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Abstract In model-driven engineering, models are primary
artifacts that can evolve heavily during their life cycle. There-
fore, versioning of models is a key technique to be offered
by integrated development environments for model-driven
engineering. In contrast to text-based versioning systems,
we present an approach that takes model structures and their
changes over time into account. Considering model struc-
tures as graphs, we define a fundamental approach where
model revisions are considered as graph modifications con-
sisting of delete and insert actions. Two different kinds of
conflict detection are presented: (1) the check for opera-
tion-based conflicts between different graph modifications,
and (2) the check for state-based conflicts on merged graph
modifications. For the merging of graph modifications, a
two-phase approach is proposed: First, operational conflicts
are temporarily resolved by always giving insertion priority
over deletion to keep as much information as possible. There-
after, this tentative merge result is the basis for manual con-
flict resolution as well as for the application of repair actions
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that resolve state-based conflicts. If preferred by the user,
giving deletion priority over insertion might be one solution.
The fundamental concepts are illustrated by versioning sce-
narios for simplified statecharts. Furthermore, we show an
implementation of this fundamental approach to model ver-
sioning based on the Eclipse Modeling Framework as tech-
nical space.

Keywords Model versioning · Graph modification ·
Conflict detection · Conflict resolution

1 Introduction

Visual models are primary artifacts in model-driven engi-
neering. Like source code, models may heavily evolve dur-
ing their life cycle and should be put under version control
to allow for concurrent modifications of one and the same
model by multiple modelers at the same time. When con-
current modifications are allowed, contradicting and incon-
sistent changes might occur leading to versioning conflicts.
Traditional version control systems for text files usually work
on file-level and perform conflict detection by line-oriented
text comparison. When applied to the textual serialization of
visual models, the result is unsatisfactory because the infor-
mation stemming from model structures is certainly shown in
an inadequate way such that associated syntactic and seman-
tic information cannot be recognized.

To tackle this problem, dedicated model versioning sys-
tems have been proposed [9,30,42,50]. However, a uniform
and effective approach for precise conflict detection and sup-
portive conflict resolution in model versioning still remains
an open problem. For the successful establishment of ded-
icated model versioning systems, a profound understand-
ing by means of fundamental concepts of potentially occur-
ring kinds of conflicts and their resolution is indispensable,
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but yet missing. Throughout this paper, we consider the con-
struction of model differences between an original model
and its revisions. Thereafter, two model differences w.r.t. the
same original model are selected and the so-called three-way
model merge is computed.

Model structures, especially for visual models, are well
described by graphs, since their elements do not have a
natural ordering in general. Considering, e.g., class model,
although there might be elaborated generalization relations,
their use relations do not form trees, but graphs in general.
Based on the definition of model structures by graphs, we
consider graph modifications to reason about model evolu-
tion. A graph modification formalizes the difference of two
graphs before and after a change such that preserved graph
items can be identified. However, the order of model changes
is not tracked. This basic setting is well suited to reason
about model versioning independent of any technical space.
For efficient implementation of the considered concepts it
might be worthwhile to consider more specific structures than
graphs.

In [51], we introduce our approach to conflict detection
based on graph modifications. Operation-based conflicts,
where deletion actions are in conflict with insertion actions,
are distinguished from state-based conflicts where the ten-
tative merge result of two graph modifications is not well
formed w.r.t. a set of consistency constraints. In this paper,
we enhance the conflict detection presented in [51] by a res-
olution of operation-based conflicts in graph modifications.
We present a semi-automatic merge construction for graph
modifications which tentatively resolves delete–insert con-
flicts by giving priority to insertion. This resolution strategy
keeps as much information as possible. In [23], this strat-
egy is formally defined and it is shown that the constructed
merge result is compatible with the intended behavior and
resolves all conflicts reported. However, a conflict resolu-
tion by insertion is not always the resolution preferred by the
user. Therefore, and in case of additional state-based con-
flicts, the tentative merge result can be processed further by
the application of repair actions. Figure 1 summarizes the
merge process of the proposed approach at a glance.

Graphs, graph operations, and graph modifications are
well suited to provide a fundamental understanding of
model versioning problems independent of specific techni-
cal spaces. In addition, we choose one technical space for
modeling, i.e., the Eclipse Modeling Framework (EMF) [20],
and present how the fundamental graph-based concepts can
be implemented in this context. After recalling all features
and peculiarities of EMF, we provide a detailed insight in
the prototypical implementation of the EMF-based model
versioning system AMOR1 [9] as well as its relation to the
fundamental concepts for model versioning.

1 http://modelversioning.org.
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Fig. 1 Merge process at a glance

All definitions and constructions are illustrated at a run-
ning example being a model versioning scenario for simple
statecharts.

Structure of the paper In Sect. 2, we present the basic con-
cepts of graphs and graph modifications. We define opera-
tion-based conflicts in Sect. 3. A tentative merge construction
realizing a pre-defined resolution of operation-based con-
flicts is presented and analyzed in Sect. 4. In this strategy,
insertion is given priority over deletion in case of operation-
based conflicts. The detection and resolution of state-based
conflicts are treated in Sect. 5 and Sect. 6, respectively. In
Sect. 7, we discuss how graphs are related to EMF models.
Section 8 is concerned with obtaining and representing dif-
ferences between EMF models and with the alignment of
these techniques with graph modifications. The obtained dif-
ferences are the prerequisites for realizing operation-based
conflict detection which is the focus of Sect. 9. In Sect. 10,
we present how two concurrently performed modifications
of an original EMF model are merged to detect state-based
conflicts in EMF models as discussed in Sect. 11. Related
work is discussed in Sect. 12, and a conclusion including
directions for future work is given in Sect. 13.

2 Graph modifications: a difference model for graphs

Models can differ in various aspects: structure, names, model
element identities, and the order of model elements in collec-
tions. We focus on models where all elements have identities
and elements are not ordered in collections. Furthermore,
model changes keep identities of preserved model elements.
Thus, model differences can be concerned with model struc-
tures as well as element names and their attribute values.
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Fig. 2 Statechart type graph (a) and sample statechart in concrete syntax (b), as abstract syntax graph (c), and in compact notation (d)

Throughout this paper, we describe the underlying struc-
ture of a model by a graph. Graphs are a natural way to repre-
sent the underlying structure of models being highly linked
structures. While some kinds of models such as well-struc-
tured activity diagrams expose tree-like structures, this is not
true for models in general. To capture all important informa-
tion about graphs and their relations, we use typed graphs
and graph morphisms as presented in [22]. In this approach,
graph technology is defined based on set theory, i.e., it puts
additional structure on pure sets in a systematic way to cover
link structures and, therefore, lifts the level of abstraction.
Hence, we prefer graph technology over pure set theory as
formal definition approach for models.

A graph primarily consists of a set of nodes and a set of
edges interrelating nodes. Graphs may be mapped to each
other componentwise by graph morphisms, i.e., nodes are
mapped to nodes and edges are mapped to edges in a com-
patible way. Typing by meta models is implemented by mor-
phisms that map instance graphs or typed graphs to their type
graph. Nodes and edges are called instance nodes/edges and
type nodes/edges, respectively. This basic notion of graphs
may be extended by further features such as attributes, node
type inheritance, and ordering of nodes. Throughout this
paper, we show attributes for comprehensibility only, but
omit them in the formalization, since they do not play an
important role and would put additional obstacles to a broad
understandability of the formal setting. However, model ver-
sioning can be formalized based on attributed graphs as well
(see [22,23]). The key idea for formalizing attributed graphs
is to consider attributes as special edges from graph nodes
resp. edges to data type values. Ordering of nodes is shortly
discussed in the context of graph merging only, while the
consideration of node type inheritance is completely left out.
(The interested reader can find more information about this
topic in [22].) Multiplicities and containment relations used

by EMF models can be formalized by graph constraints intro-
duced later in Sect. 5. (For further information, please con-
sider [52] and [6].)

Definition 1 (Graph) A graph G = (G N , G E , sG , tG) con-
sists of a set G N of nodes, a set G E of edges, as well as
source and target functions sG, tG : G E → G N .

Definition 2 (Graph morphism) Given two graphs G and
H , a pair of functions ( fN , fE ) with fN : G N → HN and
fE : G E → HE forms a graph morphism f : G → H ,
shortly morphism, if it has the following properties:

1. fN ◦ sG = sH ◦ fE and
2. fN ◦ tG = tH ◦ fE .

If both fN and fE are injective, f is also called injective.

Definition 3 (Typed graph, type graph and typing graph
morphism) A graph G is called typed graph or instance
graph, if there exists a distinguished graph T G, called type
graph, and a graph morphism t ypeG : G → T G, called
typing graph morphism.

In the following, we usually work with typed graphs and
graph morphisms, but omit the term “typed” for better read-
ability.

Example 1 (Statecharts modeled as typed graphs) Consider
the statechart in Fig. 2b where states are represented as
rounded rectangles and connected by directed edges (transi-
tions). A state may contain substates, represented by nesting.
Note that for simplicity of the presentation, we abstract from
transition events, guards and actions, as well as from other
statechart features, but our technique can also be applied
to general forms of statecharts. The meta-model for this
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Fig. 3 Graph modifications m1 (refactoring) and m2 (deletion)

simplified version of statecharts is formalized as type graph
shown in Fig. 2a. Here, we model hierarchical nesting of
states using containment edges.

The abstract syntax of the statechart in Fig. 2b is defined by
the instance graph in Fig. 2c. A node is inscribed by its iden-
tifier together with its node type. Containment edges connect
a superstate with a substate. For instance, in Fig. 2c, there are
containment edges from superstate S0 to its substates S1 and
S2. We indicate the typing morphism by drawing some of the
mappings from the instance graph to the type graph.

To be able to present meaningful versioning examples later
on, we use a compact notation of the abstract syntax of state-
charts, where we draw states as nodes (rounded rectangles
with their node ids), mark containment edges by composition
decorators on the superstate side, and depict transitions by
directed arcs between state nodes. The compact notation of
the statechart in Fig. 2c is shown in Fig. 2d. Note that contain-
ment and other kinds of edges do not express any ordering of
nodes. If the containment of states should be ordered, then,
e.g., contained elements should be connected by additional
order-defining edges.

A graph modification formalizes the difference of two
graphs before and after a change as a span of injective graph
morphisms G ← D → H where D shows the unchanged
part. This means that graph D characterizes an intermediate
graph, where all deletion actions have been performed, but
nothing has been added yet. If both graph morphisms are
partial identities, this formalization suits well to model dif-
ferencing where identities of model elements are preserved
for each preserved element. A more general form would con-
sider G ← D to be a partial identity only allowing different
identities in G and H .

Definition 4 (Graph modification) Given two graphs G and

H , a graph modification G
D�⇒ H is a span of injective

morphisms G
g←− D

h−→ H . A sequence G = G0
D1�⇒

G1
D2�⇒ . . .

Dn�⇒ Gn = H of graph modifications is called
graph modification sequence and is denoted by G

∗�⇒ H .

Example 2 (Graph modifications) Consider the following
model versioning scenario for statecharts. Two users check
out the statechart shown in Fig. 2d and change it in two differ-
ent ways. User 1 performs a refactoring operation. She moves
state S3 up in the state hierarchy (the upper span in Fig. 3).
User 2 deletes state S3 together with its adjacent transition
to state S4 (the lower span in Fig. 3).

3 Detection of operation-based conflicts

We want to consider graph modifications to be parallel inde-
pendent if they do not interfere with each other, i.e., one mod-
ification does not delete a graph element the other one needs
for performing its changes. While nodes can always be added
to a graph independent of its form, this is not true for edges.
An edge can only be added if it has a source and a target node.
Thus, parallel independence means more concretely that one
modification does not delete a node that shall be the source or
target node of an edge to be added by another modification.
Moreover, both graph modifications could delete the same
graph elements. It is debatable if the common deletion of
elements should still be considered as parallel independent
or not. Since we consider parallel independent modifications
to be performable in any order, common deletions cannot be
allowed. Once modification 1 has deleted a graph element, it
cannot be deleted again by modification 2. (However, we will
see later in Fig. 7 that modifications with common deletions
can be merged.)

Example 3 (Conflicting graph modifications) Consider once
more the two graph modifications m1 and m2 shown in Fig. 3.
Obviously, conflicts occur when user 1 tries to check in her
changed graph H1 after user 2 has checked in his changed
graph H2: state S3 has been deleted by m2 but shall be moved
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Fig. 4 Graph modification m3
(deletion and creation)

to another container by m1. Here, we have a delete–insert
conflict because modification m2 deletes node S3 that is
needed by modification m1 to insert the containment edge
from state node S0 to state node S3.

