
Modeling with Plausibility Checking: Inspecting
Favorable and Critical Signs for Consistency

between Control Flow and Functional Behavior

Claudia Ermel1, Jürgen Gall1, Leen Lambers2, and Gabriele Taentzer3

1 Technische Universität Berlin, Germany
claudia.ermel@tu-berlin.de, jgall@cs.tu-berlin.de

2 Hasso-Plattner-Institut für Softwaresystemtechnik GmbH, Potsdam, Germany
leen.lambers@hpi.uni-potsdam.de

3 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. UML activity diagrams are a wide-spread modelling tech-
nique to capture behavioral aspects of system models. Usually, pre- and
post-conditions of activities are described in natural language and are
not formally integrated with the static domain model. Hence, early con-
sistency validation of activity models is difficult due to their semi-formal
nature. In this paper, we use integrated behavior models that integrate
activity diagrams with object rules defining sets of actions in simple ac-
tivities. We formalize integrated behavior models using typed, attributed
graph transformation. It provides a basis for plausibility checking by
static conflict and causality detection between specific object rules, tak-
ing into account their occurrence within the control flow. This analysis
leads to favorable as well as critical signs for consistency of the integrated
behavior model. Our approach is supported by ActiGra, an Eclipse
plug-in for editing, simulating and analyzing integrated behavior models.
It visualizes favorable and critical signs for consistency in a convenient
way and uses the well-known graph transformation tool AGG for rule
application as well as static conflict and causality detection. We validate
our approach by modeling a conference scheduling system.

Keywords: graph transformation, activity model, plausibility, conflict
and causality detection, object rule, AGG

1 Introduction

In model-driven software engineering, models are key artifacts which serve as ba-
sis for automatic code generation. Moreover, they can be used for analyzing the
system behavior prior to implementing the system. In particular, it is interesting
to know whether integrated parts of a model are consistent. For behavioral mod-
els, this means to find out whether the modeled system actions are executable
in general or under certain conditions only. For example, an action in a model
run might prevent one of the next actions to occur because the preconditions



2

of this next action are not satisfied any more. This situation is usually called a
conflict. Correspondingly, it is interesting to know which actions do depend on
other actions, i.e. an action may be performed only if another action has occurred
before. We call such situations causalities. The aim of this paper is to come up
with a plausibility checking approach regarding the consistency of the control
flow and the functional behavior given by actions bundled in object rules. Ob-
ject rules define a pre-condition (which object pattern should be present) and a
post-condition (what are the local changes). Intuitively, consistency means that
for a given initial state there is at least one model run that can be completed
successfully.

We combine activity models defining the control flow and object rules in an
integrated behavior model, where an object rule is assigned to each simple activ-
ity in the activity model. Given a system state typed over a given class model,
the behavior of an integrated behavior model can be executed by applying the
specified actions in the pre-defined order. The new plausibility check allows us to
analyze an integrated behavior model for favorable and critical signs concerning
consistency. Favorable signs are e.g. situations where object rules are triggered
by other object rules that precede them in the control flow. On the other hand,
critical signs are e.g. situations where an object rule causes a conflict with a
second object rule that should be applied after the first one along the control
flow, or where an object rule depends causally on the effects of a second object
rule which is scheduled by the control flow to be applied after the first one. An
early feedback to the modeler indicating this kind of information in a natural
way in the behavioral model is desirable to better understand the model.

In [10], sufficient consistency criteria for the executability of integrated be-
havior models have been developed. However, especially for an infinite set of po-
tential runs (in case of loops), this technique may lead to difficulties. Moreover,
it is based on sufficient criteria leading to false negatives. In this paper, we follow
a different approach, focusing on plausibility reasoning on integrated behavior
models and convenient visualization of the static analysis results. This approach
is complementary to [10], since we opt for back-annotating light-weight static
analysis results allowing for plausibility reasoning, also in case of lacking consis-
tency analysis results from [10]4. This light-weight technique seems to be very
appropriate to allow for early plausibility reasoning during development steps of
integrated behavior models. We visualize the results of our plausibility checks
in an integrated development environment called ActiGra5. Potential incon-
sistencies and reasons for consistency are directly visualized within integrated
behavior models, e.g. as colored arcs between activity nodes and by detailed
conflict and causality views.

