
A Rule-Based Approach
to the Semantic Lifting of Model Differences

in the Context of Model Versioning
Timo Kehrer, Udo Kelter
Software Engineering Group

University of Siegen, Germany
Email: {kehrer,kelter}@informatik.uni-siegen.de

Gabriele Taentzer
Philipps-Universität Marburg, Germany

Email: taentzer@mathematik.uni-marburg.de

Abstract—In model-based software engineering, models are
primary artifacts which iteratively evolve and which are often
developed in teams. Therefore, comparison and merge tools for
models are indispensable. These tools must compare models
in a technology-dependent run time representation and will
initially derive low-level changes, which can differ considerably
from user-level editing commands. Low-level differences are
often incomprehensible and should be semantically lifted to the
level of editing operations. This transformation of differences
depends on the model type, supported editing operations, and
user preferences; thus specific transformers are needed, and
building them is a challenge. We present a rule-based approach
to this problem: low-level differences are represented based on
the Eclipse Modeling Framework. They are transformed into
representations of editing operations using a rule-based model
transformation engine. The necessary transformation rules are
automatically derived from basic transformation rules for the
editing operations.

I. INTRODUCTION

Model-driven software development (MDSD) is becoming
common practice in many application domains. Models are in
the center of development activities here, they are iteratively
edited during the development process. MDSD requires fully-
fledged tool support, which includes tools for comparing,
merging, and patching of models, which we will collectively
refer to as difference tools.

Currently available difference tools for models are far from
satisfying, the low quality of these tools is often considered
as one of the biggest obstacles against the wide acceptance of
MDSD in practice [2]. This unfortunate situation has one main
reason: difference tools must be specifically engineered for
each modeling language and, more often than not, be adapted
to other tools and user preferences. Methods for developing
better difference tools for models with limited implementation
effort are therefore a primary concern.

This paper addresses a significant deficiency of current dif-
ference tools: they present differences in terms of “low level”
changes related to internal, often tool-specific representations
of models. In contrast to this, developers perceive models in
their external, typically graphical representation, and prefer
changes to be explained in terms of basic editing commands

and, if available, in terms of refactorings and further complex
editing operations.

Difference tools are basically faced with two models which
are to be compared and which are represented as contents
of persistent storage media or as runtime objects. Persistent
storage media include XML files, proprietary file formats,
and relational databases. In order to be processed by tools,
persistent representations of models must be “loaded”, i.e.
must be converted into an internal representation consisting of
runtime objects. The internal representation can have the same
structure as the persistent representation, e.g. some textual
format, but often it is converted into a tree structure. It is
commonly agreed that comparing textual representations of
models does not produce usable results [2], [4], [6] and
that models should be compared on the basis of graph-based
representations.

Internal representations of models depend on the technolo-
gies being used to implement difference tools, notably the
specific programming language and, where applicable, mod-
eling frameworks such as the Eclipse Modeling Framework
(EMF) [7]. Internal representations can normally be considered
as implementations of abstract syntax graphs (ASGs) which
represent the conceptual parts of models only.

Fig. 1. Original model A and its revision B

The external and internal representations of a model and
related changes can differ quite substantially. Figure 1 shows

an example based on UML models [30]: Model A is the base
version, revision B has been obtained by two editing steps:

1) The navigation of association worksFor is restricted
to one end, indicated by adding an arrowhead1.

2) The attribute name was moved to superclass Person
using the refactoring “Pull Up Attribute”.

If available difference tools compare the above versions A
and B, they will find the following set of low-level changes
on the basis of the first editing step:

• Reference ownedAttribute from class Person to
property employer has been removed.

• Reference ownedEnd from association worksFor to
property employer has been added.

• Reference class from property employer to class
Person has been removed.

• Reference owningAssociation from property
employer to association worksFor has been added.

These low-level changes are not understandable for normal
tool users who are not familiar with meta modeling and the
internal representation of models. We will recall the Ecore-
representation of UML-models in Section II and present our
internal representation of model differences in Section III.

There are several other examples where a seemingly simple
change in the external graphical and/or textual representation
of model elements causes significant structural changes in the
internal representation: dragging an association end to another
class or changing the text which represents the multiplicity of
an association end, a parameter list, or a list of stereotypes;
[15] discusses further examples in state machines and similar
types of models.

The second editing step in Figure 1 (pullUpAttribute) leads
to a model difference which contains 3 low-level changes: The
attribute name in the classes Developer and Manager has
been deleted and an attribute name has been created in class
Person. Most likely, the tool user prefers the change being
explained as application of refactoring “Pull Up Attribute” on
class Person for the attribute name.

The examples mentioned have in common that a potentially
large unstructured set of low-level changes should be grouped
in such a way that editing operations can be recognized.
Editing operations form an adequate abstraction level for
the user perception of model differences. We use the term
semantic lifting of differences to refer to this transformation
of low-level changes to more conceptual descriptions of model
modifications.

In this paper, we propose a technique for designing and
implementing tool components which can semantically lift
model differences.

We assume the usual structure of state-based differencing al-
gorithms as shown in Figure 2: Initially, a matching algorithm
identifies corresponding model elements and relations in both
models, i.e. corresponding nodes and edges in their ASGs.
Model elements and relations not involved in a correspondence

1We assume the usual presentation option here that an association without
arrowheads is navigable in both directions.

are considered to be deleted or created; these insertions and
deletions form the low-level difference.