Consider, in addition, a third graph modification m3,
shown in Fig. 4, that changes the same graph as m1 and
m2 in Fig. 3. Modification m3 deletes the substates S3 and
S4 of state S1 and adds an additional state S5 as substate of
S0. Here, m2 and m3 are in delete–delete conflict because
both m2 and m3 delete the same node S3 and its adjacent
edges. The additional changes defined by m3 (the dele-
tion of S4 and the creation of S5) do not lead to further
conflicts.

The following definition formalizes these kinds of con-
flicts. They are operation-based conflicts, since either two
deletions conflict with each other, or a deletion and an inser-
tion are in conflict.

Definition 5 (Operation-based conflicts of graph modifica-

tions) Two graph modifications mi = G
Di�⇒ Hi (i = 1, 2)

are in operation-based conflict if they are in

1. delete–delete conflict, i.e., ∃x ∈ (G\D1) ∩ (G\D2) or
2. delete–insert conflict, i.e.,

(∃ edge e ∈ H2\D2 with s(e) ∈ D2 ∩ (G\D1)

or t (e) ∈ D2 ∩ (G\D1))or

(∃ edge e ∈ H1\D1 with s(e) ∈ D1 ∩ (G\D2)

or t (e) ∈ D1 ∩ (G\D2)).

In case of attributed graphs, delete–insert conflicts can also
occur if a graph element shall be deleted and an attribute of
this element shall be added or changed. In those cases, attri-
bute edges cannot be added. Conflicts with order changes,
e.g., moving a node up by one modification and deleting it
by another, would also lead to delete–insert conflicts.

Note that graph modifications mi = (G
Di�⇒ Hi ),

i = 1, 2 are the formal setting for a three-way merge where
base version G is given together with two changes m1 and
m2. It can be easily extended to i > 2 by comparing modifi-
cations pairwise.

4 Semi-automatic resolution of operation-based conflicts

In the following, we present a tentative merge construction
for graph modifications that can always be performed, even
in the presence of conflicts. As stated before, delete–delete
conflicts are not real conflicts and can easily be resolved
by deletion. Delete–insert conflicts, however, are not eas-
ily resolved. We propose the following procedure to deal
with delete–insert conflicts. First, apply the tentative merge
construction given in Definition 8 that solves delete–insert
conflicts by giving priority to insertion. Deletion operations
are performed as long as they do not collide with insertions.
Thereafter, this tentative merge result is critically investi-
gated concerning missing deletions. In addition, dealing with
state-based conflicts is treated in the next section.

The tentative merge construction is performed stepwise:
At first, all deletion actions are merged by computing the
intersection of intermediate graphs yielding graph D. In
case of delete–insert conflicts, D is too small and has to be
extended again (to D), i.e., those node deletion actions that
conflict with edge insertions are taken back and the interme-
diate graphs of the original modifications are extended such
that all insertions can now take place. Thereafter, insertions
are merged. This construction is further detailed below.

This tentative merge construction does not always lead
to desired results, since the standard resolution of delete–
insert conflicts is not always adequate. In the second part of
conflict resolution, we need to identify non-performed dele-
tions or even further, we have to identify not or just par-
tially performed operations that shall be resolved differently.
Possible solutions are to take back the (potentially partial)
execution of an operation, to complete a partial execution,
to perform a different operation or a combination of those.
A more detailed discussion of these resolution strategies can
be found in Sect. 6.

To understand the tentative merge construction in Defini-
tion 8, we have to clarify basic operations on graphs. These
are the union and intersection of graphs as well as a comple-
ment construction.

Definition 6 (Intersection and union of graphs) Given two
graphs G and H that are subgraphs of C .
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Fig. 5 Intersection G ∩ H of G and H over graph C

1. The intersection G ∩ H is defined componentwise by
(G ∩ H)N = G N ∩ HN and (G ∩ H)E = G E ∩ HE .

2. The union G ∪ H is defined componentwise by (G ∪
H)N = G N ∪ HN and (G ∪ H)E = G E ∪ HE .

Example 4 (Intersection) In Fig. 5, we depict the subgraph
relations from G to C and from H to C as inclusion mor-
phisms G → C and H → C , where nodes and edges are
mapped identically. The intersection G ∩ H is the graph that
contains all those nodes and edges that are present in both G
and H . Obviously, the intersection graph G∩H is a subgraph
of both G and H , i.e., inclusion morphisms (G ∩ H)→ G
and (G ∩ H)→ H exist as shown in Fig. 5.

Example 5 (Union) In Fig. 6, we have C as a graph with both
G and H as subgraphs (with inclusion morphisms G → C
and H → C). We can construct their intersection graph
I = G ∩ H as in Fig. 4 and get the outer diagram in

Fig. 6 as intersection diagram with inclusion morphisms
I → G and I → H . The union G ∪ H is the graph that
contains the intersection graph I , and all additional elements
from both G − I and H − I . Obviously, both G and H are
subgraphs also of the union graph G∪H , i.e., inclusion mor-
phisms G → (G ∪ H) and H → (G ∪ H) exist as shown in
Fig. 6. Note that graph C in Fig. 6 is not the union of G and
H , because in C there are additional elements like state S5

that are neither in G nor in H .

Definition 7 (Complement graph) Given graphs G, H , and
K where H is subgraph of G and K is subgraph of H such that
∀n ∈ HN − KN the following holds: ∀e ∈ G E : sG(e) = n
or tG(e) = n implies e ∈ HE − KE (complement condi-
tion). The complement graph C = (G − H) ∪ K is defined
componentwise by CN = (G N − HN ) ∪ KN and CE =
(G E − HE ) ∪ KE .

Example 6 (Complement graph) Given graphs K→H→G
as in Fig. 7.

The complement condition is satisfied since all edges in
G that are adjacent to S2 (the only node in HN − KN ) are
also in HE − KE . Hence, we can construct the complement
graph C by copying first K to C and then adding all those
elements that are in G − H (in our example, these elements
are node S3 and its adjacent edges). Note that the comple-
ment construction yields a union diagram because G is the
union of H and C over their common intersection graph K .

Let us consider the diagram in Fig. 8, where the comple-
ment condition is violated (there is a node S3 in HN − KN

that is also in G N , but its adjacent edges are only in G E and
not in HE ). When trying to construct the complement graph,
C should contain the edges where S3 is source or target node
since these edges are not in H and not in K . But to be a valid
graph, C must also contain node S3 then. Now we have the

Fig. 6 Union G ∪ H of G and H over intersection I
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Fig. 7 Complement graph C = (G − H) ∪ K

Fig. 8 No complement construction possible

situation that S3 is element of both H and C but not of K .
Hence, we do not get a valid union diagram since K must be
the intersection of H and C over G.

Definition 8 (Tentative merging of two graph modifications)
Given two graph modifications G ← D1 → H1 and G ←
D2 → H2. We construct their tentatively merged graph mod-
ification G ← D→ H in seven steps, leading to the follow-
ing tentative merge construction diagram:

G
(∩)

D1�� id ��

(=)

D1 ��

(∪)
H1

D2

��

id �� (=)

D

��

��

�� ��

(∪)
D1

��

��

��

(∪)
X1

��

��
D2

�� (∪)
D2

��

�� ��

(∪)
D ��

�� (∪)
X1

��
H2 X2�� �� X2

�� H

1. Construct D as intersection of D1 and D2 in G.
2. Extend D by nodes in D1 that shall be deleted by mod-

ification m2 but are needed by modification m1. The
extended graph is D1.

3. Extend D by nodes in D2 that shall be deleted by mod-
ification m1 but are needed by modification m2. The
extended graph is D2.

4. Unify extended graphs D1 and D2 to graph D. Make sure
that graphs D1 and D2 overlap in D exactly. Common
supergraph is G.

5. Construct the complements Xi = Hi − Di ∪ Di for
i = (1, 2). Since graphs Di contain those nodes needed
to perform modification mi by construction, the comple-
ment condition is satisfied.

6. Unify Xi and D to Xi for i = (1, 2). Make sure that
graphs Xi and D overlap in Di exactly.

7. Unify X1 and X2 to H . Make sure that X1 and X2 overlap
in exactly D.

G ← D → H forms the tentatively merged graph modifi-
cation.

Note that all graph morphisms in the diagram above can
be considered to be inclusions. In [23], this merge construc-
tion is defined based on category theory and shown to have
the intended semantics.

Example 7 (Tentative merge construction) We construct the
tentatively merged graph modification for graph modifica-
tions m1 = G ← D1 → H1 and m2 = G ← D2 → H2

in Fig. 3. We will merge the graph modifications stepwise
according to Definition 8 and highlight in a thumbnail view
the current part of the construction diagram.

1. Construct D as intersection of D1 and D2 in G.
Intersection graph D contains only those elements that
are present both in D1 and in D2, i.e., that are preserved
by both modifications. Hence, S3 and its adjacent edges
are not in D.

2. Extend D by nodes in D1 that shall be deleted by modi-
fication m2 but are needed by modification m1.
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In our example, (m2, m1) are in delete–insert conflict.
Hence, graph D is extended to graph D1 by adding node
S3 since this node is deleted by m2 but needed by m1 to
insert the new containment edge from S0 to S3.

3. Extend D by nodes in D2 that shall be deleted by modi-
fication m1 but are needed by modification m2.
This step is symmetrical to step 2. Since (m1, m2) are
not in delete–insert conflict, D2 = D.

4. Unify extended graphs D1 and D2 to graph D.
D is constructed as union D1∪D2. In addition to the com-
mon subgraph D of D1 and D2 (their intersection w.r.t.
G), the union graph D contains node S3 that is in D1 but
not in D2. Now, graph D contains all objects that remain
after both modifications have performed their deletions
plus those nodes that are needed for the insertion of edges
by either m1 or m2 (node S3 in our example).

5. Construct the complements Xi = Hi − Di ∪ Di for
i = (1, 2).
Again, the constructions of X1 and X2 are symmetrical.
To get the union diagram, the complement graph X1 has
to contain in addition to a copy of D1 the containment
edge from S0 to S3.
Since m2 is a deletion operation, no new elements are
produced, i.e., morphism D2 → H2 is the identity. More-
over, graph D2 equals D2 (see step 3). Hence, the com-
plement graph X2 (not depicted in detail) also equals D2.

Now we have all information we need to merge the crea-
tion of elements of both modifications which is uncritical.

6. Unify Xi and D to Xi for i = (1, 2).
These two union constructions yield the graphs Xi =
Xi ∪ D that result after performing the creation of ele-
ments given by either modification on D. I.e., X1 is graph
D together with all elements created by m1 (the contain-
ment edge from S0 to S3), and X2 is equal to D because
m2 does not create any elements.

7. Unify X1 and X2 to H.
In this last step, the creation parts of both modifications
that have been performed independently of each other
on D in step 6 are now merged by a union construction,
leading to the tentatively merged graph H .

The tentatively merged graph modification G ← D→ H
is shown in Fig. 9. It preserves node S3 because this node
is deleted in m2 although it is used for inserting a new edge

123



A fundamental approach to model versioning

in m1 (resolution of the delete–insert conflict). The edge from
S1 to S3 is deleted by the merged graph modification as it is
deleted by both m1 and m2 (resolution of the delete–delete
conflict). All graph objects created by either m1 or m2 are cre-
ated also by the merged graph modification. Analogously, all
objects deleted by either m1 or m2 (and not needed for edge
insertion) are deleted also by the merged graph modification
(e.g., the transition edge from S3 to S4).

The following theorem states that the modification result-
ing from the tentative merge construction specifies the
intended semantics resolving delete–insert conflicts by pre-
ferring insertion over deletion:

Theorem 1 (Behaviour compatibility of tentative merge

construction) Given graph modifications mi = G
Di�⇒

Hi (i = 1, 2) with tentatively merged graph modification

m=G
D�⇒ H = (G ← D → H) in the sense of Definition

8. We use the following terminology for m (and similarly for
m1, m2):

x ∈ Gpreserved bym ⇐⇒ x ∈ D,

x ∈ Gdeleted bym ⇐⇒ x ∈ G − D,

x ∈ Hcreated bym ⇐⇒ x ∈ H − D.

Then, m is behaviour compatible with m1 and m2 in the fol-
lowing sense:

1. Preservation: x ∈ G preserved by m1 and m2 �⇒ x ∈
G preserved by m �⇒ x ∈ G preserved by m1 or m2

2. Deletion: x ∈ G deleted by m1 and m2 �⇒ x ∈ G
deleted by m �⇒ x ∈ G deleted by m1 or m2

3. Preservation and Deletion: x ∈ G preserved by m1 and
x ∈ G deleted by m2 �⇒ x ∈ G preserved by m,

if x ∈ D1 x ∈ G deleted by m, if x /∈ D1 (similar for
m1, m2, D1 replaced by m2, m1, D2)

4. Creation: x ∈ H1 created by m1 or x ∈ H2 created by
m2 ⇐⇒ x ∈ H created by m

Proof See [24]. It is based on category theory.