Structure of the paper: Section 2 presents our running example. In Section 3,
we introduce our approach to integrated behavior modeling and review the un-

4 In [4], we explain in more detail how plausibility reasoning is related to the sufficient
criteria in [10].

5 http://tfs.cs.tu-berlin.de/actigra



3

derlying formal concepts for static analysis based on graph transformation as
far as needed. Different forms of plausibility checking are presented in Section 4,
where we validate our approach checking a model of a conference scheduling
system. A section on related approaches (Section 5) and conclusions including
directions for future work (Section 6) close the paper.

2 Case Study: A Conference Scheduling System

This case study6 models planning tasks for conferences. Its class model is shown
in Figure 1 (a). A Conference contains Persons, Presentations, Sessions and
Slots. A Person gives one or more Presentations and may chair arbitrary many
Sessions. Note that a session chair may give one or more presentations in the
session he or she chairs. A Presentation is in at most one Session and scheduled
in at most one Slot. Slots are linked as a list by next arcs and used by Sessions.

Fig. 1. Class and instance model for the Conference Scheduling System

Figure 1 (b) shows a sample object model of an initial session plan before
presentations are scheduled into time slots7. This object model conforms to the
class model. The obvious task is to find a valid assignment for situations like
the one in Figure 1 (b) assigning the presentations to available time slots such
that the following conditions are satisfied: (1) there are no simultaneous presen-
tations given by the same presenter, (2) no presenter is chairing another session

6 taken from the tool contest on Graph-Based Tools 2008 [17]
7 Due to space limitations, we do not show name attributes here.



4

running simultaneously, (3) nobody chairs two sessions simultaneously, and (4)
the presentations in one session are given not in parallel but in consecutive time
slots. Moreover, it should be possible to generate arbitrary conference plans like
the one in Figure 1 (b). This is useful to test the assignment procedure.

3 Integrating Activity Models with Object Rules

Our approach to behavior modeling integrates activity models with object rules,
i. e. the application order of object rules is controlled by activity models. An
object rule defines pre- and post-conditions of activities by sets of actions to be
performed on object models. An object rule describes the behavior of a simple
activity and is defined over a given class model. The reader is supposed to be
familiar with object-oriented modelling using e.g. the UML [16]. Therefore, we
present our approach to integrated behavior modeling from the perspective of
its graph transformation-based semantics. In the following, we formalize class
models by type graphs and object rules by graph transformation rules to be able
to use the graph transformation theory [2] for plausibility checking.

3.1 Graphs and Graph Transformation

Graphs are often used as abstract representation of diagrams. When formalizing
object-oriented modeling, graphs occur at two levels: the type level (defined
based on class models) and the instance level (given by all valid object models).
This idea is described by the concept of typed graphs, where a fixed type graph TG
serves as an abstract representation of the class model. Types can be structured
by an inheritance relation, as shown e.g. in the type graph for our Conference
Scheduling model in Figure 1. Instance graphs of a type graph have a structure-
preserving mapping to the type graph. The sample session plan in Figure 1 is
an instance graph of the Conference Scheduling type graph.

Graph transformation is the rule-based modification of graphs. Rules are
expressed by two graphs (L,R), where L is the left-hand side of the rule and
R is the right-hand side. Rule graphs may contain variables for attributes. The
left-hand side L represents the pre-conditions of the rule, while the right-hand
side R describes the post-conditions. L∩R (the graph part that is not changed)
and the union L ∪ R should form a graph again, i.e., they must be compatible
with source, target and type settings, in order to apply the rule. Graph L\(L∩R)
defines the part that is to be deleted, and graph R \ (L ∩R) defines the part to
be created. Furthermore, the application of a graph rule may be restricted by
so-called negative application conditions (NACs) which prohibit the existence of
certain graph patterns in the current instance graph. Note that we indicate graph
elements common to L and R or common to L and a NAC by equal numbers.

Figure 2 shows graph rule initial-schedule modeling the scheduling of the
first presentation of some session to a slot. The numerous conditions for this
scheduling step stated in Section 2 are modelled by 8 NACs. The NAC shown in



5

Figure 2 means that the rule must not be applied if the presenter holds already
another presentation in the same slot8.