Fig. 2. Model differencing pipeline

The low-level difference is further processed by a “semantic
lifting” component which identifies sets of atomic changes
that implement an editing operation, and determines these
operations as well as their parameters. These results are used
by further components for e.g. visualizing differences and
merging models, which are out of the scope of this paper.

In our approach, the “semantic lifting” component is imple-
mented using Henshin [1], [13], a transformation engine for
EMF models. To that end, a low-level difference is represented
as an EMF model. Finding groups of related low-level changes
is basically a pattern matching problem, which is solved by
the matching engine of Henshin. Such a group is annotated
with information about the editing operation it implements by
a model transformation.

The main task to implement a semantic lifting component
is thus to “program” Henshin rules which find groups of
related low-level changes and which annotate these groups
accordingly. Most of these Henshin rules can be automatically
generated from transformation rules specifying the corre-
sponding editing operations; i.e. in accordance with MDSD
principles, we automatically derive these rules rather than to
manually program them. The effort required for implementing
a semantic lifting component is significantly reduced in this
way.

The rest of the paper is structured as follows. Section II
recalls how to specify editing operations of EMF models by
model transformation rules. In Section III we introduce our
representation of model differences which is later extended
by the definition of semantic change sets. Section IV intro-
duces our approach to specify instances of semantic change
sets by recognition rules, while Section V explains how the
recognition rules are to be executed. Section VI evaluates our
approach, and Section VII compares our approach with other
work. Section VIII concludes the paper.

II. EDITING OF EMF MODELS

Throughout this paper, we use the Eclipse Modeling Frame-
work (EMF) as underlying technology for modeling. EMF
allows us to specify modeling languages by the Ecore meta-
model. Moreover, EMF forms a suitable basis for model
editors. For example, graphical editors based on EMF can be
generated by the Graphical Modeling Framework (GMF) [11],
while the generation of textual editors is well supported by e.g.
Xtext [35]. In [28], we show how GMF-generated editors can
be extended by complex editing operations specified by EMF
model transformation rules. To understand this idea better, we
reconsider the example presented in the introduction.

To restrict the navigability of an association to one end, the
corresponding edit operation can be specified as in Figure 3.
The variable p1 serves as a parameter which shall be bound
to the association end property to be restricted in navigability
when the rule is applied. Variables r, p2, C1, and C2
will be automatically bound to the association, the opposite
association end property and the adjacent classes.

Fig. 3. Sample editing operation in concrete syntax

In order to be processed by modeling tools, editing op-
erations have to be specified based on the internal model
representation. Since we consider UML models and take EMF
as underlying technology, models are internally represented
in the Ecore-based specification of the UML2 syntax. Figure
4 shows a small excerpt from this meta model which is
relevant for our example. It shows three model elements
Class, Association, and Property together with their
various relations. Properties being association ends may be
owned by classes (via ownedAttribute) or associations
(via ownedEnd). An association end is navigable if it is
owned by a class or if it is a navigableOwnedEnd owned
by the association. In this paper, we assume navigable ends to
be owned by classes and non-navigable ends to be owned by
associations.

Fig. 4. Excerpt of the Ecore-based implementation of the UML2 superstruc-
ture specification

Figure 5 shows the effects of executing the first editing oper-
ation in our example, i.e. the restriction of navigability, in the
internal model representation. Initially, property employer
is owned by class Person, the ownership changes to associ-
ation worksFor. Thus, references ownedAttribute and
class are deleted (shown in red) and references ownedEnd
and owningAssociation are created (shown in green).

We use Henshin to precisely specify edit operations by
model transformation rules. Henshin supports in-place trans-
formations of EMF models and is based on graph transforma-
tion concepts [8]. A Henshin transformation rule can specify
model patterns to be found and preserved, to be deleted, to be
created, and to be forbidden.

Figure 6 shows Henshin rule editR-restrictNav
which specifies the edit operation “restrict navigability”. Each

Fig. 5. Internal model modifications after navigability restriction

Fig. 6. Edit rule “editR-restrictNav”

EObject and EReference in this model pattern is anno-
tated by a corresponding stereotype. Property p1 (representing
the association end to be restricted in navigability), its owning
class C2 as well as the association r having p1 as member
end have to be found. After the rule application, the matched
property has no longer references to class C2, but belongs
to the association. Furthermore, a Henshin rule can have
variables such as C2, p1, and r. However, p1 is the only
input parameter here while the other two are set automatically.
Reference pairs that are declared as opposite to each other
need to be specified in one direction only in Henshin rules,
as the existence of the opposite reference is a general EMF
constraint.

III. MODEL DIFFERENCES

State-based comparison algorithms compute symmetric dif-
ferences on the basis of the current states of the models. The
computation of a symmetric difference basically consists of
two main phases as shown in Figure 2:

1) Initially, a matching algorithm identifies corresponding
model elements and relations in both models.

2) Subsequently, model elements and relations not involved
in a correspondence are determined and a suitable
representation of a difference is created. We refer to
this creation of a low-level difference as difference
derivation.

Matching algorithms are out of the scope of this paper,
surveys of different approaches can be found in [20], [24].

Figure 7 shows the Ecore-based representation of model
differences that is used by the implementation of our approach.

Fig. 7. Ecore-based representation of model differences

Two EMF models A and B that are being compared are
represented by ResourceSets. Their difference consists of
a set of correspondences representing the common parts of A
and B, and a set of changes from model A to model B. A
correspondence links an EObject of model A to an EObject
of model B (s. invariant iv1). Correspondences between object
references are given implicitly by their corresponding source
and target objects.

