
A Formal Resolution Strategy for
Operation-Based Conflicts in Model Versioning

Using Graph Modifications

Hartmut Ehrig1, Claudia Ermel1 and Gabriele Taentzer2

1 Technische Universität Berlin, Germany
claudia.ermel@tu-berlin.de, ehrig@cs.tu-berlin.de

2 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. In model-driven engineering, models are primary artifacts
and can evolve heavily during their life cycle. Hence, versioning of mod-
els is a key technique which has to be offered by an integrated devel-
opment environment for model-driven engineering. In contrast to text-
based versioning systems, our approach takes abstract syntax structures
in model states and operational features into account. Considering the
abstract syntax of models as graphs, we define a model revision by a span
G← D → H, called graph modification, where G and H are the old and
new versions, respectively, and D the common subgraph that remains
unchanged. Based on notions of behavioural equivalence and parallel in-
dependence of graph modifications, we are able to show a Local-Church-
Rosser Theorem for graph modifications. The main goal of the paper is
to handle conflicts of graph modifications which may occur in the case
of parallel dependent graph modifications. The main result is a general
merge construction for graph modifications that resolves all conflicts si-
multaneously in the sense that for delete-insert conflicts insertion has
priority over deletion.

Keywords: graph modification, graph transformation, model version-
ing, conflict resolution

1 Introduction

Visual models are primary artifacts in model-driven engineering. Like source
code, models may heavily evolve during their life cycle and should put under
version control to allow for concurrent modifications of one and the same model
by multiple modelers at the same time. When concurrent modifications are al-
lowed, contradicting and inconsistent changes might occur leading to versioning
conflicts. Traditional version control systems for code usually work on file-level
and perform conflict detection by line-oriented text comparison. When applied
to the textual serialization of visual models, the result is unsatisfactory because
the information stemming from abstract syntax structures might be destroyed
and associated syntactic and semantic information might get lost.



2

Since the abstract syntax of visual models can be well described by graphs,
we consider graph modifications to reason about model evolution. Graph mod-
ifications formalize the differences of two graphs before and after a change as a
span of injective graph morphisms G ←− D −→ H where D is the unchanged
part, and we assume wlog. that D → G and D → H are inclusions. An ap-
proach to conflict detection based on graph modifications is described in [10].
We distinguish operation-based conflicts where deletion actions are in conflict
with insertion actions and state-based conflicts where the tentative merge re-
sult of two graph modifications is not well-formed wrt. a set of language-specific
constraints.

In this paper, we enhance the concepts of [10] by the resolution of operation-
based conflicts of graph modifications. First of all, we define behavioural equiv-
alence and parallel independence of graph modifications based on pushout con-
structions in analogy to algebraic graph transformations [3] and show a Local
Church-Rosser Theorem for parallel independent graph modifications. Then we
present a merge construction for conflict-free graph modifications and show that
the merged graph modification is behavioural equivalent to the parallel compo-
sition of the given graph modifications.

The main new idea of this paper is a general merge construction for graph
modifications which coincides with the conflict-free merge construction if the
graph modifications are parallel independent. Our general merge construction
can be applied to conflicting graph modifications in particular. We establish a
precise relationship between the behaviour of the given modifications and the
merged modification concerning deletion, preservation and creation of edges and
nodes. In our main result, we show in which way different conflicts of the given
graph modifications are resolved by the merge construction which gives insertion
priority over deletion in case of delete-insert conflicts. Note, however, that in
general the merge construction has to be processed further by hand, if other
choices of conflict resolution are preferred for specific cases. Our running example
is a model versioning scenario for statecharts where all conflicts are resolved by
the general merge construction.

Structure of the paper: In Section 2, we present the basic concepts of algebraic
graph modifications, including behavioural equivalence and a Local Church-
Rosser Theorem. A general merge construction is presented and analysed in
Section 3, where also the main result concerning conflict resolution is given3.
Related work is discussed in Section 4, and a conclusion including directions for
future work is given in Section 5.