Fig. 2. Graph rule initial-schedule

A direct graph transformation G
r,m +3 H between two instance graphs G

and H is defined by first finding a match m of the left-hand side L of rule r
in the current instance graph G such that m is structure-preserving and type-
compatible and satisfies the NACs (i.e. the forbidden graph patterns are not
found in G). We use injective matches only. Attribute variables used in graph
object o ∈ L are bound to concrete attribute values of graph object m(o) in G.
The resulting graph H is constructed by (1) deleting all graph items from G that
are in L but not also in R; (2) adding all those new graph items that are in R
but not also in L; (3) setting attribute values of preserved and created elements.

A reason for non-determinism of graph transformation systems is the poten-
tial existence of several matches for one rule. If two rules are applicable to the
same instance graph, they might be applicable in any order with the same result
(parallel independence). If this is not the case, then we say that the correspond-
ing rules are in conflict, since one rule may disable the other rule. If two rules are
applicable one after the other to the same graph, it might be possible to switch
their application order without changing the result (sequential independence).
Conversely, it might be the case that one rule may trigger the application of
another rule or may be irreversible after the application of another rule. In this
case, this sequence of two rules is said to be causally dependent. See [13] for a
formal description of conflict and causality characterizations9.

The static analysis of potential conflicts and causalities between rules is sup-
ported in AGG10, a tool for specifying, executing and analysing graph transfor-
mation systems. This analysis is based on critical pair analysis (CPA) [2,8] and
critical sequence analysis (CSA) [13], respectively. Intuitively, each critical pair
or sequence describes which rule elements need to overlap in order to cause a
specific conflict or causality when applying the corresponding rules.

3.2 Integrated behavior models

As in [11], we define well-structured activity models as consisting of a start ac-
tivity s, an activity block B, and an end activity e such that there is a transition

8 For the complete case study with all rules and NACs see [1].
9 The different types of conflicts and causalities are reviewed also in [4].

10 AGG: http://tfs.cs.tu-berlin.de/agg

http://tfs.cs.tu-berlin.de/agg


6

between s and B and another one between B and e. An activity block can
be a simple activity, a sequence of blocks, a fork-join structure, decision-merge
structure, and loop. In addition, we allow complex activities which stand for
nested well-structured activity models. In this hierarchy, we forbid nesting cy-
cles. Activity blocks are connected by transitions (directed arcs). Decisions have
an explicit if -guard and implicit else-guard which equals the negated if -guard,
and loops have a loop-guard with corresponding implicit else-guard.

In our formalization, an integrated behavior model is a well-structured activity
model A together with a type graph such that each simple activity a occurring in
A is equipped with a typed graph transformation rule ra and each if or loop guard
is either user-defined or equipped with a typed guard pattern. We have simple
and application-checking guard patterns: a simple guard pattern is a graph that
has to be found; an application-checking guard pattern is allowed for a transition
entering a loop or decision followed by a simple activity in the loop-body or if-
branch, respectively, and checks the applicability of this activity; it is formalized
by a graph constraint [7] and visualized by the symbol [∗]. User-defined guards
are evaluated by the user at run time to true or false. An initial state for an
integrated behavior model is given by a typed instance graph.

Example 1. Let us assume the system state shown in Figure 1 as initial state of
our integrated behavior model. The activity diagram ScheduleControl is shown
in the left part of Figure 3 (please disregard the colors for now). Its first step
performs the initial scheduling of sessions and presentations into time slots by
applying rule initial-schedule (see Figure 2) as long as possible.

Fig. 3. Activity model ScheduleControl and rule scheduleAfter

As second step, two loops are executed taking care of grouping the remaining
presentations of a session into consecutive time slots, i.e. a presentation is sched-
uled in a free time slot either directly before or after a slot where there is already
a scheduled presentation of the same session. Rule scheduleAfter is shown in the
right part of Figure 3. Rule scheduleBefore looks quite similar, only the direc-
tion of the next edge between the two slots is reversed. Both rules basically have
the same NACs as rule initialSchedule ensuring the required conditions for the



7

schedule (see [1]). The NAC shown here ensures that the session chair does not
hold a presentation in the time slot intended for the current scheduling.

As in [11] we define a control flow relation on integrated behavior models.11

Intuitively, two activities or guards (a, b) are control flow-related whenever b
is performed or checked after a. Moreover, we define an against-control flow
relation which contains all pairs of activities or guards that are reverse to the
control flow relation.