We distinguish the following types of changes:
• An AttributeValueChange represents a value

change of an attribute of corresponding objects (s. in-
variant iv6).

• A change of type AddObject represents the insertion
of a new object, i.e. an object that is contained in
model B but does not have a corresponding object in
model A (s. invariant iv2). Analogously, changes of type
AddReference represent references that have been
inserted (s. invariant iv4).

• Changes of types RemoveObject and
RemoveReference represent the inverse of changes of
types AddObject and AddReference, respectively.

We introduce the following notation to describe a change c
in a compact manner:

c = 〈changeType, context〉 (III.1)

The changeType denotes the type of change, i.e. the
concrete subclass of Change, while the context denotes the
set of objects (of type EObject or of one of its subtypes

EReference and EAttribute) to which the change has
been applied.

In terms of our introductory example in Figure 1, the
restriction of navigability of the association end employer
leads to the following four low-level changes, which were
already introduced informally in Section I.

rn1 = 〈”RemoveReference”,
{src = ”Person”, tgt = ”employer”,
type = ”ownedAttribute”}〉

rn2 = 〈”AddReference”,
{src = ”worksFor”, tgt = ”employer”,
type = ”ownedEnd”}〉

rn3 = 〈”RemoveReference”,
{src = ”employer”, tgt = ”Person”,
type = ”class”}〉

rn4 = 〈”AddReference”,
{src = ”employer”, tgt = ”worksFor”,
type = ”owningAssociation”}〉

Changes rn1 and rn2 represent the “move” of property
employer from class Person to association worksFor.
Changes rn3 and rn4 are typical examples of conceptually
irrelevant pseudo changes [14]; rn3 results from the fact that
reference class is a redundant information here. Change
rn4 occurs since ownedEnd and owningAssociation
are implemented as mutually reverse (eOpposite) reference
types in the Ecore-based UML2 meta model.

Let us now consider the second editing step of our ex-
ample of Figure 1. Here, the attribute name is moved from

subclasses Developer and Manager to their superclass
Person by means of the well-known refactoring operation
“Pull Up Attribute” [10]. Let us assume that our matching
contains correspondences between all classes in A and B
having equal names, and a correspondence between the at-
tributes Manager.name in A and Person.name in B. The
following low-level changes are derived then. (We omit several
low-level changes which are pseudo changes. They are similar
to those which occurred in the first editing step.)

pua1 = 〈”RemoveObject”,
{obj = ”Developer.name”}〉

pua2 = 〈”RemoveReference”,
{src = ”Manager”, tgt = ”Manager.name”,
type = ”ownedAttribute”}〉

pua3 = 〈”AddReference”,
{src = ”Person”, tgt = ”Person.name”,
type = ”ownedAttribute”}〉

Change pua1 represents the deletion of the attribute
Developer.name, while changes pua2 and pua3 represent
the move of attribute Manager.name from class Manager
to class Person.

IV. SEMANTIC CHANGE SETS

A. Definition of Semantic Change Sets

Our introductory example in Figure 1 has already shown
that user-level edit operations often lead to many low-level
changes which are hard to understand for normal users. This
problem is further aggravated by the fact that the set of low-
level changes can be listed in an arbitrary order and that low-
level changes stemming from different edit operations can be
mixed randomly. The objective of semantically lifting a model
difference is thus to partition the set of low-level changes into
disjoint subsets, each subset containing the changes belonging
to exactly one edit operation. These subsets must be disjoint
since each low-level change results from the application of
exactly one edit operation. We call these subsets semantic
change sets. Formally, we denote the set of all semantic
change sets as

CS = {cs1, ..., csm} (IV.1)

with m ≤ |C| where C is the overall set of changes. Moreover,
we have csi ⊆ C for all i, 1 ≤ i ≤ m,

⋃m
i=1 csi = C, and

csi ∩ csj = ∅ for all 1 ≤ i < j ≤ m.
In our example of Figure 1, the set of all change sets is

CS1 = {{rn1, rn2, rn3, rn4}, {pua1, pua2, pua3}}.

The first change set contains the result of the edit operation
“restrictNav”, while the second one is the result of edit
operation “pullUpAttribute”2.

In order to represent change sets, we must extend the
Ecore-based representation of model differences in Figure 7.
These extensions are shown in Figure 8. Objects of type

2As already mentioned, we have omitted several pseudo changes here for
the sake of readability.

Change which represent the low-level changes, are grouped
by SemanticChangeSet objects which represent the result
of an edit operation.

Fig. 8. Difference model extension: Representation of semantic change sets

B. Semantic Change Set Specification

The application of a specific type of edit operation results in
a change pattern on our Ecore-based difference representation
which is characteristic of this type of edit operation. Thus, we
can make use of Henshin transformation rules

1) to specify change patterns that have to be recognized in
an Ecore-based difference representation and

2) to specify how to group low-level differences contained
in a change pattern.

A transformation rule which handles a specific type of edit
operation is referred to as change set recognition rule.

As an example, an excerpt of the change set recognition
rule “recognitionR-restrictNav” recognizing edit operation “re-
strictNav” is depicted in Figure 9. Although the concrete
identifier names are technically irrelevant in terms of Henshin
transformation rules, we use the variable names of Figure 6 to
build identifier names. That way objects of the internal model
representations in “recognitionR-restrictNav” can be mentally
related to those of the edit rule “editR-restrictNav” (s. Figure
6).