Theorem 2 characterizes the three forms of conflict resolu-
tion that may occur.

Theorem 2 (Conflict resolution by tentative merge con-

struction) Given graph modifications mi = G
Di�⇒ Hi (i =

1, 2) that are in conflict. The tentative merge construction
m = (G ← D → H) resolves the conflicts in the following
way:

1. If (m1, m2) are in delete–delete conflict, with both m1

and m2 deleting x ∈ G, then x is deleted by m.
2. If (m1, m2) are in delete–insert conflict, there is an edge

e2 created by m2 with x = s(e2) or x = t (e2) preserved
by m2, but deleted by m1. Then x is preserved by m.

3. If (m2, m1) are in delete–insert conflict, there is an edge
e1 created by m1 with x = s(e1) or x = t (e1) preserved
by m1, but deleted by m2. Then x is preserved by m.

Proof See [24].

If we would extend our tentative merging construction to
attributed graphs, we would get the following effect: Attrib-
uted nodes that shall be deleted on the one hand and change
attributes on the other hand would cause delete/insert con-
flicts and, therefore, would not be deleted in this merge
construction. Attributes that are differently changed by both
modifications would lead to attributes with two values that
would cause state-based conflicts, since an attribute is not
allowed to have more than one value at a particular time.

Considering ordering edges, the following conflicting
merge situations could occur: Changing the order of a node
on the one hand, and deleting it on the other hand, would lead
to the order change while keeping this node. Moving one and
the same node up and down simultaneously, would destroy
a total ordering by inserting both order edges. Such a situ-
ation can be easily found by detecting state-based conflicts.
Moving two subsequent nodes in a conflicting way would
also destroy the total order to be resolved by repair actions.

Fig. 9 Merged graph
modification G ← D→ H
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Fig. 10 Graph constraint C forbidding isolated states

The tentative merge construction can also be extended to
the more general setting of more than two graph modification
to be merged. In this case, two of them are merged first and
then the tentative merged graph modification is merged with
the next graph modification using the same construction. This
procedure is continued until all original graph modifications
are merged. Since merging is basically a union of all inser-
tion and all non-conflicting deletions, the order of merging
graph modifications is not significant.

5 Detection of state-based conflicts

Besides operation-based conflicts, we want to detect state-
based conflicts potentially occurring in tentatively merged
modification results. These conflicts occur, e.g., if a ten-
tatively merged modification result shows some abnormal-
ity not present in the modification results before merging.
Detection of state-based conflicts can be done by constraint
checking. The constraints may be language-specific, i.e.,
potentially induced by the corresponding graph language def-
inition. Moreover, modeling conventions can be specified by
constraints and additionally checked after merging.

There exist several approaches for constraint specification
in the context of modeling such as the OCL [44] for UML
models and ML for colored Petri nets [27]. Since we base our
approach on graphs and graph modifications, we use graph
constraints [26] in the following. Since both, OCL and graph
constraints, can be translated to first order logic (see [5] and
[26]) they are equally powerful, and it is up to future work
to show that there are natural translations between OCL and
graph constraints.

Definition 9 (Graph condition and graph constraint)
A graph condition over graph G is of the form true or ∃(a, c)
where a : P → C is a graph morphism and c is a condition
over P . Moreover, Boolean formulas of conditions over P
yield conditions over P , i.e., ¬c and ∧ j∈J c j are (Boolean)
conditions over P where J is an index set and c, (c j ) j∈J

are conditions over P . Additionally, ∃a abbreviates ∃(a,

true), ∀(a, c) abbreviates¬∃(a,¬c), false abbreviates¬ true,
∨ j∈J c j abbreviates ¬ ∧ j∈J ¬c j , and c �⇒ d abbreviates
¬c ∨ d.

Every graph morphism satisfies true. A morphism p :
P → G satisfies condition ∃(a, c) if there is an injective
graph morphism q : C → G such that q ◦ a = p and
q satisfies c. A graph G satisfies a condition ∃(a, c) if this
condition is satisfied by graph morphism ∅ → G. In the con-
text of graphs, graph conditions are called graph constraints.
The satisfaction of conditions by graphs and morphisms is
extended to Boolean conditions in the usual way.

The notation of graph constraints of the form ∃(a : ∅ →
G, c) can be shortened to∃(G, c) without loss of information.
Constraint ∃a : ∅ → G is called simple positive constraint
and abbreviated to ∃G. (see [26]).

Example 8 (Graph constraint) In statecharts, isolated states
should not be allowed. This situation can be formalized by a
graph constraint C = ∀G0((∃a : G0 → G1) ∨ (∃a : G0 →
G2)) where G0 consists of a state contained in some other
state, and G1 and G2 show the alternative required contexts
for G0 (see Fig. 10). C is satisfied by all statecharts without
isolated states.2

Definition 10 (State-based conflict) Given a merged graph
modification G ← D→ X as in Definition 8, a state-based
conflict (C, H1 ← D1 → X, H2 ← D2 → X) consists of a
constraint C and graph modifications H1 ← D1 → X and
H2 ← D2 → X such that C is satisfied by graphs H1 and
H2 but not by X .

Example 9 (State-based conflict) Consider the deletion mod-
ification m4 in Fig. 11. Only the transition edge from S2 to
S4 is deleted.

Merging this modification m4 and the deletion modifica-
tion m2 (see Fig. 3) is unproblematic from the operational
point of view: Both deletions take place at different parts of
G, hence we do not have delete–delete conflicts. Moreover,
neither m4 nor m2 does insert elements, therefore, we do not
have insert–delete conflicts. Applying the tentative merging
construction from Definition 8 yields X (see Fig. 12) where
all deletions from m2 and m4 have been performed on G in
any order.

We see that the tentatively merged graph X contains a for-
bidden situation: state S4 is isolated, i.e., it is not adjacent

2 Note that the root container state may be isolated.
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Fig. 11 Graph modification
m4: deletion of a transition

Fig. 12 Merged modification
G ← D→ X

to a transition anymore. Considering graph constraint C in
Fig. 10, this is a state-based conflict: This constraint is satis-
fied for the intermediate modification results H2 and H4 after
performing either m2 or m4, but it is not satisfied by X after
the tentatively merged modification.

6 Resolution strategies for state-based conflicts

State-based conflicts are detected on merged graph modi-
fication, thus a natural approach to resolve them would be
by executing subsequent graph modifications. We call these
modifications repair actions in the following. In the general
setting, one state-based conflict can be repaired in different
ways and it is up to the user to select one of them being
the most appropriate one. This situation can be compared
with the detection of syntax errors in modern editors and the
offering of several quick fixes to get rid of these errors.

Different specification approaches for repair actions are
imaginable: Either they are explicitly defined by hand or
somehow deduced from state-based conflicts. In the follow-
ing, we define the general setting and give some examples
for suitable repair actions.

Definition 11 (Repair action) Given a state-based conflict
(C, H1 ← D1 → X, H2 ← D2 → X), a repair action is a
graph modification X ← D′ → X ′ such that C is satisfied
by graph X ′.

Dependent on the structure of a given constraint C , we can
deduce repair actions in certain cases: In case that a simple

Fig. 13 Repair action for a positive constraint

positive constraint ∃G is violated, e.g., subgraph G cannot be
found in merge result X although it should occur. Any graph
modification establishing an occurrence of G in X either by
completing a partial occurrence or by creating a completely
new one can be considered as repair action for this conflict.
This means that different repair actions are possible in this
case in general.

Example 10 (Repair action for positive constraint) Fig. 13
shows a positive constraint ∃G in the top row requiring that
our graph has at least two states that are connected by a transi-
tion and contained in the same container state. This constraint
is violated by graph X since no occurrence G → X can be
found (state S0 contains state S1 as the only substate). Our
repair action X ← D′ → X ′ establishes the missing occur-
rence of G in X by completing the existing partial occur-
rence. Alternatively, we could create the required occurrence
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Fig. 14 Repair action for a
negative constraint

completely from scratch and unite it with X . In this case, we
would get a disjoint union, where not all states (not consid-
ering the root state) are contained in other states. If we prefer
rooted statecharts, we should opt for the first alternative. We
check the constraint ∃G on graph X ′ resulting from the appli-
cation of the repair action (see Fig. 13). Now we can find an
occurrence of p : G → X ′. Hence, the positive constraint is
satisfied by X ′.

Analogously, in case that a simple negative constraint
¬∃G is violated, one or more occurrences of G can be found
in X although such occurrences are forbidden. Repair actions
have to erase all these occurrences.

Example 11 (Repair action for negative constraint) Figure
14 shows a negative constraint ¬∃G in the top row forbid-
ding that any state is (directly) contained in more than one
container state.3 This constraint is violated by graph X since
an occurrence p : G → X can be found (state S4 is con-
tained in both states, S1 and S2). We perform the repair action
X ← D′ → X ′ that deletes one of the forbidden contain-
ment edges and check the constraint ¬∃G on the resulting
graph X ′ thereafter. Now we do not find an occurrence of the
forbidden structure G anymore, and the constraint is satis-
fied.

Next we consider simple implications, i.e., constraints of
the form ∃a : P → Q. If such a constraint is not satisfied
in X , there are occurrences pi : P → X for which there
does not exist a q : Q → X with q ◦ a = pi and i ≥ 1. To
repair this situation, each pi has to be completed to some q
as specified by a.

Example 12 (Repair action for implication constraint)
Figure 15 shows an implication constraint requiring that each

3 A similar containment constraint has to be valid for all objects in EMF
models.

state different from the root state has an outgoing transition.
This constraint is violated by graph X since for the occur-
rence p : P → X there is not a q : Q → X with q ◦ a = p.
We perform the repair action X ← D′ → X ′ that adds
an outgoing transition to state S4 and check the constraint
∃a : P → Q on the resulting graph X ′. Now we find for the
occurrence p′ : P → X ′ (mapping state 1 to S1 and state
2 to S2) a morphism q ′ : Q → X with q ′ ◦ a = p′. In addi-
tion, all other occurrences of P in X ′ have to be checked,
too. It turns out that the constraint is true for all possible
occurrences in X ′.

We see that repair actions can be deduced from state-based
conflicts, however, an exhaustive discussion of all cases is
beyond this article.

7 From graph versioning to EMF model versioning

Before we proceed with presenting the implementation
details of our model versioning system AMOR4 [9], we first
discuss the commonalities and differences between graphs
and EMF models, i.e., models defined within the EMF [13].
First of all, each EMF model has to conform to its respec-
tive metamodel (the counterpart of type graphs for models)
which is defined with the metamodeling language Ecore, a
Java-based implementation of the MOF standard [43] pro-
vided by the Object Management Group (OMG). The core
language elements of Ecore are shown in Fig. 16a in terms of
a UML class diagram. Please note that we refrain from pre-
senting all language elements and features, but concentrate
on those that are of paramount importance in the context of
model versioning.

Ecore EMF’s metamodeling language Ecore allows to model
classes, i.e., the modeling concept corresponding to type

4 http://modelversioning.org.
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Fig. 15 Repair action for a
simple implication constraint

type

(a)

(c)

(b)

EClass

ordered : EBoolean
lowerBound : EInt
upperBound : EInt

EStructuralFeature

type : EDataType

EAttribute

containment : EBooelan
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0..*

1..1

name : EString

ENamedElement
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name : String [1..1]
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0..*
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source 1..1

target 1..1

T0 : Transition

S0 : State
name : A

T2 : Transition

T1 : Transition

S1 : State
name : B

S3 : State
name : D

S2 : State
name : C

S4 : State
name : E

source target

target

targetsource

source

containscontains

contains
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Fig. 16 EMF-based models: a Ecore, b Metamodel, and c Model

nodes in type graphs. Classes may contain an arbitrary num-
ber of structural features which are divided into two distinct
subsets, namely references and attributes. Furthermore, for
structural features, upper and lower multiplicities have to
be defined.5 Structural features having a upper multiplicity

5 Please note that asterisks for upper multiplicities are represented by
−1 in the abstract syntax.

greater than 1, may be defined as ordered, i.e., an index is
assigned to each value. Attributes as well as references must
be typed. For attributes, primitive data types such as String,
Boolean, and Integer are allowed. References refer to clas-
ses for defining their types and may additionally be defined
as containments. Contained elements are nested inside the
container element and, therefore, the deletion of a container
element results in cascaded deletions of all directly and indi-
rectly contained elements.