2 Graph Modifications: Independence and Behavioural
Equivalence

Graph modifications formalize the differences of two graphs before and after
a change as a span of injective graph morphisms G ← D → H where D is

3 The long version of the paper containing full proofs is published as technical report [4]



3

the unchanged part. This formalization suits well to model differencing where
identities of model elements are preserved for each element preserved. We recall
the definition of graph modifications from [10] here:

Definition 1 (Graph modification). Given two graphs G and H, a graph

modification G
D

=⇒ H is a span of injective morphisms G
g←− D

h−→ H.

Graph D characterizes an intermediate graph where all deletion actions have
been performed but nothing has been added yet. Wlog. we can assume that g
and h are inclusions, i.e. that D is a subgraph of G and of H. G is called original
graph and H is called changed or result graph.

Example 1 (Graph modifications). Consider the following model versioning sce-
nario for statecharts. The abstract syntax of the statechart in Figure 1 (a) is
defined by the typed, attributed graph in Figure 1 (b). The node type is given
in the top compartment of a node. The name of each node of type State is writ-
ten in the attribute compartment below the type name. We model hierarchical
statecharts by using containment edges. For instance, in Figure 1 (b), there are
containment edges from superstate S0 to its substates S1 and S24. Note that
for simplicity of the presentation we abstract from transition events, guards and
actions, as well as from other statechart features, but our technique can also
be applied to general statecharts. Furthermore, from now on we use a compact
notation of the abstract syntax of statecharts, where we draw states as nodes
(rounded rectangles with their names as node ids) and transitions as directed
arcs between state nodes. The compact notation of the statechart in Figure 1
(a) is shown in Figure 1 (c).

Fig. 1. Sample statechart: concrete syntax (a), abstract syntax graph (b), and compact
notation (c)

In our model versioning scenario, two users check out the statechart shown
in Figure 1 and change it in two different ways. User 1 performs a refactoring
operation on it. She moves state S3 up in the state hierarchy (cf. Figure 2). User
2 deletes state S3 together with its adjacent transition to state S4.

4 In contrast to UML state machines, we distinguish edges that present containment
links by composition decorators.



4

Fig. 2. Graph modifications m1 (refactoring) and m2 (deletion)

Obviously, conflicts occur when these users try to check in their changes:
state S3 is deleted by user 2 but is moved to another container by user 1.

In this section, we study relations between different graph modifications
based on category theory. Due to this general formal setting, we can use differ-
ent kinds of graphs like labelled, typed or typed attributed graphs (see [3] for
more details). At first, we consider the sequential and parallel composition of
two graph modifications. Our intention is that graph modifications are closed
under composition. Given the sequential composition of two graph modififca-

tions G
D1=⇒ H1 and H1

D2=⇒ H2, the resulting modification obviously has G as
original and H2 as changed graph. But how does their intermediate graph D
should look like? The idea is to construct D as intersection graph of D1 and D2

embedded in H1. This is exactly realized by a pullback construction. The parallel
composition of two graph modifications means to perform both of them inde-
pendently of each other by componentwise disjoint union. This corresponds to
coproduct constructions G1+G2, D1+D2 and H1+H2 on original, intermediate
and changed graphs.

Definition 2 (Composition of graph modifications). Given two graph mod-

ifications G
D1=⇒ H1 = (G ← D1 → H1) and H1

D2=⇒ H2 = (H1 ← D2 → H2),

the sequential composition of G
D1=⇒ H1 and H1

D2=⇒ H2, written (G ← D1 →
H1)∗ (H1 ← D2 → H2) is given by G

D
=⇒ H2 = (G← D → H2) via the pullback

construction G D1
oo // H1 D2

oo // H2.

D

eeLLLLLLL
99rrrrrrr

(PB)

The parallel composition of G1
D1=⇒ H1 and G2

D2=⇒ H2 is given by coproduct

construction: G1 + G2
D1+D2=⇒ H1 + H2 = (G1 + G2 ← D1 + D2 → H1 + H2 ).

The differences between the original and the intermediate graph as well as
between the intermediate and the changed graph define the behaviour of a graph
modification. The same behaviour can be observed in graphs with more or less



5

context. Therefore, we define the behavioural equivalence of two graph modifi-

cations as follows: Starting with two modifications mi = (Gi
Di=⇒ Hi) (i = 1, 2),

we look for a third graph modification G
D

=⇒ H modeling the same changes
with so little context that it can be embedded in m1 and m2. A behaviourally
equivalent embedding of graph modifications can be characterized best by two
pushouts as shown in Definition 3, since the construction of a pushout ensures
that Gi are exactly the union graphs of G and Di overlapping in D. Analogously,
Hi are exactly the union graphs of H and Di overlapping in D5

Definition 3 (Behavioural Equivalence of Graph Modifications).