The control flow relation CFRA of an activity model A contains all pairs
(x, y) where x and y are activities or guards such that (1)-(4) holds: (1) (x, y) ∈
CFRA if there is a transition from activity x to activity y. (2) (x, y) ∈ CFRA if
activity x has an outgoing transition with guard y. (3) (x, y) ∈ CFRA if activity
y has an incoming transition with guard x. (4) If (x, y) ∈ CFRA and (y, z) ∈
CFRA, then also (x, z) ∈ CFRA. The against-control flow relation ACFRA of an
activity model A contains all pairs (x, y) such that (y, x) is in CFRA.

3.3 Simulation of Integrated Behavior Models

The semantics Sem(A) of an integrated behavior model A consisting of a start
activity s, an activity block B, and an end activity e is the set of sequences SB ,
where each sequence consists of rules alternated with graph constraints (stem-
ming from guard patterns), generated by the main activity block B (for a formal
definition of the semantics see [11]).12 For a block being a simple activity a in-
scribed by rule ra, SB = {ra}. For a sequence block B = X → Y , we construct
SB = SX seq SY , i.e. the set of sequences being concatenations of a sequence in
SX and a sequence in SY . For decision blocks we construct the union of sequences
of both branches (preceded by the if guard pattern and the negated guard pat-
tern, respectively, in case that the if guard is not user-defined); for loop blocks we
construct sequences containing the body of the loop i times (0 ≤ i ≤ n) (where
each body sequence is preceded by the loop guard pattern and the repetition
of body sequences is concluded with the negated guard pattern in case that the
loop guard is not user-defined). In contrast to [11], we restrict fork-join-blocks
to one simple activity in each branch and build a parallel rule from all branch
rules [13,2].13 We plan to omit this restriction however, when integrating object
flow [11] into our approach, since then it would be possible to build unique con-
current rules for each fork-join-branch. For B being a complex activity inscribed
by the name of the integrated behavior model X, SB = Sem(X).

Given s ∈ Sem(A) a sequence of rules alternated with graph constraints
and a start graph S, representing an initial state for A. We then say that each
graph transformation sequence starting with S, applying each rule to the current

11 In contrast to [11], we include guards into the control flow relation.
12 Note that Sem(A) does not depend on the initial state of A. Moreover, we have a

slightly more general semantics compared to [11], since we do not only have rules in
the sequences of SB , but also graph constraints.

13 This fork-join semantics is slightly more severe than in [11], which allows all inter-
leavings of rules from different branches no matter if they lead to the same result.



8

instance graph and evaluating each graph constraint to true for the current
instance graph in the order of occurrence in s, represents a complete simulation
run of A. An integrated behavior model A is consistent with respect to a start
graph S, representing an initial state for A, if there is a sequence s ∈ Sem(A)
leading to a complete simulation run. In particular, if A contains user-defined
guards, usually more than one complete simulation run should exist.

In ActiGra we can execute simulation runs on selected activity models. Cho-
sen activities are highlighted and the completion of simulation runs is indicated.
User-defined guards are evaluated interactively. If a simulation run cannot be
completed, an error message tells the user which activity could not be executed.

4 Plausibility Checks for Integrated Behavior Models

We now consider how to check plausibility regarding consistency of the con-
trol flow and the functional behavior given by actions bundled in object rules.
Thereby, we proceed as follows: We characterize desired properties for an inte-
grated behavior model and its initial state to be consistent. We determine the
favorable as well as critical signs14 for these properties to hold, show, how
the checks are supported by ActiGra and illustrate by our case study which
conclusions can be drawn by the modeler to validate our approach.

For the plausibility checks we wish to detect potential conflicts and causalities
[4] between rules and guards occurring in the sequences of Sem(A). Since in
A simple activities, fork/joins as well as simple guard patterns correspond to
rules15 we just call them rules for simplicity reasons. Thereby, we disregard rules
stemming from simple activities belonging to some fork/join block, since they
do not occur as such in Sem(A). Instead, the corresponding parallel rule for the
fork/join is analyzed. As an exception to this convention, the plausibility check
in Section 4.5 inspects consistency of fork/joins and analyzes also the enclosed
simple activities.

