while abstract class CompanyObject has no
(direct) concrete subclass. Furthermore, attribute horsepower of class Vehicle is redefined
by attribute power of class Car1. Like in EMF Metrics, model smells found are presented
in a special view.

4.3 EMF Refactor

The third model quality assurance tool, EMF Refactor [Ref], is a new Eclipse incubation
project in the Eclipse Modeling Project consisting of three main components. Besides a
code generation module and a refactoring application module, it comes along with a suite

1This fact is not visible in the graphical view!



of predefined EMF model refactorings for UML and Ecore models. 2

Since the application module uses the Eclipse Language Toolkit (LTK) technology [LTK],
a refactoring specification requires up to three parts, implemented in Java and maybe gen-
erated from model transformation specifications, that have to be defined. They reflect a
primary application check for a selected refactoring without input parameter, a second one
with parameters and the proper refactoring execution.

Figure 6: Henshin rule for executing UML model refactoring Insert Subclass

Figure 6 shows the Henshin rule for executing UML model refactoring Insert Subclass.
The invocation context is given by node selectedEObject of type Class. The rule inserts a
new non-abstract class named classname to the same package owning the selected class.
Furthermore, the newly created class becomes a specialization of the selected class.

EMF Refactor provides two ways to configure the set of model refactorings. First, so-
called refactoring groups are set up in order to arrange model refactorings for one modeling
language. Second, these groups can be referenced by a specific Eclipse project to address
project-specific needs.

Figure 7: UML model refactoring Insert Subclass with parameter input

The application of a model refactoring mirrors the three-fold specification of refactorings
based on LTK. After specifying a trigger model element such as class Vehicle in Figure 7,
refactoring-specific initial conditions are checked. Then, the user has to set all parameters,
for example the name of the new subclass in our Insert Subclass refactoring. EMF Refactor
checks whether the user input does not violate further conditions. In case of erroneous
parameters a detailed error message is shown. In our concrete example, it is checked
whether the package owning the selected class already owns an element with the specified

2Of course, EMF Metrics and EMF Smell shall also come along with suites of predefined metrics and smells,
respectively, in future.



name. If the final check has passed, EMF Refactor provides a preview of the changes that
will be performed by the refactoring using EMF Compare as shown in Figure 8. Last but
not least, these changes can be committed and the refactoring can take place.

Currently, EMF Refactor supports refactoring invocation from within three different kinds
of editors: tree-based EMF instance editors (like in Figure 7), graphical model editors
generated by Eclipse GMF (Graphical Modeling Framework), and textual model editors
used by Xtext.

Figure 8: EMF Compare preview dialog of UML model refactoring Insert Subclass

5 Related work

Software quality assurance is concerned with software engineering processes and methods
used to ensure quality. The quality of the development process itself can be certified
by ISO 9000. CMMI [CMM] can help to improve existing processes. Considering the
quality of a software product instead, the ISO/IEC 9126 standard lists a number of quality
characteristics concerning functionality, reliability, usability, etc. Since models become
primary artifacts in model-based software development, the quality of a software product
directly leads back to the quality of corresponding software models.

There is already quite some literature on quality assurance techniques for software models
available, often lifted from corresponding techniques for code. Most of the model quality
assurance techniques have been developed for UML models. Classical techniques such as
software metrics, code smells and code refactorings have been lifted to models, especially
to class models. Model metrics have been developed in e.g. [GPC05] and model smells as
well as model refactorings are presented in e.g. [SPLTJ01, MB08, Por03, MTR07, PP07].
In [Amb02], Ambler transferred the idea of programming guidelines to UML models.



Since EMF has evolved to a well-known and widely used modeling technology, it is worth-
while to provide model quality assurance tools for this technology. There are further tools
for the specification of EMF model refactorings around as e.g. the Epsilon Wizard Lan-
guage [KPPR07]. We compare our approach with other specification tools for EMF model
refactorings in [AMST09]. To the best of our knowledge, related tools for metrics calcu-
lation and smells detection in EMF models are not yet available.

6 Conclusion

Since models become primary artifacts in model-based software development, model qual-
ity assurance is of increasing importance for the development of high quality software. In
this paper, we present a quality assurance process for syntactical model quality being based
on model metrics, model smells and model refactorings. The process can be adapted to
specific project needs by first defining specific metrics, smells and refactorings and ap-
plying the tailored process to the actual models thereafter. Smell detection and model
refactoring are iterated as long as a reasonable model quality has not reached.