Two graph modifications Gi
Di=⇒ Hi (i = 1, 2) are

called behaviourally equivalent if there is a span
(G ← D → H) and PO-span morphisms from
(G ← D → H) to (Gi ← Di → Hi), (i = 1, 2),
i.e. we get four pushouts in the diagram to the right.

G1

(PO)

D1
oo //

(PO)

H1

G

OO

�� (PO)

D

OO

��

oo //

(PO)

H

OO

��
G2 D2

oo // H2

Example 2. Figure 3 shows two behaviourally equivalent graph modifications
where the upper one is the refactoring modification m1 from Figure 2. The span
(G← D → H) shows the same changes as in m1 and m2, but in less context.

Fig. 3. Graph modifications m1 and m2 are behaviourally equivalent

5 In the framework of algebraic graph transformations [3], we may also consider graph

modification G
D

=⇒ H as a graph rule r which is applied to two different graphs G1

and G2. Since the same rule is applied, graph transformations Gi
r

=⇒ Hi (i = 1, 2)
would be behaviourally equivalent.



6

We want to consider graph modifications to be parallel independent if they
do not interfere with each other, i.e. one modification does not delete a graph
element the other one needs to perform its changes. While nodes can always be
added to a graph independent of its form, this is not true for edges. An edge can
only be added if it has a source and a target node. Thus parallel independence
means more concretely that one modification does not delete a node that is
supposed to be the source or target node of an edge to be added by the other
modification. Moreover, both graph modifications could delete the same graph
elements. It is debatable whether the common deletion of elements can still be
considered as parallel independent or not. Since we consider parallel independent
modifications to be performable in any order, common deletions are not allowed.
Once modification m1 has deleted a graph element, it cannot be deleted again
by modification m2

6

This kind of parallel independence is characterized by Definition 4 as follows:
At first, we compute the intersection D of D1 and D2 in G by constructing a
pullback. Since common deletions are not allowed, there has to be at least one
modification for each graph element which preserves it. Thus, D1 glued with D2

via D has to lead to G, which corresponds to pushout (1). Next, considering
D included in D1 included in H1 we look for some kind of graph difference.
We want to identify those graph elements of H1 that are not already in D1

and have to be added by D3 such that both overlap in D, i.e. H1 becomes the
pushout object of D → D1 and D → D3. In this case, D3 with D → D3 →
H1 is called pushout complement of D → D1 → H1 (see [3] for pushout and
pushout complement constructions). Analogously, D4 is the difference of H2 and
D2 modulo D. Finally, both differences D3 and D4 are glued via D resulting in
H. According to Proposition 1, both modifications may occur in any order, such
that Definition 4 reflects precisely our intention of parallel independence.

Definition 4 (Parallel Independence of Graph Modifications).

Two graph modifications (G← Di → Hi), (i = 1, 2)
are called parallel independent if we have the four
pushouts in the diagram to the right, where (1) can
be constructed as pullback, (2) and (3) as pushout-
complements and (4) as pushout.

G
(1)

D1
oo //

(2)

H1

D2

OO

�� (3)

D

OO

��

oo //

(4)

D3

OO

��
H2 D4

oo // H

Proposition 1 (Local Church-Rosser for Graph Modifications).

Given parallel independent graph modifications G
Di=⇒ Hi

(i = 1, 2). Then, there exists H and graph modifications

H1
D3=⇒ H, H2

D4=⇒ H which are behaviourally equivalent

to G
D2=⇒ H2, G

D1=⇒ H1, respectively.

G
D1 +3

D2 ��

H1

D3
��

H2
D4

+3 H

Proof. Given parallel independent graph modifications G
Di=⇒ Hi (i = 1, 2), we

have pushouts (1)− (4) by Definition 4 leading to H1
D3=⇒ H and H2

D4=⇒ H with
behavioural equivalence according to Definition 3. ut
6 However, we will see that modifications with common deletions still can be merged.