As we can see in Figure 9, objects which are preserved by
the edit rule are linked by correspondences in the difference
representation. Three instances of this correspondence pattern
can be identified: for association r, for class C2 and for
property p1 which is moved from r to C2.

No direct correspondence mappings are established be-
tween preserved references in the difference representation.
Corresponding references are identified by their context, i.e.
corresponding source and target objects. In “recognitionR-
restrictNav”, this preserved reference pattern can be found
three times: for the reference memberEnd from r to p1,
the opposite reference association from p1 to r, and the
reference endType from r to C2.

Additionally, our sample recognition rule “recognitionR-
restrictNav” contains four change patterns (two remove ref-
erence patterns and two add reference patterns) representing
changes rn1 to rn4 (s. Section III). Figure 9 shows patterns
for changes rn1 and rn2 only. They can be easily identified
in Figure 9 by means of their respective change types and
contexts.

A SemanticChangeSet object is created by each ap-
plication of “recognitionR-restrictNav”; this object groups all
related low-level changes. Additionally, the created change set

Fig. 9. Sample recognition rule “recognitionR-restrictNav”

will be inserted into the difference representation (which is not
shown in Figure 9 due to space limitations).

C. Generation of Recognition Rules
Change set recognition rules are getting complex very

quickly. However, they are very schematic and can be au-
tomatically generated from their corresponding edit rule. The
core of this transformation is presented as function editR2-
RecognR in the listing below. Let er be the edit rule which
serves as input parameter and which will be transformed to a
corresponding recognition rule.
f u n c t i o n edi tR2RecognR (Rule e r){

Rule r r = new Rule () ;
c r e a t e C h a n g e S e t (r r) ;
f o r each EObjec t o ∈ (e r . p r e s e r v e d)

c r e a t e C o r r e s p o n d e n c e P a t t e r n (r r , o) ;
f o r each ERefe rence r ∈ (e r . p r e s e r v e d)

c r e a t e P r e s e r v e d R e f e r e n c e P a t t e r n (r r , r) ;
f o r each EObjec t o ∈ (e r . d e l e t e d){

c r e a t e R e m o v e d O b j e c t P a t t e r n (r r , o) ;
l inkChangeToChangeSe t (r r , o) ;

}
f o r each ERefe rence r ∈ (e r . d e l e t e d){

c r e a t e R e m o v e R e f e r e n c e P a t t e r n (r r , r) ;
l inkChangeToChangeSe t (r r , r) ;

}
f o r each EObjec t o ∈ (e r . c r e a t e d){

c r e a t e A d d O b j e c t P a t t e r n (r r , o) ;
l inkChangeToChangeSe t (r r , o) ;

}
f o r each ERefe rence r ∈ (e r . c r e a t e d){

c r e a t e A d d R e f e r e n c e P a t t e r n (r r , r) ;
l inkChangeToChangeSe t (r r , r) ;

}
re turn r r ;

}

All subroutines creating instances of the respective pat-
terns are not explained in detail here, but can be im-
plemented straightforward according to the explanation of
our “recognitionR-restrictNav”-example above. Subroutine
createChangeSet adds a SemanticChangeSet ob-
ject to the created-part of the recognition rule. This

SemanticChangeSet object is linked with all Change ob-
jects which are created by change pattern instances; these links
are created by the subroutine linkChangeToChangeSet.

An automatically generated change set recognition rule has
to be manually post-processed only if the corresponding edit
rule has side effects which are (a) not explicitly expressed in
the edit rule and which (b) cannot be derived from information
in the meta model.

In our sample edit rule “editR-restrictNav”, the implicit
creation of the owningAssociation reference from p1 to
r can be derived automatically, as owningAssociation
is declared to be opposite to reference ownedEnd from r to
p1, which is explicitly created.

D. Non-static Change Patterns

So far, we have considered editing operations which result
in static change patterns, i.e. each editing operation can be
specified by one transformation rule. However, there are also
editing operations resulting in non-static change patterns. The
refactoring operation “pullUpAttribute” is an example of this:
it is applied to all common attributes in the set of all direct
subclasses of a given class. Since the number of common
attributes and the number of subclasses can vary, we need
a concept to capture this variability.

Although simple model transformation rules as presented in
Section II can combine a number of basic model operations
into one transaction, the variability described above cannot
be specified on that basis. We need an additional concept to
express recurring model patterns, which we call multi-object
structures.

The model transformation system Henshin offers amalgama-
tion units to specify transformations of multi-object structures
[1], [3]. An amalgamation unit contains a kernel rule and an
arbitrary number of multi rules. A kernel rule is a simple
model transformation rule which can be equipped with a set
of multi-rules which include the kernel rule. Each multi-rule
specifies one multi-object structure and its transformation. An
amalgamation unit is applied as follows: The kernel rule is

applied once. This match is used as a common partial match
for each multi rule, which are matched as often as possible.
Thus, multi-object structure transformations are performed as
often as corresponding structures occur in a given model. An
edit rule for refactoring “pullUpAttribute” is presented in [1].
Its kernel rule moves one of the common attributes which
shall be pulled up from a class to its superclass. One multi-
rule is needed to delete the common attribute from each further
subclass.