Graphs versus EMF models Compared to type graphs intro-
duced in Sect. 2, Ecore models not only contain type nodes
(represented by classes) and type links (represented by refer-
ences), but also attribute types for classes, corresponding to
attributed type graphs. Furthermore, containment references
may be defined, and additional constraints to express order-
ing and multiplicities are possible for features. The order of
values in ordered features is realized using array lists where
absolute indices are assigned to each value in the list. Con-
sequently, if a new value is inserted into an ordered list, the
indices of all subsequent values are increased by one. Besides
ordered features, EMF allows specifying multiplicities of
attributes and references. The specification of multiplicities
in graphs is also possible, by defining additional graph con-
straints (see [52]). As we see later, multiplicities are of spe-
cial importance for merging EMF models. The upper multi-
plicity for features determines if a single-valued slot (upper
bound equals 1) or a collection (upper bound greater than 1)
is used for storing the feature value(s) in the model instances.
Single-valued slots are of course problematic when two dif-
ferent values for the same feature of a model element are
occurring, because both cannot be directly represented in the
merged version.

The corresponding Ecore-based metamodel for the state-
chart type graph of Fig. 2a is illustrated in Fig. 16b. The
differences between the type graph and the metamodel are
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threefold: (i) for all features, multiplicities have been intro-
duced, (ii) the class State has an attribute called name of
type String, and (iii) the reference contains is now defined as
containment.

Figure 16c shows the EMF model corresponding to the
statechart graph depicted in Fig. 2c as a valid instance of the
Ecore-based metamodel. For visualizing EMF-based mod-
els, we reuse the UML object diagram notation. Please note
that the attribute value slots are directly contained by the
objects. Furthermore, outgoing edges are also contained by
the objects, and thus, are automatically deleted when the
objects are deleted. In case that the target object of an edge
is deleted, the target is automatically set to undefined. To
conclude, EMF models follow the object-oriented principle
of information hiding, meaning that the details of an object,
namely its contained attribute values and outgoing edges, are
hidden inside the object. This is different to graphs where
edges are not possessed by nodes.

8 Obtaining differences between EMF models

Before considering conflicts between two concurrently
modified models, we first have to address the issue of iden-
tifying and representing differences between models. Basi-
cally, there are two approaches for obtaining differences. On
the one hand, they may be identified using model differ-
encing algorithms6 which take two versions of a model as
well as their common base version as input and compute the
model differences by comparing these three states. On the
other hand, differences between two versions of a model
may be obtained by directly recording applied changes.7

Such approaches do not operate on the states of a model.
Instead, they obtain the differences by directly recording all
applied changes in the modeling environment as they are
performed by the user. Both approaches have their advanta-
ges and disadvantages. In comparison to model differencing
approaches, change recording is, in general, more precise
and potentially enables to gather more information (e.g., the
order in which the changes have been applied) than model
differencing. However, these advantages come at the price
of inherently strong editor-dependence because the editor
used for modifying the model has to be capable of recording
changes and represent them in a common format. In AMOR,
we apply model differencing which is conceptually closer to
the concept of graph modifications (cf. Sect. 2) than change
recording because of two reasons. First, graph modifications
do not represent intermediate steps within a transaction of
atomic changes. In contrast, recorded change sequences may

6 Also referred to as state-based versioning [12,15,38].
7 Also referred to as change- or operation-based versioning [15,30,
36,38].

include changes that might be obsolete due to subsequent
changes in the same transaction. Second, graph modifications
do not comprise an order of applied changes, which is, how-
ever, usually the case with recorded changes. Just as graph
modifications, model differencing approaches neither regard
intermediate changes nor the order of recorded changes.

Model differencing Obtaining differences from two versions
of a model is a two-phase process. First, a match is computed
which describes the correspondences between two versions
of a model. In the second phase, differences are obtained by
a fine-grained comparison of all corresponding objects based
on the afore-computed match. Consequently, the quality of
the obtained differences heavily depends on the quality of
the computed match. Having obtained the differences, the
conflicts between two sets of differences may be identified
and finally a merged version may be derived.

To provide a better overview, the relationships between
the model versions, the match models, the difference mod-
els, and the conflict model are depicted in Fig. 17. In a typ-
ical model versioning scenario, there is an original model
Vo that has been concurrently modified by the two modifi-
cations m1 and m2 leading to two revised models Vr1 and
Vr2. In the first step, the original version Vo is separately
matched with Vr1 and Vr2. From this step, two match models
MVo,Vr1 and MVo,Vr2 are obtained that describe the corre-
spondences between Vo/Vr1 and Vo/Vr2, respectively. Cor-
responding objects are not necessarily equal since they might
have been subject to slight modifications, such as changes to
attribute or reference values, between the original model and
the revised model. The match model links each potentially
modified object in the revised model to the corresponding
original object in the original model. Thus, in the next step,
based on each of the two match models, the actual differences
between Vo and Vr1 as well as Vo and Vr2 are derived and
stored as two separate difference models DVo,Vr1 and DVo,Vr2 .
Difference models contain the fine-grained description of dif-
ferences, i.e., attribute and reference value changes, between
an original model and a revised model. Thus, they extend the
match model by additional information. Finally, the two dif-
ference models are the prerequisite for the conflict detection.
All identified conflicts are stored in a conflict model CVr1,Vr2

that is the basis for deriving a merged version Vm .
In the following, we elaborate on how the match and the

difference models are obtained and represented in AMOR.
Furthermore, we discuss the relation of these techniques
to the fundamental approach presented in Sect. 2. Please
note that the metamodels introduced in the following are
independent of the modeling language, i.e., the metamod-
el to which the matched and differenced models conform.
Consequently, the correspondences and differences of every
EMF-based model may be represented, irrespectively of its
metamodel.
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Fig. 17 Relations between Versions, Match, Difference, and Conflict
Models

Match models The goal of matching two models is to pro-
duce a mapping of each object, i.e., model element, in the
original version to its corresponding object in the revised
version. Therefore, a match function is needed that deter-
mines whether two objects of the compared models cor-
respond to each other. Basically, two different approaches
exist for implementing such a function. First, heuristics may
be employed to compute a similarity measure based on the
name and other structural information between two objects.
Such heuristics may strongly differ in terms of which char-
acteristics of an object are exploited to decide whether they
should be considered as a match. Of course, heuristics have
an inherent amount of imprecision and are potentially very
computation intense. Therefore, to overcome this drawback,
the second approach avoids using heuristics by assigning a
universally unique ID (UUID) to each object. This UUID
is—once it has been assigned—never changed anymore.
Consequently, it may be used to easily and efficiently match
corresponding objects even if the object has been moved
and/or intensely modified. However, by relying only on
UUIDs, the match function misses to identify deleted and
subsequently re-inserted objects which are very similar to
the previously deleted ones. Even worse, some modeling
environments implement moving objects by deleting and
re-inserting them at a different place. Thus, a new UUID
is assigned to the moved object causing the match to fail.
Therefore, in AMOR we combine the advantages of both
techniques by first matching all objects based on UUIDs and
subsequently matching all objects that could not be matched
by UUIDs using heuristics.

Match metamodel The identified correspondences are
described by a match model conforming to the match meta-
model depicted in Fig. 18. For each pair of matching objects,
a MatchModel contains an instance of the class Match link-
ing the corresponding object in the original version and the
revised version. If an object, either in the original model or
in the revised model, cannot be matched, an instance of the

MatchModel Match

Unmatch

side:Side

*

*

EObject
(from Ecore)

1

1

1

original

revised

object

Enumeration
Side

- Original
- Revised

Fig. 18 Match Metamodel

G D H

:MatchModel

:Match :Unmatch

side=Revised

:Unmatch

side=Original

Fig. 19 Match model versus graph modification

class Unmatch referring to the unmatched object is created.
The attribute side indicates whether the unmatched object
resides in the original or the revised model. Hence, a match
model is a kind of a weaving model [18].

From a conceptual point of view, the match model cor-
responds to the notion of graph modifications. As depicted
in Fig. 19, all instances of a Match refer to objects of the

intermediate graph D in the span G
g←− D

h−→ H repre-

senting a graph modification G
D�⇒ H . Unmatch instances

on the original side refer to deleted objects in G and Unmatch
instances on the revised side to inserted objects in graph H .
However, there is also a major difference due to the different
representation of a model in EMF compared to the graph-
based representation as specified in Definition 1. In EMF,
reference values of an object are possessed by the objects
themselves. Thus, they are considered as being a property of
the object rather than being treated like an own entity. Con-
sequently, in the match model only corresponding objects
are linked by Match instances. In the graph-based represen-
tation however, references are represented by edges that are
also included in all graphs G, D, and H . The same is true
for attribute values which are not treated as own model ele-
ments in EMF but represented by own nodes in graphs. In
that sense, a graph modification carries more information
than a match model. This is also the reason why in EMF
an additional model, i.e., the difference model, is needed to
represent changes to attribute and reference values.

Example 13 (Match Model) In Fig. 20, an instance of the
afore-presented match metamodel is depicted. In particular,
this match model weaves the corresponding objects from the
original statechart Vo represented by the graph depicted in
Fig. 2d and the revised statechart Vr resulting from the mod-
ification m2 depicted in the lower span of Fig. 3. In this
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Fig. 20 Example of a match
model Statechart Model Vr

T0 : Transition

S0 : State
name : A
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T1 : Transition

S1 : State
name : B

S3 : State
name : D
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S4 : State
name : E

source target
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containscontains
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: Match : Match: Match: Match : Match

: MatchModel

modification, a user deletes the state S3 and its outgoing
edge to state S4. According to the metamodel for statecharts
depicted in Fig. 16b, an edge between state nodes is repre-
sented by the class Transition. Consequently, the deletion of
S3 including its outgoing edge causes the deletion of two
objects, one representing the state and one representing the
transition. Hence, the match model contains two Unmatch
instances (on side Original) referring to each deleted object in
the original model Vo. All other objects have not been deleted
and no further objects have been inserted by this modifica-
tion. As a result, for each remaining object, a Match instance
is created that refers to an object in the original model Vo and
to the corresponding object in the revised model Vr.

Difference models As depicted in Fig. 17, two difference
models—one for each modification m1 and m2—are derived
from the match model. Difference models comprise the infor-
mation that is missing in the match model in comparison
to graph modifications, i.e., changed attribute values and
changed reference values. In the following, we first pres-
ent a kernel difference metamodel that captures only the
fundamental information on a model modification that is
also present in graph modifications. Like graph modifica-
tions, this kernel only contains, in terms of models, additions
and deletions of objects and feature values, i.e., reference and
attribute values. Thus, multiplicities, ordered features, and
containment features are omitted in this kernel metamodel
first, but are later on considered in an extended version.

Kernel difference metamodel To represent the fundamen-
tal change types, the kernel difference model contains
FeatureChanges as depicted in Fig. 21. Feature values in
EMF models correspond to graph nodes, called value nodes,
that are connected through edges to the possessing object
node. According to the notion of graph modifications, nodes
and edges may be inserted or deleted. In these terms, a change

of a value is represented by removing the edge from the
object node to the old value node and inserting a new edge
to the node representing the new value. For expressing such
changes in EMF models, we use two concrete subclasses of
FeatureChange in the difference metamodel, namely Insert-
FeatureValue and DeleteFeatureValue. Feature changes refer
to the object that has been changed (cf. reference changed-
Object), to the changed feature in the modeling language’s
metamodel, and to the inserted or deleted value. In case of a
reference, this value is an object and in case of an attribute,
the value is a primitive value of type String, or Boolean,
etc. However, we omitted to distinguish between objects and
primitive values in Fig. 21 for sake of readability. Having fea-
ture changes in difference models, every information that is
present in a graph modification as presented in Sect. 2 is also
expressed by a match model in combination with a differ-
ence model. However, to avoid analyzing both models when
detecting conflicts, the difference model also explicitly repre-
sents inserted and deleted objects. Therefore, the metamodel
contains the two classes InsertObject and DeleteObject, that
are subclasses of the abstract class ObjectChange. Except
for root objects, objects are always contained by another
object through a containment feature. Consequently, insert-
ing and removing an object is realized by a feature operation
affecting the respective containment feature. Thus, object
changes are further specified by a reference to the respec-
tive instance of a FeatureChange, which gives information on
the inserted or deleted object through the reference value, the
container of the inserted or removed object through the ref-
erence changedObject and the containment feature through
which the object is or originally was contained through the
reference changedFeature. To avoid the lengthy navigation
through the referenced feature change, instances of Object-
Change contain a reference, called object, that directly refers
to the inserted or deleted object. Certainly, as defined by the
invariants in Fig. 21, a valid instance of InsertObject must
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Fig. 21 Kernel difference
metamodel
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refer to an instance of InsertFeatureValue and a valid instance
of DeleteObject must refer to an instance of DeleteFeature-
Value, whereas the affected feature has to be a containment
feature. Just like match models, also difference models are
weaving models. First, a difference model refers to objects
in the original model (Vo) as long as they already exist in
the original model, i.e., they have not been inserted in this
modification, by the references value, changedObject, and
object. Second, it refers to the revised model (Vr1 or Vr2) if
the value or object has been newly introduced and, therefore,
does not already exist in the original model. Third, the dif-
ference model refers to the metamodel to which the original
model as well as the revised model conform by the references
changedFeature and containmentFeature.