7

Example 3. Figure 4 shows two parallel independent graph modifications where
m1 = (G ← D1 → H1) is the refactoring modification from Figure 2, and
m2 = (G ← D2 → H2) deletes the transition from S2 to S4 and adds a new
state named S5. We have four pushouts, thus both graph modifications may be
performed in any order, yielding in both cases the same result H.

Fig. 4. Parallel independent graph modifications

In the case that two graph modifications are parallel independent, they are
called conflict-free and can be merged to one merged graph modification that
realizes both original graph modifications simultaneously. Note that the merge
construction in Definition 5 corresponds to the construction in [10].

Definition 5 (Merging Conflict-Free Graph Modifications). Given par-

allel independent graph modifications G
Di=⇒ Hi (i = 1, 2). Then, graph modifica-

tion G
D

=⇒ H given by G← D → H defined by the diagonals of pushouts (1), (4)

in Definition 4 is called merged graph modification of G
Di=⇒ Hi (i = 1, 2).

In [4], we show that in case of parallel independence of G
Di=⇒ Hi (i = 1, 2),

the merged graph modification G
D

=⇒ H is behaviourally equivalent to the

parallel composition G + G
D1+D2=⇒ H1 + H2 of the original graph modifica-

tions G
Di=⇒ Hi (i = 1, 2). This result confirms our intuition that the merged

graph modification G
D

=⇒ H realizes both graph modifications simultaneously.

Moreover, it is equal to the sequential compositions of G
D1=⇒ H1

D3=⇒ H and

G
D2=⇒ H2

D4=⇒ H in Definition 4.



8

Example 4. The merged graph modification of the two parallel independent
graph modifications m1 = (G ← D1 → H1) and m2 = (G ← D2 → H2) in
Figure 4 is given by m = (G ← D → H). Obviously, m realizes both graph
modifications m1 and m2 simultaneously and is shown in [4] to be behaviourally

equivalent to their parallel composition G + G
D1+D2=⇒ H1 + H2 and equal to the

sequential compositions G
D1=⇒ H1

D3=⇒ H and G
D2=⇒ H2

D4=⇒ H.

3 Conflict Resolution

If two graph modifications have conflicts, a merge construction according to
Definition 5 is not possible any more. In this section, we propose a general merge
construction that resolves conflicts by giving insertion priority over deletion in
case of delete-insert conflicts. The result is a merged graph modification where
the changes of both original graph modifications are realized as far as possible.
We state the properties of the general merge construction and show that the
merge construction for the conflict-free case is a special case of the general merge
construction.

Definition 6 (Conflicts of Graph Modifications).

1. Two modifications mi = G
Di=⇒ Hi (i = 1, 2) are conflict-free if they are

parallel independent (i.e. we have four pushouts according to Definition 4).
2. They are in conflict if they are not parallel independent.
3. They are in delete-delete conflict if ∃x ∈ (G\D1) ∩ (G\D2).
4. (m1,m2) are in delete-insert conflict if

∃ edge e ∈ H2\D2 with s(e) ∈ D2 ∩ (G\D1)
or t(e) ∈ D2 ∩ (G\D1).

Example 5. Consider the graph modifications m1 = G ← D1 → H1 and m2 =
G ← D2 → H2 in Figure 2. (m2,m1) are in delete-insert conflict because m2

deletes node S3 which is needed by m1 for the insertion of an edge. Moreover,
m1 and m2 are in delete-delete conflict because the edge from S1 to S3 is deleted
by both m1 and m2. (m1,m2) are not in delete-insert conflict.

If two modifications m1 and m2 are in conflict, then at least one conflict
occurs which can be of the following kinds: (1) both modifications delete the
same graph element, (2) m1 deletes a node which shall be source or target of
a new edge inserted by m2, and (3) m2 deletes a node which shall be source
or target of a new edge inserted by m3. Of course, several conflicts may occur
simultaneously. In fact, all three conflict situations may occur independently of
each other. For example, (m1,m2) may be in delete-delete conflict, but not in
delete-insert conflict, or vice versa. 7

Theorem 1 characterizes the kinds of conflicts that parallel dependent graph
modifications may have.

7 In the worst case, we may have all kinds of conflicts simultaneously.



9

Theorem 1 (Characterization of Conflicts of Graph Modifications).