We have adopted the amalgamation concept to handle non-
static change patterns in recognition rules. To that end, our
algorithm for recognition rule generation is extended by the
function editAU2RecognAU. A sketch of this function is
listed below: Parameter eau denotes the editing amalgamation
unit and variable rau denotes the recognition amalgama-
tion unit to be created. The kernel rule of eau is trans-
formed to the kernel rule of rau according to the function
editR2RecognR() introduced in section IV-C. In the same
way, each multi-rule of eau is transformed to a multi-rule of
rau properly embedding the kernel rule of rau into each
multi-rule.

f u n c t i o n editAU2RecognAU (AmalgmUnit eau) {
AmalgmUnit r a u = new AmalgmUnit () ;
r a u . k e r n e l = edi tR2RecognR (eau . k e r n e l) ;
f o r each Rule em ∈ eau . m u l t i {

r a u . m u l t i . add (edi tR2RecognR (em)) ;
embedKernel (rau , em) ;

}
re turn r a u ;

}

V. EDITING OPERATION RECOGNITION

A. Rule application strategy

The recognition of an edit operation is based on a set of
low-level changes as collected in a difference. Transient model
elements, which are created by one edit operation and deleted
by a subsequent one, do not appear at all in the resulting
difference. A recognition rule, however, will only find a match
if the difference contains all low-level changes specified by
the corresponding edit rule. We assume here, that the effect of
each edit operation, that is applied in an editing sequence, is
either removed completely by a later operation or it is entirely
preserved. Thus, the sequential order in which we apply the
change set recognition rules is irrelevant. Additionally, change
set recognition rules do not delete elements and thus, are
parallel independent, i.e. the recognition rules can be applied
to the difference representation at all possible matches in
parallel.

However, the above rule application strategy can lead to
too many change sets, i.e. there can be false positives. As
an example, we extend our set of edit operations defined for
UML class models by two further edit operations, namely the
edit operation “deleteAttr”, which removes an attribute from
a class, and the edit operation “moveAttr”, which moves an
attribute from one class into another. In our running example of
Figure 1, the recognition rules for “deleteAttr” and “moveAttr”

will find the additional potential change sets {pua1} and
{pua2, pua3}, respectively. In sum, all four recognition rules
together will find the following change sets:

PCS1 = CS1 ∪ {{pua1}, {pua2, pua3}},

CS1 (see Section IV-B) contains the change sets which
represent the edit operations that have been actually applied.
The change sets contained in PCS1 are not mutually disjoint,
therefore some of them must be discarded.

In general, let D be a given difference, i.e. a set of low-level
changes, and PCSD be the set of potential change sets which
are created by applying all recognition rules on D as often as
possible. Thus

∀p ∈ PCSD : p ⊆ D (V.1)

If some potential change sets overlap, i.e.

∃p, q ∈ PCSD : p ∩ q 6= ∅, (V.2)

then PCSD must be postprocessed as described in the next
section.

B. Postprocessing

The goal of the postprocessing phase is to determine a
subset of set PCSD of potential change sets which conforms
to the conditions for sets of semantic change sets (s. Section
IV-A). The postprocessing of PCSD results in a set parti-
tioning problem, which is basically an optimization problem.
Due to the lack of a clear optimization criterion, we assume
that reporting a minimal number of editing operations reflects
the user perception of a model difference most adequately.
Thus, we are looking for a set PCSmin ⊆ PCSD of
potential change sets such that the following conditions hold
for PCSmin = {p1, ..., pk}:

• pi ∩ pj = ∅, ∀1 ≤ i < j ≤ k,
•

⋃k
i=1 pi = D, and

• k is minimal.
We employ the following heuristics in order to efficiently

reduce PCSD and finally determine PCSmin:
Firstly, we are looking for change sets that do not overlap

with other change sets. Such change sets are very frequent.
They must obviously be included in PCSmin and do not have
to be dealt with further. In our example, this is the case for
change set {rn1, rn2, rn3, rn4}.

Secondly, we search for each change set p which properly
includes smaller change sets q1 . . . qm which do not overlap
with any other change set not included in p. In this case,
change sets q1 . . . qm will be discarded and are not included in
PCSmin because, generally, an edit operation which covers
a larger change set is preferred over edit operations which
cover a smaller, included set of changes. In our running
example, the change set {pua1, pua2, pua3} representing the
“pullUpAttribute” refactoring will thus be preferred over the
smaller change sets {pua1} and {pua2, pua3}, which can be
discarded. These cases occur whenever a single operation is
composed of a set of smaller operations or a core operation
has one or more extensions.

Finally, the remaining change sets are partially overlapping.
This reduced set partitioning problem has to be solved by com-
binatorial optimization. Our practical evaluation has shown
that these cases are hypothetically as long as the set of edit
operations consists of basic operations as they are offered by
typical editors for graphical modeling (s. Section VI).

VI. EVALUATION

A. Case Studies

We implemented change set recognition rules for UML
class models and Matlab/Simulink block diagrams. These
two visual modeling languages are good representatives to
show the applicability of the approach. UML is the standard
modeling language for software systems and comes along
with a comprehensive meta model. Matlab/Simulink [22] is
a domain-specific language that is a de-facto standard for
modeling embedded systems; the characteristics of Simulink
models and the way how they are edited differ significantly
from class models.

In the case of UML class models, our set of recognition
rules covers 41 edit operations which are taken to a large
extent from the atomic rules given in [31]. The recognition
rules are based on the EMF implementation of the UML meta
model. Most parts of the change set recognition rules are
involved in collecting pseudo changes which result from the
complex, often redundant structure of the UML meta model.
Many change patterns resulting from UML edit operations
are structurally similar, therefore we can define a set of rule
templates which can be adapted easily to specify concrete
UML edit operations. In sum, it took us several days of work
only to develop the recognition rules for UML class models.