4.1 Inspecting Initialization

If for some sequence in Sem(A) the first rule is applicable, then the correspond-
ing sequence can lead to a complete simulation run. Otherwise, the correspond-

14 In most cases, these favorable and critical signs merely describe potential reasons
for the property to be fulfilled or not, respectively. For example, some critical pair
describes which kind of rule overlap may be responsible for a critical conflict. By
inspecting this overlap, the modeler may realize that the potential critical conflict
may actually occur and adapt the model to avoid it. On the other hand, he may
realize that it does not occur since the overlap corresponds to an invalid system
state, intermediate rules deactivate the conflict, etc.

15 For each simple guard pattern we can derive a guard rule (without side-effects)
for the guarded branch and a negated guard rule for the alternative branch (as
described in [11]). Application-checking guard patterns are evaluated for simulation
but disregarded by the plausibility checks, since they are not independent guards
but check for the application of succeeding rules only.



9

ing sequence leads to an incomplete run. Given an integrated behavior model
A with initial state S, the first plausibility check computes automatically for
which sequences in Sem(A), the first rule is applicable to S. The modeler then
may inspect the simulation run(s) that should complete for correct initialization
(desired property). We identify the favorable signs as the set of possible initializa-
tions: FaIA = {r|r is first rule of sequence in Sem(A) and r is applicable to S}.
We identify the critical signs as the set of impossible initializations:
CrIA = {r|r is first rule of a sequence in Sem(A) and r is not applicable to S}.

ActiGra visualizes the result of this plausibility check by highlighting the
elements of FaIA in green. Rules belonging to CrIA are highlighted in red16.

Example 2. Let us assume the system state in Figure 1 (b) as initial state. Fig-
ure 3 shows the initialization check result for activity model ScheduleControl. We
have FaIScheduleControl = {initialSchedule} and CrIScheduleControl = {schedule-
After , scheduleBefore}. Thus, complete simulation runs on our initial state never
start with scheduleAfter or scheduleBefore, but always with initialSchedule.

4.2 Inspecting Trigger Causalities Along Control Flow Direction

If rule a may trigger rule b and b is performed after a, then it may be ad-
vantageous for the completion of a corresponding simulation run. If for some
rule b no rule a is performed before b that may trigger b, this may lead to an
incomplete simulation run and the modeler may decide to add some trigger-
ing rule or adapt the post-condition of some previous rule in order to create
a trigger for b. Alternatively, the initial state could be adapted such that b is
applicable to the start graph. Given an integrated behavior model A with ini-
tial state S, this plausibility check computes automatically for each rule a in A,
which predecessor rules may trigger a. The modeler may inspect each rule a for
enough predecessor rules to trigger a then (desired property). We identify the
favorable signs as the set of potential trigger causalities for some rule a along
control flow: FaTrAlA(a) = {(b, a)|(b, a) ∈CFRA such that b may trigger a}.
We say that FaTrAlA = {FaTrAlA(a) |a is a rule in A} is the set of poten-
tial trigger causalities in A along control flow. We identify the critical signs
as the set of non-triggered rules along control flow that are not applicable
to the initial state: CrNonTrAlA = {a|a is rule in A such that FaTrAlA(a) =
∅ and a is not applicable to S}.

ActiGra visualizes the result of this plausibility check by displaying dashed
green arrows from b to a selected rule a for each pair of rules (b, a) in FaTrAlA(a).
If no rule is selected, then all pairs in FaTrAlA are displayed by dashed green
arrows. Clicking on such an arrow from b to a opens a detail view, showing
the reason(s) why b may trigger a as discovered by CSA. Conversely, ActiGra
highlights each rule belonging to CrNonTrAlA in red.

16 Concerning fork/join blocks in FaIA or CrIA,ActiGra colors the fork bar.



10

Example 3. Consider activity model GenConfPlans in (Figure 4) for generating
conference plans, assuming an empty initial state. The set of potential trigger
causalities along control flow for createSession is given by FaTrAlGenConfPlans

(createSession) = {(createPerson + createPaper , createSession), (createPerson,
createSession)}. Here, we learn that we need at least one execution of a loop
containing rule createPerson (a rule with an empty left-hand side) to ensure a
complete simulation run containing createSession.