Given mi = (G
Di=⇒ Hi) (i = 1, 2), then (m1,m2) are in conflict iff

1. (m1,m2) are in delete-delete conflict, or
2. (m1,m2) are in delete-insert conflict, or
3. (m2,m1) are in delete-insert conflict.

Proof Idea. Parallel independence of (m1,m2) is equiv-
alent to the fact that (PB1) is also pushout, and the
pushout complements (POC1) and (POC2) exist, such
that pushout (PO3) can be constructed. By negation,
statements 1. - 3. are equivalent to 4. - 6., respectively:

G
(PB1)

D1
oo //

(POC1)

H1

D2

OO

�� (POC2)

D

OO

��

oo //

(PO3)

D3

OO

��
H2 D4

oo // H

4. (PB1) is not a pushout, i.e. D1 → G← D2 is not jointly surjective.
5. The dangling condition for D → D2 → H2 is not satisfied.
6. The dangling condition for D → D1 → H1 is not satisfied.

The dangling condition mentioned in statements 5. - 6. is the one known
from DPO graph transformation [3]. It is satisfied by inclusions D → Di → Hi

(i = 1, 2), if ∀e ∈ Hi\Di : (s(e) ∈ Di =⇒ s(e) ∈ D) ∧ (t(e) ∈ Di =⇒ t(e) ∈ D).
s(e) and t(e) are called dangling points. If the dangling condition is satisfied by
D → Di → Hi, the pushout complement (POCi) can be constructed. ut

For delete-insert conflicts, our preferred resolution strategy is to preserve the
nodes in the merged graph modification that are needed to realize the insertion
of edges. If deletion is preferred instead, it has to be done manually after the
automatic construction of the merged graph modification, supported by visual
conflict indication. Ideally, deletion is done such that predefined meta-model
constraints are fulfilled afterwards (see conclusion).

In the following, we define a general merge construction yielding the desired
merged graph modification for two given graph modifications with conflicts.
In the special case that we have parallel independent graph modifications, it
coincides with the conflict-free merge construction in Definition 5.

For the general merge construction, we need so-called initial pushouts. In a
nutshell, an initial pushout over a graph morphism f : D → G extracts a minimal
graph morphism b : B → C where the context C contains all non-mapped parts
of G, and the boundary B consists of those nodes in D that are used for edge
insertion (see [3]).

Definition 7 (Initial pushout). Let f :D → G be a graph morphism, an ini-
tial pushout over f consists of graph morphisms g:C → G, b:B → C, and
injective d:B → D such that f and g are a pushout over b and d.
For every other pushout over f consisting of
c′:C ′ → G, b′:B′ → C ′, and injective d′:B′ →
D, there are unique graph morphisms b:B → B′

and c:C → C ′ such that c′◦c = g and d′◦b = d.
Moreover, it is required that (c, b′) is a pushout
over (b, b).

B′
b′

//

=
d′

,,

C ′

=
c′

rr

B
d ��

b //b

bb

(IPO)

C
g��

c

<<

D
f

// G



10

Note that for graph morphisms, there is a canonical construction for initial
pushouts [3].

Example 6 (Initial pushout). In the upper right corner of our sample merge con-
struction diagram in Figure 5 below, the initial pushout IPO1 over the morphism
D1 → H1 of graph modification m1 in Figure 2 is shown. Obviously, the mor-
phism B1 → C1 contains in a minimal context the insertion of the containment
edge from S0 to S3.

Now, we are ready to present our general merge construction for graph mod-
ifications (see Definition 8). Analogously, to the merging of conflict-free graph
modifications we start with constructing the intersection D of the intermediate
graphs D1 and D2. In case of delete-insert conflicts where a node is supposed to
be deleted by one modification and used as source or target by the other mod-
ification, D is too small, i.e. does not contain such nodes. Therefore, we look
for a construction which enlarges D to the intermediate graph for the merged
modification where insertion is prior to deletion: At first, we identify all these
insertions in modifications 1 and 2. This is done by initial pushout construc-
tion (as described above) leading to Bi → Ci(i = 1, 2). By constructing first
the intersection D∗i of Bi and D in Di and thereafter the union Di of Bi and
D via D∗i , graph D is extended by exactly those graph elements in Bi needed
for insertion later on resulting in Di. After having constructed these extended
intermediate graphs D1 and D2, they have to be glued to result in the inter-
mediate graph D of the merged graph modification. Thereafter, the insertions
identified by Bi → Ci(i = 1, 2) can be transferred to Di → Xi(i = 1, 2) first and
to D → Xi(i = 1, 2) thereafter. Finally, they are combined by gluing X1 and
X2 via D yielding result graph H. Since D is D extended by graph elements
which are not to be deleted, D can be embedded into G and thus, can function
as intermediate graph for the merged graph modification G← D → H.