In the case of Matlab/Simulink, we identified 16 different
edit operations which are applicable to block diagrams in
terms of the Matlab/Simulink IDE. A meta model for Mat-
lab/Simulink is not publicly available. Therefore we developed
an own meta model for Simulink diagrams and implemented
it in EMF. We also implemented a parser which converts
Simulink models from the proprietary format into their EMF
representation. Our Simulink meta model contains only few
redundancies; the number of pseudo changes we have to
address within the recognition rules is significantly lower than
in the case of UML models. The edit operations on Simulink
models turn out be more complex and less schematic than
those on UML class models. Our rule templates for typical
UML edit operations can be reused for 11 of our 16 Simulink
edit operations. Although the number of edit operations is
much smaller than in case of the UML class models, it took
us approximately the same amount of time to implement our
Simulink recognition rules.

Editors for graphical modeling typically offer pairs of
operations to add and delete model elements of specific types.
These pairs of operations are basically inverse to each other,
i.e. the effects of an edit operation are removed completely
by the inverse operation. In addition, there are some move
operations which are inverse to themselves. For both, UML
class models and Simulink block diagrams, we were able to

specify respective sets of edit operations. Differences being
produced by these sets of editing operations therefore adhere
to our basic assumptions for edit operations stated in Section
V-A.

B. Test Cases

We developed different test scenarios to which we applied
our change set recognition for UML class models. Some
test cases are synthetic, these pairs of models were manually
created by applying predefined sequences of edit operations.
In the following tables, we group the synthetic test cases in
three categories, the first and second being borderline test
cases. Category UML1 contains pairs of unchanged models,
which result in empty differences. Category UML2 contains
pairs of models which have no corresponding model elements
at all, i.e. differences are large. Category UML3 contains
pairs of models that were modified by a random selection
of a set of edit operations. We create one representative test
case for categories UML1 and UML2, respectively, and six
representatives falling into category UML3.

The other test cases are taken from real projects. We anal-
ysed consecutive pairs of an existing history of 10 revisions of
a flight ticketing data model and manually reverse engineered
sequences of edit operations which we later used as reference
output data for our test cases (UML4). In the case of Mat-
lab/Simulink, we extracted test data from an existing model
repository of an industrial partner from the automotive domain.
Here, we analyzed the differences between four snapshots of a
block diagram which models the behaviour of a cruise control
(SIM).

Table I summarizes characteristics of our test cases. Firstly,
an overview of the sizes of compared models is given by the
average number of objects (NoO) and the average number of
object references (NoR) in terms of the internal representation.
Secondly, the measures of two difference metrics, namely the
average numbers of correspondences (NoC) and applied edit
operations (NoE) indicate the extent to which the compared
models were differing from each other.

TABLE I
TEST MODEL AND DIFFERENCE MEASURES

avg. NoO avg. NoR avg. NoC avg. NoE

UML1 45 92 45 0
UML2 39 73 1 52
UML3 32 63 26 13
UML4 118 284 103 20
SIM 4963 6750 4901 59

C. Test Results and Analysis

The first column of Table II shows the average size of the
low-level difference (avg. |D|), i.e. the number of low-level
changes. The other columns list the minimum, maximum, and
average value of the compression factor, which is an indicator
how much a user’s perception of a difference is improved. It
is defined as follows:

cf =
|D|
|CS|

(VI.1)

where |CS| denotes the number of recognized semantic
change sets. The compression factor measures how many low-
level changes are grouped by a semantic change set. In the case
of UML3, UML4 and SIM, which cover multiple test cases,
Table II lists average values for |D| and cf .

TABLE II
DIFFERENCE COMPRESSION THROUGH SEMANTIC LIFTING

avg. |D| min(|D|
|CS|) max(|D|

|CS|) avg. cf

UML1 0 - - -
UML2 596 4 91 11.4
UML3 131 1 64 18.0
UML4 310 1 55 15.7
SIM 484 1 56 6.2

The compression rates show that model differences can in
fact be optimized significantly through semantically lifting to
user-level edit operations.

In case of the UML models, the high compression rates
might be surprising, since most edit operations appear to be
quite simple. The high compression rates are mainly caused
by the fact that the meta model is far from being optimized
for model comparison and leads to a large number of pseudo
changes. The maximum compression rates usually occur in
the context of delete operations. For instance, the maximum
number of 91 low-level changes results from the deletion
of a UML class with all its adjacent relations (associations,
dependencies etc.) and contained attributes. The minimum
compression rates occur in the context of edit operations which
change attribute values, e.g. the name of a model element,
which leads to one low-level change only.

In the case of Simulink models, the average compression
rates are lower, but still significant, and our evaluation shows
that it is definitively worth to semantically lift differences
here, too. The maximum number of 56 low-level changes in
a semantic change set was due to a complex edit operation
which extracts an entire subsystem; the manual inspection of
the related low-level changes is very tedious.

A basic assumption of our approach is that the low-level
difference contains complete change sets which in turn means
that the matching engine producing the matching, must be
fairly reliable. In the case of UML models, we computed
correspondences on the basis of persistent identifiers, which
is a very common approach. Matchings computed this way
are very reliable. As expected, all test cases lead to a correct
recognition of semantic changes sets, i.e. all low-level changes
are grouped by change sets which represent the edit operations
being applied to our test models.