Fig. 4. Potential trigger causalities along control flow in activity model GenConfPlans

4.3 Inspecting Conflicts Along Control Flow Direction

If rule a may disable rule b, and b is performed after a, then this may lead to
an incomplete simulation run. On the other hand, if for some rule a no rule b
performed before a exists that may disable rule a, then the application of a is
not impeded. Given an integrated behavior model A with initial state S, this
plausibility check computes automatically for each rule a in A, which successor
rules b in A may be disabled by a. The modeler then may inspect each rule a in
A for the absence of rules performed before a disabling rule a (desired property).
We identify the critical signs as the set of potential conflicts along control flow
caused by rule a: CrDisAlA(a) = {(a, b)|a, b are rules in A, (a, b) ∈CFRA and a
may disable b}. We say that CrDisAlA = {CrDisAlA(a) |a is a rule in A} is the
set of potential conflicts along control flow in A. We identify the favorable signs
as the set of non-disabled rules along control flow: FaNonDisAlA = {a|a in A
and 6 ∃(b, a) ∈CrDisAlA }.

ActiGra visualizes the result of this plausibility check by displaying faint
red arrows from a to b for each pair of rules (a, b) in CrDisAlA. If rule a is selected,
a bold red arrow from a to b for each pair of rules (a, b) in CrDisAlA(a) is shown.
Clicking on such an arrow opens a detail view, showing the reason(s) why a may
disable b as discovered by CPA. Each rule a in A belonging to FaNonDisAlA is
highlighted in green.

Example 4. Consider activity model SchedulingControl in Figure 5 (a). Here, the
set of potential conflicts along control flow caused by rule initialSchedule is given



11

by CrDisAlSchedulingControl(initialSchedule) = {(initialSchedule, initialSchedule),
(initialSchedule, scheduleAfter), (initialSchedule, scheduleBefore)}17. This gives
the modeler a hint that in fact a scheduling might not terminate successfully
in the case that rule initialSchedule creates a situation where not all remaining
presentations can be scheduled in a way satisfying all conditions. The detail view
of potential conflicts for pair (initialSchedule, scheduleAfter) in Figure 5 (b)
shows e.g. a potential produce-forbid conflict where rule initialSchedule (Fig-
ure 2) produces an edge from 2:Pres to 0:Slot, and rule scheduleAfter then must
not schedule 4:Pres to 0:Slot because of the NAC shown in Figure 3.

Fig. 5. (a) Potential conflicts along control flow caused by rule initialSchedule;
(b) Detail view of potential conflict of rule initialSchedule with rule scheduleAfter.

4.4 Inspecting Trigger Causalities Against Control Flow Direction

If rule a may trigger rule b and b is performed before a, then it might be the case
that their order should be switched in order to obtain a complete simulation
run. Given an integrated behavior model A with initial state S, this plausibility
check automatically computes for each rule a in A, which successor rules of a
may trigger a. The modeler then may inspect for each rule a in A that no rule
performed after a exists that needs to be switched to a position before a in order
to trigger its application (desired property). We identify the critical signs as
the set of potential causalities against control flow triggered by a: CrTrAgA(a)
= {(a, b)|a, b rules in A and (a, b) ∈ ACFRA such that a may trigger b}. We say
that CrTrAgA = {CrTrAgA(a) |a is a rule in A} is the set of potential trigger
causalities against control flow in A. We identify the favorable signs as the set
of rules not triggered against control flow: FaNoTrAgA = {a|a is rule in A and
@(b, a) ∈CrTrAgA }.
17 Note that one pair in this set may indicate more than one conflict potentially occur-

ring between the corresponding rules.



12

ActiGra visualizes the result of this plausibility check by displaying a dashed
red arrow from a selected rule a to b for each pair of rules (a, b) in CrTrAgA(a).
If no rule in particular is selected, then all pairs in CrTrAgA are displayed by
dashed red arrows. Clicking on such an arrow from a to b opens a detail view,
showing the reason(s) why a may trigger b as discovered by CSA. Conversely,
each rule belonging to FaNoTrAgA is highlighted in green.

Example 5. In activity diagram GenConfPlans in Figure 6, we get the set of
potential causalities against control flow CrTrAgGenConfPlans (createSession) =
{(createSession,Person2Pres)}. The causality (createSession, Person2Pres) in-
dicates that rule Person2Pres might be modelled too early in the control flow
since rule createSession is needed to trigger rule Person2Pres completely.