Definition 8 (Merged Graph Modification in General). Given two graph
modifications G ← D1 → H1 and G ← D2 → H2. We construct their merged
graph modification G ← D → H in 6 steps, leading to the following general
merge construction diagram:

G
(PB1)

D1
oo id //

(1)

D1
//

(PO1)

H1

D2

OO

id �� (2)

D

OO

��

oo //

(PO3)

D1

OO

��

//

(PO4)

X1

OO

��
D2

�� (PO2)

D2

��

oo //

(PO5)

D //

�� (PO6)

X1

��
H2 X2

oo // X2
// H

1. Construct D by pullback (PB1) of D1 → G← D2.
2. Construct initial pushouts (IPOi) over Di → Hi for i = 1, 2:



11

Bi

(3) &&
//

��
(IPOi)

Di

��
(POi)

Di

��

oo

Ci
// 66Hi Xi

oo

D∗i

{{wwwwww

##FF
FF

FF
F

(PO)

Bi
//

(3)

##GGG
GGG

G Di

��

Doo
(4)

{{xxx
xx

xx

Di

3. Construct D∗i as a pullback of Bi → Di ← D and Di as pushout of Bi ←
D∗i → D with induced morphism Di → Di with Bi → Di → Di = Bi → Di

(3) and D → Di → Di = D → Di (4) for (i = 1, 2).
4. Construct pushout Di → Xi ← Ci of Di ← Bi → Ci (i = 1, 2), leading

by (3) to induced morphism Xi → Hi and pushout (POi) (i = 1, 2) by
pushout decomposition. Moreover, (4) implies commutativity of (1) and (2)
for (i = 1, 2).

5. Now we are able to construct pushouts (PO3), (PO4), (PO5) and (PO6) one
after the other.

6. Finally, we obtain the merged graph mod-
ification (G ← D → H), where D → H
is defined by composition in (PO6), and
D → G is uniquely defined as induced mor-
phism using pushout (PO3).

D1

''PPPPPP //

(PO3)

D1

��
D

77nnnnnn

''PPPPPP

(=) ''

(=)
77

D // G

D2

77nnnnnn // D2

OO

Remark 1. If the modifications mi = (G ← Di → Hi) (i = 1, 2) are parallel
independent, then the pullback (PB1) is a pushout and D1 = D = D2 = D.
In this case, the general merged modification m = (G ← D → H) is equal up
to isomorphism to the merged graph modification in the conflict-free case in
Definition 5. If mi = (G ← Di → Hi) (i = 1, 2) are in delete-delete conflict,
then the merged graph modification deletes the items that are deleted by both
m1 and m2 since these items are not in D and hence not in D.

Example 7. We construct the merged graph modification for graph modifications
m1 = G ← D1 → H1 and m2 = G ← D2 → H2 in Figure 2. The construction
diagram is shown in Figure 5.

According to step 3 in Definition 8, D1 has to be constructed as pushout
of B1 ← D∗1 → D. D∗1 is the pullback of B1 → D1 ← D, hence D∗1 consists
just of the single node S0 . Since B1 contains two single nodes, S0 and S3 , we
get as result of step 3 graph D1 which is similar to D but contains additionally
node S3. Since (m1,m2) are not in delete-insert conflict, D2 = D. All remaining
squares are constructed as pushouts.

Note that the resulting merged graph modification G ← D → H preserves
node S3 because this node is deleted in m2 although it is used for inserting a
new edge in m1 (resolution of the delete-insert conflict). The edge from S1 to S3

is deleted by the merged graph modification as it is deleted by both m1 and m2

(resolution of the delete-delete conflict). All graph objects created by either m1

or m2 are created also by the merged graph modification. Note that square (2)
is a pushout in this example since (m1,m2) are not in delete-insert conflict.