The percentage of correctly recognized change sets is more
than 95% in each of the Simulink test cases. There are two
reasons why some edit operations are not recognized: (a)
Persistent identifiers are not available in the case of Simulink

models. Here, we use the similarity-based matching engine of
SiDiff [26] for computing correspondences. Due to compari-
son heuristics, a small part of the change sets differs slightly
from the reference edit sequences, and thus is not recognized.
(b) In rare cases, which depend on the state of a model,
Simulink edit operations have complicated side-effects, e.g.
implicit creation of default value specifications. These effects
are not directly visible in the user interface, and might even be
irrelevant from a user’s point of view. However, even in cases
where low-level changes are not grouped to change sets, the
manual inspection of the resulting lifted difference is much
easier than the inspection of the raw low-level difference.
Nonetheless, it appears a basic requirement, that the tools,
which process semantically lifted differences, must be capable
of working with low-level changes and semantic change sets
simultaneously. With respect to difference visualization, for
example, the clickable list of local changes [16] is a proper
concept to support low-level changes and semantic change sets
in parallel.

We also measured the execution times for the semantic
lifting of the low-level differences. Typically, these times are
much smaller than the time needed to compute the low-level
difference. In the case of all Simulink test cases, for example,
more than 90% of the overall comparison runtime is consumed
by the computation of correspondences.

These figures are mainly due to the fact that in practice
only a small part of the compared models is changed. In other
words, no matter how sizes are measured, model differences
are always much smaller than the compared models (see Table
I). To sum up, our performance analysis demonstrates that se-
mantic lifting is practicable for interactive model comparison.

VII. RELATED WORK

Difference tools for models have been addressed by a large
number of publications recently; the bibliography [5] compiles
about 300 publications in this field, most of them dating from
2003 or later.

One class of approaches [12], [21], [23] is based on logging,
i.e. editing processes are logged at the level of user commands
or lower levels. Thus the problem addressed by this paper
disappears. However, logging-based approaches require closed
environments and do not work with independently created
models, thus they are not a general solution of the problem.

Most approaches are state-based, surveys of them can be
found in [9], [20], [24]. Virtually all of these methods consider
models as graphs and have a similar processing structure like
the basic differencing pipeline shown in Figure 2.

Some of these approaches [32], [34] are specific to certain
domains, i.e. adapted to a specific model type. They can specif-
ically handle each type of model elements. These approaches
use special matching strategies and difference derivations; they
are not general enough for other model types.

Only a few approaches are generic in the sense that they
can be adapted to any model type, with varying degree of
effort and success [6], [19], [25], [29]. These algorithms
assume a standard graph representation such as Ecore, and

are typically configured by the meta model of a model type
and by additional configuration data. They have in common
that they deliver only low-level differences, thus all of them
can be used to perform the first two steps of the differencing
pipeline shown in Figure 2. We are not aware of a generic
algorithm which semantically lifts the low-level differences
and which can be adapted to a large variety of model types.

Könemann [17], [18] addresses a similar problem like ours:
A difference can be used as a patch which is to be applied
to a model. Problems arise if this model differs from the
original base model from which the difference was computed.
The “literal” difference is transformed into a more “fuzzy”
specification of the desired changes, and one attempts to catch
the change intention by grouping changes using name patterns
or OCL queries. The definition of groups of changes and the
later application of the patch rely heavily on manual control
and corrections by users; in contrast to that, we aim at an
automated transformation of low-level differences. In fact, our
method of semantically lifting differences can beneficially be
used before transforming the exact (lifted) difference into a
“fuzzy” patch.

A number of publications have addressed the reverse engi-
neering of refactorings in the context of mining repositories.
For example, [33] proposes to export relevant difference infor-
mation in a database and to use queries for finding instances of
refactorings. Our problem of actually annotating and lifting a
difference is not directly addressed. The overhead of setting up
a database and creating all required indexes, which is relevant
when mining repositories, is a significant performance problem
when comparing only two models.

VIII. CONCLUSION

In this paper, we have addressed the problem of how to
semantically lift low-level differences, which are produced by
currently available differencing engines for models, towards
user-comprehensible specifications of changes. We assume that
solutions of this problem are acceptable only if they can be
adapted to the specific model type and user preferences, thus
solutions must be individually engineered. Our approach uses
a standard model transformer (Henshin) for finding instances
of editing operations and annotating a low-level difference,
and reduces the “programming” of Henshin largely to a trans-
formation of edit rules to recognition rules, which drastically
reduces the implementation effort. Our tests have shown that
the components implemented in this way performed well with
fairly high numbers of editing operations to be recognized.

REFERENCES

[1] Arendt, T.; Biermann, E.; Jurack, S.; Krause, C.; Taentzer, G.: Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transforma-
tions; in: Proc. Intl. Conf. Model Driven Engineering Languages and
Systems 2010, Oslo; LNCS 6394, Springer; 2010

[2] Bendix, L.; Emanuelsson, P.: Collaborative Work with Software Models
- Industrial Experience and Requirements; Proc. Intl. Conf. Model-Based
Systems Engineering, Haifa; http://www.mbse-org.org; 2009

[3] Biermann, E.; Ermel, C.; Taentzer, G.: Lifting Parallel Graph Trans-
formation Concepts to Model Transformation based on the Eclipse
Modeling Framework; Electronic Communications of the EASST 26;
2010

[4] Proc. Intl. ICSE Workshop on Comparison and Versioning of Software
Models, Vancouver; IEEE; 2009