As a next step, we plan to evaluate the proposed process as well as the presented tool-
support in a bigger case study by integrating the tools in IBM’s Rational Software Archi-
tect and applying the process on a large-scale model at Siemens.

There are model smells which are difficult to describe by metrics or patterns: For exam-
ple, shotgun surgery is a code smell which occurs when an application-oriented change
requires changes in many different classes. This smell can be formulated also for models,
but it is difficult to detect it by analyzing models. It is up to future work to develop an
adequate technique for this kind of model smells.

Furthermore, future work shall take complex refactorings into account which need to be
performed in the right order depending on inter-dependencies of basic refactorings. More-
over, if several modelers refactor in parallel, it might happen that their refactorings are
in conflict. In [MTR07], conflicts and dependencies of basic class model refactorings are
considered and execution orders as well as conflict resolution are discussed.

As pointed out in Section 2, model consistency is not only a subject within one model
but also between several models. Thus, refactorings have to be coordinated by several
concurrent model transformations. A first approach to this kind of model transformations
is presented in [JT09]. It is up to future work, to employ it for coordinated refactorings.

References

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. Henshin: Advanced Concepts and tools for In-Place EMF Model Transfor-
mation. In Model Driven Engineering Languages and Systems, 13th International Con-
ference, MoDELS 2010. Proceedings, LNCS, pages 121–135. Springer, 2010.



[Amb02] Scott W. Ambler. The Elements of UML Style. Cambridge University Press, 2002.

[AMST09] Thorsten Arendt, Florian Mantz, Lars Schneider, and Gabriele Taentzer. Model
Refactoring in Eclipse by LTK, EWL, and EMF Refactor: A Case Study.
http://www.modse.fr/modsemccm09/doku.php?id=Proceedings, 2009.

[BCR94] Victor Basili, Gianluigi Caldiera, and Dieter H. Rombach. The goal question metric
approach. In J. Marciniak, editor, Encyclopedia of Software Engineering. Wiley, 1994.

[CMM] Capability Maturity Model Integration (CMMI). http://www.sei.cmu.edu/cmmi/.

[EMF] EMF. Eclipse Modeling Framework. http://www.eclipse.org/emf.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für
Softwarequalität: eine Taxonomie. Informatik Spektrum, 31(5):408–424, 2008.

[GPC05] M. Genero, M. Piattini, and C. Calero. A Survey of Metrics for UML Class Diagrams.
Journal of Object Technology, 4(9):59 – 92, 2005.

[Hen] Henshin. http://www.eclipse.org/modeling/emft/henshin.

[JT09] Stefan Jurack and Gabriele Taentzer. Towards Composite Model Transformations using
Distributed Graph Transformation Concepts. In Andy Schuerr and Bran Selic, editors,
MoDELS, volume 5795 of Lecture Notes in Computer Science. Springer, 2009.

[KPPR07] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack, and Louis M. Rose. Update
Transformations in the Small with the Epsilon Wizard Language. Journal of Object
Technology, 6(9):53–69, 2007.

[Lan07] Christian F.J. Lange. Assessing and Improving the Quality of Modeling: A series of Em-
pirical Studies about the UML. PhD thesis, Department of Mathematics and Computing
Science, Technical University Eindhoven, The Netherlands, 2007.

[LTK] The Language Toolkit (LTK). http://www.eclipse.org/articles/Article-LTK.

[Mar02] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall, 1st edition, 2002.

[MB08] Slavisa Markovic and Thomas Baar. Refactoring OCL Annotated UML Class Diagrams.
Software and Systems Modeling, 7:25–47, 2008.

[MTR07] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing refactoring dependencies
using graph transformation. Software and System Modeling, 6(3):269–285, 2007.

[Por03] Ivan Porres. Model Refactorings as Rule-Based Update Transformations. In G. Booch
P. Stevens, J. Whittle, editor, Proc. UML 2003: 6th Intern. Conference on the Unified
Modeling Language, LNCS, pages 159–174. Springer, 2003.

[PP07] Alexander Pretschner and Wolfgang Prenninger. Computing Refactorings of State Ma-
chines. Software and Systems Modeling, 6(4):381–399, December 2007.

[Ref] EMF Refactor. http://www.eclipse.org/modeling/emft/refactor/.

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1996.

[RQZ07] C. Rupp, S. Queins, and B. Zengler. UML 2 glasklar. Hanser Fachbuchverlag, 2007.

[SPLTJ01] G. Sunye, D. Pollet, Y. Le Traon, and J. Jezequel. Refactoring UML models. In Proc.
UML 2001, volume 2185 of LNCS, pages 134–148. Springer-Verlag, 2001.