From a conceptual point of view, the algorithm for deriv-
ing a difference model from a match model is straightfor-
ward. For each original Unmatch instance, a DeleteObject,
and correspondingly, for each revised Unmatch instance,
an InsertObject instance is created. For deriving feature
changes, each feature value of the original and revised object
of each Match instance is compared and, given a feature value
is missing on the original or the revised side, an instance of
InsertFeatureValue or DeleteFeatureValue is created, respec-
tively.

Extended difference metamodel However, when recalling
the Ecore metamodel (cf. Fig. 16), it becomes obvious that
the kernel difference model in Fig. 21 does not consider
the complete set of Ecore modeling features and only repre-
sents the fundamental concepts that conceptually correspond
to the notion of graph modifications. Several aspects, such
as ordered features, containment features, and multiplicities
supported by Ecore, are not covered in the kernel difference
metamodel. Therefore, the kernel difference metamodel is
extended to explicate all facets of changes that can be applied
to Ecore-based models (cf. Fig. 22).

Firstly, in the kernel difference metamodel, the multiplic-
ity of features is not explicitly represented. However, when
merging EMF models, it makes a difference whether a feature

is single-valued (upperBound is equal to one) or multi-valued
(upperBound is greater than one). Changing a single-valued
feature always overwrites the old value and consequently, if
a single-valued feature is changed on both sides in a ver-
sioning scenario, always a conflict has to be reported. This is
not the case with multi-valued features. Hence, we introduce
FeatureUpdate that represents the change of a single-valued
attribute or reference in addition to InsertFeatureValue and
DeleteFeatureValue for multi-valued features.

Secondly, the Ecore metamodel allows to define ordered
features. Ordered features pose an additional challenge when
merging two versions of a model because concurrent changes
of the order of feature values have to be regarded. If a fea-
ture is ordered, each element in the value list has an index.
In the extended difference metamodel this is reflected by the
classes InsertOrderedFeatureValue and DeleteOrderedFea-
tureValue. Besides inserting and deleting values from ordered
feature values, users may also modify only the order of fea-
ture values, whereas the set of values remains the same. Such
a change is realized by one instance of DeleteOrderedFea-
tureValue for detaching the object from its original index
and one instance of InsertOrderedFeatureValue for inserting
the same object at its new index again. To make changes to
an order more explicit, we additionally introduce the class
FeatureOrderChange that refers to DeleteOrderedFeature-
Value and InsertOrderedFeatureValue instances realizing the
order change.

Finally, we have to consider a special combination of
two FeatureChanges, namely when two feature changes are
concerned with the insertion and deletion of one and the
same object in different containers. In such a case, we can
infer that this object is moved from one container to another.
Thus, a Move is a derived difference consisting of two fea-
ture changes: either one InsertFeatureValue and one Delete-
FeatureValue if both containment features are multi-valued,
or one DeleteFeatureValue and one FeatureUpdate if only the
source containment feature is multi-valued, or one Feature-
Update and one InsertFeatureValue if only the target con-
tainment feature is multi-valued, or two FeatureUpdates if
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Fig. 22 Extended difference
metamodel
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the source and target containment features are single-valued.
The old container of the moved object is indicated by the
changedObject reference (cf. Fig. 21) in the source Feature-
Change and the new container is indicated by changedObject
of the target FeatureChange.

Technical realization The presented model differencing
approach is implemented in the model versioning system
AMOR. This implementation is partly based on EMF Com-
pare [12], an extensible model differencing framework in
the realm of EMF. With EMF Compare, EMF models may
be matched using either heuristics or UUIDs.

However, the implementations for model matching
shipped with EMF Compare have some limitations regard-
ing completeness and flexibility. For instance, EMF Com-
pare stops matching children of objects for which no match
could be found. Consequently, an object that has been moved
into a newly inserted object will not be recognized. Further-
more, it does not allow for combining UUID-based match-
ing with heuristic matching and the used heuristics cannot
be easily adapted for language-specific characteristics. The
quality of the match model is however of significant impor-
tance for the subsequent model differencing and, finally, for
detecting conflicts. Fortunately, EMF Compare is extensible
enough to allow for replacing certain parts of it with cus-
tom implementations. Thus, we replace the default match
implementation by an own implementation that first exploits
UUIDs for creating an initial match model and then, for each
unmatched element, tries to find additional matches based
on language-specific correspondence rules that are specified
using the Epsilon Comparison Language [32].

Based on this improved match model, we use EMF Com-
pare in AMOR to derive an initial version of differences.
These differences are then optimized and translated into

our model-based representation as depicted in Fig. 22. The
difference metamodel in EMF Compare is similar to our
extended difference model, but missing some explicit infor-
mation required for realizing an efficient conflict detection.
Regarding conflict detection, EMF Compare also offers some
capabilities to reveal basic conflicts. However, several types
of conflicts are not supported. Therefore, we also created an
own implementation for detecting conflicts based on two dif-
ference models conforming to our extended difference meta-
model.

Example 14 (Difference Model) To exemplify the difference
metamodel, a concrete instance is depicted in Fig. 23. As
already mentioned, a difference model is a weaving model
connecting three models: the original model Vo, the revised
model Vr, and the common metamodel of Vo and Vr. Please
note that Fig. 23 shows for the sake of readability only a sub-
set of the statechart metamodel and leaves out the instance of
the class Statechart acting as the root container of statecharts.
The difference model in this example contains the differences
that are derived from the match model presented in Fig. 13.
To recall, in this modification, two objects, namely the state
S3 and its outgoing transition T1, have been deleted. Thus, the
difference model contains two instances of DeleteObject that
are further specialized by two instances of DeleteFeature-
Value. More precisely, in the difference model, the deletion
of state S3 is represented by a DeleteObject instance. This
object refers to the deleted object S3 in the original model
and to the instance of DeleteFeatureValue that describes this
deletion in more detail. As this state was originally con-
tained by the state S1, the instance of DeleteFeatureValue
refers to S1 through the reference changedObject as well as
to the containment reference contains, through which S3 was
originally contained. The second instance of DeleteObject
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Fig. 23 Example of a difference model

indicates the deletion of the transition T1 and also refers to
the instance of DeleteFeatureValue that realized this deletion.
Accordingly, this DeleteFeatureValue refers to the deleted
object T1 and the containment feature transitions in the state-
chart metamodel. Please note that we leave out the reference
changedObject going from the DeleteFeatureValue for T1 to
its original container (i.e., the root object of the whole state-
chart), which is not depicted in Fig. 23 to avoid crowding the
object diagram.

Relation to fundamental approach In this subsection, we
derived the kernel difference metamodel from graph modifi-
cations and discussed how this metamodel has to be extended
to cover all peculiarities of the technical space of EMF.
Thereby, we aligned graph modifications and model differ-
encing approaches and elaborated their commonalities and
differences in general and in particular for EMF. As graph
modifications build the basis for the subsequent steps in the
conceptual versioning approach, instances of the extended
difference metamodel for EMF constitute the input of the
conflict detection and merging of EMF models.

9 Detection of operation-based conflicts in EMF models

Having computed the difference models DVo,Vr1 and DVo,Vr2 ,
we may now proceed with detecting operation-based con-
flicts between these two difference models. Operation-based
conflicts basically occur between two contradictory differ-
ences. Consequently, in the conflict detection process, we
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DeleteUpdateUpdateUpdate
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conflicts
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update2

move2
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Fig. 24 Conflict metamodel

search for conflicting combinations of differences and, if
a conflicting combination is at hand, the differences are
marked as a conflict. In the following, we discuss the dif-
ferent types of operation-based conflicts potentially occur-
ring between two difference models and illustrate them by
conflict patterns depicted as UML Object Diagrams
(cf. Figs. 25, 26, 27, 28, 29, 30, 32, 33, 35). Constraints
going beyond object patterns are denoted in curly brackets
using OCL, for instance, {self.oclIsTypeOf(…)}. Alongside
the conflict patterns, we introduce a conflict metamodel to
represent detected conflicts (cf. Fig. 24). Each conflict type
is represented by a dedicated metaclass that is refined by addi-
tional OCL invariants stated in the afore-mentioned conflict
patterns. For detecting conflicts, we may search for matches
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of the conflict patterns in the difference models, DVo,Vr1 and
DVo,Vr2 . If a match has been found, a conflict of the respec-
tive type occurred; thus, an instance of the respective con-
flict metaclass is created and added to the conflict model.
The created instance for describing the detected conflict is
annotated in the respective conflict patterns with the stereo-
type � create �. Besides occurred conflicts, the conflict
metamodel (cf. Fig. 24) also describes partially equivalent
changes that have been concurrently applied. By equiva-
lent changes, we refer to changes that are indeed spatially
overlapping, but that ultimately have the same effect and,
thus, should not be marked as conflicting. This informa-
tion is important for correctly creating a merged model,
because in case of equivalent changes, only one of the par-
tially equivalent changes, i.e., the encompassing change, has
to be applied, and the subchange can be omitted. We dis-
cuss equivalent changes in more detail after presenting the
different types of operation-based conflicts.

Delete–use conflict In the theory presented in Sect. 3, an
operation-based conflict occurs if an edge is inserted and the
source or target node of this inserted edge has been concur-
rently deleted. Thus, the first conflicting combination of two
differences in EMF models concerns the deletion of an object
and concurrently linking to exactly this object by setting a
reference. We call such a conflict delete-use conflict because
the deleted object is concurrently used as a new reference
value. As defined in the conflict pattern depicted in Fig. 25,
a delete-use conflict occurs if an object o has been deleted
and the same object has been concurrently inserted as target
value in a multi-valued reference or set as target value in a sin-
gle-valued one. For the model-based representation of such
conflicts, we introduce the class DeleteUse in the conflict
metamodel (cf. Fig. 24). This class refers to two conflicting
difference elements, namely a DeleteObject by the reference
delete and a FeatureChange by the reference use. Of course,
only feature changes of the type InsertFeatureValue or Featu-
reUpdate are valid because no conflict should be raised if a
DeleteFeatureValue is concurrently applied.

A special kind of a delete-use conflict occurs when an
inserted object uses a deleted object. More precisely, a user
inserts an object that comprises a reference to another object
that has been concurrently deleted. When objects have been
inserted, the difference model contains only a difference rep-
resenting the insertion; it does not contain further differ-
ences indicating the changes that have been applied to the
inserted object. Thus, we require the additional conflict pat-
tern depicted in Fig. 26 for detecting such cases. This pattern
matches if an object o1 has been deleted (through the Del-
eteObject instance do) and a feature change f c exists that
realizes the insertion of an object o2 having a reference to the
deleted object o1. In the OCL invariant, we make use of the
EMF-specific method called eCross Re f erences returning
all objects that are referenced through a non-containment ref-
erence. We do not have to consider containment references in
this pattern because if the deleted object has been added to a
containment reference (i.e., it has been moved to the inserted
object), the next conflict pattern called delete-move matches.

Delete–move conflict Another special kind of a delete-use
conflict is a delete-move conflict (cf. Fig. 27) occurring if the
feature change representing the use in a delete-use conflict (fc
in Fig. 25) is part of a Move (cf. reference target in Fig. 22).
As a result, moving an object and concurrently deleting the
same object is indicated as delete-move conflict. Therefore,
we introduce the class DeleteMove in the conflict metamodel
as a subclass of DeleteUse.