[5] Bibliography on Comparison and Versioning of Software Models;
http://pi.informatik.uni-siegen.de/CVSM

[6] EMF Compare Project; http://www.eclipse.org/emf/compare
[7] EMF: Eclipse Modeling Framework; http://www.eclipse.org/emf
[8] Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G.: Fundamentals of Al-

gebraic Graph Transformation; Monographs in Theoretical Computer
Science, Springer; 2006

[9] Förtsch, S.; Westfechtel, B.: Differencing and Merging of Software
Diagrams - State of the Art and Challenges; p.90-99 in: Proc. Intl. Conf.
Software and Data Technologies, 2007; INSTICC Press; 2007

[10] Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Roberts, D.: Refactoring:
Improving the Design of Existing Code; Addison-Wesley; 1999

[11] GMF: Graphical Modeling Framework; http://www.eclipse.org/gmf
[12] Herrmannsdörfer, M.; Kögel, M.: Towards a Generic Operation Recorder

for Model Evolution; p.76-81 in: Proc. 1st Intl. Workshop on Model
Comparison in Practice, Malaga; ACM; 2010

[13] EMF Henshin Project; http://www.eclipse.org/modeling/emft/henshin
[14] Kelter, U.: Pseudo-Modelldifferenzen und die Phasenabhängigkeit von

Metamodellen; p.117-128 in: Proc. Software Engineering 2010, Pader-
born; LNI 159, GI; 2010 (available in German only)

[15] Kelter, U.; Schmidt, M.: Comparing state machines; p.1-6 in: Proc. ICSE
Workshop on Comparison and Versioning of Software Models, Leipzig;
ACM; 2008

[16] Kelter, U.; Schmidt, M.; Wenzel, S.: Architekturen von Differenzw-
erkzeugen für Modelle; p.155-168 in: Proc. Software Engineering 2008.
Munich; LNI 121, GI; 2008 (available in German only)

[17] Könemann, P.: Model-independent differences; p.37-42 in: [4]
[18] Könemann, P.: Capturing the Intention of Model Changes; p.108-122

in: Proc. Intl. Conf. Model Driven Engineering Languages and Systems
2010, Oslo, Part I; LNCS 6394, Springer; 2010

[19] Kolovos, D.S.; Paige, R.F.; Polack, F.A.C.: Merging Models with the
Epsilon Merging Language (EML); p.215-229 in: Proc. Intl. Conf.
Model Driven Engineering Languages and Systems 2006, Genova;
LNiCS 4199, Springer; 2006

[20] Kolovos, D.; Ruscio, D.; Pierantonio, A.; Paige, R.F.: Different Models
for Model Matching; p.1-6 in: [4]

[21] Lippe, E.; Oosterom, N.: Operation-based Merging; p.78-87 in: Proc.
ACM SIGSOFT Symp. Software Development Environments 1992;
ACM SIGSOFT Software Eng. Notes 17:5; 1992

[22] Mathworks: Matlab/Simulink; http://www.mathworks.com/simulink
[23] Schneider, Ch.; Zündorf, A.; Niere, J.: CoObRA - a small step for

development tools to collaborative environments; ICSE Workshop on
Directions in Software Engineering Environments 2004, Edinburgh

[24] Selonen, P.: A Review of UML Model Comparison Techniques; p.37-
51 in: Proc. Nordic Workshop on Model Driven Engineering 2007,
Ronneby; U. Göteborg; 2007

[25] Selonen, P.; Kettunen, M.: Metamodel-Based Inference of Inter-Model
Correspondence; p.71-80 in: Europ. Conf. Software Maintenance and
Reengineering 2007, Amsterdam; IEEE Computer Society; 2007

[26] The SiDiff Project; http://www.sidiff.org
[27] Taentzer, G.; Ermel, C.; Langer, P.; Wimmer, M.: Conflict Detection for

Model Versioning Based on Graph Modifications; in: Proc. of Intl. Conf.
Graph Transformation; LNCS 6372, Springer; 2010

[28] Taentzer, G.; Crema, A.; Schmutzler, R.; Ermel, C.: Generating Domain-
Specific Model Editors with Complex Editing Commands; in: Proc. Intl.
Symp. Applications of Graph Transformations with Industrial Relevance,
AGTIVE 2007, Kassel; LNCS 5088, Springer; 2007

[29] Treude, Ch.; Berlik, S.; Wenzel, S.; Kelter, U.: Difference Computation
of Large Models; p.295-304 in: Proc. Joint ESEC/FSE Conf., 2007,
Dubrovnik; ACM; 2007

[30] UML: Unified Modeling Language; http://www.uml.org
[31] Wierse, G: A Catalog of Modeling Patterns for the Unified Modeling

Language; Technical Report, Philipps-Universität Marburg; 2010
[32] Xing, Z.; Stroulia, E.: UMLDiff: An Algorithm for Object-Oriented De-

sign Differencing; p.54-65 in: Proc. IEEE/ACM Intl. Conf. Automated
Software Engineering 2005; IEEE Computer Society; 2005

[33] Xing, Z.; Stroulia, E.: Refactoring detection based on UMLDiff change-
facts queries; p.263-274 in: Working Conf. Reverse Engineering 2006,
Benevento; IEEE Computer Society; 2006

[34] Xing, Z.; Stroulia, E.: Differencing logical UML Models; Autom. Softw.
Eng. 14:2, p.215-259; 2007

[35] Xtext Language Development Framework; http://www.xtext.org