Fig. 6. Trigger causality against control flow (createSession, Person2Pres)

4.5 Inspecting Causalities in Fork/Joins

We may not only consider the consistent sequential composition of rules as be-
fore, but consider also the parallel application of rules as specified by fork/join
activities. Whenever a rule pair (a, b) belonging to the same fork/join may be
causally dependent, then it is not possible to change their application order in
any situation without changing the result. However, the parallel application of
rules (a, b) implies that their application order should not matter.

Given an integrated behavior model A with initial state S, this plausibil-
ity check computes automatically for each fork/join in A, if potential causali-
ties between the enclosed simple activities exist. The modeler may inspect each
fork/join for its parallel execution not to be disturbed then (desired property).

We need some more elaborated considerations for this case, since we wish
to analyze simple activities within a fork/join block that are normally disre-
garded as they only occur in the form of the corresponding parallel rule in
Sem(A). In particular, we define a fork/join relation FJRA consisting of all
rule pairs (a, b) belonging to the same fork/join block. We identify the criti-
cal signs as the set of potential causalities between different fork/join branches:



13

CrFJCaA = {(a, b)|(a, b) ∈FJRA and (a, b) causally dependent}.18 We identify
the favorable signs as the set of fork/join structures with independent branches:
FaFJNoCaA = {fj |fj is fork/join in A and (a, b) 6∈ CrFJCaA for each (a, b) with
a,b in different branches of fj}.

ActiGra visualizes the result of this plausibility check by displaying in each
fork/join block a dashed red arrow from a to b for each (a, b) ∈ CrFJCaA. The
detail view shows the reason(s) why (a, b) are causally dependent and why this
dependency might disturb parallel execution. On the other hand, each fork/join
in FaFJNoCaA is highlighted by green fork and join bars.

Example 6. The set of potential causalities between different fork/join branches
depicted in Figure 7 is given by {(createPerson, Person2Pres)}. We may have
a dependency (shown in the detail view) if rule createPerson creates a Person
node that is used by rule Person2Pres to link it to a Presentation node.

Fig. 7. Potential causality between different fork/join branches and its detail view

5 Related Work

Our approach complements existing approaches that give a denotational seman-
tics to activity diagrams by formal models. This semantics is used for validation
purposes thereafter. For example, Eshuis [5] proposes a denotational semantics
for a restricted class of activity models by means of labeled transition systems.
Model checking is used to check properties. Störrle [18] defines a denotational
semantics for the control flow of UML 2.0 activity models including procedure
calls by means of Petri nets. The standard Petri net theory provides an analysis
of properties like reachability or deadlock freeness. Both works stick to simple
activities not further refined. In [3], business process models and web services are
equipped with a combined graph transformation semantics and consistency can
be validated by the model checker GROOVE. In contrast, we take integrated
behavior models and check for potential conflict and causality inconsistencies
between activity-specifying rules directly. Thus, our technique is not a “push-
button” technique which checks a temporal formula specifying a desired prop-
erty, but offers additional views on activity models where users can conveniently
investigate intended and unintended conflicts and causalities between activities.

18 Here, we do not only regard trigger causalities between a and b, but also causalities
making the application of rule a irreversible as described in [13].



14

Fujaba [6], VMTS19 and GReAT20 are graph transformation tools for speci-
fying and applying graph transformation rules along a control flow specified by
activity models. However, controlled rule applications are not further validated
concerning conflict and causality inconsistencies within these tools. Conflicts
and causalities of pairs of rule-specified activities have been considered in var-
ious application contexts such as use case integration [8], feature modeling [9],
model inconsistency detection [15], and aspect-oriented modeling [14]. Although
sometimes embedded in explicit control flow, it has not been taken into account
for inconsistency analysis.

6 Conclusions and Future Work

Activity models are a wide-spread modeling technique to specify behavioral as-
pects of (software) systems. Here, we consider activity models where activities are
integrated with object rules which describe pre- and post-conditions of activities
based on a structural model. These integrated behavior models are formalized
on the basis of graph transformation. The integrated specification of object
rules within a control flow offers the possibility to find out potential conflict and
causality inconsistencies. Actually, we can check if the order of rule applications
specified by the control flow is plausible w.r.t. inherent potential conflicts and
causalities of object rules. The Eclipse plug-in ActiGra prototypically imple-
ments these plausibility checks and visualizes potential conflicts and causalities
in different views. Please note that our approach to plausibility reasoning can
easily be adapted to any other approach where modeling techniques describing
the control flow of operations, are integrated with operational rules like e.g. the
integration of live sequence charts with object rules in [12].