Delete–update conflict According to Sect. 3, two graph mod-
ifications are also conflicting if a node is deleted that acts as
source of a concurrently inserted edge. In the context of EMF
models, we denote inserting, deleting, and setting feature val-
ues as an update of the containing object. Thus, such con-
flicts are denoted as delete-update conflicts. A delete-update
conflict should only be raised, if the feature update is not a
DeleteFeatureValue because in this case both changes may
easily be merged without omitting the effect of one of the
involved changes. Correspondingly, a FeatureUpdate setting

Fig. 25 Delete–use conflict

do: DeleteObject o: Object
object value

fc : FeatureChange

{self.oclIsTypeOf(InsertFeatureValue) or 
self.oclIsTypeOf(FeatureUpdate)}

context DeleteUse
inv: self.delete.object = self.use.value and

(self.use.oclIsTypeOf(InsertFeatureValue) or
self.use.oclIsTypeOf(FeatureUpdate))

du: DeleteUse

delete use
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Fig. 26 Delete–use conflict:
through addition

do: DeleteObject o1: Object

object value

fc : FeatureChange

context DeleteUse
inv: InsertObject.allInstances.featureChange->includes(self.use) and

self.use.value.eCrossReferences->includes(self.delete.object)

du: DeleteUse

delete use

io: InsertObject

featureChange

o2: Object

Fig. 27 Delete-move conflict

context DeleteMove
inv: self.delete.object = self.move.target.value and

(self.move.target.oclIsTypeOf(InsertFeatureValue) or
self.move.target.oclIsTypeOf(FeatureUpdate)) )

m: Move

target

do: DeleteObject o: Object
object value

fc : FeatureChange

{self.oclIsTypeOf(InsertFeatureValue) or 
self.oclIsTypeOf(FeatureUpdate)}

du: DeleteMove

delete

move

a single-valued feature to null should also not cause a conflict
when applied to an object deletion in parallel. This conceptu-
ally corresponds to the definition of operation-based conflicts
in graph modifications (cf. Definition 5) and their resolu-
tion (cf. Sect. 4). According to this definition, removing an
edge and concurrently removing the source node of this edge
first lead to a delete–delete conflict that will, however, be
automatically resolved by applying the deletion without user
intervention. For efficiency reasons, the implementation of
the conflict detection for EMF models omits raising conflicts
for such scenarios in the first place. Consequently, as illus-
trated in the conflict pattern and the OCL invariant depicted
in Fig. 28, a delete-update conflict occurs if an object o has
been deleted and the same object as been updated by either
an InsertFeatureValue or a FeatureOrderChange, or, in case
of a single-valued feature, a FeatureUpdate as long as the
updated value is not null. Please note that this pattern also
raises a conflict if an object is moved to another container
object that has been concurrently deleted, because the tar-
get container is updated by the target feature change of the
move.

Update–update conflict As already mentioned, features in
EMF models may be single-valued or multi-valued. If they
are single-valued, setting a new feature value will overwrite

the old one. If now a single-valued feature is concurrently
changed in EMF models, obviously a conflict occurs, because
the merged model may not contain both values by both users
at the same time. In contrast to EMF models, we may tempo-
rarily violate the upper bound constraint in graphs: we may
insert two edges to both nodes even if an upper bound of 1
is specified in the type graph. Thus, both modifications can
be merged so that the merged graph ultimately contains both
edges inserted by both users. If the upper bound in the type
graph is now defined to be 1, a state-based conflict is raised
later (cf. Sect. 5). However, in EMF models we cannot tempo-
rarily store two values in a single-valued feature. Therefore,
we rather immediately raise a conflict that is referred to as
update–update conflict (cf. Fig. 29).

Update–update conflict: ordered features We may also
encounter conflicts between concurrent changes, if the
updated feature is defined to be multi-valued and ordered in
the modeling language’s metamodel. If the order of feature
values is defined to convey a meaning, concurrent changes to
such features might have contradictory effects on the order.
As already mentioned (cf. Sect. 7), the order of feature values
is represented in terms of absolute indices in EMF. However,
based on our experiences, we argue that in most modeling lan-
guages, the meaning of a value’s position in ordered features
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Fig. 28 Delete-update conflict

do: DeleteObject
fc : FeatureChange

o: Object
object

{self.oclIsTypeOf(InsertFeatureValue) or 
self.oclIsTypeOf(FeatureOrderChange) 
or (self.oclIsTypeOf(FeatureUpdate) and 
self.value <> null)}

changed
Object

context DeleteUpdate
inv: self.delete.object = self.update.changedObject and

(self.update.oclIsTypeOf(InsertFeatureValue) or
self.use.oclIsTypeOf(FeatureOrderChange) or
(self.oclIsTypeOf(FeatureUpdate) and self.update.value <> null))

du: DeleteUpdate

delete
update

Fig. 29 Update–update conflict

fc1: FeatureChange f: Feature

{upperBound = 1 and 
fc1.value <> fc2.value}

o: Object

changed
Object

changed
Object

changed
Feature

changed
Feature

context UpdateUpdate
inv: self.update1.changedObject = self.update2.changedObject and

self.update1.changedFeature = self.update2.changedFeature and
(self.update1.changedFeature.upperBound = 1 and
self.update1.value <> self.update2.value)

update1

update2

fc2 : FeatureChange

uu: UpdateUpdate

is based on its predecessor and successor. For instance, the
absolute index of messages in UML Sequence Diagrams is
usually not important; the position of a message is rather char-
acterized by its preceding and succeeding messages. There-
fore, we build our conflict detection strategy for concurrent
changes to ordered features upon the principle that the mean-
ing of a value’s position is constituted by its predecessor and
its successor. With this strategy, we aim at raising a con-
flict if and only if the final order of values of a concurrently
modified feature cannot be determined (because of insert-
ing two different values at the same index) or if one change
contradictorily affects the predecessor or the successor of a
concurrently inserted, deleted, or reordered value. As EMF
encodes the predecessor and successor of a value in terms of
indices, we also have to base our conflict detection strategy
on indices.

In Fig. 30, the conflict pattern formalizing our conflict
detection strategy is illustrated. This conflict pattern com-
prises two feature changes, fc1 and fc2 that both modify the
same object o at the same multi-valued ordered feature f. As
further specified in the constraint for the object fc2, this con-
flict pattern matches if one of three particular scenarios occur:

(i) Both changes are inserts at the same index with different
values; thus, the final order of the inserted values cannot be
determined. (ii) The predecessor or successor of an inserted
value is concurrently deleted. (iii) The predecessor or suc-
cessor of a deleted value is concurrently affected by another
deletion. Please note that concurrent deletions on the same
index will not cause a conflict. Furthermore, feature order
changes are realized by a deletion and subsequent insertion
of the same value at a different index; consequently, the con-
flict pattern in Fig. 30 also addresses conflicting feature order
changes.

Example 15 (Concurrent Changes of an Ordered Feature)
In Fig. 31, we show three sample scenarios for concurrent
changes applied to ordered features. In the first scenario (cf.
Fig. 31a), both users insert a new value to the beginning of
the ordered feature. Thus, we cannot automatically determine
the order and a conflict is reported (cf. case (i) in Fig. 30). In
the second scenario (cf. Fig. 31b), user 2 inserts a new value
B after A; this value, however, has been concurrently deleted
by user 1. Thus, a conflict is reported (cf. case (ii) in Fig. 30).
The third scenario (cf. Fig. 31c) illustrates the reason for
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Fig. 30 Update–update
conflict: ordered features

fc1: FeatureChange
f: Feature

{upperBound > 1 
and ordered = true}

o: Object

changed
Object

changed
Object

changed
Feature

changed
Feature

context UpdateUpdate
inv: update1.changedObject = update2.changedObject and

update1.changedFeature = update2.changedFeature and
update1.changedFeature.upperBound > 1 and
update1.changedFeature.ordered = true and

(i) update1.oclIsTypeOf(InsertOrderedFeatureValue) and
update2.oclIsTypeOf(InsertOrderedFeatureValue) and
update2.index = update1.index and
update2.value <> update1.value or

(ii) update1.oclIsTypeOf(InsertOrderedFeatureValue) and
update2.oclIsTypeOf(DeleteOrderedFeatureValue) and
(update2.index = update1.index or update2.index = update1.index-1) or

(iii) update1.oclIsTypeOf(DeleteOrderedFeatureValue) and
update2.oclIsTypeOf(DeleteOrderedFeatureValue) and
(update2.index = update1.index-1 or update2.index = update1.index+1)

update1

update2

fc2 : FeatureChange

uu: UpdateUpdate

fc1.oclIsTypeOf(InsertOrderedFeatureValue) and
fc2.oclIsTypeOf(InsertOrderedFeatureValue) and
fc2.index = fc1.index and fc2.value <> fc1.value or
fc1.oclIsTypeOf(InsertOrderedFeatureValue) and
fc2.oclIsTypeOf(DeleteOrderedFeatureValue) and
(fc2.index = fc1.index or fc2.index = fc1.index-1) or
fc1.oclIsTypeOf(DeleteOrderedFeatureValue) and
fc2.oclIsTypeOf(DeleteOrderedFeatureValue) and
(fc2.index = fc1.index-1 or fc2.index = fc1.index+1)

checking the predecessor and successor index only if at least
one change is a deletion (i.e., an instance of DeleteOrdered-
FeatureValue). In this scenario, both users concurrently insert
values without affecting the intended predecessors and suc-
cessors of the inserted values.

Move–move conflict Next, we introduce a special case of an
update–update conflict that is related to concurrent updates
of containment references of different objects, but using the
same object as value. In particular, such a conflict—denoted
as move–move conflict—occurs if the same object has been
concurrently moved to different container objects. This is
still an update–update conflict because Move is a change type
consisting of two feature updates (cf. Fig. 22). However, in
contrast to the common update–update conflicts as defined
in Fig. 29, move–move conflicts are not caused by concurrent
feature updates of the same object but of different objects. In
particular, a move–move conflict occurs if the same object o
has been concurrently moved to different container objects
c1 and c2 (cf. Fig. 32). This pattern basically ensures that
every object in an EMF model has at most one container.
As depicted in the conflict metamodel in Fig. 24, the class
MoveMove is a subclass of UpdateUpdate and additionally
references two Move elements.

However, because of the specific restriction of EMF spec-
ifying that every EMF model must have a spanning contain-
ment tree, we also have to avoid cyclic containment relation-
ships. Basically, a containment cycle occurs if user 1 moves
an object to another container object and user 2 concurrently
moves the same container object (or a parent of it) to the
object user 1 moved (or a child of it). For finding such con-
flicts, we introduce another conflict pattern in Fig. 33. This
pattern matches if one of the moved objects (o1) is the direct
or indirect target container c2 of the concurrently moved
object o2.

Example 16 (Containment Cycle) To exemplify such a sce-
nario, we depict the original statechart and two concurrently
modified versions of it Vr1 and Vr3 in Fig. 34. In this scenario,
user 1 moves state S3 from S1 to S0. Now assume, that user 2
concurrently moves the root state S0 to state S3. Obviously,
a direct containment cycle between S0 and S3 occurs. This
is the simplest case because we might also face an indirect
containment cycle. Anyway, for both cases, direct and indi-
rect containment cycles, a conflict has to be raised to avoid
an erroneously merged model. For illustration purposes, we
annotated the match of this conflict pattern by marking the
object IDs in speech balloons at the matching model elements
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Fig. 31 Examples for concurrent changes of an ordered feature

in Fig. 34. State S3 is a match for the conflict pattern objects
c2 and o1 and state S0 matches with c1 and o2 because the
class invariant in the conflict pattern constraining c2 specifies
that sel f = o1 is fulfilled in this scenario.

Insert–insert conflict Finally, we have to regard one special
case concerning the containment relationships in EMF. As
already mentioned, every object must have at most one con-
tainer. When considering a scenario in which one object does
not have a container in the original model and both users
concurrently set different containers for this object then no
move–move conflict is reported. Therefore, we introduce an
insert–insert conflict pattern for addressing such a scenarios
in Fig. 35. This conflict is raised if the same object o is con-
currently inserted or set as feature value of a containment ref-
erence f 1 and f 2 in two different objects c1 and c2. Accord-
ingly, we also introduce the class InsertInsert in the conflict
metamodel that references two FeatureChanges causing the
conflict.

Completeness of the conflict patterns We developed the
afore-mentioned patterns for finding operation-based con-
flicts, on the one hand, top-down by reviewing existing
literature in the realm of conflict detection for models
(e.g., [1,14,31,50,53]) and, on the other hand, bottom-
up by collaboratively collecting different conflict exam-
ples from different domains in a Web-based conflict
lexicon [9].

Finally, we implemented the resulting list of conflict types
in AMOR and conducted several case studies in collaboration

Fig. 32 Move–move conflict:
non-unique container

m1: Move

o: Object

value

value

m2: Move

c1: Object

{self<>c2}

c2: Object

changedObject

changedObject

context MoveMove
inv: self.move1.value = self.move2.value and

self.move1.changedObject <> self.move2.changedObject

mm: MoveMove

move1

move2

Fig. 33 Move–move conflict:
containment cycles
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{self = o1 or self.allParents()
->includes(o1)}

changedObject
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context MoveMove
inv: self.move2.changedObject = self.move1.value or

self.move2.changedObject.allParents() ->includes(self.move1.value)

mm: MoveMove
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Fig. 35 Insert–insert conflict
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with our industry partner SparxSystems8 (the vendor of the
UML tool Enterprise Architect) to evaluate whether the list
of identified conflict types covers a wide range of conflicts
occurring in modeling practice. Admittedly, whether concur-
rent changes should be classified as conflicting often depends

8 http://sparxsystems.de.

on how a modeling language is used, the goal of the model-
ing project, the phase of a project, or even on personal pref-
erences. To this end, AMOR follows a framework approach
and allows users to extend the conflict detection algorithm by
adding new conflict patterns as well as changing and remov-
ing existing ones. For instance, if a very conservative ver-
sioning strategy is needed for safety-critical systems where
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also the concurrent modification of two different features
of one object should be reported as a conflict (because the
modelers should then review their modifications in combi-
nation), this is easily implementable by specifying a conflict
pattern similar to the update–update conflict pattern shown in
Fig. 29.