12

Fig. 5. General merge construction for conflicting graph modifications m1 and m2

The following theorem states that the modification resulting from the gen-
eral merge construction specifies the intended semantics resolving delete-insert
conflicts by preferring insertion over deletion:

Theorem 2 (Behaviour Compatibility of the General Merge Construc-

tion). Given graph modifications mi = G
Di=⇒ Hi (i = 1, 2) with merged graph

modification m = G
D

=⇒ H = (G ← D → H) in the sense of Definition 8. We
use the following terminology for m (and similarly for for m1,m2):

x ∈ G preserved by m ⇐⇒ x ∈ D,
x ∈ G deleted by m ⇐⇒ x ∈ G\D,
x ∈ H created by m ⇐⇒ x ∈ H\D.

Then, m is behaviour compatible with m1 and m2 in the following sense:

1. Preservation: x ∈ G preserved by m1 and m2 =⇒ x ∈ G preserved by m
=⇒ x ∈ G preserved by m1 or m2



13

2. Deletion: x ∈ G deleted by m1 and m2 =⇒ x ∈ G deleted by m
=⇒ x ∈ G deleted by m1 or m2

3. Preservation and Deletion: x ∈ G preserved by m1 and x ∈ G deleted by m2

=⇒ x ∈ G preserved by m, if x ∈ D1
8

x ∈ G deleted by m, if x /∈ D1
9

(similar for m1,m2, D1 replaced by m2,m1, D2)
4. Creation: x ∈ H1 created by m1 or x ∈ H2 created by m2

⇐⇒ x ∈ H created by m

Proof Idea. The preservation, deletion and creation results follow from the pushout
properties of D, the pushout complement properties of D1, D2 and the fact that
D1 is pullback in the diagrams (PO1) and (PO4) (and analogously for D2).

Theorem 3 characterizes the three forms of conflict resolution which may occur.

Theorem 3 (Conflict Resolution by General Merge Construction). Given

graph modifications mi = G
Di=⇒ Hi (i = 1, 2) that are in conflict. The merge

construction m = (G← D → H) resolves the conflicts in the following way:

1. If (m1,m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G,
then x is deleted by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge e2 created by m2

with x = s(e2) or x = t(e2) preserved by m2, but deleted by m1. Then x is
preserved by m.

3. If (m2,m1) are in delete-insert conflict, there is an edge e1 created by m1

with x = s(e1) or x = t(e1) preserved by m1, but deleted by m2. Then x is
preserved by m.

Proof Idea. The resolution of delete-delete conflicts follows from the deletion
property, and the resolution of delete-insert conflicts follows from the preservation-
deletion property of the general merge construction in Theorem 2.

4 Related Work

First of all, we have to clarify that model merging differs from merging of model
modifications. Model merging as presented e.g. in [7,9] is concerned with a set
of models and their inter-relations expressed by binary relations. In contrast,
merging of model modifications takes change operations into account. Merg-
ing of model modifications usually means that non-conflicting parts are merged
automatically, while conflicts have to be resolved manually. In the literature,
different resolution strategies which allow at least semi-automatic resolution are
proposed. A survey on model versioning approaches and especially on conflict
resolution strategies is given in [1].

8 In this case, x is a node needed as source or target for an edge inserted by m1.
9 In this case, x is not needed for edge insertion by m1.



14

A category-theoretical approach formalizing model versioning is given in [8].
Similar to our approach, modifications are considered as spans of morphisms
to describe a partial mapping of models. Merging of model changes is defined
by pushout constructions. However, conflict resolution is not yet covered by
this approach in a formal way. A category theory-based approach for model
versioning in-the-large is given in [2]. However, this approach is not concerned
with formalizing conflict resolution strategies. A set-theoretic definition of EMF
model merging is presented in [12], but conflicts are solved by the user and not
automatically.

In [5] the applied operations are identified first and grouped into parallel in-
dependent subsequences then. Conflicts can be resolved by either (1) discarding
complete subsequences, (2) combining conflicting operations in an appropriate
way, or (3) modifying one or both operations. The choice of conflict resolution is
made by the modeler. These conflict resolution strategies have not been formal-
ized. The intended semantics is not directly investigated but the focus is laid
on the advantage of identifying compound change operations instead of elemen-
tary ones. In contrast, we propose a semi-automatic procedure where at first, an
automatic merge construction step gives insertion priority over deletion in case
of delete-insert conflicts. If other choices are preferred, the user may perform
deletions manually in a succeeding step.