A further refinement step in activity-based behavior modeling would be the
specification of object flow between activities. Additionally specified object flow
between two activities would further determine their inter-relation. In this case,
previously determined potential conflicts and causalities might not occur any-
more. Thus, the plausibility checks would become more exact with additionally
specified object flow. A first formalization of integrated behavior models with
object flow based on graph transformation is presented in [11]. An extension of
plausibility checks to this kind of activity models is left for future work. More-
over, we plan to implement and visualize the sufficient criteria for consistency
[10] in ActiGra. To conclude, integrated behavior models head towards a better
integration of structural and behavioral modeling of (software) systems. Plausi-
bility checks provide light-weight static analysis checks supporting the developer
in constructing consistent models. Additionally, they allow modelers to reason
about the necessity of sequencing activities.

19 Visual Modeling and Transformation System: http://vmts.aut.bme.hu/
20 Graph Rewriting and Transformation: http://www.isis.vanderbilt.edu/tools/great

http://vmts.aut.bme.hu/
http://www.isis.vanderbilt.edu/tools/great


15

References

1. Biermann, E., Ermel, C., Lambers, L., Prange, U., Taentzer, G.: Introduction to
AGG and EMF Tiger by modeling a conference scheduling system. Int. Journal on
Software Tools for Technology Transfer 12(3-4), 245–261 (2010)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science, Springer (2006)

3. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring consistency of
business process models and web services using visual contracts. In: Proc. AG-
TIVE). LNCS, vol. 5088, pp. 17–31. Springer (2007)

4. Ermel, C., Gall, J., Lambers, L., Taentzer, G.: Modeling with plausibility check-
ing: Inspecting favorable and critical signs for consistency between control flow
and functional behavior. Tech. Rep. 2011/2, TU Berlin (2011), http://www.eecs.
tu-berlin.de/menue/forschung/forschungsberichte/

5. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Transactions on Software Engineering 7(30) (2004)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Proc. Theory and
Appl. of Graph Transformation. LNCS, vol. 1764, pp. 296–309. Springer (1998)

7. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
1–52 (2009)

8. Hausmann, J., Heckel, R., Taentzer, G.: Detection of conflicting functional require-
ments in a use case-driven approach: a static analysis technique based on graph
transformation. In: Proc. ICSE. pp. 105–115. ACM (2002)

9. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Proc. MoDELS. LNCS, vol. 4735, pp. 151–165. Springer (2007)

10. Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: Sufficient Criteria for Consistent
Behavior Modeling with Refined Activity Diagrams. In: Czarnecki, K. (ed.) Proc.
MoDELS. LNCS, vol. 5301, pp. 341–355. Springer (2008)

11. Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow Def-
inition for Refined Activity Diagrams . In: Proc. Int. Conf. on Fundamental Ap-
proaches to Software Engineering. LNCS, vol. 5503, pp. 49–63. Springer (2009)

12. Lambers, L., Mariani, L., Ehrig, H., Pezze, M.: A Formal Framework for Develop-
ing Adaptable Service-Based Applications. In: Proc. FASE. LNCS, vol. 4961, pp.
392–406. Springer (2008)

13. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universität Berlin (2009)

14. Mehner, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented model weaving.
In: Transactions on Aspect-Oriented Software Development V, LNCS, vol. 5490,
pp. 235–263. Springer (2009)

15. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model inconsis-
tencies using transformation dependency analysis. In: Proc. MoDELS. LNCS, vol.
4199, pp. 200–214. Springer (2006)

16. Object Management Group: Unified Modeling Language: Superstructure – Version
2.3 (2010), http://www.omg.org/spec/UML/2.3/, formal/07-02-05

17. Rensink, A., Van Gorp, P. (eds.): Int. Journal on Software Tools for Technology
Transfer, Section on Graph Transf. Tool Contest 2008, vol. 12(3-4). Springer (2010)

18. Störrle, H.: Semantics of UML 2.0 activity diagrams. In: VLHCC. IEEE (2004)

http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/
http://www.omg.org/spec/UML/2.3/

	Modeling with Plausibility Checking: Inspecting Favorable and Critical Signs for Consistency between Control Flow and Functional Behavior