Partially equivalent changes Besides the list of conflicts,
the conflict report also comprises information on (partially)
equivalent changes. Changes are considered to be partially
equivalent if they have (at least partly) the same effect when
applied to a model. Consider for instance a scenario in which
one user deletes state S1 in the statechart depicted in Fig. 16c;
due to the containment reference contains, also the states that
are contained in S1 are deleted (i.e., S3 and S4). In paral-
lel, user 2 deletes S3 being a substate of S1. The effect of
the change performed by user 2 is partially contained by
the change applied by user 1 because both changes directly
or indirectly deleted S3. In the previously presented conflict
detection rules, we already regarded equivalent changes such
that we do not report conflicts if two seemingly conflicting
changes lead indeed to the same result. However, besides
avoiding to report conflicts between equivalent changes, we
also need to retain the information on (partially) equiva-
lent changes for constructing a merged version (cf. Sect. 10)
because, in our example, S3 cannot be deleted anymore after
its container S1 has been deleted. Therefore, the information
on equivalent changes is saved alongside the occurred con-
flicts in the conflict report. More precisely, if two changes
are (partially) equivalent, the smaller change is referenced
through subChange and the change that encompasses the sub-
Change is indicated by the reference encompassingChange
in Fig. 24. When creating the merged model, only the encom-
passing change is applied and the subChange is omitted.

Technical realization Having set up the conflict detection
rules discussed above, realizing the conflict detection is
largely straightforward. Generally speaking, for all change
combinations of both difference models it has to be checked
whether one of the afore-mentioned conflict patterns matches
to indicate a conflict. However, for the sake of efficiency,
we refrain from checking the complete crossproduct of all
change combinations among all changes of both difference
models. In contrast, both difference models are translated
in a first step into an optimized view grouping all changes
according to their type into potentially conflicting combina-
tions. Secondly, all combinations are filtered out if they do
not spatially affect overlapping parts of the original model.
Finally, all remaining combinations are checked in detail by
evaluating the previously presented patterns.

If one of the presented conflict patterns matches, a conflict
description is created and added to a conflict report which is a
model-based representation of all conflicting changes in two

difference models. As a summary of the introduced conflict
types, the complete conflict metamodel is depicted in Fig. 24.
Basically, each kind of operation-based conflict is described
by an instance of the specific conflict type (e.g., DeleteUse)
referring to the two differences (depicted in gray in Fig. 24)
causing the conflict. Thus, the conflict report explicitly indi-
cates the occurred conflicts by giving for each conflict its type
and the involved differences by referring to the difference
models.

Example 17 (Operation-based Conflict Detection) To exem-
plify the conflict metamodel, we now analyze the concurrent
modifications m1 and m2 introduced in Fig. 3. In modification
m1, user 1 moved state S3 from S1 to S0. In parallel, user 2
deleted state S3 and its outgoing transition T1. Consequently,
the difference model for m1 denoted with DVo,Vr1 contains a
Move instance. The second difference model DVo,Vr2 repre-
senting modification m2 contains three difference elements
(cf. Fig. 23), namely two DeleteObjects, one for state S3
and one for transition T1, and a DeleteFeatureValue that is
implied by the DeleteObject for S3. When applying all con-
flict detection rules above, a delete-move conflict is indicated
between the Move object of S3 and the DeleteObject of S3.

Relation to fundamental approach To cover the peculiari-
ties of the technical space of EMF, we refined the defini-
tion of delete–insert conflicts of the fundamental approach
(cf. Definition 5). This is necessary, because EMF mod-
els have to be valid graphs. More precisely, we introduced
delete–use and delete–move conflicts for scenarios in which
the target of an inserted link has been concurrently deleted
and delete–update conflicts for scenarios in which the source
object of an inserted link has been concurrently deleted. By
this refinement, we have taken into account that in EMF mod-
els, links and attribute values are not first-class elements.
Moreover, we presented for EMF models the operation-based
conflict types update–update, move–move, and insert–insert
that are covered by the fundamental approach in terms of
state-based conflicts. Hence, we directly regard well-formed-
ness rules of EMF models in the presented operation-based
conflict patterns to avoid obfuscated merged models. The
introduction of the update–update conflict type is necessary
because (i) single-valued features in EMF are allowed to
hold only one value at a time and (ii) some peculiarities of
ordered, multi-valued features have to be considered. Finally,
the move–move and insert–insert conflict types are intro-
duced to reflect the fact that EMF models must form a span-
ning containment tree.

10 Construction of merged EMF models

Before we may proceed with detecting state-based conflicts,
we first construct a tentatively merged model for evaluating
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language-specific constraints. The goal of this merge con-
struction is to produce a tentatively merged model, irrespec-
tively of any occurred conflicts, to allow for the actual conflict
resolution by the user. Therefore, the merge construction used
in AMOR for EMF models conceptually corresponds to con-
struction of a merged graph presented in Sect. 4. To recall, in
this merge construction, delete–delete conflicts are resolved
by performing one deletion and in case of delete–insert con-
flicts, inserts are prioritized over deletions to obtain a merged
graph. For merging concurrently modified EMF models, we
follow a similar strategy.

In particular, in case of delete–use and delete–update
conflicts, we omit the deletions and only apply the feature
updates involved in these conflicts to avoid information loss
in the merged model. However, in case of update–update and
move–move conflicts, we are not able to apply both conflict-
ing changes due to the restrictions of EMF models because
when applying both changes, one change would overwrite the
other. For instance, having a single-valued reference that has
been concurrently modified in a contradictory way, we may
not express both changes in the model since EMF is only
capable of persisting one value for single-valued features.
However, reflecting all contradictory changes in the merged
model is essential for the comprehension of all changes. The
user who is responsible for manually resolving all conflicts
has to understand the concurrent evolution of the model to be
able to construct a consolidated version. Therefore, we over-
come the restrictions of EMF models by omitting to apply
both conflicting changes in case of update–update and move–
move conflicts and annotate the merged model to support the
user in understanding the evolution.

Annotating EMF models To overcome the restrictions of
EMF models, we annotate conflicts directly in the model
[10]. Unfortunately, EMF does not inherently provide a
common annotation mechanism. Therefore, we ported the
lightweight extension mechanism known from UML Pro-
files [25] to the realm of EMF models as presented in [34].
Thereby, every model may be annotated with stereotypes
containing tagged values. If for instance, an update–update
conflict appeared, a corresponding stereotype is applied to the
object that was concurrently modified. This stereotype con-
tains information on the contradictory updated values. Ste-
reotype applications may be visualized on top of the abstract
as well as the concrete syntax of a model. The annotated
model acts as the basis for the actual conflict resolution by
the user, who thereby may resolve all annotated conflicts
directly in tentatively merged model.

Technical realization From a technical point of view, the
merged model is constructed by reapplying all identified dif-
ferences contained in the difference models (cf. Fig. 22) from
both sides. Therefore, we implemented a dedicated model
transformation engine based on the merging framework of

EMF Compare [12] that is able to apply FeatureChanges
and ElementChanges to existing EMF models. When merg-
ing all non-conflicting changes, we have to specifically treat
changes to ordered features. To recall, the positions of values
in ordered features are represented in EMF by indices. Thus,
a change might affect the indices of all subsequent values in
the ordered list. Therefore, we apply all concurrent changes
to ordered features from the back to the front; for instance,
a deletion of a feature value at index 7 is applied before an
insertion at index 2. Besides ordered features, we also have
to regard conflicting changes during the merge construction.
More precisely, we follow the rules mentioned above, i.e.,
prioritizing feature changes over object deletions and omit-
ting feature changes involved in update–update and move–
move conflicts. As mentioned above, the tentatively merged
model is finally annotated with all occurred conflicts from the
conflict report using EMF Profiles to allow users to resolve
them.

Example 18 (Merge Construction) To exemplify the merge
construction and the annotation of conflicts, we walk through
the merge and annotation process for merging the modifica-
tions m1 and m2 introduced in Fig. 3. In modification m1,
user 1 moved state S3 from S1 to S0. In parallel, user 2
deleted state S3 and its outgoing transition T1. As elaborated
in Example 17, a delete-move conflict is reported between
the Move by user 1—or more precisely the InsertFeature-
Value of S3 from which the move has been derived—and
the DeleteElement deleting S3 by user 2. As stated above,
in such a case, feature updates are prioritized over dele-
tions, which is why S3 is moved to S0 in the merged model
as depicted in Fig. 36. Additionally, a DeleteMoveConflict
annotation is created that marks the deleted object as well as
the source and target object of the conflicting move. This con-
flict model may be visualized in terms of annotations directly
in the model as presented in [34]. Furthermore, the annotation
also refers to the difference elements causing the conflict in
the difference models DVo,Vr1 and DVo,Vr2 . Besides handling
this conflict, all non-conflicting changes are applied to the
merged model. In particular, this is the deletion of the transi-
tion between S3 and S4. Please note that the resulting model
perfectly corresponds to the merged graph modification in
Fig. 9.

To give the reader an idea, how conflicts are actually visu-
alized in EMF-based modeling editors, a screenshot showing
the afore-discussed tentatively merged model including the
conflict annotation is illustrated in Fig. 37. In the modeling
canvas, the state S3 has a delete-move annotation depicted by
a specific icon. Further information on the delete-move con-
flict is shown in the property view of the conflict annotation.

Relation to fundamental approach The merge construction
for EMF implements the same strategy as introduced for
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Fig. 36 Example of the tentatively merged model

the fundamental approach. More precisely, we also prioritize
insertions over deletions to avoid loosing important informa-
tion for resolving delete-* conflicts and, in addition, mark the
conflicts explicitly by annotations. For other kinds of con-
flicts (i.e., update–update, move–move, insert–insert), that
are reported by the fundamental approach as state-based con-
flicts, we do not apply both conflicting changes for building
the tentatively merged model. Instead, we introduce a conflict
annotation that references both changes. Thus, the user has to
decide in the manual conflict resolution phase which change
to prioritize. Our annotation mechanism even allows to visu-
alize these conflict markers on top of the concrete syntax of
graphical models.

11 Detection of state-based conflicts in EMF models

Having a merged model at hand, we now proceed to analyze
the model to reveal state-based conflicts. Basically, we may
distinguish between two kinds of state-based conflicts in the
realm of EMF.

First of all, every model must conform to general well-
formedness rules all EMF models have to follow regardless of
their metamodels. These rules specify that every EMF model
must have a spanning containment tree, i.e., every model
element must be reachable from the root element following
a unique path through containment references only. Thus,
every model element, except the root element, must have a
unique container and no cyclic containment relationships are
allowed. Assuming that both modified versions Vr1 and Vr2

are well formed, the merged model obtained by the merge

construction discussed before is also well formed because
otherwise the rules for detecting move–move, delete–move,
or delete–update conflicts would have prohibited producing
a broken containment tree. Consequently, we do not have to
consider containment violations anymore at this point.

Second, every model must conform to its metamodel and
to potentially additional validation rules such as OCL con-
straints. Most of these rules coming solely from the meta-
model cannot be violated in the merged model assuming that
they have not been violated in each of the two concurrent ver-
sions Vr1 and Vr2. Also, inserting more than one value to a
single-valued feature is avoided by raising an update–update
conflict and dangling references are prohibited by delete–use
conflicts. However, the merged version might still violate the
lower or upper bounds of multi-valued features, uniqueness
constraints, and arbitrary additional constraints such as OCL
constraints.

Technical realization While state-based conflicts of graph
modifications are defined by graph constraints as presented
in Sect. 5, we use corresponding technologies in the realm
of EMF such as the EMF Validation Framework [21]. Using
this framework, each EMF-based model may be validated
to detect violations of constraints arising directly from the
metamodel as well as those coming from additionally defined
constraints. The EMF Validation Framework supports con-
straints expressed in OCL or Java. Whenever a violation is
detected, diagnostics are returned that describe the severity of
the constraint violation and provide an error message as well
as the model elements involved in the respective violation.

The information on involved model elements is used to
point the user to all revealed state-based conflicts. Particu-
larly, all involved model elements are annotated using again
our annotation mechanism for EMF models already intro-
duced for annotating operation-based conflicts. This anno-
tation provides information on which constraint is violated
and which other model elements are also involved in the same
violation.