Automatic merge results may not always solve conflicts adequately, espe-
cially state-based conflicts or inconsistencies may still exist or arise by the merge
construction. Resolution strategies such as resolution rules presented in [6] are
intended to solve state-based conflicts or inconsistencies. They can be applied in
follow-up graph transformations after the general conflict resolution procedure
produced a tentative merge result.

5 Conclusions and Future Work

In this paper, we have formalized a conflict resolution strategy for operation-
based conflicts based on graph modifications. Our main result is a general merge
construction for conflicting graph modifications. The merge construction realizes
a resolution strategy giving insertion priority over deletion in case of delete-insert
conflicts to get a merged graph modification result containing as much informa-
tion as possible. We establish a precise relationship between the behaviour of
the given graph modifications and the merged modification concerning deletion,
preservation and creation of graph items. In particular, our general merge con-
struction coincides with the conflict-free merge construction if the graph mod-
ifications are parallel independent. We show how different kinds of conflicts of
given graph modifications are resolved by our automatic resolution strategy. It
is up to an additional manual graph modification step to perform deletions that
are preferred over insertions.

In [10], we presented two kinds of conflicts which can be detected based on
graph modification: operation-based and state-based conflicts. Hence, in future
work, our strategy for solving operation-based conflicts shall be extended by



15

resolving also state-based conflicts. Here, repair actions should be provided to
be applied manually by the modeler. Their applications would lead to additional
graph modifications optimizing the merged graph modification obtained so far.
For the specification of repair actions in this setting, the work by Mens et al. in
[6] could be taken into account.

With regard to tool support, our graph transformation environment Agg [11]
supports conflict analysis for graph rules and graph modifications. We plan

to implement also the check of behavioural equivalence and the general merge
construction for graph modifications in near future. This proof-of-concept im-
plementation could function as blueprint for implementing our new resolution
strategy in emerging model versioning tools.

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. IJWIS 5(3), 271–304 (2009)

2. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Algebraic
foundations and the tile notation. In: Proc. of Workshop on Comparison and Ver-
sioning of Software Models (CVSM’09). pp. 7–12. IEEE Computer Society (2009)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science, Springer (2006)

4. Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for operation-based
conflicts in model versioning using graph modifications: Extended version. Tech.
rep., TU Berlin (2011), to appear.

5. Küster, J.M., Gerth, C., Engels, G.: Dependent and conflicting change operations
of process models. In: Proc. Int. Conf. on Model Driven Architecture - Foundations
and Applications. LNCS, vol. 5562, pp. 158–173. Springer (2009)

6. Mens, T., van der Straeten, R., D’Hondt, M.: Detecting and resolving model in-
consistencies using transformation dependency analysis. In: Proc. MoDELS. LNCS,
vol. 4199, pp. 200–214. Springer (2006)

7. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences.
In: Proc. Int. Conf. on Very Large Data Bases (VLDB’03). pp. 826–873. VLDB
Endowment (2003)

8. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A category-theoretical approach to
the formalisation of version control in MDE. In: Proc. Fundamental Aspects of
Software Engineering (FASE’09). LNCS, vol. 5503, pp. 64–78. Springer (2009)

9. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: Proc. IEEE Int. Conf.
on Requirements Engineering. pp. 221–230. IEEE (2007)

10. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detection for model
versioning based on graph modifications. In: Proc. Int. Conf. on Graph Transfor-
mations (ICGT’10). LNCS, vol. 6372. Springer (2010)

11. TFS-Group, TU Berlin: AGG (2009), http://tfs.cs.tu-berlin.de/agg
12. Westfechtel, B.: A formal approach to three-way merging of EMF models. In: Proc.

Workshop on Model Comparison in Practice (IWMCP). pp. 31–41. ACM (2010)

http://tfs.cs.tu-berlin.de/agg

	A Formal Resolution Strategy for Operation-Based Conflicts in Model Versioning Using Graph Modifications