Relation to fundamental approach Our approach for detect-
ing state-based conflicts in EMF models corresponds to the
fundamental approach presented in Sect. 5: we build a tenta-
tively merged model and check the validation rules of the
respective modeling language. For practical reasons, we,
therefore, employ an existing technology that is specifically
tailored to validating EMF models. However, the automatic
resolution of state-based conflicts, as presented in Sect. 6, is
currently not implemented in AMOR.

12 Related work

The contribution of this article is twofold. First, a for-
mal foundation of model versioning concepts based on
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Fig. 37 Tentatively merged
model in Eclipse

graph modifications is presented. Second, implementa-
tion issues and their relation to the formal foundation
have been considered for the EMF technical space. There-
fore, we distinguish two kinds of related work. First,
we compare our work to other approaches aiming at
the formalization of model versioning conflicts and then,
we discuss the state-of-the-art of tool support for model
versioning.

12.1 Formalization of model versioning concepts

First of all, we have to clarify that model merging differs
from merging of model modifications. Model merging as

presented, e.g., in [46,49] is concerned with a set of mod-
els and their inter-relations expressed by binary relations. In
contrast, merging of model modifications takes change oper-
ations into account. Merging of model modifications usually
means that non-conflicting parts are merged automatically,
while conflicts have to be resolved manually. In the literature,
different resolution strategies are proposed that allow at least
semi-automatic resolution. A survey on model versioning
approaches and especially on conflict resolution strategies is
given in [3].

Alanen and Porres [1] define a difference and merge oper-
ator for MOF-based models from a set-theoretical view. Dif-
ferences are represented by atomic changes leading from
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a base version to the working copy. With their approach,
they are able to detect delete-update and update–update con-
flicts, also incorporating advanced concepts such as ordered
features. However, conflicts going beyond atomic changes
such as state-based conflicts remain undetected. Further-
more, delete-update and update–update conflicts have to be
resolved before a merged model may be produced.

Recently, Westfechtel [53] presented a formal approach
for merging EMF models. His work is based on set-theo-
retical conflict definitions in contrast to graph theory used
in this paper. Westfechtel’s approach is directly tailored to
EMF models, whereas the fundamental approach presented
in this paper is more generic and can be adopted to any meta-
modeling framework. Furthermore, in [53], only state-based
conflicts arising from the well-formedness rules of EMF are
regarded and no means for further language-specific con-
straints as discussed in Sect. 5 are provided. Our fundamental
approach also encompasses automatically resolving opera-
tion-based as well as state-based conflicts which has not been
considered in [53]. Consequently, in [53], all operation-based
conflicts have to be interactively resolved based on an inter-
mediate graph structure first before a merged EMF model
can be created.

A category-theoretical approach formalizing model ver-
sioning is given in [48]. Similar to our approach, modifica-
tions are considered as spans of morphisms to describe a par-
tial mapping of models. Moreover, syntactic conflicts such as
adding structure to an element that has to be deleted, are iden-
tified. This kind of conflicts is very close to our delete–insert
conflicts. Merging of model changes is also based on pu-
shout constructions. In contrast to [48], we consider an auto-
matic conflict resolution strategy that is formally defined. In
addition, we consider state-based conflict detection. This has
been indicated as future work in [48], where conflict detec-
tion based on user-specified operations are not mentioned at
all. A category theory-based approach for model versioning
in-the-large is given in [19]. However, this approach is not
concerned with formalizing conflict resolution strategies.

In [33], the applied operations are identified first and
grouped into parallel independent subsequences afterwards.
Conflicts can be resolved by either (1) discarding complete
subsequences, (2) combining conflicting operations in an
appropriate way, or (3) modifying one or both operations.
The choice of conflict resolution is made by the modeler.
These conflict resolution strategies have not been formal-
ized. The intended semantics is not directly investigated but
the focus is laid on the advantage of identifying composite
change operations instead of elementary ones. In contrast, we
propose a semi-automatic procedure where at first, an auto-
matic merge construction step gives insertion priority over
deletion in case of delete–insert conflicts. If other choices
are preferred, the user may perform deletions manually in a
succeeding step.

The approach by Blanc et al. [8,7] considers models as a
sequence of construction operations. Structural constraints,
i.e., constraints on model states, and methodological con-
straints, i.e., constraints over the model construction process
itself, are formalized in consistency rules as logic formu-
lae over a sequence of construction operations. Furthermore,
the structural and methodological constraints may be defined
for detecting intra-model as well as inter-model inconsisten-
cies. In a follow-up work [41], distributed versioning based
on propagating construction operations from local models
to a global unified model has been formalized based on
Alloy. However, only a simplified version of MOF has been
considered (e.g., no multi-valued features or containment ref-
erences) and there is no possibility for manual conflict reso-
lution which we see as an integral phase of the merge process.
Instead, in the work of Mougenot et al., a complete automatic
merge strategy is followed. If two construction operations are
in conflict, only the later one (having a newer time stamp) is
integrated in the global model and the other is ignored unless
it is a deletion.

Automatic merge results may not always solve conflicts
adequately, especially state-based conflicts or inconsisten-
cies may still exist or arise by the merge construction. Res-
olution strategies such as resolution rules presented in [39]
are intended to solve state-based conflicts or inconsistencies.
They can be applied in follow-up graph transformations after
the general conflict resolution procedure produced a tentative
merge result.

12.2 Tool support for model versioning

In the last decades, a lot of research has been conducted in the
domain of software versioning which is profoundly outlined
in [15,38]. Most of the approaches focus on source code ver-
sioning, others focus on two-way comparison of models [29],
but there are also some dedicated approaches aiming at the
versioning of models by a three-way merge. For example,
Odyssey-VCS [42] supports the versioning of UML mod-
els. This system performs the conflict detection at a very
fine-grained level, hence it is able to merge modifications
concerning different model elements or even different attri-
butes of one model element. EMF Compare [12] is an Eclipse
plug-in, for comparing and merging models independently of
the underlying meta model. CoObRA [50] is integrated in the
Fujaba tool suite and logs the changes performed on a model.
The modifications performed by the modeler who did the
later commit are replayed on the updated version of the repos-
itory. Conflicts are reported if an operation may not be applied
due to a violated precondition. Similar to CoObRA, Unicase
[30], an Eclipse-based CASE-tool, also provides three-way
merging based on edit logs. This work is continued with
the development of EMF Store [31]. The Advanced Artifact
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Management Systems (ADAMS) [16] has been employed
for versioning software models [17] created with the UML
tool ArgoUML. Cicchetti et al. [14] proposed a metamodel
to describe conflict patterns used to match against a change
report generated by a differentiation algorithm for detecting
conflicts. In addition to research prototypes and open-source
systems, current commercial modeling tools provide only
some limited support for model versioning as has been eval-
uated in [2,4]. Most notable is the IBM Rational Software
Architect (RSA), a UML modeling environment built upon
EMF, providing two-way and three-way merge functionality
for UML models [35].

Although all these mentioned approaches are capable of
finding some kinds of operation-based conflicts, none of
them allows to compute a merged version in case of con-
flicts are occurring. To the best of our knowledge, only two
approaches, namely Mehra et al. [37] and Ohst et al. [45],
exist going in this direction. In the work of Ohst et al.,
solely two-way merges are considered; three-way merges
are only mentioned as subject to future work. Thus, only
update–update conflicts for single-valued attributes arise dur-
ing merging that are resolved by representing both values in
the merged version similar to our approach. Update–delete
conflicts are not considered, because this kind of conflict
only occurs in three-way merges. The reason for this is that
in two-way merges deletions cannot be detected, because no
common origin model is available. In contrast to Ohst et al.,
Mehra et al. consider three-way merges as is done in this
article. Although conflicting changes are detected by their
difference algorithm, no attempt is made to indicate to the
user that accepting one change may invalidate another. In
our approach, we explicitly focus on detecting operation-
based and state-based conflicts as well as on their automatic
resolution.

13 Conclusion and future work

The main purpose of this article is to provide a funda-
mental basis for model versioning using graphs and graph
modifications. Fundamental model versioning concepts such
as model differences, conflicts, and conflict resolutions are
clearly defined in a formal setting and illustrated by exam-
ples. Furthermore, we showed how these concepts can be
implemented on top of existing technologies based on EMF.

Based on graph modifications as concept for model differ-
ences, operation-based and state-based conflicts are defined.
Conflicts are resolved in two steps: First, a general merge
construction for graph modifications with operation-based
conflicts is presented that gives insertion priority over dele-
tion in case of delete–insert conflicts. The reason for this
resolution strategy is to let the merged graph modifications
keep as much information as possible. We establish a pre-

cise relationship between the behavior of the given graph
modifications and the merged modification concerning dele-
tion, preservation and creation of graph items. Moreover, we
discuss how different kinds of conflicts of given graph mod-
ifications are resolved by our automatic resolution strategy.
It is up to additional graph modifications to perform those
deletions that are preferred over insertions. These steps are
intended to be performed manually by modelers.

Repair actions are provided to resolve state-based con-
flicts. Their applications would lead to additional graph mod-
ifications optimizing the merged graph modification obtained
so far. For the specification of repair actions in this setting,
the work by Mens et al. in [39] as well as by Egyed et al. [47]
on inconsistency checking and fixing should be considered.

Along with the clearly defined fundamental concepts, we
also show how these have to be adapted to support all fea-
tures and peculiarities of EMF. Furthermore, we provide deep
insights into the prototypical implementation of the EMF-
based model versioning system AMOR and clearly put this
implementation into relation to the presented fundamental
concepts. In particular, we showed how graph modifications
are related to model differencing and showed which parts of
the latter have been improved by considering the former. The
practical relevance and the usability of AMOR and, thereby,
also the corresponding fundamental concepts based on graph
modifications, have been evaluated in collaboration with our
industry partner SparxSystems,9 the vendor of Enterprise
Architect, in the course of user experiments. In these experi-
ments, users had to resolve conflicts using EMF Compare as a
protagonist of traditional versioning systems as well as using
AMOR. These experiments showed that users appreciate to
have a tentatively merged model as a basis for conflict reso-
lution, especially when visualizing the conflicts in the con-
crete syntax of the models. For evaluating the performance of
AMOR, we have developed a model versioning benchmark
based on our previous work on establishing a collaborative
conflict lexicon [11]. The benchmark consists of models that
have been automatically generated using a framework for
the controlled mutation of EMF-based models called Ecore
Mutator.10 For preliminary results using models comprising
up to 30,000 elements and up to 500 concurrent changes, we
kindly refer the interested reader to our project website.11 The
results show that the required execution time exponentially
grows with an increasing number of model elements due to
the state-based model differencing. An increasing number of
concurrently applied changes, however, causes only a slight
increase in runtime. It is worth noting that the detection of
conflicts only constitutes approx. 5 % of the entire execution

9 http://www.sparxsystems.com.
10 http://eclipselabs.org/p/ecore-mutator.
11 http://eclipselabs.org/p/model-versioning-benchmarks/wiki/
PerformanceResultsofAMOR.
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time, whereas model matching and model differencing make
up approx. 37 and 58 %, respectively. In future evaluations,
we plan to compare the results of AMOR with other model
versioning systems.

Future work is needed to better understand the way model
changes have been performed, i.e., which editing operations
have been applied in which order. First ideas in this direc-
tion are described in [51] where a minimal rule is extracted
from a given graph modification and that rule is compared
with editing operations also specified by graph rules. In [51],
we restrict our considerations on the identification of exactly
one editing operation for a given graph modification. This
scenario has to be extended towards an identification of a list
of editing operations. Once applied operations are identified,
the conflict resolution can be improved by lifting from the
level of actions to the level of operations. For example, oper-
ations such as refactorings can show some variability, i.e.,
they can differ in their behavior depending on the context of
their application. Even conflict detection and resolution on
the level of single operations might be too detailed and have
to be complemented with an analysis of operation sequences
concerning their causality. First approaches in this direction
are presented in [33] and [28]. Another interesting future
research direction in the domain of model versioning con-
cerns the graphical concrete syntax of models, which has not
been addressed in this paper. When models are edited using
a graphical concrete syntax, the versioning system also has
to merge the concurrently changed visual representation of
the models. Merging also the visual representation poses an
additional challenge, because the inter-dependency between
model and diagram has to be respected and the mental map
[40] of the diagram has to be retained.

To conclude, model versioning is an emerging research
field with new challenges concerning supportive conflict
detection and resolution. A profound understanding of fun-
damental concepts is indispensable. Graphs and graph mod-
ifications provide a well-suited conceptual access to models
and model changes on an adequate level of abstraction which
helps to come up with a clear implementation of supporting
tools.
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